复合材料知识讲解

合集下载

复合材料手册

复合材料手册

复合材料手册复合材料是由两种或两种以上不同性质的材料组合而成的一种新型材料,具有轻质、高强度、耐腐蚀等特点,在航空航天、汽车制造、建筑等领域有着广泛的应用。

本手册旨在介绍复合材料的基本知识、制造工艺、应用领域以及未来发展趋势,希望能够帮助读者更好地了解和应用复合材料。

一、复合材料的基本知识。

复合材料由增强材料和基体材料组成,增强材料通常是纤维或颗粒,基体材料则是粘合剂或树脂。

常见的增强材料包括玻璃纤维、碳纤维、芳纶纤维等,而基体材料则有环氧树脂、聚酰亚胺树脂等。

复合材料的制造工艺包括手工层叠、自动纺织、注塑成型等,不同的制造工艺会影响复合材料的性能和成本。

二、复合材料的制造工艺。

复合材料的制造工艺包括预浸料成型、热压成型、注塑成型等。

预浸料成型是将增强材料浸渍在树脂中,然后通过模具成型,这种工艺适用于复杂形状的零件制造。

热压成型是将预先浸渍好的增强材料放入模具中,在高温高压下进行成型,适用于大批量生产。

注塑成型则是将树脂和增强材料混合后注入模具中,适用于复杂形状的零件制造。

三、复合材料的应用领域。

复合材料在航空航天、汽车制造、建筑等领域有着广泛的应用。

在航空航天领域,复合材料可以减轻飞机的重量,提高燃油效率,延长使用寿命。

在汽车制造领域,复合材料可以提高汽车的安全性能,减少燃油消耗,降低排放。

在建筑领域,复合材料可以制造出轻质、高强度的建筑材料,提高建筑物的抗风抗震能力。

四、复合材料的未来发展趋势。

随着科技的不断进步,复合材料的应用领域将会不断扩大。

未来,复合材料有望在医疗器械、体育用品、能源领域等方面得到更广泛的应用。

同时,随着制造工艺的不断改进,复合材料的成本将会逐渐降低,使得其在更多领域得到应用。

综上所述,复合材料作为一种新型材料,具有广阔的应用前景。

通过本手册的介绍,相信读者对复合材料有了更深入的了解,希望能够在实际应用中发挥其优势,推动相关领域的发展。

同时,也希望本手册能够成为复合材料领域的一本实用参考书,为相关从业人员提供帮助。

《复合材料》课程笔记

《复合材料》课程笔记

《复合材料》课程笔记第一章:复合材料概述1.1 材料发展概述复合材料的发展历史可以追溯到古代,人们使用天然纤维(如草、木)与土壤、石灰等天然材料混合制作简单的复合材料,例如草绳、土木结构等。

然而,现代复合材料的真正发展始于20世纪40年代,当时因航空工业的需求,发展了玻璃纤维增强塑料(俗称玻璃钢)。

此后,复合材料技术经历了多个发展阶段,包括碳纤维、石墨纤维和硼纤维等高强度和高模量纤维的研制和应用。

70年代,芳纶纤维和碳化硅纤维的出现进一步推动了复合材料的发展。

这些高强度、高模量纤维能够与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,形成了各种具有特色的复合材料。

1.2 复合材料基本概念、特点复合材料是由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。

复合材料具有以下特点:- 重量轻:复合材料通常具有较低的密度,比传统材料轻,有利于减轻结构重量。

例如,碳纤维复合材料的密度仅为钢材的1/5左右。

- 强度高:复合材料可以承受较大的力和压力,具有较高的强度和刚度。

例如,碳纤维复合材料的拉伸强度可达到3500MPa以上。

- 加工成型方便:复合材料可以通过各种成型工艺进行加工,如缠绕、喷射、模压等。

这些工艺能够适应不同的产品形状和尺寸要求。

- 弹性优良:复合材料具有良好的弹性和抗冲击性能,能够吸收能量并减少损伤。

例如,橡胶基复合材料在受到冲击时能够吸收大量能量。

- 耐化学腐蚀和耐候性好:复合材料对酸碱、盐雾、紫外线等环境因素具有较好的抵抗能力,适用于恶劣环境下的应用。

例如,聚酯基复合材料在户外长期暴露下仍能保持较好的性能。

1.3 复合材料应用由于复合材料的优异性能,它们在各个领域得到了广泛的应用。

主要应用领域包括:- 航空航天:飞机、卫星、火箭等结构部件。

复合材料的高强度和轻质特性使其成为航空航天领域的重要材料,能够提高飞行器的性能和燃油效率。

复合材料名词解释

复合材料名词解释

复合材料名词解释复合材料是指由两种或两种以上的材料组合而成的材料,具有合成材料和传统材料的特点和优势。

复合材料的优点主要包括轻质、强度高、刚性好、耐腐蚀、耐磨损、导热性能好、成型性好、设计自由度高等。

复合材料由两种或以上的材料组成,其中一种称为基体(matrix),另一种或其他几种材料则是增强体(reinforcement)或填充物。

基体材料的主要作用是提供整体结构的支撑和连续性,而增强体则起到增加复合材料强度和刚性的作用。

常用的基体材料有塑料、树脂、金属等,而增强体则包括纤维、颗粒、薄膜等。

复合材料的制备过程主要包括预制部分、成型部分和固化部分。

在预制部分,根据所需材料和形状,将基体材料和增强材料等按一定比例混合、搅拌、形成复合材料的原料。

在成型部分,将预制的原料放入模具中,常见的成型方式包括压力成型、注塑成型、挤出成型等。

在固化部分,通过热固化或化学反应等方式使复合材料成型,得到最终的复合材料制品。

复合材料具有许多优点。

首先,由于增强体的加入,复合材料具有很高的强度和刚性,远远超过单一材料的强度。

其次,复合材料的密度相对较低,可以做到轻质化,便于携带和使用。

再次,复合材料的导热性能好,具有较高的绝缘性能,可以用于电子、电气和航空航天等领域。

此外,复合材料的耐腐蚀性能好、耐磨损性能好,可以提高材料使用寿命。

最后,由于复合材料可以灵活设计,成型性好,可以根据需要制作出各种形状和尺寸的制品。

复合材料在许多领域有着广泛应用。

在航天航空领域,复合材料被用于飞机、火箭、导弹的制造,可以减轻重量、提高载荷能力和提高耐用性。

在汽车工业中,复合材料被用于汽车车身和零部件的制造,可以减轻整车重量,提高燃油经济性和安全性能。

在建筑领域,复合材料被用于建筑结构、钢材替代、建筑保温材料等,可以提高建筑品质和节能效果。

在体育用品领域,复合材料被用于制作高尔夫球杆、网球拍、滑雪板等,可以提高运动器材的性能。

总之,复合材料是一种由两种或两种以上材料组合而成的材料,具有轻质、强度高、刚性好、耐腐蚀、耐磨损、导热性能好、成型性好、设计自由度高等优点。

高一化学复合材料知识点

高一化学复合材料知识点

高一化学复合材料知识点复合材料是一种由两种或两种以上的不同物质组成的材料,其中它们各自保持其特点,并且相互作用之后呈现出更好的综合性能。

在现代工业中,复合材料广泛应用于航空航天、汽车制造、建筑材料等领域。

本文将介绍一些高一化学学习课程中涉及的关于复合材料的基本知识。

一、复合材料的分类复合材料根据其组成和结构的不同可以分为以下几种类型:1. 纤维增强复合材料:以纤维为增强体,树脂等为基体,通过层叠或编织形成的材料。

纤维增强复合材料具有高强度、高模量、轻质等优点,因此在航空航天等领域得到广泛应用。

2. 颗粒增强复合材料:以颗粒为增强体,树脂等为基体,混合后形成的材料。

颗粒增强复合材料具有良好的耐磨性、耐蚀性等特点,常用于建筑材料中。

3. 片层材料:由多个层状片材通过胶合等方式连接而成的材料。

片层材料常用于电子元器件中,可以提供较好的绝缘性能和导热性能。

二、复合材料的制备方法复合材料的制备方法多种多样,常见的有以下几种:1. 手工层压:将纤维和树脂依次叠放在模具中,利用手工操作使其完全贴合,并经过高温高压处理,最终形成复合材料。

2. 注塑成型:将树脂熔融后注入模具中,并加压使其充分填充纤维空隙,待冷却固化后取出模具即可得到复合材料。

3. 熔融法:将纤维和树脂混合后加热熔融,然后通过喷射或挤出成型的方法得到复合材料。

三、复合材料的应用领域复合材料具有轻质、高强度、耐腐蚀等优点,在许多领域中得到了广泛应用。

1. 航空航天领域:航空器的结构件和发动机零部件中经常使用复合材料,可以减轻重量,提高飞行速度和燃油利用率。

2. 汽车制造:复合材料在汽车制造中的应用越来越广泛,例如车身和发动机盖等部位常使用复合材料,可以降低车辆重量,提高燃油经济性。

3. 建筑材料:复合材料可以制成各种形状的板材,用于墙体、屋面等建筑结构中,具有良好的隔热、隔音和耐候性能。

4. 体育用品:高档的运动装备和器械,如高尔夫球杆、网球拍等常使用复合材料制作,以提高其性能和使用寿命。

化学知识点初中复合材料

化学知识点初中复合材料

初中化学知识点:复合材料1.什么是复合材料?复合材料是由两种或更多种不同物质组合而成的材料。

它们的组合使得复合材料具有比单一物质更好的性能和特性。

2.复合材料的组成复合材料通常由两个主要组成部分构成:基体和增强材料。

基体是主要成分,起到固化增强材料的作用。

增强材料则提供了复合材料的特殊性能。

3.基体的种类基体可以是金属、陶瓷、聚合物等。

不同的基体材料具有不同的特性。

金属基体材料通常具有高强度和刚性,适用于需要承受高压和高温的应用。

陶瓷基体材料具有良好的耐磨性和耐腐蚀性,适用于高温和化学环境下的应用。

聚合物基体材料具有轻质和良好的绝缘性能,适用于需要轻质和绝缘的应用。

4.增强材料的种类增强材料可以是纤维、颗粒、颗粒等。

纤维增强材料是最常见的类型,如碳纤维、玻璃纤维等。

纤维增强材料具有高强度和刚性,能够增加复合材料的强度和耐用性。

颗粒增强材料可以改善复合材料的耐磨性和耐腐蚀性能。

5.复合材料的制备方法制备复合材料的方法有很多种,其中最常见的是层压法和浸渍法。

层压法是将基体和增强材料层层叠加,并通过压力和温度使其固化在一起。

浸渍法是将基体浸入增强材料的浆料中,使其吸附增强材料,并通过固化使其固定在基体上。

6.复合材料的应用复合材料具有广泛的应用领域。

在航空航天领域,复合材料被广泛应用于飞机和宇航器的结构件,以提高其强度和轻量化。

在汽车制造领域,复合材料可以用于制造车身和零部件,以提高汽车的燃油效率和碰撞安全性。

此外,复合材料还可以应用于建筑、体育用品、电子设备等领域。

7.复合材料的优点和挑战复合材料相比传统材料具有许多优点,如高强度、轻质、耐腐蚀等。

然而,复合材料的制备过程较为复杂,成本较高,并且在环境和可持续性方面面临挑战。

因此,如何平衡复合材料的性能和成本,以及如何解决其可持续性问题,是复合材料研究的重要课题。

总结:复合材料是由两种或更多种不同物质组合而成的材料。

它们的组合使得复合材料具有比单一物质更好的性能和特性。

复合材料名词解释

复合材料名词解释

复合材料名词解释
复合材料是由两种或两种以上的材料组合而成的材料,具有优良的综合性能。

它通常由增强材料和基体材料组成,增强材料可以是玻璃纤维、碳纤维、芳纶纤维等,而基体材料则通常是树脂、金属或陶瓷等。

复合材料因其轻质、高强度、耐腐蚀等特点,在航空航天、汽车、建筑等领域得到了广泛的应用。

首先,复合材料的增强材料通常是纤维状的,如玻璃纤维、碳纤维、芳纶纤维等。

这些纤维具有高强度、高模量的特点,能够有效地增强复合材料的力学性能。

同时,纤维的方向性也使得复合材料具有各向异性,可以根据实际工程需求进行设计和制造。

其次,复合材料的基体材料通常是树脂、金属或陶瓷等。

树脂基复合材料具有
重量轻、成型性好、耐腐蚀等优点,适用于航空航天、汽车等领域;金属基复合材料具有高温强度高、导热性好等特点,适用于航空发动机、航天器结构等领域;陶瓷基复合材料具有高温、耐磨、耐腐蚀等特点,适用于热工器件、化工设备等领域。

最后,复合材料的制造工艺主要包括预浸料成型、手工层叠成型、自动层叠成型、注塑成型等。

预浸料成型是将预先浸渍好的增强材料与基体材料在模具中成型,适用于复杂结构的零件;手工层叠成型是通过手工将增强材料和基体材料一层一层地叠加在模具中,适用于小批量生产;自动层叠成型是通过自动化设备将增强材料和基体材料一层一层地叠加在模具中,适用于大批量生产;注塑成型是将熔融状态的基体材料注入到增强材料的模具中,适用于复杂结构的零件。

综上所述,复合材料是一种具有优良综合性能的材料,由增强材料和基体材料
组合而成。

它的制造工艺多样,适用于航空航天、汽车、建筑等领域,具有广阔的应用前景。

复合材料知识

复合材料知识

复合材料是指由两种以上材料组合而成的、物理和化学性质与原材料不同、但又保持某些有效功能的新材料。

复合材料中,一种材料作为基体,其他材料作为增强剂复合材料是材料家族中最年轻、最活跃的新成员。

所谓“复合”,是在金属材料、有机高分子材料和无机非金属材料自身或相互间进行,从而获得单一材料无法比拟的、具有综合优异性能的新型材料示例:天然复合材料复合材料的特点及应用复合材料的分类复合材料包括三要素:基体材料、增强剂及复合方式(界面结合形式)按增强剂形状不同,可分为颗粒、连续纤维、短纤维、弥散晶须、层状、骨架或网状、编织体增强复合材料等按使用功能不同,可分为结构复合材料和功能复合材料等按照基体材料的不同,复合材料包括聚合物基复合材料、金属基复合材料、陶瓷基复合材料等热固性、热塑性碳碳复合材料RMC: Resin Matrix CompositesMMC: Metal Matrix CompositesCMC: Ceramic Matrix Composites增强纤维与基体增强纤维玻璃纤维、碳纤维、聚芳酰胺纤维(Kevlar、Apmoc)、硼纤维、碳化硅纤维树脂基体热固性聚合物聚酯、环氧、酚醛、聚酰亚胺热塑性聚合物尼龙、聚乙烯、聚苯乙烯增强材料的基本形式有纤维丝束、编织布和针织布。

纤维丝束是增强材料的最基本形式。

纤维丝束一般以预浸渍树脂基体的按同一方向(经向)平行排列成的纤维束条带即单向带,供工艺成型结构使用。

为了改善单向带工艺性能,将纤维束用少量维持纤维束经向排列的非承载作用的纬向纤维织成一种特殊的单向织物,又称无纬布或无纺布。

无纬布浸渍树脂后也称为单向带,其纤维增强作用效果与纤维丝束单向带基本相同,但其铺覆工艺性大为改善。

编织布(织物)是由经向纤维与纬向纤维编织而成,分平纹布和缎纹布。

针织布是用非增强纤维(机线)将增强纤维编织在一起形成的织物。

其特点是增强纤维不扭曲,可有效传递载荷。

针织布是制作预成形件的材料,不制成预浸料。

复合材料ppt

复合材料ppt

复合材料ppt复合材料是由两种或两种以上的不同性质的材料组成的,其特有的性能是单一材料所不具备的。

本文将介绍复合材料的定义、特点、分类、制备方法以及应用领域等方面内容。

一、定义复合材料是由两种或两种以上的材料按一定的方式组合而成的材料。

在组合过程中,各种材料之间可以有各种各样的界面形式,包括物理界面、化学界面和机械界面等。

复合材料的性能在很大程度上取决于各种材料之间的界面性质。

二、特点1. 复合材料具有很高的比强度和比模量,其强度和刚度远远高于单一材料。

2. 复合材料的力学性能可以通过改变材料组合方式和纤维布置方式来调节和设计。

3. 复合材料具有优异的耐腐蚀性能,能够抵抗各种化学介质的腐蚀。

4. 复合材料具有较低的热膨胀系数,能够在高温和低温条件下保持较好的尺寸稳定性。

三、分类根据组分材料的不同,复合材料可以分为无机复合材料和有机复合材料两大类。

1. 无机复合材料:由无机材料与无机材料组合而成,如轻质复合材料、陶瓷复合材料等。

2. 有机复合材料:由有机材料与无机材料或有机材料与有机材料组合而成,如碳纤维复合材料、玻璃纤维复合材料等。

四、制备方法1. 压制法:将纤维和树脂料混合后,通过加热和压制的方式将其制成板材或型材。

2. 浸渍法:将纤维逐步浸入树脂中,使其充分浸润,并通过干燥和固化来形成复合材料。

3. 喷涂法:将纤维和树脂分别喷射到模具内,在模具内干燥和固化形成复合材料。

4. 熔融法:将纤维和树脂料一起加热熔化,并通过挤出或注塑的方式制备复合材料。

五、应用领域复合材料具有广泛的应用前景,已广泛应用于航空航天、汽车制造、建筑、电子设备、医疗器械等领域。

1. 航空航天领域:复合材料具有优异的比强度和比刚度,用于飞机、导弹等载体的结构件制造。

2. 汽车制造领域:复合材料能够减轻汽车自重,提高燃油经济性,用于制造车身、悬挂系统等零部件。

3. 建筑领域:复合材料具有良好的防火性能和抗震性能,用于制造高层建筑、桥梁等结构件。

《复合材料》 知识清单

《复合材料》 知识清单

《复合材料》知识清单一、什么是复合材料在现代材料科学的领域中,复合材料是一种极其重要的存在。

简单来说,复合材料就是由两种或两种以上不同性质的材料,通过物理或化学的方法组合在一起,形成的一种新的材料。

它与单一材料的显著区别在于,其性能并非各组成材料性能的简单加和,而是通过协同作用,产生了比单一材料更优异的综合性能。

复合材料的组成部分通常包括基体和增强体。

基体就像是一个承载和传递载荷的基础框架,而增强体则赋予材料更高的强度、刚度等特殊性能。

二、复合材料的分类1、按基体材料分类金属基复合材料:以金属为基体,如铝基、钛基等,具有良好的高温性能和导电导热性。

陶瓷基复合材料:基体为陶瓷,具备耐高温、耐磨等特性。

聚合物基复合材料:常见的有树脂基复合材料,重量轻、耐腐蚀。

2、按增强体的形态分类纤维增强复合材料:其中的纤维可以是玻璃纤维、碳纤维等,具有高强度和高模量。

颗粒增强复合材料:如碳化硅颗粒增强铝基复合材料,能提高硬度和耐磨性。

层状复合材料:由不同材料的层片交替堆叠而成。

三、复合材料的性能特点1、高强度和高刚度由于增强体的存在,复合材料往往具有比传统单一材料更高的强度和刚度。

2、良好的耐疲劳性能能够承受多次循环载荷而不易发生疲劳破坏。

3、优异的耐腐蚀性能可以在恶劣的化学环境中保持稳定。

4、可设计性强通过选择不同的基体和增强体,以及调整它们的比例和分布,可以定制出满足特定需求的性能。

四、复合材料的制备方法1、手糊成型这是一种较为简单的方法,工人将基体材料和增强材料手工铺叠在模具上,然后固化成型。

但这种方法生产效率较低,且质量较难控制。

2、喷射成型将基体材料和短切纤维同时喷射到模具上,然后固化。

3、模压成型将预浸料放入模具中,加热加压使其成型。

4、缠绕成型主要用于制造圆柱体或管状构件,将纤维或带材连续缠绕在芯模上。

5、拉挤成型适用于制造等截面的长条状构件,将纤维通过树脂浸润后,经过模具拉挤固化成型。

五、复合材料的应用领域1、航空航天领域在飞机结构中,如机翼、机身等部位大量使用复合材料,以减轻重量、提高性能。

复合材料基础知识培训

复合材料基础知识培训

第一部分 复合材料的基本概念和 基础知识
表1-1—几种典型碳纤维性能数据
纤维类型
纤维性能
密度(Kg/m3) 纤维直径(μm) 拉伸弹性模量(GPa) 抗拉强度(Gpa) 断裂延伸率(%) 电阻率(μΩ/m) 线胀系数(×10-6/℃)
高强度Ⅰ型 1700~1800 7~8 220~250 2.5~3.5 1.2~1.4 15~18 — 0.5
第一部分 复合材料的基本概念和 基础知识
△ 蜂窝结构的作用 蜂窝结构其作用主要是减轻结构重量,提高 结构的抗弯刚度。 △ 蜂窝夹芯的材质及类型 蜂窝夹芯是夹层复合材料中最常用的夹芯结 构,形状有六角形、菱形、矩形等。按制造 材料不同,有铝蜂窝、芳纶纸蜂窝和玻璃布 蜂窝等。
第一部分 复合材料的基本概念和 基础知识
第一部分 复合材料的基本概念和 基础知识
▲ 玻璃纤维的性质
玻璃纤维弹性模量比较低,价格低廉。 玻璃纤维最常用的有 “E‖ 型和 “S‖ 型,前者主要用 于“电子仪表板” ,后者主要用于高强度结构。S— 玻纤比E—玻纤相比,其抗压强度,抗拉强度,弹性模 量略高,密度降低, 更耐强酸,但成本较高。 其它如 “A‖、―C‖、―D‖ 型玻璃纤维,因其强度太低不 适合飞机结构使用。
第一部分 复合材料的基本概念和 基础知识
七、碳/碳(C/C)基复合材料 所谓碳/碳复合材料,就是用碳纤维增强基 体碳的复合材料。该材料是当今能承受温度最 高的材料,同时具有很好的高温强 度和尺寸稳 定性。在极高的温度下,不仅能保持,甚至还 能 提高结构的性能。归纳起来碳/碳复合材料 主要有下列特点与优点:
第一部分 复合材料的基本概念和 基础知识
极高的耐温性(可达3500~5000oF)(1930~2760℃)。 高温下3500oF(1930 ℃)强度实际有增加,而一般金 属和其它复合材料都将遭到破坏。 强度和刚度高。 形状不随温度变化而变化,高温下尺寸稳定性好。 抗烧蚀,烧蚀质量好,烧蚀中能保持结构特性。 良好的机械特性和良好的耐热冲击性。 碳纤维用目前的二维(平面)或三维(空间) 编织技术可得到优异的增强材料。

复合材料知识点总结

复合材料知识点总结

复合材料知识点总结一、复合材料的分类根据复合材料中各种材料所起的作用不同,复合材料可以分为增强复合材料和基体复合材料。

增强材料一般用于提高复合材料的力学性能,例如增加复合材料的强度、硬度、耐热性、耐腐蚀性等;而基体材料则用于提供基本的形状和结构,比如塑料、橡胶、树脂等。

根据增强材料的种类不同,复合材料可以分为纤维增强复合材料和颗粒增强复合材料。

纤维增强复合材料的增强材料是纤维,可以是碳纤维、玻璃纤维、芳纶纤维等;颗粒增强复合材料的增强材料则是颗粒,可以是金属颗粒、陶瓷颗粒、碳纳米颗粒等。

根据不同的基体材料,复合材料可以分为有机基复合材料和无机基复合材料。

有机基复合材料的基体材料是有机物质,比如树脂、塑料、橡胶等;无机基复合材料的基体材料是无机物质,比如金属、陶瓷、玻璃等。

二、复合材料的特点1. 高强度:复合材料中的增强材料可以有效地提高材料的强度,使其具有更高的拉伸、压缩、弯曲等强度。

2. 轻质:由于增强材料通常采用纤维和颗粒等轻质材料,所以复合材料通常具有很高的强度和刚度,同时重量较轻。

3. 耐热耐腐蚀性:纤维增强复合材料由于采用高强度的纤维材料,具有很好的耐热性和耐腐蚀性,可以在较高温度和腐蚀环境下长时间使用。

4. 成形性好:复合材料可以通过挤压、注塑、压制等多种成型方法加工成各种形状,适用于各种复杂的结构。

5. 良好的设计性:通过改变复合材料中的增强材料的种类、形状、分布、比例等来调节和改变材料的力学性能,可以根据需要进行定向设计。

6. 良好的防护性:复合材料可以通过增加增强材料和基体材料的层数、厚度和结构来增强材料的防护性,有较好的抗冲击、防弹、防爆性能。

三、复合材料的制备工艺1. 纤维增强复合材料的制备工艺(1)手工层叠法:将预先浸渍结合的纤维连续层叠到工件模具内,在每一层的纤维层之间涂覆树脂黏合剂,然后将所有层放置在加压机中,施加适当的压力和温度,使树脂固化。

(2)自动层叠法:采用机械装置将预先浸渍结合的纤维连续层叠到工件模具内,然后使用自动化设备完成树脂涂布和固化过程。

复合材料的基本概念解析

复合材料的基本概念解析

复合材料的基本概念解析复合材料的基本概念解析1. 引言复合材料是由两种或更多种不同物质组成的材料,通过它们的组合而产生出一种具有新的性质和特点的材料。

复合材料在现代工程领域中得到广泛应用,具有优异的性能和灵活性。

本文将对复合材料的基本概念进行解析,探讨其组成、制备方法和应用领域。

2. 复合材料的组成复合材料的组成包括增强材料和基体材料。

增强材料通常是纤维或颗粒状物质,如碳纤维、玻璃纤维或陶瓷颗粒。

而基体材料则是接受增强材料的支撑,常见的基体材料有树脂或金属。

复合材料中增强材料和基体材料的组合使得其具有特定的性能和特点。

3. 复合材料的制备方法复合材料的制备方法多种多样,包括层叠法、注塑法和浸渍法等。

层叠法是将增强材料和基体材料按照一定的层次和构造进行堆叠,然后通过压制或热处理使其结合成型。

注塑法则是将熔化的基体材料注入模具中,在其中加入增强材料后冷却凝固形成复合材料。

浸渍法是通过将增强材料浸渍于预先制备好的基体材料中,然后经过干燥和固化而形成复合材料。

4. 复合材料的优点复合材料具有许多优点,使其在工程领域中得到广泛应用。

复合材料具有较高的比强度和比刚度,即在相同质量的情况下,其强度和刚度要高于传统材料。

复合材料的热膨胀系数较低,能够在较宽的温度范围内保持稳定性,适用于高温和低温环境。

复合材料还具有良好的抗腐蚀性能和耐磨性能,使其能够在恶劣环境下长时间使用。

5. 复合材料的应用领域复合材料在许多领域中得到广泛应用。

在航空航天领域中,复合材料能够减轻飞机和航天器的重量,提高其燃油效率和性能。

在汽车工业中,复合材料可以用于制造车身和零部件,使汽车更轻便和节能。

复合材料还在建筑、电子、体育器材等领域中有着重要的应用。

6. 总结与展望复合材料作为由不同物质组成的材料,具有许多优点和应用领域。

它的组成和制备方法使其具有独特的性能和特点。

随着科技的不断进步和人们对材料性能要求的提高,复合材料将在更多领域中得到应用,并发挥重要作用。

材料力学复合材料知识点总结

材料力学复合材料知识点总结

材料力学复合材料知识点总结复合材料是由两种或两种以上的材料组成的材料。

它们的组合结构使复合材料具有优异的性能,可以满足各种特殊的工程要求。

以下是关于材料力学复合材料的知识点总结。

一、复合材料的分类复合材料可以按照其成分进行分类,常见的分类包括:纤维增强复合材料、颗粒增强复合材料、结构复合材料等。

纤维增强复合材料是其中最常见和重要的类型。

二、纤维增强复合材料1. 纤维种类:常用的增强纤维有玻璃纤维、碳纤维和有机纤维等。

2. 纤维体积分数:纤维体积分数是指纤维在复合材料中所占的比例。

纤维体积分数的提高可以增强复合材料的强度和刚度。

3. 界面特性:界面是纤维与基体之间的接触区域。

优良的界面能够提高复合材料的力学性能,如界面黏结强度的提高可防止纤维脱离基体。

4. 复合材料的制备方法:常见的制备方法有手工层叠法、预浸法和纺织法等。

三、复合材料的力学性能1. 强度和刚度:复合材料的强度和刚度主要取决于增强纤维的性能和体积分数。

2. 断裂韧性:复合材料的断裂韧性取决于纤维的断裂韧性、界面黏结强度和纤维体积分数。

合理的纤维取向可以提高复合材料的断裂韧性。

3. 疲劳性能:复合材料的疲劳寿命较长,但应注意纤维和界面的损伤和疲劳裂纹的产生。

4. 热膨胀系数:复合材料的热膨胀系数通常要小于金属材料,其热膨胀性能可通过纤维取向进行调控。

四、应用领域复合材料在航空航天、汽车制造、建筑工程等领域有广泛的应用。

其中,碳纤维复合材料在航空航天领域应用较为广泛,可以制造轻型飞机、卫星等。

五、复合材料的优势和挑战复合材料具有重量轻、强度高、刚度大、抗腐蚀等优势,在一些特殊环境下比传统材料更加适用。

然而,复合材料的制备成本较高,其可靠性和维修性也是挑战所在。

在未来的发展中,随着技术的不断进步,复合材料在各个领域中的应用前景将更加广阔。

通过掌握复合材料的相关知识,我们能够更好地理解和应用这一材料,为工程和科学研究提供更多可能性。

复合材料铺层角度基本知识

复合材料铺层角度基本知识

复合材料铺层角度基本知识复合材料铺层角度,这可真是个让人眼前一亮的话题!想象一下,咱们生活中的许多东西,比如飞机、汽车,甚至一些运动器材,全都是靠这些神奇的材料来提升性能的。

先来说说什么是复合材料,简单来说,就是把两种或多种材料结合在一起,形成一个比单一材料更强的组合。

就像做个美味的沙拉,只有蔬菜可不够,加点坚果、干果,味道立马提升上去了,对吧?那铺层角度就好比是这道沙拉的摆盘方式,巧妙的角度会让整体更好看,更美味。

铺层角度直接影响到材料的性能,嘿,这就像穿衣服一样,得挑对了款式和角度,才能显得更有魅力。

举个例子,想象你穿着一件紧身衣,那可是得讲究角度的。

穿得好,整个形象简直是气场全开;穿不好,嘿,可能就像个行走的木板了。

复合材料的层角度就有类似的道理,不同的角度可以让材料在不同的方向上拥有不同的强度和韧性。

比如,有些角度更适合承受拉力,有些角度则在抗压方面表现更出色。

就像打篮球,投篮的角度决定了球是否能进网,铺层角度也是如此,讲究的很呢。

咱们说到层角度,其实还有个专业名词——“铺层设计”。

这可不是简单的事情,背后得有个科学的分析过程,像解数学题一样。

你得考虑到材料的性质、使用的环境,还有最重要的,最终的产品要实现什么样的功能。

比如,汽车的车身可得轻而强,飞机的翼型可得极其轻盈,才能飞得高飞得远。

这时候,设计师们就像是魔法师,运用各种铺层角度的组合,来实现理想的性能。

再深入一层,我们来聊聊铺层角度的具体数字。

有个常见的角度叫“0度”,也就是说纤维沿着受力方向铺设,这可是强度的保卫者。

然后是“90度”,这个角度能提升材料在垂直方向上的强度,像是铠甲一样,保护得很好。

还有“±45度”,这个组合能让材料在多方向上都具有良好的抗拉强度,真的是一举多得啊!想想看,打个篮球,运球、投篮,你得能随时变换方向,那复合材料的铺层角度也是如此,得灵活应对不同的挑战。

你可能会想,那具体怎么决定铺层角度呢?其实这是个经验活儿。

复合材料结构力学认识

复合材料结构力学认识

复合材料结构力学认识复合材料是由两种或多种不同性质的材料按一定比例组合而成的材料,具有优异的力学性能和广泛的应用前景。

复合材料结构力学认识主要包括复合材料的力学性质、力学模型和应力分析。

一、复合材料的力学性质复合材料的力学性质是指材料在力的作用下所表现出的性能。

常见的力学性质有强度、刚度、韧性、压缩性能等。

复合材料的力学性质主要受到纤维强度、纤维体积含量、纤维分布、树脂性能等因素的影响。

1.强度:复合材料的强度是指材料在外界作用力下的抵抗能力。

复合材料的强度取决于纤维的强度和纤维的体积含量,一般情况下,纤维强度越高、纤维体积含量越大,复合材料的强度越高。

2.刚度:复合材料的刚度是指材料在受力时的变形能力。

刚度取决于纤维的模量和纤维的体积含量,一般情况下,纤维的模量越高、纤维体积含量越大,复合材料的刚度越高。

3.韧性:复合材料的韧性是指材料在断裂前的变形能力。

韧性取决于纤维的断裂伸长率和断裂能量,一般情况下,纤维的断裂伸长率越高、断裂能量越大,复合材料的韧性越高。

4.压缩性能:复合材料的压缩性能是指材料在受到压缩力作用时的性能。

压缩性能与纤维的强度、纤维的分布和纤维的体积含量相关。

二、复合材料的力学模型为了更好地理解复合材料的力学性质,可以采用不同的力学模型来描述复合材料的行为。

1.刚度模型:刚度模型是指通过计算复合材料的刚度来分析其受力情况。

常用的刚度模型有矩阵刚度模型、重叠刚度模型等。

2.强度模型:强度模型是指通过计算复合材料的强度来分析其断裂行为。

常用的强度模型有矩阵强度模型、纤维折断模型、纤维剪切破坏等。

3.韧性模型:韧性模型是指通过计算复合材料的断裂伸长率和断裂能量来分析其韧性。

常用的韧性模型有矩阵韧性模型、纤维断裂韧性模型等。

三、复合材料的应力分析复合材料的力学分析需要对复合材料中纤维和基体的应力进行分析。

1.纤维应力分析:纤维应力是指纤维内部受到的力在纤维横截面上的分布情况。

纤维应力的计算需要考虑到纤维的拉伸和剪切行为。

复合材料教程

复合材料教程

复合材料教程复合材料是由两种或两种以上的材料组合而成的新材料,具有优异的综合性能,广泛应用于航空航天、汽车、建筑、体育器材等领域。

本教程将介绍复合材料的基本知识、制备工艺和应用领域,帮助读者了解复合材料的特点和优势,掌握其制备和应用技术。

一、复合材料的基本知识。

1. 复合材料的定义。

复合材料是由两种或两种以上的材料组合而成的新材料,具有优异的综合性能,通常包括增强相和基体相两部分。

增强相通常是纤维、颗粒或片材,基体相通常是树脂、金属或陶瓷。

2. 复合材料的分类。

根据增强相的不同,复合材料可分为纤维增强复合材料、颗粒增强复合材料和片材增强复合材料;根据基体相的不同,复合材料可分为有机基复合材料、金属基复合材料和陶瓷基复合材料。

3. 复合材料的特点。

复合材料具有高强度、高模量、轻质、耐腐蚀、耐磨损、绝缘、设计自由度高等特点,是一种理想的结构材料。

二、复合材料的制备工艺。

1. 纤维增强复合材料的制备工艺。

纤维增强复合材料的制备工艺包括预浸料法、手工层叠法、自动层叠法和注塑成型法等,其中预浸料法是最常用的制备工艺之一。

2. 颗粒增强复合材料的制备工艺。

颗粒增强复合材料的制备工艺包括热压法、热挤压法、热等静压法和注塑成型法等,其中热压法是应用最为广泛的制备工艺之一。

3. 片材增强复合材料的制备工艺。

片材增强复合材料的制备工艺包括热压法、热挤压法、热等静压法和注塑成型法等,其中热等静压法是最常用的制备工艺之一。

三、复合材料的应用领域。

1. 航空航天领域。

复合材料在航空航天领域的应用十分广泛,包括飞机结构件、航天器部件、导弹外壳等。

2. 汽车领域。

复合材料在汽车领域的应用逐渐增多,包括车身结构件、发动机零部件、悬挂系统等。

3. 建筑领域。

复合材料在建筑领域的应用越来越多样化,包括装饰材料、结构材料、防腐材料等。

4. 体育器材领域。

复合材料在体育器材领域的应用非常广泛,包括高尔夫球杆、网球拍、自行车车架等。

综上所述,复合材料具有优异的综合性能,制备工艺多样化,应用领域广泛,是一种具有广阔发展前景的新型材料。

高一化学 知识点总结 必修一 4.3 复合材料

高一化学 知识点总结 必修一 4.3 复合材料

4.3 复合材料
一、复合材料
1、材料的分类:
(1) 金属材料:包括纯金属和合金
(2) 非金属材料:包括传统无机非金属材料和新型无机非金属材料
A、传统无机非金属材料:玻璃、水泥、陶瓷
B、新型无机非金属材料:高温陶瓷、生物陶瓷、压电陶瓷、
光导纤维
(3) 有机高分子材料:包括天然高分子和合成高分子材料,其中合成
高分子主要有塑料、橡胶、纤维,
注意:塑料一定是合成的,橡胶、纤维天然也有存在
2、概念:复合材料是指将两种或者两种以上性质不同的材料经特殊
加工而制成的新型材料。

3、组成:包括基体和增强体,基体起粘结作用,增强体起骨架作用。

4、分类:
(1) 按照基体种类分:树脂基复合材料,金属基复合材料、
陶瓷基复合材料
(2) 按照增强体形状分:颗粒增强复合材料、夹层增强复合材料、
纤维增强复合材料
5、特点:密度小、强度大、耐高温、耐腐蚀
6、几种重要的复合材料:
(1) 玻璃钢:基体是合成树脂,增强体是玻璃纤维
(2) 航天材料:基体是金属或者陶瓷,增强体是纤维,主要是碳纤维
(3) 钢筋混凝土:基体是混凝土,增强体是钢筋
1。

复合材料基础知识讲解

复合材料基础知识讲解
? 1958年以手糊工艺研制了玻璃钢艇,以层压和卷 制工艺研制玻璃钢板、管和火箭弹
? 1961年研制成用于远程火箭的玻璃纤维 -酚醛树 脂烧蚀防热弹头
? 1962年引进不饱和聚酯树脂、喷射成型和蜂窝夹 层结构成型技术,并制造了玻璃钢的直升机螺旋 桨叶和风洞叶片,同年开始纤维缠绕工艺研究并 生产出一批氧气瓶等压力容器。
物理性质
? 相对密度在 1.11~1.20左右 ,固化时体积收缩 率较大
? 耐热性。绝大多数不饱和聚酯树脂的热变形温度 都在50~60℃,一些耐热性好的树脂则可达 120℃
? 力学性能。不饱和聚酯树脂具有较高的拉伸、弯 曲、压缩等强度
? 耐化学腐蚀性能。不饱和聚酯树脂耐水、稀酸、 稀碱的性能较好,耐有机溶剂的性能差,同时, 树脂的耐化学腐蚀性能随其化学结构和几何开关 的不同,可以有很大的差异。
? 1970年用玻璃钢蜂窝夹层结构制造了一座直径 44m的雷达罩
原材料:
? 包括基体相和增强相的原材及添加剂。 ? 基体相材料指作为基体的各种聚合物,包
括热固性树脂和热塑性树脂 ? 增强相材料则是指各种纤维,如玻璃纤维、
碳纤维、芳纶纤维、高密度聚乙烯纤维等。 ? 添加剂是复合材料产品在生产或加工过程
中需要添加的辅助化学品通称为添加剂或 助剂
不饱和聚酯树脂
? 不饱和聚酯是不饱和二元羧酸(或酸酐) 或它们与饱和二元羧酸(或酸酐)组成的 混合酸与多元醇缩聚而成的,具有酯键和 不饱和双键的线型高分子化合物。通常, 聚酯化缩聚反应是在190~220℃进行,直 至达到预期的酸值(或粘度)。在聚酯化 缩反应结束后,趁热加入一定量的乙烯基 单体,配成粘稠的液体,这样的聚合物溶 液称之为不饱和聚酯树脂。
树脂基复合材料 发展史
? 1932年在美国出现 ? 1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩 ? 1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造

复合材料基础知识

复合材料基础知识

一名词解释1复合材料:是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料.2基体:在复合材料中,有一相是为连续相的, 复合材料中起到粘接增强体成为整体并转递载荷到增强体的主要组分之一3增强体:在复合材料中,有一相是分散相, 为复合材料中承受载荷的组分4聚合物基复合材料:是以有机聚合物基为基体,连续纤维为增强材料组合而成的.5金属基复合材料:以金属为基体,以高强度的第二相为增强体而制得的复合材料.6陶瓷基复合材料:基体为陶瓷,以纤维,晶须,颗粒为增强体,(纤维:碳纤维,玻璃纤维,硼纤维)7水泥基复合材料:以水泥为基体与其他材料组合而得到的具有新性能的材料.8碳/碳复合材料:由碳纤维或各种碳织物增强碳,或石墨化的树脂碳以及化学气相沉(CVD)碳所形成的复合材料,也称为碳纤维增强碳复合材料.9玻璃钢:玻璃纤维增强热固性塑料(GFRP)是以玻璃纤维做为增强材料,热固性塑料(环氧树脂,酚醛树脂,不饱和聚酯树脂)做为基体的纤维增强塑料.10脱模剂:为使制品与模具分离而附于模具成型面的物质.11复合材料的蠕变: 固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。

12CVD:化学气相沉积13玻璃纤维:以玻璃球或废旧玻璃为原料经高温熔制,拉丝,纺纱 ,织布等工艺制造成的.14碳纤维:由有机纤维经固相反应转变而成的纤维状聚合物碳.是一种非金属材料.15硼纤维:一种将硼元素通过高温化学气相沉积在钨丝表面制成的高性能增强纤维,具有很高的比强度和比模量,也是制造金属复合材料最早采用的高性能纤维.16氧化铝纤维:以氧化铝为主要纤维组分的陶瓷纤维统称氧化纤维.17晶须:指人工控制条件下以高纯度单晶形式生长成的一种短纤维.18A玻璃:(有碱玻璃纤维),类似于窗玻璃及玻璃瓶钠钙玻璃.由于含碱量高,强度低,对潮气侵蚀极为敏感.E玻璃:(无碱玻璃纤维),以钙铝硼硅酸盐组成的玻璃纤维.这种纤维强度较高,耐热性和电性能优良,能抗大气侵蚀,化学稳定性也好,但不耐碱,最大的特点是电性能好,也称做电气玻璃.S玻璃:镁铝硅酸玻璃纤维,具有高的比强度.M玻璃:高模量玻璃19玻璃纤维增强环氧树脂:指玻璃纤维做为增强材料,环氧树脂做为基体的纤维增强塑料.20玻璃纤维增强酚醛树脂: 指玻璃纤维做为增强材料,以酚醛树脂做为基体的纤维增强塑料.21玻璃纤维增聚酯树脂: 指玻璃纤维做为增强材料,以不饱和聚酯做为基体的纤维增强塑料.22单模,对模:手糊成型模具分单模和对模.单模分阳模和阴模.23等代设计法:指在载荷和使用环境不变的条件下,用相同形状的复合材料层合板来代替其他材料,并用原来的材料的设计方法进行设计,以保证强度或刚度.24水泥:凡细磨成粉末状,加入适量的水后成为塑性浆体,既能在空气中,水中硬化,并能将砂,石等散粒或纤维材料牢固地胶结在一起的水硬性胶凝材料.二重要知识1 复合材料中的基体有三种主要作用A力学上:粘结纤维,保护纤维,传递应力 B物理上:耐热性,电性能 C化学上:耐溶解性,耐水性,老化性{固结增强相,均衡载荷和传递应力,保持基本性质}2复合材料的界面的作用和效应作用:起载荷传递作用,效应:a传递效应,b不连续效应, c 散射和吸收效应 d诱导效应3复合材料的可设计性以及意义,如何设计防腐蚀(碱性)玻璃纤维增强塑料?复合材料的可设计性:材料的性能,形状,以及物理,化学性能都可以通过复合材料的基体和增强材料的选择以及工艺的选择来实现各种不同的需求.4增强材料的表面处理,沃兰的结构式,沃兰和有机硅烷对玻璃纤维表面处理的机理?增强材料的表面处理:为改善纤维表面的浸润性,提高界面结合力,对纤维进行的预处理.(就是在增强材料表面涂覆上一种称为表面处理的物质,这种表面处理剂包括浸润剂及一系列的偶联剂和助剂等物质,以利于增强材料与基体形成一个良好的粘结面,从而达到提高复合材料各种性能和目的.)5玻璃纤维,碳纤维,硼纤维,芳纶的生产过程以及性能(优点和缺点),表面处理方法?一.玻璃纤维的性能:物理性能:1,拉伸强度高,防水,防霉,防蛀,耐高温和绝缘性能,缺点:具有脆性,不耐腐,对人的皮肤有刺激性. 化学性能:除对氢氟酸,浓碱,浓磷酸外对所有化学品和有机溶剂都有良好的化学稳定性.表面处理方法:前处理法,后处理法,迁移法二.碳纤维 A生产过程:拉丝-----牵伸------稳定-----碳化-----石墨化B性能:物理性能:1,比重在1.5—2.0之间,2热膨系数与其他类纤维不同,具有各向异性,3导热率有方向性,随温度升高而降低,4有导电性, 化学性能:除能被氧化剂外,对一般酸碱是惰性的.C表面处理方法:氧化法,沉积化,电聚合法,电沉积法,等离子体处理.三,硼纤维:性能:具有良好的力学性能,强度高,模量高,密度小,弯曲强度比拉伸强度高,2化学稳定性好,但表面具有活性.四.芳伦:性能:1力学性能是拉伸强度高,弹性模量高,密度小,2热稳定性,耐火而不熔,3化学性能是有良好有耐介质性能,受酸碱的侵蚀,耐水性不好.处理方法:有机化学反应,等离子体处理.6不饱和聚酯树脂的固化过程以及性能(优点和缺点)?不饱和聚酯树脂的固化过程:a 胶凝阶段,b硬化阶段c完全固化阶段性能:A优点:1,工艺性能良好,如室温下粘度低,可以在室温下固化,在常压下成型2,固化后树脂的综合性能良好3,价格低廉B缺点:固化时体积收缩率较大成型时气味和毒性较大,耐热性,强度和模量都较低,容易变形,7,玻璃纤维增强环氧树脂,玻璃纤维增强酚醛树脂,玻璃纤维增强聚酯树脂主要性能?1,比重小,比强度高,2良好的耐腐蚀性,在酸,碱,有机溶剂,海水等介中均很稳定.3,良好的电绝缘材料,4,不受电磁作用的影响 5,保温,隔热,隔音,减振 6最大的缺点是刚性差8铝基复合材料的制造与加工?铝基复合材料的制造:过程分为三个阶段:纤维排列,复合材料组分的组装压合和零件层压.加工:成型,连接,机械加工,热处理.9陶瓷基复合材料的使用范围?10晶须或者纤维增韧陶瓷基复合材料的制造工艺和成型加工方法?制造工艺:配料----成型----烧结----精加工.成型加工方法:1,泥浆烧铸法2,热压烧结法3浸渍法11 RTM成型工艺,模压成型工艺和手糊成型工艺?RTM成型工艺:是一种闭模成型工艺方法,工艺过程为:将液态热固性树脂(不饱和聚酯)及固化剂,由计量设备分别从储桶内抽出,经静态混合器混合均匀,注人事先铺有玻璃纤维增强材料的密封模内,经固化,脱模,后加工而成制品.模压成型工艺:模压成型是一种对热固性树脂和热塑性树脂都适用的纤维复合材料成型方法 .将定量的模塑料或颗粒状树脂与短纤维的混合物放入敞开的金属对模中,闭模后加热使其熔化,并在压力作用下充满腔,形成与模腔相同形状的模制品,再经加热使树脂进下步发生交联反应而固化,或者冷却使热塑性树脂硬化,脱模后得到复合材料制品手糊成型工艺:手糊成型工艺是聚合物基复合材料制造中最早采用和最简单的方法,是先在模具上涂刷含有固化剂的树脂混合物,再在其上铺贴一层按要求剪裁好的纤维织物,用刷牙,压辊或刮刀压挤织物,使其均匀浸胶并排除气泡后,再涂刷树脂混合物和铺贴第二层纤维织物,在一定压力作用下加热固化成型,或树脂体系固化时放出的热量固化成型(冷压成型)最后脱模得到制品.12在连续玻璃纤维及制品的制造过程中,拉丝时要的浸润剂的原因?原因:是由于浸润剂有多方面的作用,1原丝中的纤维不散乱而能相互粘附在一起.2防止纤维间的磨损.3原丝相互间不粘结在一起.4便于纺织加工.13金属基纤维复合材料的界面结合形式以及影响界面稳定性的因素?界面结合形式:1物理结合2,溶解和浸润结合3,反应结合影响界面稳定性的因素:1,物理方面的不稳定因素主要指在高温条件下增强纤维与基体之间的熔融.2化学方面的不稳定因素主要与复合材料在加工和使用过程中发生的界面化学作用有关,有连续界面反应,交换式界面反应和暂稳态界面变化.14 晶须增韧陶瓷基复合材料的强韧化机理?靠晶须的拔出桥连与裂纹转向机制对强度和韧性的提高产生突出贡献.晶须的拔出长度存在一个临界值lpo,当晶须某端距主裂纹距离小于临界值,则晶须拔出长度小于临界拔出长度lpo,当晶须两端到主裂纹的距离均大于临界拔出长度时,晶须拔出过程产生断裂,断裂长度小于临界拔出长度,界面结合强度直接影响复合材料的韧化机制与韧化效果,界面强度过高,晶须与基体一起断裂,另一方面,界面强度提有利于载荷转移,提高强化效果,界面强度过低,则晶须拔出功减小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合材料知识讲解
复合材料的成型工艺简单。

纤维增强复合材料一般适合于整体成型,因而减少了零部件的数目,从而可减少设计计算工作量并有利于提高计算的准确性。

另外,制作纤维增强复合材料部件的步骤是把纤维和基体粘结在一起,先用模具成型,而后加温固化,在制作过程中基体由流体变为固体,不易在材料中造成微小裂纹,而且固化后残余应力很小。

一、复合材料有特性:
1、 复合材料通常都能耐高温。

在高温下,用碳或硼纤维增强的金属其强度和刚度都比原金属的强度和刚度高很多。

普通铝合金在400℃时,弹性模量大幅度下降,强度也下降;而在同一温度下,用碳纤维或硼纤维增强的铝合金的强度和弹性模量基本不变。

复合材料的热导率一般都小,因而它的瞬时耐超高温性能比较好。

2、复合材料的安全性好。

在纤维增强复合材料的基体中有成千上万根独立的纤维。

当用这种材料制成的构件超载,并有少量纤维断裂时,载荷会迅速重新分配并传递到未破坏的纤维上,因此整个构件不至于在短时间内丧失承载能力。

3、 复合材料的力学性能可以设计,即可以通过选择合适的原材料和合理的铺层形式,使复合材料构件或复合材料结构满足使用要求。

例如,在某种铺层形式下,材料在一方向受拉而伸长时,在垂直于受拉的方向上材料也伸长,这与常用材料的性能完全不同。

又如利用复合材料的耦合效应,在平板模上铺层制作层板,加温固化后,板就自动成为所需要的曲板或壳体。

4、复合材料的比强度和比刚度较高。

材料的强度除以密度称为比强度;材料的刚度除以密度称为比刚度。

这两个参量是衡量材料承载能力的重要指标。

比强度和比刚度较高说明材料重量轻,而强度和刚度大。

这是结构设计,特别是航空、航天结构设计对材料的重要要求。


代飞机、导弹和卫星等机体结构正逐渐扩大使用纤维增强复合材料的比例。

5、复合材料的减振性能良好。

纤维复合材料的纤维和基体界面的阻尼较大,因此具有较好的减振性能。

用同形状和同大小的两种粱分别作振动试验,碳纤维复合材料粱的振动衰减时间比轻金属粱要短得多。

6、复合材料的抗疲劳性能良好。

一般金属的疲劳强度为抗拉强度的40~50%,而某些复合材料可高达70~80%。

复合材料的疲劳断裂是从基体开始,逐渐扩展到纤维和基体的界面上,没有突发性的变化。

因此,复合材料在破坏前有预兆,可以检查和补救。

纤维复合材料还具有较好的抗声振疲劳性能。

用复合材料制成的直升飞机旋翼,其疲劳寿命比用金属的长数倍。

7、复合材料的成型工艺简单。

纤维增强复合材料一般适合于整体成型,因而减少了零部件的数目,从而可减少设计计算工作量并有利于提高计算的准确性。

另外,制作纤维增强复合材料部件的步骤是把纤维和基体粘结在一起,先用模具成型,而后加温固化,在制作过程中基体由流体变为固体,不易在材料中造成微小裂纹,而且固化后残余应力很小。

二、复合材料分类
复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。

各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。

复合材料的基体材料分为金属和非金属两大类。

金属基体常用的有铝、镁、铜、钛及其合金。

非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。

增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。

60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维
等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。

为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。

按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。

其使用温度分别达250~350℃、350~1200℃和1200℃以上。

先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。

复合材料是一种混合物。

在很多领域都发挥了很大的作用,代替了很多传统的材料。

复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。

按其结构特点又分为:①纤维复合材料。

将各种纤维增强体置于基体材料内复合而成。

如纤维增强塑料、纤维增强金属等。

②夹层复合材料。

由性质不同的表面材料和芯材组合而成。

通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。

分为实心夹层和蜂窝夹层两种。

③细粒复合材料。

将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。

④混杂复合材料。

由两种或两种以上增强相材料混杂于一种基体相材料中构成。

与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。

分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。

三、复合材料的性能
复合材料中以纤维增强材料应用最广、用量最大。

其特点是比重小、比强度和比模量大。

例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。

石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。

纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。

以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。

碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。

碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。

碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。

非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。

用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。

相关文档
最新文档