《24.1.3弧、弦、圆心角》教学设计(湖北省市级优课)
《弧、弦与圆心角》教学设计(王斌)
![《弧、弦与圆心角》教学设计(王斌)](https://img.taocdn.com/s3/m/c8e4765210661ed9ac51f32a.png)
用简明的图在白板上呈现主要内容,更进一步加深学生对所学知识的印象。
教学反思
(说明本节课中白板的使用是如何解决教学难题和促进学生学习的。)
本节课的教学策略是通过通过白板动画演示学生观察、思考、交流合作活动,让学生亲身经历知识的发生、发展及其探求过程,再者通过教师演示动态课件及引导,让学生感受圆的旋转不变性,并能运用圆的对称性研究圆中的圆心角、弧、弦间的关系定理。同时注重培养学生的探索能力和简单的逻辑推理能力。体验数学的生活性、趣味性,激发他们的学习兴趣。
组讨论解答。
及时运用所学知识解决问题,培养学生的数学应用意识和解决问题的能力。
可在白板上直接用笔分析填空解答,使教学形式变的灵活多样。
活动6:
例题探究
例:如图, 在⊙O中,弧AB=弧AC,∠ACB=60°,
求证∠AOB=∠BOC=∠AOC.
分组讨论解决办法并展示解答过程。
培养学生正确应用所学的知识的应用能力,增强应用意识。
求证AB=CD.
3、AB为⊙O的直径,∠DOC=90°, ∠DOC绕O点旋转,DC两点不与A、B重合。
①求证:弧AD+弧BC=弧CD
②AD+BC=CD这个式子成立吗?若成立请证明;若不 成立请说明理由?
通过选择三国人物获得题目,然后分组解答题目,最后交流结果。
以冲关的形式让学生进行练习,既增强了乐趣,又发挥了交流与合作的作用。
预设好答案并隐藏,让学生分析好证明思路后再给出答案帮助学生规范数写格式,提高了课堂效率。
活动7:
应用提高
给出三个题目,让每小组自己选择一个题解答。
1、如图,AB是⊙O 的直径,弧BC=弧CD=弧DE,∠COD=35°,求∠AOE 的度数.
初中数学_24.1.3《弧、弦、圆心角》教学设计学情分析教材分析课后反思
![初中数学_24.1.3《弧、弦、圆心角》教学设计学情分析教材分析课后反思](https://img.taocdn.com/s3/m/3f45824ab14e852459fb5733.png)
(2)如果 弧AB=弧CD ,那么,。
(3)如果∠AOB=∠COD,那么,。
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?
师生行为:同时思考:在同圆或等圆中,相等的圆心角,所对的弦的弦心距相等吗?
总结:从而将等对等定理扩充为:
① 圆心角
∴AC=OC,OD=DB
法三:由法二
∴AC=CO=AO
OD=OB=DB
∴∠AOC=∠BOD=60°
设计意图:这道题难度较高,充分发挥学生小组合作意识,加强一题多解能力,同时也激发各小组间的竞争,调动他们的积极性和学习数学的兴趣!起到四两拨千斤之功效!
既训练了圆心角定理的应用,又通过一题多解充分锻炼了学生的发散思维能力
学生观察、归纳总结三组量之间的关系。(还可以让同学们回忆一下垂径定理是由圆的什么性质推导出来的?回答:圆的轴对称性质,折叠后左右两边完全重合)
设计意图:让学生通过观察——猜想——证明——归纳得出新知,培养学生分析问题、解决问题的能力。(同时让学生感受开始时旋转不变性的作用)
问题4:如果在两个等圆中这个结论还成立吗?
活动6:应用提高
例5. 已知AB为圆O直径,M、N分别为OA、OB中点,CM⊥AB,DN⊥AB。求证: 。
师生行为:各小组积极讨论,然后将各种做法进行展示,达到一题多解
法一:连结OC、OD,则OC=OD
∵OA=OB,且
在Rt△CMO与Rt△DNO中
法二:连AC、DB、CO、DO
且AM=MO,ON=NB
问题6:在同圆或等圆中,如果两条弦相等,你又能得到什么结论?
总结 同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.
优质课 精品教案 (省一等奖)《弧、弦、圆心角》公开课教案
![优质课 精品教案 (省一等奖)《弧、弦、圆心角》公开课教案](https://img.taocdn.com/s3/m/b035b01a998fcc22bdd10d02.png)
24.1.3 弧、弦、圆心角教学时间课题24.1.3 弧、弦、圆心角课型新授课教学目标知识和能力通过探索理解并掌握:〔1〕圆的旋转不变性;〔2〕圆心角、弧、弦之间相等关系定理;过程和方法〔1〕通过观察、比拟、操作、推理、归纳等活动,开展空间观念、推理能力以及概括问题的能力;〔2〕利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理.学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题.情感态度价值观培养学生积极探索数学问题的态度及方法.教学重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题.教学难点圆心角、弧、弦之间关系定理中的“在同圆或等圆〞条件的理解及定理的证明.教学准备教师多媒体课件学生“五个一〞课堂教学程序设计设计意图一、一、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否那么当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合.学生活动设计:学生独立思考,根据对三量定理的理解加以分析.由AB AC=,得到AB AC=,△ABC是等腰三角形,由∠ACB=60°,得到△ABC是等边三角形,AB=AC=BC,所以得到∠AOB=∠AOC=∠BOC.教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.〔证明〕∵AB AC=∴AB=AC,△ABC是等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠AOC=∠BOC.2.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.图3 学生活动设计:学生分析,由BC=CD=DA可以得到这三条弦所对的圆心角相等,所以考虑连接OC,得到∠AOD=∠DOC=∠BOC,而AB是直径,于是得到∠BOD=23×180°=120°.教师活动设计:此问题的解决方式和活动3类似,不过要注意学生对辅助线OC的理解,添加辅助线OC的原因.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等〞中,可否把条件“在同圆或等圆中〞去掉?为什么?师生活动设计:小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中〞不能去掉,比方可以请同学们画一个只能是圆心角相等的这个条件的图.如图4所示,虽然∠AOB=∠A′O ′B′,但AB≠A′B′,弧AB≠弧A′B′.图4教师进一步引导学生用同样的思路考虑命题:〔1〕在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;〔2〕在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优〔劣〕弧相等中的条件“在同圆和等圆中〞是否能够去掉.小结:弦、圆心角、弧三量关系.作业设计必做习题24.1 第2、3题,第10题.选做P88:11、12教学反思[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计
![人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计](https://img.taocdn.com/s3/m/cf5bcc570640be1e650e52ea551810a6f524c8e1.png)
人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册《24.1.3弧、弦、圆心角》是本册教材的重要内容之一。
它主要介绍了弧、弦、圆心角的定义及其相互关系。
这部分内容对于学生来说,有助于深化对圆的理解,为后续学习圆的性质和应用打下基础。
教材通过生动的实例和丰富的练习,引导学生探索和发现弧、弦、圆心角之间的规律,培养学生的观察能力、思考能力和动手能力。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。
他们对圆的概念和性质有一定的认识,但弧、弦、圆心角的概念和关系可能还比较模糊。
因此,在教学过程中,教师需要从学生的实际出发,通过直观的教具和生动的实例,帮助学生理解和掌握弧、弦、圆心角的定义和相互关系。
三. 教学目标1.理解弧、弦、圆心角的定义,掌握它们的相互关系。
2.能够运用弧、弦、圆心角的性质解决实际问题。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.弧、弦、圆心角的定义及其相互关系。
2.运用弧、弦、圆心角的性质解决实际问题。
五. 教学方法1.直观演示法:通过实物演示和动画展示,让学生直观地理解弧、弦、圆心角的定义和相互关系。
2.引导发现法:教师引导学生观察、思考和探索,发现弧、弦、圆心角之间的规律。
3.练习法:通过丰富的练习题,巩固学生对弧、弦、圆心角的理解和应用。
六. 教学准备1.准备相关的实物教具,如圆板、量角器等。
2.制作课件,包括弧、弦、圆心角的定义和相互关系的动画演示。
3.准备练习题,涵盖各种类型的题目,以便进行巩固和拓展。
七. 教学过程1.导入(5分钟)教师通过实物演示,如拿一个圆板,让学生观察和描述圆板上的弧、弦和圆心角。
引导学生回顾圆的基本概念,为新课的学习做好铺垫。
2.呈现(15分钟)教师利用课件,生动地展示弧、弦、圆心角的定义和相互关系。
通过动画演示,让学生直观地理解弧、弦、圆心角之间的关系。
弧弦圆心角教案市公开课一等奖教案省赛课金奖教案
![弧弦圆心角教案市公开课一等奖教案省赛课金奖教案](https://img.taocdn.com/s3/m/c44128369a6648d7c1c708a1284ac850ad0204b2.png)
弧弦圆心角教案一、教学目标:1. 理解弧、弦和圆心角的概念,能够正确地用字母符号表示它们。
2. 掌握弧和圆心角的度量关系,能够正确地计算圆心角的度数。
3. 能够应用所学知识解决与弧弦圆心角相关的问题。
二、教学重难点:1. 弧、弦和圆心角的定义及度量关系。
2. 在具体问题中正确应用弧弦圆心角的概念和计算方法。
三、教学过程:1. 导入(5分钟)通过提问学生已学的相关知识,引导学生回忆并激发学习兴趣。
例如:你们还记得什么是圆的弧吗?什么是圆的弦?圆心角是指什么呢?2. 理论讲解(20分钟)解释什么是圆的弧、弦和圆心角,并通过图示加深学生的理解。
弧是指两点间的曲线段;弦是圆上两点间的线段;圆心角是指以圆心为顶点的角。
比较弧、弦和圆心角之间的关系,强调圆心角的度数就是对应的弧所对的圆心角度数。
3. 实例演示(15分钟)通过具体的例子演示如何计算弧、弦和圆心角的度数。
例如:已知一个圆的半径为5cm,圆心角的度数为60度,求对应的弧长和弦长。
4. 综合练习(30分钟)让学生个别或小组练习计算与弧、弦和圆心角有关的问题。
可以设计选择题、填空题和应用题等不同类型的题目,以帮助学生巩固和运用所学的知识。
5. 讨论和总结(10分钟)让学生交流和讨论解题思路和方法,以及遇到的问题和困惑。
通过学生之间的互动和师生之间的互动,引导学生总结弧、弦和圆心角的概念和计算方法。
6. 展示和评价(10分钟)让学生自由发挥,用自己理解的方式展示所学的知识,并评价他人的展示。
通过展示和评价,鼓励学生主动参与学习,提高学生的学习兴趣。
四、教学拓展:1. 引导学生自主学习相关视频和教材,扩展和深化对弧弦圆心角的理解。
2. 给学生布置相关的作业,巩固所学的知识。
五、教学反思:本节课通过理论讲解、实例演示和综合练习等多种教学方法,使学生对弧、弦和圆心角的概念及其度量关系有了初步的认识。
题目的设计既考察了学生对基本概念的理解,又培养了学生的解决问题的能力。
九年级数学上册《弧、弦、圆心角》教学设计
![九年级数学上册《弧、弦、圆心角》教学设计](https://img.taocdn.com/s3/m/2190641e58eef8c75fbfc77da26925c52cc591a7.png)
24.1.3弧、弦、圆心角教案教学目标:一、知识与技能:1.了解圆的旋转不变性,掌握圆心角定义。
2.探究圆心角、弧、弦之间相等关系定理。
3.能灵活应用弧、弦、圆心角关系定理及其结论解决问题。
二、过程与方法:1.通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力.2.利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理.三、情感与态度价值观:培养学生积极探索数学问题的态度及方法教学重点:圆心角、弦、弧、弦心距之间的相等关系教学难点:圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.学情分析:本课是学生在学习垂径定理之后接触的圆的又一重要知识,既要认识圆心角又要学习相关等量关系,有一定的难度。
因此必须动手实践得出结论,寻找规律运用新知。
教学过程活动一、创设情境想一想(1)圆是什么对称图形?它的对称轴在哪里?有什么特点?对称中心是什么?(2)⊙O绕圆心O旋转180°后,你发现了什么?(3)思考:平行四边形绕对角线交点O任意旋转任意一个角度后,你发现了什么?把⊙O绕圆心O旋转任意一个角度后,你发现了什么?设计意图:学生在操作中发现平行四边形和圆旋转180°后都能与自身重合,所以是中心对称图形。
但是平行四边形旋转任意角度后并不总能与自身重合,而圆旋转任意角度后总能与自身重合,从中引导学生发现圆的旋转不变性活动二、探究新知(1)探究:我们把顶点在圆心的角叫做圆心角。
(可以出题让学生判断)。
圆心到弦的距离叫弦心距。
将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现哪些等量关系?为什么?你能证明吗?B B’得出:当∠AOB =∠A’OB’时,有:弦AB=弦A’B’,弧AB=弧A’B’。
(2)在等圆中,是否也能得出类似的结论呢?做一做:在纸上画两个等圆,画∠A’OB=∠AOB,连结AB和A’B’,则弦AB与弦A’B’,弧AB与弧A’B’还相等吗?为什么?请学生动手操作,在实践中发现结论依旧成立。
九年级数学上册(人教版)24.1.3弧、弦、圆心角教学设计
![九年级数学上册(人教版)24.1.3弧、弦、圆心角教学设计](https://img.taocdn.com/s3/m/22a5913359fafab069dc5022aaea998fcd224049.png)
(1)学生观察弓箭图片,思考并回答问题。
(2)教师总结:弓箭的形状类似于圆的一部分,这就是我们今天要学习的弧、弦、圆心角。
(二)讲授新知,500字
1.教学活动设计:
在讲授新知环节,我将通过讲解、举例、演示等方法,让学生掌握弧、弦、圆心角的概念及其相互关系。
2.教学过程:
(1)教师讲解弧、弦、圆心角的概念,并通过黑板演示相关图形。
为了巩固本节课所学内容,确保学生对弧、弦、圆心角的概念、性质及相互关系有更深入的理解,特此布置以下作业:
1.基础巩固题:
(1)请学生完成课本24.1.3节的练习题1、2、3,以巩固弧、弦、圆心角的基本概念。
(2)从生活实例中找出至少3个与弧、弦、圆心角相关的现象,并简要说明它们之间的关系。
2.能力提升题:
(2)学生跟随教师思路,理解并掌握相关概念。
(3)教师通过实例讲解弧、弦、圆心角的相互关系,如圆周角定理等。
(三)学生小组讨论,500字
1.教学活动设计:
在此环节,我将组织学生进行小组讨论,旨在培养学生的合作精神和解决问题的能力。
2.教学过程:
(1)教师提出讨论主题,如:“如何证明圆周角定理?”
(2)学生分组讨论,共同探究解决问题的方法。
(二)过程与方法
1.通过观察、操作、猜想、验证等教学活动,引导学生自主探究弧、弦、圆心角的性质,培养他们的观察力和逻辑思维能力。
2.运用生活中的实例,让学生感受数学知识在实际问题中的应用,提高他们运用数学知识解决实际问题的能力。
3.采用小组合作、讨论交流等形式,培养学生的团队协作能力和语言表达能力。
(3)各小组汇报讨论成果,教师给予点评和指导。
(四)课堂练习,500字
人教版九年级数学上册24.1.3 弧、弦、圆心角一等奖优秀教学设计
![人教版九年级数学上册24.1.3 弧、弦、圆心角一等奖优秀教学设计](https://img.taocdn.com/s3/m/12f657670912a216147929ee.png)
总结归纳,把 数学符号语 言用文字叙 述出来
知识深信不 疑,进一步 加强理解: 圆心角、弧、
幻灯片演示 :大小不同的圆中,相同圆心角叠置后弦、
弦之间的关
弧不重合。
系。
活动 3:学以致用
O
A B
A
B
如图,AB、CD 是⊙O 的两条弦.(直接填写在教材 85 页练
观察思考:为
训练数
什么要强调: “在同圆或
相等关系关系,并能应用这些关系解决实际应用。
解有关知识。 作交流的能
判断图中哪个是圆心角?
·
·
力,养成自
主预习的习 完成自学检 惯 测题
通过自
·
·
学检测题检 验学生自学 能力,更好
活动 2:观察发现,再探关系 1、幻灯片演示:圆心角的概念以及所对的弧、弦;
结合图形理 解圆心角、 弧、弦的概念
的培养学生 独立思考的 习惯。
通过动
①在同圆或等圆中,如果圆心角相等,
画演示,让
那么它所对的弧_______,所对的弦_________。
学生对自己
②在同圆或等圆中,如果弧相等,那么它所对的圆心
自学发现的
角__________,所对的弦___________。 ③在同圆或等圆中,如果弦相等,那么它所对的圆心
角__________,圆心角所对的弧____________。 3、思考讨论在不是同圆或等圆的情况下定理成不成立?
这就是我们今天要探究的弧、弦、圆心角。
识,培养动
(板书)课题
手能力。
二、自主探究 合作交流 建构新知 活动 1:展示学习目标,自主预习
阅读课本第 82—83 页 (1)理解圆的旋转不变性,掌握圆心角的概念;
《24.1.3 弧、弦、圆心角》教案、导学案
![《24.1.3 弧、弦、圆心角》教案、导学案](https://img.taocdn.com/s3/m/e3856cde83d049649b6658ea.png)
《24.1.3 弧、弦、圆心角》教案【教学目标】1.在实际操作中发现圆的旋转不变性.2.结合图形了解圆心角的概念,学会辨别圆心角.3.能发现圆心角、弦、弧之间的关系,并会初步运用这些关系解决有关的问题.【教学过程】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究探究点一:圆心角【类型一】圆心角的识别如图所示的圆中,下列各角是圆心角的是( )A.∠ABC B.∠AOB C.∠OAB D.∠OCB解析:根据圆心角的概念,∠ABC、∠OAB、∠OCB的顶点分别是B、A、C,都不是圆心O,因此都不是圆心角.只有B中的∠AOB的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.探究点二:圆心角的性质 【类型一】利用圆心角的性质求角如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD=∠DOE.∵∠AOE=60°,∴∠BOC =∠COD=∠DOE=13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.探究点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A=________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B=∠C.因为∠B=70°,所以∠C=70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N.求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD.∵OA=OB.又M ,N 分别是OA ,OB 的中点,∴OM =ON.又∵CM⊥AB,DN ⊥AB ,∴∠CMO =∠DNO=90°.∴Rt △CMO ≌Rt △DNO.∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F.∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON.又∵OM⊥CE,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD.由证法1,知CM =DN.又∵AM=BN ,∠AMC =∠BND=90°,∴△AMC ≌△BND.∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.三、板书设计【教学反思】教学过程中,强调弧、弦、圆心角及弦心距之间的关系,只要确定一组等量关系,其他三组也随之确定了.《24.1.3 弧、弦、圆心角》教案【教学内容】1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【重难点、关键】1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用. 【教学过程】 一、复习引入(学生活动)请同学们完成下题.已知△OAB ,如图所示,作出绕O 点旋转30°、45°、60°的图形.老师点评:绕O 点旋转,O 点就是固定点,旋转30°,就是旋转角∠BOB ′=30°.二、探索新知如图所示,∠AOB 的顶点在圆心,像这样顶点在圆心的角叫做圆心角. (学生活动)请同学们按下列要求作图并回答问题: 如图所示的⊙O 中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你能发现哪些等量关系?为什么?=,AB=A ′B ′理由:∵半径OA 与O ′A ′重合,且∠AOB=∠A ′OB ′ ∴半径OB 与OB ′重合∵点A 与点A ′重合,点B 与点B ′重合 ∴与重合,弦AB 与弦A ′B ′重合 ∴=,AB=A ′B ′因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手作一作.AB ''A B AB ''A B AB ''A B BAOB '(学生活动)老师点评:如图1,在⊙O 和⊙O ′中,•分别作相等的圆心角∠AOB 和∠A ′O ′B ′得到如图2,滚动一个圆,使O 与O ′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O ′A ′重合.(1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现:=,AB=A /B /.现在它的证明方法就转化为前面的说明了,•这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以得到下面的定理:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等.(学生活动)请同学们现在给予说明一下. 请三位同学到黑板板书,老师点评.例1.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么与的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?B'A 'AB''A B AB CD D分析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到= 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=AB ,CF=CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF (2)如果OE=OF ,那么AB=CD ,=,∠AOB=∠COD 理由是: ∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CD ∴AE=AB ,CF=CD ∴AB=2AE ,CD=2CF ∴AB=CD∴=,∠AOB=∠COD三、巩固练习 教材 练习1 四、应用拓展例2.如图3和图4,MN 是⊙O 的直径,弦AB 、CD•相交于MN•上的一点P ,•∠APM=∠CPM .(1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由. (2)若交点P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若AB CD 1212AB CD 1212AB CD不成立,请说明理由.(3) (4)分析:(1)要说明AB=CD ,只要证明AB 、CD 所对的圆心角相等,•只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的. 解:(1)AB=CD理由:过O 作OE 、OF 分别垂直于AB 、CD ,垂足分别为E 、F ∵∠APM=∠CPM ∴∠1=∠2 OE=OF连结OD 、OB 且OB=OD ∴Rt △OFD ≌Rt △OEB ∴DF=BE根据垂径定理可得:AB=CD(2)作OE ⊥AB ,OF ⊥CD ,垂足为E 、F ∵∠APM=∠CPN 且OP=OP ,∠PEO=∠PFO=90° ∴Rt △OPE ≌Rt △OPF ∴OE=OF连接OA 、OB 、OC 、OD易证Rt △OBE ≌Rt △ODF ,Rt △OAE ≌Rt △OCF ∴∠1+∠2=∠3+∠4 ∴AB=CD五、归纳总结(学生归纳,老师点评)PN本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.六、布置作业1.教材P94-95 复习巩固4、5、《24.1.3 弧、弦、圆心角》导学案学习目标:了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧、弦心距中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.一、导学过程:(阅读教材P82 — 83 , 完成课前预习)1、知识准备(1)圆是轴图形,任何一条所在直线都是它的对称轴.(2)垂径定理推论.2、预习导航。
人教版数学九年级上册教学设计24.1.3《弧、弦、圆心角》
![人教版数学九年级上册教学设计24.1.3《弧、弦、圆心角》](https://img.taocdn.com/s3/m/af932c8e6e1aff00bed5b9f3f90f76c661374c87.png)
人教版数学九年级上册教学设计24.1.3《弧、弦、圆心角》一. 教材分析《弧、弦、圆心角》是人教版数学九年级上册第24章的一部分,主要介绍了圆的基本概念和性质。
这一节内容通过讲解弧、弦和圆心角的关系,使学生掌握圆的性质和圆心角、弧、弦之间的联系。
教材以生活中的实例引入,激发学生的学习兴趣,接着通过观察、操作、推理等过程,让学生在实践中掌握知识。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形有了一定的认识。
他们在学习本节课的内容时,需要将已有的知识与新的知识相结合,理解圆心角、弧、弦之间的关系。
同时,学生需要具备观察、操作、推理的能力,通过实践来验证圆的性质。
三. 教学目标1.理解圆心角、弧、弦的概念及它们之间的关系。
2.掌握圆的性质,能运用圆的性质解决实际问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.重点:圆心角、弧、弦的概念及它们之间的关系。
2.难点:圆的性质的证明和应用。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、推理来探究圆的性质。
2.运用实例引入,激发学生的学习兴趣。
3.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.准备相关教学图片和实例,用于导入和讲解。
2.准备圆规、直尺等学具,让学生动手操作。
3.准备练习题和拓展题,用于巩固和拓展知识。
七. 教学过程1.导入(5分钟)通过展示生活中的圆形物体,如自行车轮、地球等,引导学生关注圆的形状。
提问:“你们知道这些物体为什么是圆形的吗?”让学生思考圆的特性。
2.呈现(10分钟)介绍圆心角、弧、弦的概念,并用图片和实物进行展示。
讲解圆心角、弧、弦之间的关系,引导学生理解圆的性质。
3.操练(10分钟)让学生分组,利用圆规、直尺等学具,自己画出一个圆,并尝试找出圆心角、弧、弦。
各小组汇报结果,教师点评并讲解。
4.巩固(10分钟)出示一组练习题,让学生独立完成。
题目包括判断题、选择题和填空题,涵盖圆心角、弧、弦的概念和性质。
人教版数学九年级上册24.1.3 弧、弦、圆心角 教案
![人教版数学九年级上册24.1.3 弧、弦、圆心角 教案](https://img.taocdn.com/s3/m/f41f2c0376232f60ddccda38376baf1ffc4fe398.png)
24.1.3弧、弦、圆心角●情景导入(1)观察图片,我们会发现圆绕着圆心旋转任意一个角度,所得的图形与原图形重合.(2)如图①,∠AOB的顶点在圆心上,我们把顶点在圆心的角叫做圆心角.(3)如图②,连接AB,圆心角∠AOB所对的弦为弦AB,所对的弧为AB,那么圆心角与它所对的弧、弦这三个量之间有什么关系呢?【教学与建议】教学:通过实验操作,探索圆的旋转不变性与“如果两个圆心角相等,那么它们所对的弧、弦是不是相等”,激发学生的学习兴趣.建议:尽量让学生自己动手操作,引导学生得出等量关系.●归纳导入(1)圆是中心对称图形吗?它的对称中心在哪里?【归纳】圆是中心对称图形,对称中心是O点.(2)如图,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,我们发现∠AOB__=__∠A′OB′,弦AB__=__A′B′,AB__=__A′B′.【教学与建议】教学:通过归纳中心对称图形的定义,引入圆这个中心对称图形和圆的旋转性质,得出圆心角、弧、弦之间的关系.建议:让学生操作试验,得出圆心角、弧、弦的等量关系.命题角度1利用弧、弦、圆心角之间的关系进行计算在同圆或等圆中,两个相等圆心角,它们所对的弧、弦、弦心距对应相等.【例1】(1)如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是(D)A.CE=DE B.BC=BDC.∠BAC=∠BAD D.AC>AD[第(1)题图][第(2)题图](2)如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M,N,BA,DC的延长线交于点P.连接OP.下列四个说法中:①AB=CD;②OM=ON;③PB=PD;④∠BPO=∠DPO,其中正确的是__①②③④__.(填序号)命题角度2利用弧、弦、圆心角之间的关系进行证明在同圆或等圆中,利用弧、弦、圆心角之间的关系定理证明圆心角、弧、弦相等.【例2】(1)如图,AB为⊙O的直径,C,D是⊙O上的两点,且BD∥OC.求证:AC=CD.证明:∵OB=OD,∴∠D=∠B.∵BD∥OC,∴∠D=∠COD,∠AOC=∠B,∴∠AOC=∠COD,∴AC=CD.(2)如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.证明:如图,连接OC.∵OD∥BC,∴∠1=∠B,∠2=∠3.又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.高效课堂教学设计1.能识别圆心角.2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.3.能用弧、弦、圆心角的关系解决圆中的计算题、证明题.▲重点探索圆心角、弧、弦之间的关系定理并利用其解决相关问题.▲难点圆心角、弧、弦之间关系定理中的“在同圆或等圆中”条件的理解及定理的证明.◆活动1新课导入1.你能举出生活中的圆形商标的实例吗?(至少三个)宝马车商标:星巴克标志:曼秀雷敦标志:2.把这些圆形图案绕圆心旋转一定的角度,你有什么发现?旋转前后圆中的弧、弦会有变化吗?答:图案绕圆心旋转一定的角度后能与自身重合,旋转前后圆中的弧、弦不会有变化.◆活动2探究新知1.材料P83探究.提出问题:(1)把圆绕圆心旋转180°,所得图形与原图形重合吗?由此你得到什么结论?(2)圆是中心对称图形吗?对称中心是什么?(3)把圆绕圆心旋转任意一个角度,所得图形与原图形重合吗?学生完成并交流展示.2.教材P84思考.提出问题:(1)我们把∠AOB连同AB绕圆心O旋转,使OA与OA′重合,旋转前后你能发现哪些等量关系?(2)若∠AOB和∠A′OB′分别在两个相等的圆中,上述等量关系还存在吗?(3)总结你所发现的规律;(4)反过来,在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角、所对的弦有什么关系?如果两条弦相等,那么它们所对的圆心角、所对的弧有什么关系?◆活动3知识归纳1.顶点在__圆心__的角叫做圆心角,能够重合的圆叫做__等圆__;能够__重合__的弧叫做等弧;圆绕其圆心旋转任意角度都能够与原来的的图形重合,这就是圆的__旋转不变__性.2.在同圆或等圆中,相等的圆心角所对的弧__相等__,所对的弦也__相等__.3.在同圆或等圆中,两个__圆心角__,两条__弦__,两条__弧__中有一组量相等,它们所对应的其余各组量也相等.◆活动4例题与练习例1教材P84例3.例2下列说法正确吗?为什么?(1)如图,因为∠AOB=∠A′OB′,所以AB=A′B′;(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么AB=A′B′.解:(1)(2)都是不对的.在图中,因为不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.例3如图,AD=BC.求证:AB=CD.证明:∵AD=BC,∴AD=BC.∵AC=AC,∴AC+AD=AC+BC.∴DC=AB.∴AB=CD.练习1.教材P85练习第1,2题.2.如图,在⊙O中,已知弦AB=DE,OC⊥AB,OF⊥DE,垂足分别为C,F,则下列说法中正确的有(D)①∠DOE=∠AOB;②AB=DE;③OF=OC;④AC=EF.A.1个B.2个C.3个D.4个3.如图,AB是⊙O的直径,AC=CD,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.解:(1)△AOC是等边三角形.理由如下:∵AC=CD,∴∠AOC=∠COD=60°.又∵OA=OC,∴△AOC是等边三角形;(2)∵AC=CD,∴OC⊥AD.∵∠AOC=∠COD=60°,∴∠BOD=180°-(∠AOC+∠COD)=60°.∵OD=OB,∴△ODB为等边三角形.∴∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD.◆活动5课堂小结弧、弦、圆心角之间的关系是证明圆中等弧、等弦、等圆心角的常用方法.1.作业布置(1)教材P89习题24.1第2,3题;(2)对应课时练习.2.教学反思。
24.1.3弧、弦、圆心角教学设计2024—2025学年人教版数学九年级上册
![24.1.3弧、弦、圆心角教学设计2024—2025学年人教版数学九年级上册](https://img.taocdn.com/s3/m/408a1980a48da0116c175f0e7cd184254b351bae.png)
每组பைடு நூலகம்出一名代表,准备向全班展示讨论成果。
5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对弧、弦、圆心角的认
学生学习效果
1.知识与技能:
-学生能够准确地定义弧、弦、圆心角,并理解它们之间的关系。
-学生能够运用弧、弦、圆心角的知识解决一些与圆相关的实际问题。
-学生能够熟练地使用圆规、量角器等工具,进行几何图形的绘制和测量。
2.过程与方法:
-学生通过观察、操作、思考、交流等环节,培养了自己的逻辑推理能力和空间想象力。
-学生能够运用合作学习的方式,与他人共同探讨和解决问题,提高了解决问题的能力。
-学生通过实践操作,提高了自己的动手能力和实践能力。
3.情感态度与价值观:
答案:学生需要计算出半径为10cm的圆中,弦长为14cm的弦所对应的圆心角的大小,并给出计算过程。
-学生能够将所学知识进行拓展,探索与弧、弦、圆心角相关的新问题和新应用。
教学反思与总结
在教学方法上,我采用了讲练结合的方式,通过讲解和示范,让学生对弧、弦、圆心角的概念有了清晰的理解。在案例分析环节,我选择了几个具有代表性的案例,让学生通过观察、思考、讨论等方式,深入理解弧、弦、圆心角的特点和重要性。此外,我还设计了一些实践操作的活动,让学生通过亲自动手,进一步巩固所学的知识。
当堂检测:
1.请在纸上绘制一个半径为5cm的圆,并标出其直径、半径、弧、弦和圆心角。
答案:学生需要绘制一个半径为5cm的圆,并准确地标记出直径、半径、弧、弦和圆心角。
2.在一个半径为10cm的圆中,计算直径、半径、弧长和面积。
答案:学生需要计算出半径为10cm的圆的直径、半径、弧长和面积,并给出计算过程。
人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计
![人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计](https://img.taocdn.com/s3/m/bbe970704a35eefdc8d376eeaeaad1f3469311df.png)
人教版数学九年级上册24.1.3《弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册第24章《圆》的第三节“弧、弦、圆心角”是本章的重要内容。
本节主要介绍了弧、弦、圆心角的定义及它们之间的关系。
通过本节课的学习,学生能够理解弧、弦、圆心角的含义,掌握它们之间的联系,并为后续学习圆的性质和圆的证明打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和公理有一定的了解。
但是,对于弧、弦、圆心角这些概念,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、操作、思考、讨论等方式,逐步理解和掌握这些概念及它们之间的关系。
三. 教学目标1.知识与技能:理解弧、弦、圆心角的定义,掌握它们之间的关系。
2.过程与方法:通过观察、操作、思考、讨论等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:弧、弦、圆心角的定义及其关系。
2.难点:理解弧、弦、圆心角之间的联系,以及如何在具体问题中应用。
五. 教学方法1.情境教学法:通过生活实例引入弧、弦、圆心角的概念,激发学生的学习兴趣。
2.小组讨论法:引导学生分组讨论,发现弧、弦、圆心角之间的关系。
3.案例教学法:分析具体案例,让学生在实践中掌握弧、弦、圆心角的应用。
4.引导发现法:教师引导学生发现问题,分析问题,解决问题。
六. 教学准备1.教学课件:制作课件,展示弧、弦、圆心角的相关图片和动画。
2.教学道具:准备一些实际的弧、弦、圆心角的模型,以便学生直观地感受。
3.练习题:挑选一些有关弧、弦、圆心角的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如月亮的形状、吊扇的旋转等,引导学生思考:这些现象与数学中的哪些概念有关?进而引入弧、弦、圆心角的概念。
2.呈现(10分钟)展示课件,呈现弧、弦、圆心角的定义及它们之间的关系。
弧、弦、圆心角 优秀教学设计(教案)
![弧、弦、圆心角 优秀教学设计(教案)](https://img.taocdn.com/s3/m/e4df85ed0c22590103029d08.png)
六、教学流程设计(可加行) 教学环节 (如:导入、讲授、复习、训 练、实验、研讨、探究、评价、 建构) 一、导入:这节课我们继续研究 圆的性质,请同学们完成下 题. 1.圆是中心对称图形吗?将圆旋 转任意角度后会出现什么情况? 我们学过的几何图形中既是中心 对称图形,又是轴对称图形的 是? 二、探究新知: 一) 、圆心角定义 在纸上任意画一个圆,任意画出 两条不在同一条直线上的半径, 构成一个角,这样的角就是圆心 角.如图所示,∠AOB 的顶点在圆 心,像这样,顶点在圆心的角叫 做圆心角。 在学生交流 二) 、圆心角、弧、弦之间的关 系定理 1.按下列要求作图并回答问题: 如图所示的⊙O 中,分别作 相等的圆心角∠AOB和∠A′ OB′将圆心角∠AOB 绕圆心 O 旋 转到∠A‵OB‵的位置,你能发 现哪些等量关系?为什么? 得到: 在同一个圆中,相等的 圆心角所对的弧相等,所对的弦 相等. 2.在等圆中相等的圆心角是否也 有所对的弧相等,所对的弦相等 呢? 后,师生一 起总结出圆 心角定义。 学生按照要求作 图,并观察图形, 结合圆的旋转不变 性和相关知识进行 思考,尝试得出关 系定理,再进行严 格的几何证明. 学生思考,类比同 圆中得到的结论进 行探究,猜想,并 验证。 教师布置学 生画图,复 习旋转知 识,为探究 本节课定理 作铺垫。 学生通过画图复习 旋转知识,明白绕 O 点旋转,O 点就是 旋转中心,旋转 30 °,就是旋转角是 30 学生画一个圆,按 教师要求操作,观 察,思考,交流。 通过该问题引起学 生思考,进行探 究,发现关系定 理,初步感知培养 学生的分析能力, 解题能力。 通过学生亲自动手 操作发现圆的旋转 不变性,为后续探 究打下基础。 教师活动 学生活动 信息技术支持(资 源、方法、手段 等)
2.如图,在⊙O 中,AB、CD 是两 条弦,OE⊥AB,OF⊥CD,垂足分 别为 EF. (1)如果∠AOB=∠COD,那么 OE 与 OF 的大小有什么关系?为什 么?
24.1.3 弧、弦、圆心角 教案2
![24.1.3 弧、弦、圆心角 教案2](https://img.taocdn.com/s3/m/254e9c0859fafab069dc5022aaea998fcc2240e7.png)
24.1.3 弧、弦、圆心角教案探究剪一个圆形纸片,把它绕圆心旋转180°,所得的图形与原图形重合吗?由此你能得到什么结论?把圆绕圆心旋转任意一个角度呢?结论:圆是中心对称图形,圆心就是它的对称中心.把圆绕圆心旋转任意一个角度,所得的图形都与原图形重合.把圆绕圆心旋转任意的一个角度呢?把圆绕圆心旋转任意一个角度,所得的图形都与原图形完全重合通过上面的观察,你能得到什么结论呢?圆是中心对称图形,圆心就是它的对称中心.师提出提问,并让学生拿出事先准备好的圆形纸片,动手操作,观察,最后教师PPT动态展示.教师在上一问题的基础上追问,仍然让学生先动手操作,观察,然后教师任选几个角度(如30°,60°,120°,210°等)进行PPT动态展示.活动意图说明:让学生通过动手实践来感受圆的中心对称性.引导学生来归纳出圆是中心对称图形.培养学生的观察能力与语言组织能力.环节三:典例精析教师活动3:观察下面几个角的顶点,有什么共同特征?顶点都在圆心.我们把顶点在圆心的角叫做圆心角.如图,将圆心角∠AOB绕圆心O旋转到∠A1OB1的位置,你能发现哪些等量关系?为什么?学生活动3:引导学生观察思考,然后总结出圆心角的概念:如图,在等圆中,如果∠AOB=∠A'O'B',你发现的等量关系是否依然成立?为什么?结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.简述同圆和等圆中,圆心角、弧、弦之间的关系吗?在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.教师提出问题,学生通过观察与思考学生讨论、交流,并用语言进行总结,教师引导、点拨,得到结论活动意图说明:通过观察,使学生对圆的旋转不变性的认识从感性上升到理性. 理解弧、弦、圆心角之间的关系.培养学生的观察发现能力及对概念的理解能力.环节四:典例精析教师活动4:例 3 如图,在⊙O中,AB=AC,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.学生活动4:学生独立思考,当堂练习证明:∵AA ̂=AA ̂, ∴AB=AC ,△ABC 是等腰三角形.∵∠ACB=60°,∴△ABC 是等边三角形 ,AB=BC=CA.∴∠AOB =∠BOC =∠AOC.和劣弧分别相等.【知识技能类作业】必做题:1.如图1,AB 是⊙O 的直径,BC⏜ =CD ⏜ =DE ⏜ ,∠AOE=66°,则∠COD 的度数是( )A .108°B .72°C .48°D .38°2.如图2,已知AB 是⊙O 的直径,点C 和点D 是半圆上两个三等分点,则∠COD= .3.如图3,在⊙O 中,点C 是AB⏜的中点,∠A=70°,则∠BOC=_____.选做题:4.一条弦把圆分成1∶3两部分,则弦所对的圆心角为 .5.如图AAÂ=AAA ̂,若AB=3,则CD=___________.6.如图,AB ,CD 是⊙O 的两条弦.如果AB=CD ,OE ⊥AB 于E ,OF ⊥CD 于F , OE 与OF 相等吗?为什么?【综合拓展类作业】7.如图,D 、E 分别是⊙O 两条半径OA 、OB 的中点, .(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式【知识技能类作业】必做题:1.下列语句中,正确的有( )①圆心角相等,所对的弧也相等;②圆心角相等,所对的弦也相等;③长度相等的两条弦所对的弧是等弧;④同圆中,相等的弧所对的圆心角相等.A.1个B.2个C.3个D.4个2.在半径为1的☉O中,长为√2的弦所对圆心角的度数为( )A.145°B.135°C.90°D.90°或135°选做题:3.如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC=⏜的度数是()80°,则BDA.30°B.25°C.20°D.10°【综合拓展类作业】̂=4.如图,M为⊙O上一点,OD∠AM于D,OE∠BM于E,若OD=OE.求证:AA ̂.AA。
24.1.3弧、弦、圆心角(教案)
![24.1.3弧、弦、圆心角(教案)](https://img.taocdn.com/s3/m/60d8355778563c1ec5da50e2524de518964bd390.png)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与弧、弦、圆心角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用硬纸片制作圆并观察不同圆心角所对的弧和弦。
-圆心角的度数与所对弧的度数关系:掌握圆心角的度数等于其所对弧的度数。
-实际问题的解决:将弧、弦、圆心角的知识应用于解决复杂的几何问题。
举例:在讲解弧和弦对应关系时,通过具体示例,引导学生观察并发现同一条弦对应的两个弧的关系。在讲解圆心角的度数与所对弧的度数关系时,通过动态演示或实际操作,让学生直观感受圆心角变化时,所对弧的度数也随之变化。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了弧、弦、圆心角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,题,提高数学应用意识,培养数学素养。
三、教学难点与重点
1.教学重点
-弧、弦、圆心角的基本概念:准确理解并掌握这三个基本几何概念,以及它们之间的关系。
-弧、弦、圆心角的性质:了解并掌握同圆或等圆中相等的圆心角所对的弧相等,所对的弦相等;弦与弧的对应关系;圆心角的度数与所对弧的度数关系。
本节课将结合实际例子,通过观察、实践和讨论,使同学们深入理解弧、弦、圆心角的概念及其相互关系。
二、核心素养目标
《24.1.3 弧、弦、圆心角》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册
![《24.1.3 弧、弦、圆心角》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册](https://img.taocdn.com/s3/m/e8d05137793e0912a21614791711cc7930b7781c.png)
《弧、弦、圆心角》教学设计方案(第一课时)一、教学目标:1. 理解弧、弦、圆心角的概念和关系。
2. 掌握圆心角与弧、弦的关系公式。
3. 能够运用所学知识解决简单的实际问题。
二、教学重难点:1. 教学重点:理解弧、弦、圆心角的概念,掌握圆心角与弧、弦的关系。
2. 教学难点:将理论知识与实际问题相结合,学会运用所学知识解决实际问题。
三、教学准备:1. 准备教学用具:黑板、粉笔、圆规、量角器等。
2. 制作课件:包括概念图、例题和练习题。
3. 了解学生已有知识基础,设计适当的教学活动,帮助学生建立新知识与已有知识之间的联系。
4. 针对教学难点,设计一些具有启发性的教学活动,如小组讨论、案例分析等,帮助学生理解和应用所学知识。
四、教学过程:1. 引入课题通过展示一些生活中与圆有关的图片,让学生观察并思考这些图片中哪些地方用到了圆弧、弦和圆心角的知识。
引导学生思考圆弧、弦和圆心角之间的关系,并引出本节课的课题。
2. 探索新知通过观察、测量和计算等方式,让学生探究圆弧、弦和圆心角之间的关系。
教师可准备一些材料,如不同大小、不同位置的圆、尺子、量角器等,让学生自己动手操作,探索其中的规律。
探究活动一:测量不同大小圆的圆弧、弦和圆心角,并记录数据。
通过数据分析,发现圆弧、弦和圆心角之间的关系。
探究活动二:制作一个半径为定值的一组同心圆,并依次取AB为一条弦,通过观察和测量可以发现哪些规律?探究活动三:通过计算弧长和半径的比值与弦长的关系,进一步理解圆心角、弧长和弦长之间的关系。
3. 课堂互动在探究过程中,鼓励学生提出自己的问题和观点,教师进行解答和指导。
同时,也可以让学生相互讨论,交流自己的想法和经验,促进学生的思考和表达能力。
4. 课堂小结在课堂结束前,教师对本节课所学的知识进行总结,并强调圆弧、弦和圆心角之间的联系和应用。
让学生回顾本节课的主要内容,加深对本节课的理解和掌握。
5. 作业布置课后布置一些与本节课相关的练习题和思考题,让学生进一步巩固和应用所学的知识,同时也可以培养学生的独立思考和解决问题的能力。
人教版数学九年级上册24.1.3弧、弦、圆心角教案
![人教版数学九年级上册24.1.3弧、弦、圆心角教案](https://img.taocdn.com/s3/m/6cdeb9ee580216fc710afd31.png)
24.1.3《弧、弦、圆心角》教案教材分析本节内容主要研究的是弧、弦、圆心角的关系的推导和应用.它是在学生学习了圆的有关概念和性质后学习的,是以后学习圆周角的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能.学情分析九年级学生的心理特点是形象思维大于抽象思维和认知规律从特殊到一般.结合学生实际学习情况(已较学习了圆的相关概念和性质)进行本课设计的.从引入时实物圆的构成元素的启发引导,到弧、弦、圆心角三个量的关系的学生自主探索,再到学生与学生之间的合作交流学习,都要突出学生是探索性学习活动的主体是否能充分发挥学生自主学习、探究能力的关键.教学目标知识技能1.通过观察和实验,使学生了解圆心角的概念;2.掌握圆心角定理及其推论,并应用定理和推论解决问题;3. 感悟数学思想过程与方法1.经历用圆心角和旋转的知识探索的过程,进一步体会和理解研究几何图形的各种方法.情感态度1.结合本节课特点,让学生了解数学的价值,激发学生探究、发现数学问题的兴趣和欲望.教学重点在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦也相等及其两个推论和它们的应用.教学难点探索定理和推论,以及它们的应用.教学准备与教学媒体学案、多媒体课件、教具、人教版九年级数学课本教法及学法自主、合作、探究、体验式教学法教学过程设计教学环节教学活动师生活动设计意图环节1情境引入环节2探究新知活动1:播放古老水车保稻田的视频,利用水车引入圆的有关概念和性质.1、圆心角:顶点在圆心的角叫圆心角.2、圆心角所对的弧和所对的弦;3、圆的性质:圆是中心对称图形,圆具有旋转不变性.活动2:探究:任意给圆心角,对应出现三个量:圆心角,圆心角所对的弦和所对的弧,这三个量之间会有什么关系呢?(出示思考题,演示教具)思考:如图,⊙O(及⊙O1和⊙O2)中,当圆心角∠AOB•和∠A•′OB•′相等时,它们所对的弧AB和''A B、弦AB和弦A′B′有怎样的数量关系?为什么?AB=''A B,AB=A′B′理由:∵半径OA与O′A′重合,且∠AOB=∠A′OB′∴半径OB与OB′重合∵点A与点A′重合,点B与点B′重合∴AB与''A B重合,弦AB与弦A′B′重合∴AB=''A B,AB=A′B′因此,在同圆中,相等的圆心角所对的弧相等,所对的弦相等.播放古老水车保稻田的视频,出示水车图片,学生回答在水车上看到那些圆的基本元素.教师出示思考题,并演示教具学生思考,合作讨论,教师点名回答问题.通过观看视频,感受中国人民在生产实践中表现出的聪明才智,利用水车的形象引入课题.运用教具直观形象的表示圆心角、弧、弦三组相对应的量之间的关系让学生亲自动手,进行实验、探究、得出结论,激发学生的求知欲望,进而得到成功的体验.规范学生证明过程的书写.环节4知识应用环节5大展身手练习:1、如图,AB、CD是⊙O的两条弦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《弧、弦、圆心角》教学设计
教学内容:人教版九年级上册24.1.3弧、弦、圆心角
教学目标:
1.理解圆心角的概念和圆的旋转不变性。
2.利用圆的旋转不变性,发现圆中弧、弦、圆心角关系,并能正确推理和应用。
3.通过观察、比较、推理、归纳等活动,发展推理能力以及概括问题的能力。
4.培养学生探索数学问题的积极态度和科学的方法。
教学重点:探索圆心角、弧、弦之间关系定理,并利用其解决相关问题。
教学难点:定理中条件的理解及定理的探索。
教学过程:
一、创设情景:
想一想
(1)平行四边形绕对角线交点O旋转180°后,你发现了什么?
(2)⊙O绕圆心O旋转180°后,你发现了什么?
(3)思考:平行四边形绕对角线交点O任意旋转任意一个角度后,你发现了什么?把⊙O绕圆心O旋转任意一个角度后,你发现了什么?
二、探究新知
(1)如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做.
将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置,你能发现哪些等量关系?
为什么?你能证明吗?
B B’
(2)在等圆中,是否也能得出类似的结论呢?
做一做:在纸上画两个等圆,画∠A’OB=∠AOB=60°,连结AB和A’B’,则弦AB 与弦A’B’,弧AB与弧A’B’还相等吗?为什么?请学生动手操作,在实践中发现
结论依旧成立。
C
O
A
B
(3)说一说
尝试将上述结论用数学语言表达出来。
学生得出:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
(4)思考:在同圆或等圆中,如果两条弧相等,你能得到什么结论?在同圆或等圆中,如果两
条弦相等呢?在同圆或等圆中,如果两条弦心距相等呢?
学生小组讨论,归纳得出:同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。
三、例题讲解
例1:如图5:在⊙o 中,弧AB=弧AC ,∠ACB =60°。
求证:∠ACB=∠BOC=∠AOC.
分析:由弧AB=弧AC ,得到AB=AC ,再由∠ACB=60°,
得到△ABC 是等边三角形,AB=AC=BC,所以∠ACB=∠BOC=∠AOC. 变式训练:把“求证:∠ACB=∠BOC=∠AOC ”改为“求∠AOB 的度数”。
例题小结:通过例题可以发现在同圆或等圆中,要说明两条弧相等可以寻找它们所对的弦或圆心角的关系来解决,同样的方法也可以来说明弦相等或圆心角相等。
例2:如图4:AB 是⊙O 的直径,
= = ,∠COD =35°,
求∠AOE 的度数。
(教学说明:让学生自主探索问题解决的途径,并通过交流、形成技能) 四、巩固练习:
1.如图:AB 、CD 是⊙O 的两条弦。
(1) 如果AB =CD ,那么___,___。
(2) 如果
=
,那么___,___。
(3) 如果∠AOB =∠COD, 那么___,___。
(4) 如果AB =CD ,OE ⊥AB 于点E ,OF ⊥CD 于点F,
OE 与OF 2. 如图7所示,AB 为⊙O 连结OC 、OD ,并延长交⊙(1)试判断△OCD (2)求证:弧AE=弧BF
O
A
D
C
E
F
O
D
C。