运筹学_线性规划_数学模型

合集下载

线性规划

线性规划

• 4.2 两阶段法
• 两阶段法是处理人工变量的另一种方法。其具体做 法是在原约束条件中增加人工变量,构造一个新的 目标函数,其中人工变量的系数为-1,其余变量的 系数为0,这样就产生了如下的最优解有三种情形。 (1)这说明在辅助问题的最优解中,还有人工变量是基变量, 且取值不为0,此时原问题无可行解。 (2)且最优解中人工变量均为非基变量,则把它们划去后就得 到了原问题的一个基本可行解。 (3)但最优解中还有人工变量是基变量,其取值为0。这时, 只要选某个不是人工变量的非基变量进基,把在基中的人工 变量替换出来,则情形同(2)。 第二阶段:对于第一阶段的后两种情形,在第一阶段的最优单 纯形表中划去人工变量所在的列,并把检验数行换成原问题 目标函数(消去基变量以后)的系数,从而得到原问题的初 始单纯形表,再继续迭代求解。
2014-6-19 3
例2(运输问题)
• 设有某种物资要从A1,A2,A3三个仓库运往四个 销售点B1,B2,B3,B4。各发点(仓库)的发货 量、各收点(销售点)的收货量以及 到 的单位运 费如表1-2。问如何组织运输才能使总运费最少?
例3(配料问题)
• 在现代化的大型畜牧业中,经常使用工业生产的饲料。 设某种饲料由四种原料B1,B2,B3 ,B4混合而成,要 求它含有三种成份(如维生素、抗菌素等)A1,A2, A3的數量分別不少于25、36、40个单位(这些单位可 以互不相同),各种原料的每百公斤中含三种成份的数 量及各种原料的单价如表1-3.
1.2 线性规划的数学模型
一、一般形式 上述各例具有下列共同特征: 1.存在一组变量 ,称为决策变量,表示某一方案。通 常要求这些变量的取值是非负的。 2.存在若干个约束条件,可以用一组线性等式或线性 不等式来描述。 3.存在一个线性目标函数,按实际问题求最大值或最 小值。

运筹学基础-线性规划(方法)

运筹学基础-线性规划(方法)
问题描述
线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)

运筹学线性规划

运筹学线性规划
主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
4
例1.1:(计划安排问题) I 设备A(h) 0 设备B(h) 4 原材料(公斤) 2 利润(万元) 2 II 资源总量 3x2 15 3 15 0 12 s.t. 4x1 12 2 14 2x1+2x2 14 3 x1,x2 0 I,II生产多少, 可获最大利润?
s.t. x1 -x2 +x4 -x5 -x7 =2
x1 , x2 , x4 ,

, x7 0
12
第二节 线性规划问题的图解法及几何意义
一、线性规划问题的解的概念
0 3 1 0 0 15 4 0 0 1 0 X= 12 2 2 0 0 1 14
5
max Z= 2x1 +3x2
解:设 计划期内生产产品I、II的数量x1、x2 则该问题的数学模型为:
例1.2 成本问题
某炼油厂根据每季度需供应给合同单位汽油15万吨、煤油 12万吨、重油12万吨。该厂计划从A,B两处运回原油 提炼,已知两处的原油成分含量见表1-2;又已知从A 处采购的原油价格为每吨(包括运费)200元,B处采购 的原油价格为每吨(包括运费)290元, 问:该炼油厂该 如何从A,B两处采购原油,在满足供应合同的条件下, 使购买成本最小。 油品来源 A B min S 200x1 290x 2
解:(1) 确定可行域 x1 0 x1 =0 (横)
30
x2 0 x2=0 (纵) x1+2x2 30 x1+2x2 =30

运筹学模型的类型

运筹学模型的类型

运筹学模型的类型运筹学模型是指通过数学方法来描述和解决复杂问题的一种工具。

根据问题的性质和要求,运筹学模型可以分为以下几种类型:1. 线性规划模型(Linear Programming Model,简称LP):线性规划是一种优化问题,它的目标是在满足一些约束条件下,使某个线性函数取得最大或最小值。

线性规划模型广泛应用于生产调度、资源分配、物流运输等领域。

2. 整数规划模型(Integer Programming Model,简称IP):整数规划是线性规划的扩展,它要求决策变量只能取整数值。

整数规划模型常用于生产调度、排产计划、网络设计等问题。

3. 非线性规划模型(Nonlinear Programming Model,简称NLP):非线性规划是一种优化问题,它的目标函数和约束条件都可以是非线性的。

非线性规划模型广泛应用于经济学、金融学、工程学等领域。

4. 动态规划模型(Dynamic Programming Model,简称DP):动态规划是一种优化方法,它将一个复杂问题分解为若干个子问题,并逐步求解这些子问题。

动态规划模型常用于生产调度、资源分配、投资决策等问题。

5. 排队论模型(Queuing Theory Model,简称QT):排队论是一种研究等待线性的数学理论,它可以用来描述和分析顾客到达、服务时间、系统容量等因素对系统性能的影响。

排队论模型广泛应用于交通运输、通信网络、医疗卫生等领域。

6. 决策树模型(Decision Tree Model,简称DT):决策树是一种分类和回归的方法,它可以将一个问题分解为若干个子问题,并逐步求解这些子问题。

决策树模型常用于金融风险评估、医学诊断、市场营销等领域。

总之,不同类型的运筹学模型适用于不同的问题领域和求解目标,选择合适的模型可以帮助我们更好地解决实际问题。

运筹学课程讲义

运筹学课程讲义

运筹学课程讲义第一部分线性规划第一章线性规划的基本性质1.1 线性规划的数学模型一、线性规划问题的特点胜利家具厂生产桌子和椅子两种家具。

桌子售价50 元/个,椅子售价30 元/个。

生产桌子和椅子需木工和油漆工两种工种。

生产一个桌子需要木工4 小时,油漆工2小时。

生产一个椅子需要木工3 小时,油漆工1 小时。

该厂每月可用木工工时为120 小时,油漆工工时为50 小时。

问该厂如何组织生产才能使每月的销售收入最大?max z 50x1 30x24x1 3x2 1202x1 x2 50x1,x2 0 例:某工厂生产某一种型号的机床。

每台机床上需要 2.9m、2.1m、1.5m的轴,分别为1根、2根和1根。

这些轴需用同一种圆钢制作,圆钢的长度为74m。

如果要生产100台机床,问应如何安排下料,才能用料最省?二、数学模型的标准型1. 繁写形式2. 缩写形式3. 向量形式4. 矩阵形式若原模型中变量 x j 有上下界,如何化为非负变量?三、 任一模型如何化为标准型?1. 若原模型要求目标函数实现最大化,如何将其化为最小化问题?2. 若原模型中约束条件为不等式,如何化为等式?3. 若原模型中变量 x k 是自由变量,如何化为非负变量?1. 2 图解法该法简单直观,平面作图适于求解二维问题。

使用该法求解线性规划问题时,不必把原模型化为标准型。

一、 图解法步骤1. 由全部约束条件作图求出可行域2. 作出一条目标函数的等值线3. 平移目标函数等值线,作图求解最优点,再算出最优值 max z 5x 1 6x 2 7x 3x 1 5x 23x 3 15 5x 1 6x 210x 3 20 x 1 x 2 x 3 5x 1 0,x 2 0,x 3无约束令 x 1' x 1,x 3 x 3' x 3'',x 3' ,x 3'' 0, Z 1Z ' 1 1 min z ' 5x 1' 6x 2 7x 3' 7x 3'' 0x 5 Mx 6 1 x 1' 5x 2 1 11 3x 3' 3x 3'' x 4 x 6 15 1 5x 1' 6x 2 10x 3' 10x 3'' x 5 20 1 x ' x 1 ' II '' 54.Mx 7 x 1, x 2 , x 3, x 3, x 4 , x 5 ,x 6, x 7 0从图解法看线性规划问题解的几种情况1. 有唯一最优解2. 有无穷多组最优解3. 无可行解4. 无有限最优解(无界解)min z 6x1 4x?2x〔X2 13 最优解(1,0),最优值33x14x2 22x1, x20直观结论:1)线性规划问题的可行域为凸集,特殊情况下为无界域(但有有限个顶点)或空集;2)线性规划问题若有最优解,一定可以在其可行域的顶点上得到。

运筹学-1、线性规划

运筹学-1、线性规划

则:
x1 x2 100
x1 ( x3 ) x4 x2 2
设x3为第二年新的投资; x4为第二年的保留资金;
则:
18
•设x5为第三年新的投资;x6为第三年的保留资金;
则:
x3 ( x5 ) x6 x4 2 x1 2
•设x7为第四年新的投资;第四年的保留资金为x8;
max Z 2 x7 x9 x1 x2 100 x 2x 2x 2x 0 2 3 4 1 4 x1 x3 2 x4 2 x5 2 x6 0 s.t 4 x3 x5 2 x6 2 x7 2 x8 0 4 x5 x7 2 x 8 2 x9 0 x 0, j 1, 2, , 9 j
13
例3:(运输问题)设有两个砖厂A1 、A2 ,产 量分别为23万块、27万块,现将其产品联合供应三 个施工现场B1 、 B2 、 B3 ,其需要量分别为17万 块、18万块、15万块。各产地到各施工现场的单位 运价如下表: 现场 砖厂 B1 B2 B3
A1 A2
5 6
14 18
7 9
问如何调运才能使总运费最省?
20
例5:(下料问题) 某一机床需要用甲、乙、 丙三种规格的钢轴各一根,这些轴的规格分别是 2.9,2.1, 1.5(m),这些钢轴需要用同一种圆钢来做,圆 钢长度为7.4m。现在要制造100台机床,最少要用多 少根圆钢来生产这些钢轴?
解:第一步:设一根圆钢切割成甲、乙、丙三 种钢轴的根数分别为y1,y2,y3,则切割方式可用不等 式2.9y1+2.1y2+1.5y3≤7.4 表示,求这个不等式的有实 际意义的非负整数解共有8组,也就是有8种不同的 下料方式,如下表所示:

运筹学课后习题及答案

运筹学课后习题及答案

运筹学课后习题及答案运筹学是一门应用数学的学科,旨在通过数学模型和方法来解决实际问题。

在学习运筹学的过程中,课后习题是非常重要的一部分,它不仅可以帮助我们巩固所学的知识,还可以提升我们的解决问题的能力。

下面,我将为大家提供一些运筹学课后习题及答案,希望对大家的学习有所帮助。

1. 线性规划问题线性规划是运筹学中的一个重要分支,它旨在寻找线性目标函数下的最优解。

以下是一个线性规划问题的例子:Max Z = 3x + 4ySubject to:2x + 3y ≤ 10x + y ≥ 5x, y ≥ 0解答:首先,我们可以画出约束条件的图形,如下所示:```y^|5 | /| /| /| /|/+-----------------10 x```通过观察图形,我们可以发现最优解点是(3, 2),此时目标函数取得最大值为Z = 3(3) + 4(2) = 17。

2. 整数规划问题整数规划是线性规划的一种扩展,它要求变量的取值必须是整数。

以下是一个整数规划问题的例子:Max Z = 2x + 3ySubject to:x + y ≤ 52x + y ≤ 8x, y ≥ 0x, y为整数解答:通过计算,我们可以得到以下整数解之一:x = 2, y = 3此时,目标函数取得最大值为Z = 2(2) + 3(3) = 13。

3. 网络流问题网络流问题是运筹学中的另一个重要分支,它研究的是在网络中物体的流动问题。

以下是一个网络流问题的例子:有一个有向图,其中有三个节点S、A、B和一个汇点T。

边的容量和费用如下所示:S -> A: 容量为2,费用为1S -> B: 容量为3,费用为2A -> T: 容量为1,费用为1B -> T: 容量为2,费用为3A -> B: 容量为1,费用为1解答:通过使用最小费用最大流算法,我们可以找到从源点S到汇点T的最小费用流量。

在该例中,最小费用为5,最大流量为3。

《管理运筹学》02-1线性规划的数学模型及相关概念

《管理运筹学》02-1线性规划的数学模型及相关概念

03 线性规划的求解方法
单纯形法
1
单纯形法是一种求解线性规划问题的经典算法, 其基本思想是通过不断迭代来寻找最优解。
2
单纯形法的基本步骤包括:建立初始单纯形表格、 确定主元、进行基变换、更新单纯形表格和判断 是否达到最优解。
3
单纯形法在处理大规模线性规划问题时,由于其 迭代次数与问题规模呈指数关系,因此计算量较 大。
06 线性规划的案例分析
生产计划问题
总结词
生产计划问题是一个常见的线性规划应用场景,通过合理安排生产计划,企业可以优化资源利用,降低成本并提 高利润。
详细描述
生产计划问题通常涉及确定不同产品组合、生产数量、生产批次等,以满足市场需求、资源限制和利润目标。线 性规划模型可以帮助企业找到最优的生产计划,使得总成本最低或总利润最大。
最优性条件由单纯形法推导得出,是判断线性规划问题是否达到最优解的 重要依据。
解的稳定性
解的稳定性是指最优解在参数变化时保持相对稳定的能力。
在实际应用中,由于数据的不确定性或误差,参数可能会发生变化。因此,解的稳 定性对于线性规划问题的实际应用非常重要。
解的稳定性取决于目标函数和约束条件的性质,以及求解算法的鲁棒性。在某些情 况下,可以通过敏感性分析来评估解对参数变化的敏感性。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
目标函数是需要最大或最小化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是问题中给定的限制条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$ 或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。

运筹学课件1-1线性规划问题及其数学模型

运筹学课件1-1线性规划问题及其数学模型
上页 下页 返回
• 第三步:确定目标函数 第三步: 以 Z 表示生产甲和乙两种产品各为x1 表示生产甲和乙两种产品各为x 时产生的经济价值, 和x2(吨)时产生的经济价值,总经济价值 最高的目标可表示为: 最高的目标可表示为:
max z=7 x1十5 x2 z=
这就是该问题的目标函数 这就是该问题的目标函数。 目标函数。
上页
下页
返回
• 第1步 -确定决策变量
•设 ——I x1——I的产量 ——II x2 ——II的产量
是问题中要确定的未知量, 是问题中要确定的未知量, 表明规划中的用数量表示的 方案、措施,可由决策者决 方案、措施, 定和控制。 定和控制。
x1
x2
上页
下页
返回
第2步 --定义目标函数
利润
Max Z =
x1 +
x2
上页
下页
返回
第2步 --定义目标函数
Max Z = 2 x1 + 3 x2
上页
下页
返回
对我们有 何限制?
上页
下页
返回
第3步 --表示约束条件
x1 + 2 x2 ≤ 8 4 x1 ≤ 16 4 x2 ≤ 12 x1、 x2 ≥ 0
设备 原材料A 原材料 原材料B 原材料 利润 I 1 4 0 2 II 2 0 4 3 资源限量 8 台时 16kg 12kg
上页 下页 返回
– 用向量表示
m Z = CX ax n ∑Pj xj = b i=1 x ≥ 0 j =1 2,...n , j 其 : 中 x1 x 2 X= ... xn C = (c1, c2 , ) a1 j a2 j Pj = ... amj b 1 b 2 b= ... bm

运筹学(重点)

运筹学(重点)

两个约束条件
(1/3)x1+(1/3)x2=1
及非负条件x1,x2 0所代表的公共部分
--图中阴影区, 就是满足所有约束条件和非负
条件的点的集合, 即可行域。在这个区域中的每
一个点都对应着一个可行的生产方案。
22
5–
最优点
4–
l1 3B E
2D
(1/3)x1+(4/3)x2=3
l2 1–
0 1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
运筹学 Operational Research
运筹帷幄,决胜千里
史记《张良传》
1
目录
绪论 第一章 线性规划 第二章 运输问题 第三章 整数规划 第四章 动态规划 第五章 目标规划 第六章 图与网络分析
2
运筹学的分支 数学规划: 线性规划、非线性规划、整数规划、 动态规划、目标规划、多目标规划 图论与网络理论 随机服务理论: 排队论 存储理论 决策理论 对策论 系统仿真: 随机模拟技术、系统动力学 可靠性理论
32
西北角
(一)西北角法
销地
产地
B1
0.3
A1
300
0.1 A2
0.7 A3
销量 300
B2
1.1
400
0.9
200
0.4
600
B3
0.3
0.2
200
1.0
300 500
B4
产量
1.0
700 ②
0.8
400 ④
0.5
600
900 ⑥
600
2000




34
Z
cij xij 0.3 300 1.1 400 0.9 200

运筹学

运筹学
满足
12X1 + 6X2 ≤ 600 X1≥0,X2 ≥0 使 max f(x)=7X1 + 5X2
3.合理配料模型
例1-5 用三种原料A1、A2、A3配制一种食品,要求该食品中 蛋白质、脂肪、碳水化合物和维生素的含量分别不低于150、 200、250、300个单位,这三种原料的单价及每单位原料所含各 种成份的数量如表1-6所示。问如何配制这种食品,使成本最低?
X2 = 18 maxf(x) = 2600
第三节
解的结构
线性规划的解有三种情况:有最优解、有解但无 最优解和无可行解。有最优解又有两种情况:有惟一 的最优解和有无穷多个最优解。 当线性规划的约束条件中出现矛盾约束时,即二 元一次不等式组无解时,线性规划问题无可行解。
在例2-1中,加一个约束条件: 求x1,x2
令f(x)=-f(x) ′ 则maxf(x)=-min[-f(x)] =-minf(x) ′
例1-14 将下列线性规划数学模型化为标准形式: 求 x1,x2,x3
2x1 +
x2 + x3
≤ 8
满足
x1
-
x2
x2
+
x3
≥ 3
3x1 -
– 2x3 ≤ -5
≥0,X3是自由变量
X1≥0,x2
使 maxf(x) = x1 – 2x2 + 3x3
解:令X3=X4-X5,其中X4≥0,X5≥0, 在第一个约束条件的左边加入一个松驰变量X6,化为等式; 在第二个约束条件的左边减去一个松驰变量X7,化为等式; 在第三个约束条件的左边加入一个松驰变量X8,化为等式; 并且等式两边同乘以-1; 将求 maxf(x) = X1 - 2X2 + 3X3 化为求

线性规划问题及其数学模型

线性规划问题及其数学模型
就代表一个具体方案一般这些变量取值是非负 且连续的;
2要有各种资源和使用有关资源的技术数据 创造新价值的数据;
a i; jcj(i1 , m ;j1 , n)
共同的特征继续
3 存在可以量化的约束条件这些约束条件可 以用一组线性等式或线性不等式来表示;
4 要有一个达到目标的要求它可用决策变量 的线性函数称为目标函数来表示按问题的 不同要求目标函数实现最大化或最小化
约束条件:
a
21
x1
a22
x
2
a2n xn
b2
a
m
1
x1
am 2 x2
a mn xn
bn
x1 , x2 , , xn 0
线性规划问题的几种表示形式
M
' 1
:
n
目标函数:max z c j x j
j 1
约束条件:
n
aij x j
j 1
bi ,
i 1,2, ,m
x
j
0,
j 1,2, ,n
弛变量x6; 3 在第二个约束不等式≥号的左端减去剩
余变量x7; 4 令z′= -z把求min z 改为求max z′即可得到
该问题的标准型
例4的标准型
max z ' x1 2 x 2 3( x 4 x5 ) 0 x6 0 x7
x1 x2 ( x4 x5 ) x6
7
x1 x2 ( x4 x5 )
经第2工厂后的水质要求:
[0.8(2x1)(1.4x2 )] 2
700
1000
数学模型
目标函数 约束条件
min z 1000 x1 800 x2 x1 1
0.8 x1 x2 1.6 x1 2 x2 1.4 x1 , x2 0

运筹学 方法与模型

运筹学 方法与模型

运筹学方法与模型运筹学是运用数学、统计学和计算机科学等专业知识和技术,以科学化的方法帮助人们做出最佳决策的学科。

运筹学研究的对象包括决策分析、优化算法、模拟系统、控制论以及信息论等多个方面。

方法。

1.数学方法:运筹学在问题解决中利用了大量数学原理和方法,如线性规划、非线性规划、统计分析、概率论等。

2.统计方法:运筹学在处理大量数据时应用的方法,如数据采集、整理、分析和解释等,让人们可以据此推断数据的趋势。

3.计算机方法:运筹学借助计算机技术,使用计算机建模和仿真技术,将复杂的问题转化为简单的研究对象,并求解其最优解。

4.运筹思想:运筹学旨在找到最优策略,其思想是在各种因素和条件的制约下,达到最佳结果的决策。

这是一个重要的应用范畴。

模型。

1.线性规划模型:这是一种基本的运筹学模型,它通过建立一系列线性等式或不等式来描述形式化问题。

通过优化算法求解,找到最优解。

2.整数规划模型:整数规划模型是在线性规划的基础上,加上整数限制条件的扩展。

为求解整数规划问题,需要使用各种启发式算法、分枝限界法等。

3.随机规划模型:随机规划模型是在考虑风险或不确定性因素的情况下,寻找最优策略的模型。

4.动态规划模型:动态规划模型是用于描述决策过程的数学模型。

通过建立方程组,求解最优决策方案,它广泛应用于生产、库存、资源分配问题等领域。

总结。

运筹学作为一门独立的学科,旨在建立数学模型,找到最优决策方案。

在现代企业管理和科学研究中,它的应用越来越广泛。

运筹学所涉及的方法和模型丰富多样,它不断的激发着人们通过科学的手段来寻找最佳解决方案的创新思维。

运筹学第四版第二章线性规划及单纯形法

运筹学第四版第二章线性规划及单纯形法

方案的制定受到那些现实条件制约:
确定约束条件
人力资源(劳动力)的限制: 9x1 4x2 360
设备工时的限制:
4x1 5x2 200
原材料资源的限制:
3x1 10x2 300
此外,决策变量的取值不应为负值即 x1 0, x2 0
6
综上所述,我们得到了这个问题的数学模型
目标函数 约束条件
大?
项目

设备A (h)
0
设备B (h)
6
调试工序(h) 1
利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
表1-2
1
5
1
12
其数学模型为:
max Z 2x1 x2
5x2 15
6xx11
2x2 x2
24 5
x1, x2 0
13
例3:捷运公司在下一年度的1~4月份的4个月内拟租用仓库
堆放物资。已知各月份所需仓库面积列于下表1-3。仓库租
借费用随合同期而定,期限越长,折扣越大,具体数字见表
1-4。租借仓库的合同每月初都可办理,每份合同具体规定
租用面积和期限。因此该厂可根据需要,在任何一个月初办
理租借合同。每次办理时可签一份合同,也可签若干份租用
面积和租用期限不同的合同。试确定该公司签订租借合同的
最优决策,目的是使所租借费用最少。
14
max Z 70 x1 120 x2
9x1 s.t. 43xx11
x1,
4x2 5x2 10x2 x2 0
360 200 300
资源约束
非负约束
其中 约束条件可记 s.t (subject to), 意思为“以… 为条件“、”假定“、”满足“之意。

《运筹学》第四版线性规划模型

《运筹学》第四版线性规划模型

决策变量的意义
决策变量的具体含义应该与实际 问题相关,例如生产计划、资源 分配等。
确定目标函数
目标函数
01
线性规划的目标函数是用来衡量问题优化的标准,通
常是一个或多个决策变量的线性函数。
目标函数的优化方向
02 根据问题的实际需求,目标函数可以是最大化或最小
化。
目标函数的数学表达式
03
目标函数通常由决策变量和相应的系数组成,表示为
a21x1+a22x2+...+a2nxn=b2,...。
线性规划模型的表示形式
标准形式
标准形式的线性规划模型通常由目标 函数和约束条件组成,表示为 max/min f(x) s.t. a11x1+a12x2+...+a1nxn<=b1, a21x1+a22x2+...+a2nxn=b2,...。
详细描述
在资源分配问题中,线性规划模型用于确定 最佳的资源分配方案。通过构建包含资源种 类、需求量、效益等变量的线性规划模型, 可以找到在满足资源需求和效益约束下的最 优资源分配方案。这有助于企业或组织实现 资源的合理配置和效益的最大化。
05
线性规划模型的扩展与展望
多目标线性规划
多目标线性规划是线性规划的一个重要扩展,它考虑了多个相互冲突的目 标函数,并寻求在所有目标之间找到最优的平衡。
THANK YOU
非标准形式
如果线性规划模型的目标函数或约束 条件不符合标准形式,可以通过引入 松弛变量或剩余变量将其转化为标准 形式。
03
线性规划模型的求解方法
单纯形法
单纯形法是一种迭代算法,用于求解 线性规划问题。
在每次迭代中,算法会检查当前解是 否满足最优条件,如果不满足,则通 过一定的规则转换到另一个解,直到 找到最优解或确定无解。

运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划运筹学是一门涉及决策分析、优化、模型构建和仿真等知识领域的学科,应用广泛,如供应链管理、交通规划、制造业生产、金融投资等方面。

其中,线性规划和整数规划是运筹学中最为基础和重要的优化技术,被广泛应用于各个领域。

一、线性规划线性规划是一种在一组线性约束条件下,求解线性目标函数极值问题的数学方法。

在生产、运输、选址等问题中,线性规划都有着重要的应用。

其数学模型可以表示为:$\max c^Tx$$s.t. Ax \leq b,x\geq 0$其中$c$为目标函数的向量,$x$为决策变量向量,$A$为约束矩阵,$b$为约束向量,$c^Tx$表示目标函数的值,$\leq$表示小于等于。

如果目标函数和约束都是线性的,则可以通过线性规划的求解方法来确定决策变量的最优值。

线性规划的求解方法一般分为单纯形法和内点法两种方法。

单纯性法是线性规划中最为常用的方法,通过对角线交替调整,逐步从可行解中寻找最优解,收敛速度较快,但是存在不稳定的情况。

内点法是近年来发展起来的用于求解大规模线性规划问题的数值方法,其核心思想是迭代求解一系列线性方程组,每次保持解在可行域内部,直到找到最优解为止。

这种方法对大规模问题求解能力强,使用较多。

二、整数规划整数规划是线性规划的升级版,它要求决策变量必须取整数值。

整数规划在很多实际问题中都有着重要的应用,比如很多生产过程中需要将生产数量取整数,物流路径问题需要选取整数条路径等。

与线性规划不同的是,整数规划是NP难问题,没有一种有效的算法能够完全解决所有的整数规划问题。

因此,通常需要采用分支定界、割平面等方法来求解。

分支定界是一种常用的整数规划求解方法。

它通过将整数规划问题分为多个子问题,依次求解这些子问题并优化当前最优解,以逐步逼近最优解。

割平面法则是在分支定界方法的基础上加入约束条件,使得求解过程更加严格化,最终得到更好的结果。

总的来说,运筹学中线性规划和整数规划是不可或缺的优化工具,我们可以通过理论和实践加深对它们的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
足约束条件的所有(x1,x2,…,xn)(可 行解)中求出使目标函数达到最大(小)z
值的决策变量值(x1*,x2*,…,xn*)(最
优解)。
1.和式
max(或 min ) Z
c
j 1
n
j
xj
s .t .
n a ij x j ( 或 , ) b i j 1 x ij 0
单位产 品消耗 原料 原料名称
产品名称


可供利用的原料 数量(吨/日) 6 8
A B
产品售价 (千元/吨)
1 2 3
2 1 2
根据市场调查,有如下资料: 1.乙产品的需求量至多 2 吨/日; 2.乙产品的需求量比甲产品的需求量至多大 1 吨/日。 求该厂产值最大的生产方案。
提出三个问题大家考虑:
四、线性规划问题的标准形式
为了使线性规划问题的解法标准,就要把一般形式 化为标准形式。其一般形式如下所示:
线性规划的标准形式:
线性规划问题标准形式的要求如下: 1、目标函数为
3、bi≥0,i=1,2,…m; 4、除非负约束外( xj≥0 ),其余 约束都为等式。
X ( x1 , x 2 , , x n ) ;
T
C ( c 1 , c 2 , , c n ); b ( b1 , b 2 , , b m ) ;
T
a 11 a 21 A a m1
a 12 a 22 am2

a1n a2n a mn
市场限制
非负限制
例 2.靠近某河流有两个化工厂(见图) ,流经第一化工厂的河 流流量为每天 500 万 m ,在两个工厂之间有一条流量为每天 200 万 m 的支流。 第一化工厂每天排放含有某种有害物质的工业污水 2 万 m ,第二化工厂每天排放这种工业污水 1.4 万 m 。从第一化工 厂排出的工业污水流到第二化工厂以前,有 20%可以自然净化。根 据环保要求,河流中工业污水的含量不应大于 0.2%。这两个工厂 都需各自处理一部分工业污水。第一化工厂处理工业污水的成本 是 1000 元/万 m , 第二化工厂处理工业污水的成本是 800 元/万 m 。 现在要问在满足环保要求的条件下,每厂各应处理多少工业污水, 使这两个工厂总的处理工业污水费用最小。
i 1, , m j
1, , n
2.向量式
max(或 min ) Z CX n (或 , ) b P j x j j 1 X 0
X ( x1 , x 2 , , x n )
0 0 0 0
1.问题的未知数是什么? 2.以什么准则进行决策? 3.约束条件是什么?
例1:(产品组合问题)
某厂利用A、B两种原料,生产甲、乙两种产品,有关数据如下:
单位产 品消耗 原料 原料名称
产品名称


可供利用的原料 数量(吨/日) 6 8
A B
产品售价 (千元/吨)
1 2 3
2 1 2
根据市场调查,有如下资料:
一、线性规划数学模型的建立
建立线性规划数学模型是解决线性规划问
题的一个重要步骤。
建立的线性规划数学模型是否真正的反映
客观实际,数学模型本身是否正确,都直接影
响求解结果,从而影响决策结果,所以,建立
正确的线性规划模型尤为重要。下面举例说明
线性规划数学模型的建立。
例1:(产品组合问题)
某厂利用A、B两种原料,生产甲、乙两种产品,有关数据如下:
标准形式的变换方法

1.目标函数为min型,价值系数一律反号。
因为求min Z等价于求max (-Z),所以可令Z'= -Z,即化为max Z'

2.第i 个约束的bi 为负值,则该行左右两端系数同时反号,同时不等号也 要反向。 3.第i 个约束为 型,在不等式左边增加一个非负的变量xn+i ,称为松弛 变量;同时令 cn+i = 0,不等式变为等式。 4.第i 个约束为 型,在不等式左边减去一个非负的变量xn+i ,称为剩余 变量;同时令 cn+i = 0,不等式变为等式。 5.若xj 0,令 xj= -xj ,代入非标准型,则有xj 0
n : 变量个数 ; m : 约束行数 ;
x n ( , ) b1 x n ( , )b2 x n ( , )bm xn 0
s .t .
n m : 线性规划问题的规模 c j : 价值系数 ; b i : 右端项 ; a ij : 技术系数
求解线性规划问题的任务是:在满
• 1.利奥尼德· 康托洛维奇(1912-1986)
• 2.G.B.丹齐克(Dantzing,1914-2005) •
• 几个重大历史事件:
• 1939年,前苏联数学家康托洛维奇出版《生产组织和计划中 的数学方法》一书 • 1947年,美国数学家丹齐克提出单纯形算法(Simpler) • 1951年美国经济学家库普曼斯出版《生产与配置的活动分析》 • 1950-1956年,线性规划的对偶理论出现 • 1960年丹齐克与沃尔夫建立大规模线性规划问题的分解算法 • 1975年康托洛维奇和库普曼斯因“最有资源配置理论的贡献” 荣获诺贝尔经济学奖 • 1979年苏联数学家Khachian提出“椭球法” • 1984年印度数学家Karmarkar提出“投影梯度法” •
s.t.
二、线性规划问题的共同特征 (模型的三要素)
⑴ 每一个问题都用一组决策变量(x1,x2,…,xn)表示某 一方案;这组决策变量的值就代表一个具体方案。一 般这些变量取值都是非负的。 ⑵ 存在一定的约束条件,这些约束条件可以用一组线性
等式或线性不等式来表示。
⑶ 都有一个要求达到的目标,它可用决策变量的线性函 数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化,max或min。
1.乙产品的需求量至多 2 吨/日;
2.乙产品的需求量比甲产品的需求量至多大 1 吨/日。
求该厂产值最大的生产方案。
1.问题的未知数是什么? 2.以什么准则进行决策? 3.约束条件是什么?
设未知数
目标函数
约束方程
这里生产方案指的是如何安排甲、乙产品的产量。显然,产量是未 知数。 ① 设:甲产品的产量为 x1 吨/日 乙产品的产量为 x2 吨/日
min z x 1 2 x 2 3 x 3 x2 2 x1 x2 3 x1 4 x1 2 x 2 x 0, x 2 1 x3 9
2 x3 4 3 x3 6 0, x3 取值无约束
令 z z
x3 0



6.若xj 无约束(不限),令 xj= xj - xj, xj 0,xj 0,代入非标准型
变换举例
例1.将下述线性规划问题化为标准型:
m in z x1 2 x 2 3 x 3 2 x1 x 2 3 x1 x 2 s .t . 4 x 2 x2 1 x 0, x 2 1 x3 9 2 x3 4 3 x3 6 0 , x 3无 约 束
三、线性规划数学模型的一般表示方式
max ( min )Z(x) c1 x1 c 2 x 2 c n x n
a 11 x 1 a 12 x 2 a 1 n a 21 x 1 a 22 x 2 a 2 n a x a m 2 x 2 a mn m1 1 x1 , x 2 , ,
T
s .t .
C ( c 1 , c 2 , , c n );
a1 j a2 j Pj a mj
b1 b2 b b m
3.矩阵式
max (或 min ) Z CX s.t. AX (或 , ) b X 0
设 xj 分别代表采用切割方案1~8所需7.4米的钢
筋的数量。
若目标函数为使购买的7.4m钢筋最少, 则有 min Z x1 x2 x3 x4 x5 x6 x7 x8 2 x1 x2 x3 x4 2 x2 x3 3 x5 2 x6 x7 x1 x3 3 x4 2 x6 3 x7 4 x8 x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 100 100 100 0
整理得数学模型: 目标函数: min z = 1000 x1 + 800 x2 约束条件: s.t.
x1 1
x1 2 x2 1.4
0.8 x1 + x2 1.6
x1 0 , x2 0
例3、合理下料问题
用7.4m长的钢筋,分别截取2.9m、2.1m、1.5m各 至少100根,要求用料最少。
s.t.
若目标函数为余料最少, 则有 min Z 0.1x1 0.3 x2 0.9 x3 0 x4 1.1x5 0.2 x6 0.8 x7 1.4 x8 2 x1 x2 x3 x4 2 x2 x3 3 x5 2 x6 x7 x1 x3 3 x4 2 x6 3 x7 4 x8 x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 100 100 100 0
第一章 线性规划问题及单纯形法


线性规划问题及其数学模型
图解法


单纯形法原理
单纯形法计算步骤

单纯形法的进一步讨论
• 线性规划(概论)


两个重要人物:
苏联数学家,对经济学的主要贡献在于:建立 和发展了线性规划方法,并运用于经济分析,对 线性规划方法的建立和发展做出了开创新贡献。 美国数学家,因创造了单纯形法,被称为 “线性规划之父”。1982年,为表彰丹齐克,国 际数学规划协会设立丹齐克奖。表彰在数学规划 有突出贡献的人
相关文档
最新文档