整式乘法与因式分解专题复习
2024八年级数学上册第一部分期末单元复习复习4整式的乘法与因式分解习题课件新版新人教版
1. 【新视角·探究题】【知识生成】我们已经知道,通过
计算几何图形的面积可以表示一些代数恒等式,例如
图①可以得到( a + b ) 2 = a 2 +2 ab + b 2 ,基于此,请
解答下列问题:
(2)【类比应用】①若( x -3)( x -4)=1,
则( x -3)2+( x -4)2= 3 ;
13. 王老师给学生出了一道题:
求(2 x + y )(2 x - y )+2(2 x - y )2+(2 xy2-16 x2 y )÷
(-2 x )的值,其中 x = , y =-1.
同学们看了题目后发表不同的看法.
小明说:“条件 y =-1是多余的.”
小亮说:“不给 y =-1这个条件,就不能求出结果,所
2
3
4
③多项式与多项式相乘,先用一个多项式的
1
每
5
相加
每一项
.
乘
3. 整式的除法:①单项式相除,把系数与
同底数幂
分别
相除作为商的因式,对于只在被除式里含有的字母,则连
同它的指数作为商的一个因式.
②多项式除以多项式,先把这个多项式的每一项除以这个
相加
单项式,再把所得的商
1
2
3
4
.
5
a2- b2
点拨:设 x -3= a , x -4= b ,则 a - b =1.
∵( x -3)( x -4)=1,∴ ab =1.
∵( a - b )2= a2-2 ab + b2,∴12= a2+ b2-2.
∴ a2+ b2=3.∴( x -3)2+( x -4)2=3.
整式的乘除与因式分解知识点复习
整式的乘除与因式分解知识点复习乘除与因式分解是数学中非常重要的知识点,广泛应用于各个领域。
在高中阶段,学习乘除与因式分解是为了更好地理解并解决数学问题,为后续学习提供基础。
本文将对乘除与因式分解的相关知识进行复习,以期加深对这一知识点的理解。
1.整式的乘法整式是由常数项和各种变量及其指数的积或和的形式构成的代数式。
整式的乘法是指两个整式之间的乘法运算。
在整式的乘法中,需要注意以下几个知识点:(1)同底数幂的乘法:当两个幂的底数相同时,可以将底数保持不变,指数相加。
例如,5^2*5^3=5^(2+3)=5^5(2)不同底数幂的乘法:当两个幂的底数不同时,将两个底数乘在一起,指数保持不变。
例如,2^3*3^2=2^3*3^2=6^2(3)乘法分配律:乘法分配律是指整式乘法中,对于两个整式a、b和一个整式c,有(a+b)*c=a*c+b*c例如,(2x+3)(4x+5)=2x*4x+2x*5+3*4x+3*5=8x^2+10x+12x+15=8x^2+22x+152.整式的除法整式的除法是指将一个整式除以另一个整式,得到商和余数的运算过程。
在整式的除法中,需要注意以下几个知识点:(1)除法算法:整式的除法运算过程与约分的思想类似。
首先找出被除式中最高次项和除式中最高次项的幂次差,然后将被除式中的每一项与除式的最高次项相乘得到临时商,再将临时商乘以除式,得到临时商与被除式的差,重复之前的步骤,直到无法再继续相除为止。
例如,(2x^3+3x^2-5x+7)/(x-2)=2x^2+7x+9余数为23(2)因式定理:如果整式f(x)除以(x-a)的余数为0,则x-a是f(x)的一个因式。
例如,f(x)=x^2-3x+2,将f(x)除以(x-2),得到(x^2-3x+2)/(x-2)=x-1余数为0,所以x-2是f(x)的一个因式。
3.因式分解因式分解是将一个整式分解成几个乘积的形式,其中每个乘积因式都尽可能简单。
整式乘法与因式分解复习总结
反过来: 反过来: a − 2ab + b =
2 2
的形式,这样的变形叫因式分解 因式分解( 。 因式分解(或分解因式) 或分解因式) ; 。 。
5.因为 ( − x) 2 = x 2 所以 ( m − n) 2 = ( n − m) 2 ;因为 ( − x) 3 = − x 3 所以 ( m − n) 3 = 6. 单项式 ÷ 单项式的法则: 单项式的法则: 7. 多项式 ÷ 单项式公式: 单项式公式: (am + bm + cm) ÷ m = 二、重点题型巩固练习: 重点题型巩固练习:
( )
n
= a mn (m、n 为正整数) 为正整数)
例题: (1)计算① 10 2
( )
3
=
② − x5
(
)
2
=
③ a n− 2
(
)
3
=
④
[(x − y ) ]
2
3 4
=
(2)若 a 2 n +1 = 5, 求 a 6 n +3 的值。 (3)已知 n 为正整数,且 x 2 n = 3, 求 9 x 3n
2
⋅ (− 3) =
2
(m − n )3 = −8 ,则 (m − n )5 =
。
(5) a 4 ⋅ a ( ) = a 3 ⋅ (
) = (− a )5 ⋅ (− a )( ) = a 12
m (2)幂的乘方 (2)幂的乘方: 幂的乘方:幂的乘方, 幂的乘方,底数不变, 底数不变,指数相乘。 指数相乘。 a
8 3
② ( xy ) ÷ ( xy ) = ④ a ⋅ −a
3
− a 10 ÷ a 6 =
2 3 3 3
整式的乘法与因式分解精选全文完整版
可编辑修改精选全文完整版整式的乘法与因式分解一:[整式的乘法与因式分解]初二数学知识点之整式乘除与因式分解讲解及汇总1.单项式的乘法法那么:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.单项式与多项式的乘法法那么:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法那么:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法那么:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,那么连同它的指数作为商的一个因式.多项式除以单项式的法那么:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言表达:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言表达:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初二数学知识点解析:二次函数的应用,希望对大家的学习有一定帮助。
2.有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),那么此抛物线的解析式为().3.某公司的生产利润原来是a元,经过连续两年的增长到达了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()4.把一段长1.6米的铁丝围长方形ABCD,设宽为x,面积为y.那么当y最大时,x所取的值是()A.0.5B.0.4C.0.3D.0.6【考点归纳】1.二次函数的解析式:(1)一般式:();(2)顶点式:();(3)交点式:().2.顶点式的几种特殊形式.线()对称,顶点坐标为(,).⑴当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是();⑵当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是().【典型例题】一、例1橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如下图).假设OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)假设不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外6.以下函数关系中,是二次函数的是( )A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆心角为120°的扇形面积S与半径R之间的关系小编为大家整理的初二数学知识点解析:二次函数的应用相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三局部:①系数一各项系数的最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底〞;②如果多项式的第一项的系数是负的,一般要提出“-〞号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
整式的乘法与因式分解复习专题
B.2x3·3x3=6x3
C.x6+x3=x2
D.(x2)4=x8
【解析】选D.A是合并同类项,结果为7x2;
B是单项式乘单项式,应为2x3·3x3=6x6;
C不能合并.
3.(2013·恩施中考)下列运算正确的是( )
A.x3·x2=x6
B.3a2+2a2=5a2
C.a(a-1)=a2-1
D.(a3)4=a7
所以 1 1 • 即a 可b得 到
42
ab 1. 2
2.(2012·柳州中考)如图,给出了正方形ABCD的面积的四个表达 式,其中错误的是( )
A.(x+a)(x+a) C.(x-a)(x-a)
B.x2+a2+2ax D.(x+a)a+(x+a)x
【解析】选C.ABCD可看作是边长为(x+a)的正方形,故A正 确,ABCD的面积也可看作是图中2个小正方形面积与两个小长 方形面积之和,故B正确,也可看作是长为(x+a)、宽为a的长方 形与长为(x+a)、宽为x的长方形面积之和,故D正确.
C.x·x3=x4
D.(2x2)3=6x5
【解析】选C.x+x=2x,所以选项A是错误的;
x6÷x2=x6-2=x4,所以选项B是错误的;
x·x3=x1+3=x4,所以选项C是正确的;
(2x2)3=23·x2×3=8x6,所以选项D是错误的,故应选C.
2.(2013·东营中考)下列运算正确的是( )
【例】(2013·资阳中考)(-a2b)2·a=
.
【教你解题】
【中考集训】
1.(2012·丽水中考)计算3a·(2b)的结果是( )
整式乘除与因式分解复习教案
整式乘除与因式分解复习教案第一篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。
通过练习,熟悉常规题型的运算,并能灵活运用。
教学目标通过知识的梳理和题型训练,提高学生观察、分析、推导能力,培养学生运用数学知识解决问题的意识。
教学分析重点根据新课标要求,整式的乘除运算法则与方法和因式分解的方法与应用是本课重点。
难点整式的除法与因式分解的应用是本课难点。
教学方法与手段采用多媒体课件,由于本课内容较多,故设计了大量的练习,使学生理解各种类型的运算方法。
本课教学以练习为主。
教学过程一.回顾知识点(一)整式的乘法1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式(二)整式的除法1、单项式除以单项式2、多项式除以单项式(三)因式分解1、因式分解的概念2、因式分解与整式乘法的关系3、因式分解的方法4、因式分解的应用二.练习巩固(一)单项式乘单项式(1)(5x3)⋅(-2x2y),(2)(-3ab)2⋅(-4b3)(3)(-am)2b⋅(-a3b2n),231(4)(-a2bc3)⋅(-c5)⋅(ab2c)343(二)单项式与多项式的乘法(1)(-2a)⋅(x+2y-3c),(2)(x+2)(y+3)-(x+1)(y-2)(3)(x+y)(-2x-1y)2(三)乘法公式应用(1)(-6x+y)(-6x-y)(2)(x+4y)(x-9y)(3)(3x+7y)(-3x-7y)(四)整式的除法1(1)(-a6b4c)÷((2a3c)41(2)6(a-b)5÷[(a-b)2]3(3)(5x2y3-4x3y2 +6x)÷(6x)13(4)x3my2n-x2m-1y2+x2m+1y3)÷(-0.5x2m-1y2)3 4(五)提取公因式法因式分解(1)3ay-3by+3y(2)-4a3b2+6a2b-2ab(3)3(x-y)3-6(x-y)2(4)5m(a-b)4-4m2(b-a)3(六)乘法公式因式分解(1)25-16x2(2)-81x2+4(y-1)2(3)x2-14x+49(4)(x+y)2-6(x+y)+9(七)因式分解的应用1、解方程(1)9x2+4x=0(2)x2=(2x-5)22、计算(1)(2mp-3mq+4mr)÷(2p-3q+4r)(2)(16-x4)÷(4+x2)÷(x-2)探究活动:求满足4x2-9y2=31的正整数解。
中考数学《整式的乘法与因式分解》专题训练-附带参考答案
中考数学《整式的乘法与因式分解》专题训练-附带参考答案一、选择题1.计算(-2a2)3的结果是()A.-6a6B.-8a6C.6a5D.-8a52.若3x=15,3y=5,则3x﹣y等于()A.10 B.5 C.15 D.33.若计算(3x2+2ax+1)⋅(−3x)−4x2的结果中不含x2项,则a的值为()A.2 B.0 C.−23D.−324.下列不能使用平方差公式因式分解的是()A.﹣16x2+y2B.b2﹣a2C.﹣m2﹣n2D.4a2﹣49n25.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若3m=6,9n=2,则32m﹣4n+1=.10.计算2a2b÷(﹣4ab)的结果是.11.在实数范围内因式分解:2x 2−3xy −y 2= .12.当x=1,y= −13 时,代数式x 2+2xy+y 2的值是 .13.如图①,在边长为a 的正方形中剪去一个边长为b 的小正方形,然后把剩下部分沿图中虚线剪开后拼成如图②所示的梯形、通过计算图①、图②中阴影部分的面积,可以得到的代数恒等式为 .三、解答题14.计算:(1)()32426a a b a --++(2)()()22x y x y -+15. 因式分解:(1)(2)16. 已知x =2−√3,y =2+√3,求下列代数式的值:(1)x 2+2xy +y 2;(2)x 2−y 2.17.如图1,边长为a 的大正方形有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)观察左、右两图的阴影部分面积,可以得到公式 ;(2)已知4m 2−n 2=12,2m +n =4,则2m −n = ;(3)请应用这个公式完成下列计算:(1−122)(1−132)(1−142)⋯(1−120222)(1−120232).18.阅读下列材料:因式分解的常用方法有提取公因式法和公式法,但有的多项式仅用上述方法就无法分解,如参考答案1.B2.D3.C4.C5.C6.C7.B8.A9.2710.−12a11.2(x-3+√174y )(x-3−√174y )12.4913.a 2﹣b 2=(a ﹣b )(a+b ) 14.(1)()32426a a b a --++261266a ab a a =-+-+2612a ab =-+; (2)()()22x y x y -+22242x xy xy y =-+-22232x xy y =--15.(1)解:== ;(2)解:== .16.(1)解:∵x =2−√3,y =2+√3∴x +y =4∴x 2+2xy +y 2=(x +y)2=42=16;(2)解:∵x =2−√3,y =2+√3∴x +y =4,x −y =−2√3∴x 2−y 2=(x +y)(x −y)=4×(−2√3)=−8√3.17.(1)a 2−b 2=(a +b)(a −b)(2)3(3)解:(1−122)(1−132)(1−142)⋯(1−120222)(1−120232)=(1+12)(1−12)(1+13)(1−13)(1+14)(1−14)⋯(1+12023)(1−12023) =32×12×43×23×54×34⋯20242023×20222023=12×20242023=10122023.18.(1)解:226925a ab b -+-()2325a b =-- ()()3535a b a b =---+;(2)解:255x x x +--()()255x x x =+-+()()151x x x =+-+()()15x x =+-;(3)证明:()()()214m n p n m p -=-- ()22224m mn n pm p mn pn -+=--+22224444m mn n pm p mn pn -+=--+222244440m mn n mn pm pn p -++--+=()()22224440m mn n pm pn p ++-++=()()22440m n p m n p +-++=()220m n p +-=⎡⎤⎣⎦()20m n p +-==+.∴2p m n。
中考数学专题复习题:整式的乘法与因式分解
中考数学专题复习题:整式的乘法与因式分解一、单项选择题(共10小题)1.下列算式中能用平方差公式计算的是( )A .(2x +y )(2y −x )B .(x +y )+(y −x )C .(3a −b )(−3a +b )D .(−m +n )(−m −n )2.下列各式从左到右的变形中,属于因式分解的是( )A .1x 2−1=(1x +1)(1x −1)B .(a +b)2=a 2+2ab +b 2C .x 2−x −2=(x +1)(x −2)D .ax −ay −a =a(x −y)−1 3.下列运算正确的是( )A .a 2⋅a 4=a 8B .210+(−2)10=211C .(−1−3a)2=1−6a +9a 2D .(−3x 2y)3=−9x 6y 3 4.若4x 2-mx +9是完全平方式,则m 的值是( )A .3B .4C .12D .±125.如果a −b =2,那么代数式a 3−2a 2b +ab 2−4a 的值是( )A .−1B .0C .1D .26.如图:把长和宽分别为a 和b 的四个完全相同的小长方形(a >b )拼成的一个“回形”正方形,图中的阴影部分的面积正好可以验证下面等式的正确性的是( )A .(a +b )2=a 2−2ab +b 2B .a 2−b 2=(a +b )(a −b )C .(a −b )2=a 2−2ab +b 2D .(a +b )2−(a −b )2=4ab 7.计算(35)2023×(−53)2024的结果等于( ) A .53 B .35 C .−35 D .−53 8.若x 3y m−1⋅(x m+n y 2n+2)=x 9y 9,则3m −4n 的值为( )A .3B .4C .5D .69.2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1的个位数字为( )A.1B.3C.7D.910.设有边长分别为a和b(a>b)的A类和B类正方形纸片,长为a宽为b的C类长方形纸片若干张.如图所示要拼一个边长为a+b的正方形,需要1张A类纸片、1张B类纸片和2张C类纸片.若要拼一个长为3a+b、宽为a+3b的长方形,则需要C类纸片的张数为()A.11B.10C.9D.8二、填空题(共6小题)11.计算:(x+2)(x−8)=________.12.分解因式:m2(x-2)+(2-x) =________.13.已知多项式4x2+1与一个单项式的和是一个完全平方式,那么加上的单项式可能是________(写出一个即可)14.如果a-b=3,ab=7,那么a2b-ab2=________.15.若(x−a)(x2−3x+1)的展开式化简后不含x2项,则常数a的值是________.16.如下所示,(a+b)n与相应的杨辉三角中的一行数相对应.由以上规律可知:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5请你写出下列式子的结果:(a+b)6=________.三、解答题(共8小题)17.分解因式:(1)a3b−ab;(2)(m+n)2−4m(m+n)+4m2.18.计算:(1)(−4xy3)(−18xy)−(12xy2)2(2)[(ab+1)(ab−2)−2a2b2+2]÷(−ab)19.先化简,再求值[(2a+b)2−(a−b)(3a−b)−2a]÷(−12a),a=−1,b=12.20.老师布置了这样一道作业题:“(2x2−1)(3x+2)−x(6x2+4x−3),要求先化简再求值,其中x=2022”某同学把x=2022错抄成x=202,但他的计算结果却是正确的,你知道原因吗?21.计算:(1)已知a m=3,a n=4,求a2m+n的值.(2)已知10a=2.5,100b=4,求3a+6b−2的值.22.阅读材料,回答问题.已知a>0,b>0,若a3=2,b4=3,则a,b的大小关系是a_______b(填“<”或“>”).解:因为a3=2,b4=3,所以a12=(a3)4=24=16,b12=(b4)3=33=27,由于16<27,所以a12<b12.因为a>0,b>0,所以a<b.(1)上述求解过程中,逆用了哪一条幂的运算性质()A.同底数幂的乘法B.同底数幂的除法C.幂的乘方D.积的乘方(2)已知a m=2,a n=3,利用材料中的逆向思维分别求a m+n和a2m的值.23.如图,某小区有一块长为(2a+4b)米,宽为(2a−b)米的长方形地块,角上有四个边长为(a−b)米的小正方形空地,开发商计划将阴影部分进行绿化.(1)用含有a、b的代数式表示绿化的总面积;(2)物业找来某团队完成此项绿化任务,已知该队每小时可绿化8b平方米,每小时收费200元,求完成此项绿化任务所需的费用.(用含a、b的代数式表示)24.解答下列问题:(1)如图①,它是一个长为2m,宽为2n的长方形,沿图中的虚线剪开,分成四个全等的小长方形,然后按图②形状拼成一个正方形.结合图形,直接写出(m+n)2,(m−n)2,mn这三个代数式之间的等量关系;(2)若a−b=8,ab=6,求(a+b)2的值;(3)若a+2a =7,求(a−2a)2的值.。
整式的乘法和因式分解知识点汇总
整式的乘法和因式分解知识点汇总整式乘除与因式分解一、知识点1.幂的运算性质:同底数幂相乘,底数不变,指数相加。
即,am·an=am+n(m、n为正整数)。
例如:(-2a)2(-3a2)3 = 4a2·-27a6 = -108a8.2.幂的乘方性质:幂的乘方,底数不变,指数相乘。
即,a(mn)=(am)n(m、n为正整数)。
例如:(-a5)5 = (-1)5·a25 = a25.3.积的乘方性质:积的乘方等于各因式乘方的积。
即,(ab)n = an·bn(n为正整数)。
例如:(-a2b)3 = (-1)3·a6·b3 = -a6b3.4.幂的除法性质:同底数幂相除,底数不变,指数相减。
即,a/m ÷ a/n = a(m-n)(a≠0,m、n都是正整数,且m>n)。
例如:(1) x8÷x2 = x6;(2) a4÷a = a3;(3) (ab)5÷(ab)2 = a3b3.5.零指数幂的概念:a0 = 1(a≠0)。
任何一个不等于零的数的零指数幂都等于1.例如:若(2a-3b)0=1成立,则a,b满足任何条件。
6.负指数幂的概念:a-p = 1/ap(a≠0,p是正整数)。
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数。
例如:(m/n)-2 = n2/m2.7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:(1) 3a2b·2abc·abc2 = 6a4b2c3;(2) (-m3n)3·(-2m2n)4 = -8m14n7.8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加。
例如:(1) 2ab(5ab+3ab) = 16a2b2;(2) (ab2-2ab)·ab = a2b3-ab2.9.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
第十四章整式的乘法与因式分解复习--ppt课件精选全文
提:提公因式 提负号
套 二项式:套平方差 三项式:套完全平方与十字相乘法
看: 看是否分解完
3、因式分解应用:
ppt课件
9
1.从左到右变形是因式分解正确的是( D ) A.x2-8=(x+3)(x-3)+1
B.(x+2y)2=x2+4xy+4y2
C.y2(x-5)-y(5-x)=(x-5)(y2+y)
D. 2a2 - 1 (2 a2 - 1) (2 a 1)(a 1)
2
4
22
ppt课件
10
2.下列各式是完全平方式的有( D )
① x2 2x 4 ③x2 2xy y2
② x2 x 1 4
④ 1 x2 - 2 xy y2 93
A.①②③ C. ①②④
B.②③④ D.②④
ppt课件
a0=1(a≠0) 3、幂的乘方: (am )n = amn 4、积的乘方: (ab)n = anbn 5、合并同类项:
解此类题应注意明确法则及各自运算的特点,避免混淆
ppt课件
3
1、若10x=5,10y=4,求102x+3y-1 的值.
2、计算:0.251000×(-2)2001
注意点:
3.(9)1004 ( 1 )670 27
ppt课件
7
1 、已知a+b=5 ,ab= -2,
求(1) a2+b2 (2)a-b
a2+b2=(a+b)2-2ab
(a-b)2=(a+b)2-4ab
2、已知:x2+y2+6x-4y+13=0, 求x-y的值;
3、已知 x 3 1 求x2-2x-3的值
苏科版七年级数学下册第9章整式乘法与因式分解复习课件
(4). 3x2(x3y2 - 2x)- 4x(-x2y)2
解 : 原式 3x5 y2 6x3 4x5 y2 x5 y2 6x3
(5). t2 (t 1)(t 5)
解 : 原式 t 2 (t 2 4t 5) t 2 t 2 4t 5 4t 5
(6). (2x 3y)(4x 5y)(2x 3y)(5y 4x) 解 : 原式 (4x2 9 y2 )(25y2 16x2 ) 64x4 244x2 y2 225y4
8式 _、,_编又_一要。道用因到式两分个解公题式()编,写这要个求多:项既式要是用_-提_8取,_公6_4因_
9、已知(3x+ay)2=9x2-48xy+by2,那么a,b的值分
别为_a_x4_-2_ax_2y2_+a_y4__。
例题选讲
1、单项式乘以多项式:
(-3xy+ 3 y2-x2)×6x2y 2
=2an(1+5a)(1-5a) (2)4x(y-x)-y2 解:原式=4xy-4x2-y2 =-(4x2-4xy+y2)
=-(2x-y)2
8、把下列各式分解因式:
1)16x4-72x2y2+81y4 2)(x2+y2)2-4x2y2
3)-ab(a-b)2+a(b-a)2 4)(x2+4x)2+8(x2+4x)+16
A.52000 B.-4×52000 C.-5 D.(-5)4001
4、当x=1时,代数式ax2+bx+1的值为3,则
(a+b-1)(1-a-b)的值等于( B )
A.1 B.-1 C.2 D.-2 5、有4个代数式①m2n;②3m-n;③ 3m+2n;④m3n;可作为代数式9m4n-
第14章 整式的乘法与因式分解 人教版八年级上册 第十四章 章末复习
(3)xy2-x=__x_(y_+__1_)_(y_-__1_)__.
8.若x2+kx-10=(x-5)(x+2),则k的值为____-__3____.
9.已知m+3n=5,则2m+6n+2=___1_2____.
第十四章 章末复习
10.计算: (1)(2a+3b)(2a-b); (2)(12x3+6x2 )÷3x. 解:(1)原式=4a2-2ab+6ab-3b2
解:原式=x2-4-x2+x=x-4.
第十四章 章末复习
3.计算: (1)x3y·3y2=___3_x_3_y_3 ___; (2)2x(3x2-x)=__6_x_3-__2_x_2__; (3)8a5b3÷(-4a2b)=__-__2_a_3_b_2 __.
返回目录
第十四章 章末复习
4.计算: (1)2a2·ab2+ab·(-a2b); (2)(3x-4y)(x+2y); (3)(6m4-8m2n2)÷2m2.
返回目录
基础练习
返回目录
第十四章 章末复习
1.(2023吉林)下列各式运算结果为a5的是( B )
A.a2+a3
B.a2·a3
C.(a2)3
D.a10÷a2
2.(2023赤峰)下列运算正确的是( A )
A.(a2b3)2=a4b6
B.3ab-2ab=1
C.(-a)3·a=a4
D.(a+b)2=a2+b2
解:(1)原式=2a3b2-a3b2=a3b2. (2)原式=3x2+6xy-4xy-8y2=3x2+2xy-8y2. (3)原式=6m4÷2m2-8m2n2÷2m2=3m2-4n2.
返回目录
第十四章 章末复习
乘法公式 1.平方差公式:(a+b)(a-b)=a2-b2. 2.完全平方公式:(a±b)2=a2±2ab+b2.
整式的乘法与因式分解所有知识点总结
整式的乘法与因式分解所有知识点总结一、整式的乘法1.乘法法则:(1)两个整系数多项式相乘,按照分配律逐项相乘再相加即可。
(2)对于整式的乘幂,将底数相乘,指数相加。
(3)进行乘法时,可以将同类项合并。
2.乘法的性质:(1)乘法交换律:a*b=b*a(2)乘法结合律:(a*b)*c=a*(b*c)(3)乘法的分配律:a*(b+c)=a*b+a*c3.乘法公式:(1) 平方公式:(a + b)^2 = a^2 + 2ab + b^2(2)平方差公式:(a+b)(a-b)=a^2-b^2(3) 三项平方和公式:a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)4.乘法的运用:(1)计算多项式的立方和高次幂。
(2)将多项式与常数相乘。
(3)将多项式乘以一个多项式。
二、因式分解1.因式分解的定义:因式分解是指将一个多项式表示为几个乘积的形式,其中每个乘积称为因式。
2.因式分解的方法:(1)公因式提取法:将多项式的所有项提取出一个最高公因式,然后将剩余部分因式分解。
(2)公式法:利用数学公式,如平方公式、立方公式等进行因式分解。
(3)分组分解法:将多项式分成若干组,每组提取公因式后进行因式分解。
3.公式法的常见因式分解:(1)平方差公式:a^2-b^2=(a+b)(a-b)(2) 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2(3) 差平方公式:a^2 - 2ab + b^2 = (a - b)^2(4) 立方和公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2)(5) 三项平方和公式:a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)4.分组分解法的常见因式分解:(1)将多项式分成两组,每组提取公因式后进行因式分解。
(2)将多项式分成三组,每组提取公因式后进行因式分解。
人教版八年级上册第十四章整式的乘法与因式分解复习课件
课程标准
本章知识梳理
1.能进行简单的整式乘法运算(多项式乘法仅限于一次式之间和
一次式与二次式的乘法).
2.理解乘法公式(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2,了解公
式的几何背景,能利用公式进行简单的计算和推理.
3.能用提公因式法、公式法(直接利用公式不超过两次)进行因式
分解(指数是正整数).
知识导航
同底数幂的乘法:am·an=am+n(m,n都是正整数) 幂的乘方:(am)n=amn(m,n都是正整数) 整式的 积的乘方:(ab)n=anbn(n是正整数) 乘法 单项式与单项式相乘:ambn·ab=am+1bn+1(m,n都是正整数) 单项式与多项式相乘:m(a+b+c)=ma+mb+mc 多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb
=(4+x2)(2+x)(2-x).
易错典例
易错点7:错误运用整体思想分解因式 【例7】分解因式:(m+n)2-4(m+n)+4. 错解:许多同学对此题束手无策,或误解为原式=(m+n)(m+n- 4)+4. 错解分析:公式中的字母可以表示任何数、单项式或多项式.要 避免把公式中的字母看成一个数的局限性.此题可以把m+n看作一 个整体. 正解:原式=(m+n-2)2.
续表
提公因式法:ma+mb=m(a+b)
因式分解
平方差公式法:a2-b2=(a+b)(a-b) 公式法
完全平方公式法:a2±2ab+b2=(a±b)2
整式乘法与因式分解(全章复习与巩固)(知识讲解)-七年级数学下册基础知识专项讲练(沪科版)
专题8.43整式乘法与因式分解(全章复习与巩固)(知识讲解)1.掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2.会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4.理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【要点梳理】要点一、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.特别说明:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c++÷=÷+÷+÷=++要点二、乘法公式1.平方差公式:22()()a b a b a b+-=-两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点三、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法,分组分解法,十字相乘法,添、拆项法等.特别说明:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】【类型一】整式的乘法➽➼直接运算✮✮化简求值1、计算:(1)()3232x y xy ⋅-.(2)()()5232x y x y +-.【答案】(1)5424x y -(2)221544x xy y --【分析】(1)根据积的乘方公式和单项式乘单项式运算法则进行计算即可;(2)根据多项式乘多项式运算法则进行计算即可.(1)解:()3232x y xy ⋅-()23338x y x y ×-=231324x y ++=-5424x y =-;(2)解:()()5232x y x y +-53522322x x x y y x y y=⋅-⋅+⋅-⋅22151064x xy xy y =-+-221544x xy y =--.【点拨】本题主要考查了整式的运算,解题的关键是熟练掌握多项式乘多项式运算法则,积的乘方公式和单项式乘单项式运算法则,准确计算.举一反三:【变式1】计算:()()222321x x x -⋅-+-.【答案】6549189x x x -+-【分析】根据积的乘方及单项式乘以多项式可进行求解.解:()()222321x x x -⋅-+-()42921x x x =⋅-+-6549189x x x =-+-.【点拨】本题主要是考查积的乘方及单项式乘以多项式,熟练掌握各个运算法则是解题的关键.【变式2】计算:()()()()22241x y y y x y +-+-+【答案】24362y xy x y---【分析】根据多项式乘以多项式的计算法则计算即可.解:()()()()22241x y y y x y +-+-+222242244xy x y y y y xy x=-+-++--24326y xy y x =---.【点拨】本题考查了整式的乘除,熟练掌握多项式乘以多项式运算法则是解题的关键.2、先化简再求值:(3)(1)(1)x y x y ++--,其中122x y =-=-.【答案】233x y ++,4-.【分析】对整式去括号,合并同类项,然后把x 、y 的值代入整式即可得出整式的值.解:(3)(1)(1)x y x y ++--33x xy y xy x=+++-+233x y =++,当122x y =-=-时.原式()1232342⎛⎫=⨯-+⨯-+=- ⎪⎝⎭.【点拨】本题考查了整式的混合运算-化简求值,准确熟练地进行计算是解题的关键.举一反三:【变式1】先化简,再求值:222312122323333x y x y y x y x ⎛⎫⎛⎫⎛⎫-+---+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,其中2x =,1y =-.【答案】23xy xy +;43-【分析】根据多项式乘以多项式,单项式乘以多项式进行计算,然后合并同类项,最后将字母的值代入即可求解.解:222312122323333x y x y y x y x ⎛⎫⎛⎫⎛⎫-+---+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭2232322212333939x xy xy y y x =-++--++23xy xy =+;当2x =,1y =-时,原式()()221213⨯-=⨯-+223=-+43=-.【点拨】本题考查了整式的化简求值,掌握多项式乘以多项式以及多项式乘以多项式的运算法则是解题的关键.【变式2】已知()()232x mx x n +-+的展开式中不含x 的一次项,常数项是6-.(1)求m ,n 的值.(2)求()()22m n m mn n +-+的值.【答案】(1)32m n ==,(2)35【分析】(1)直接利用多项式乘多项式将原式变形,进而得出m ,n 的值;(2)利用多项式乘多项式运算法则计算得出答案.(1)解:()()232x mx x n +-+3222263x nx mx mnx x n=+++--()()322263x n m x mn x n =+++--,由题意可知:60mn -=,36n -=-,解得:32m n ==,;(2)解:()()22m n m mn n +-+322223m m n mn m n mn n =-++-+33m n =+,当32m n ==,时,原式333227835=+=+=.【点拨】此题主要考查了多项式乘多项式,正确掌握相关运算法则是解题关键.【类型二】乘法公式➽➼直接运算✮✮化简求值3、计算:(1)()22()x y x xy y +-+(2)22(35)(23)x x --+【答案】(1)33x y +(2)254216x x -+【分析】(1)根据多项式乘以多项式进行计算即可求解;(2)根据完全平方公式分别计算,然后合并同类项即可求解.(1)解:原式322223x x y xy x y xy y =-++-+33x y =+;(2)解:原式()22930254129x x x x =-+-++22930254129x x x x =-+---254216x x =-+.【点拨】本题考查了多项式乘以多项式,完全平方公式,掌握整式乘法运算的运算法则以及乘法公式是解题的关键.举一反三:【变式1】计算:()()()()22232x y x y x y x x y -++---.【答案】22x 【分析】根据完全平方公式,平方差公式以及整式的加减运算,求解即可;解:原式22222224322x xy y x y x xy x =-++--+=.【点拨】此题考查了完全平方公式,平方差公式以及整式的加减运算,解题的关键是掌握整式的相关运算法则.【变式2】计算:(1)2(32)(32)(32)x y x y x y ---+(2)()()()222226x x x ---【答案】(1)2128xy y -+(2)2812x -+【分析】(1)利用完全平方公式及平方差公式去括号,再加减法;(2)根据多项式乘以多项式及幂的乘方去括号,再计算加减法.(1)解:2(32)(32)(32)x y x y x y ---+()2222912494x xy y x y =-+--2222912494x xy y x y =-+-+2128xy y =-+;(2)()()()222226x x x ---42246212x x x x =--+-2812x =-+.【点拨】此题考查了整式的混合运算,正确掌握完全平方公式、平方差公式、多项式乘以多项式及幂的乘方计算法则是解题的关键.4、先化简后求值:(1)2(5)(5)(2)(2)(1)x x x x x +---++-,其中3x =(2)()()()2123222x y x y x y y ⎛⎫⎡⎤---+÷ ⎪⎣⎦⎝⎭,其中2x =,3y =.【答案】(1)2531x x +-;7-(2)2420x y -+,12【分析】(1)按照平方差公式,完全平方公式,多项式乘以多项式展开,再合并同类项得到最简代数式,再代入x 取值求出代数式的值.(2)利用完全平方公式和平方差公式进行化简,再按照多项式除以单项式的运算法则进行计算,最后代入求值即可.解:(1)2(5)(5)(2)(2)(1)x x x x x +---++-22225(44)2x x x x x =---+++-22225442x x x x x =--+-++-2531x x =+-将3x =代入得:2531x x +-235331=+⨯-7=-(2)()()()2123222x y x y x y y ⎛⎫⎡⎤---+÷ ⎪⎣⎦⎝⎭22221(41294)()2x xy y x y y =-+-+÷21(1210)()2xy y y =-+÷2420x y=-+将2x =,3y =代入得:2420x y-+242203=-⨯+⨯12=【点拨】本题主要考查整式化简求值,掌握完全平方公式和平方差公式以及整式的混合运算法则是解题的关键.举一反三:【变式1】若23m m +=,求2(2)(2)m m m -++的值.【答案】10【分析】利用完全平方公式和单项式乘多项式的运算法则先计算乘方和乘法,然后合并同类项进行化简,最后利用整体思想代入求值.解:2(2)(2)m m m -++22244m m m m =-+++2224m m =++当23m m +=时,原式22()423410m m =++=⨯+=【点拨】本题考查整式的混合运算,理解整体思想解题的应用,掌握完全平方公式()2222a b a ab b ±=±+是解题关键.【变式2】先化简,再求值:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦,其中a 、b满足()2210a b -++=【答案】a b --,1-【分析】根据整式的运算法则及绝对值和偶次方的非负性即可求出答案.解:原式()22222444422a ab b a b a ab a ⎡⎤=-++---÷⎣⎦()22222444422a ab b a b a ab a=-++--+÷()2224422a ab a ab a=--+÷()2222a ab a=--÷a b =--,∵()2210a b -++=,∴20a -=,10b +=,∴2a =,1b =-,当2a =,1b =-时,原式()211=---=-.【点拨】本题考查整式的运算及绝对值和偶次方的非负性,解题的关键是熟练运用整式的运算法则,本题属于基础题型.【类型三】整式的乘法✮✮乘法公式➽➼变形运算✮✮图形问题5、(1)已知11=54m n =,求代数式()()222525m n m n +--的值;(2)已知13ab a b =--=,,求22a b +的值.【答案】(1)40mn ,2;(2)7【分析】(1)先用平方差公式将原式进行化简,再将11=54m n =,代入进行计算即可;(2)根据完全平方公式的变形进行计算即可得到答案.解:(1)()()222525m n m n +--()()()()25252525m n m n m n m n =++-⋅+--⎡⎤⎡⎤⎣⎦⎣⎦410m n=⋅40mn =,当11=54m n =,时,原式114040254mn ==⨯⨯=;(2) 13ab a b =--=,,()22222327a b a b ab ∴+=-+=-=.【点拨】本题考查了求代数式的值,运用平方差公式、完全平方公式的变形进行计算,熟练掌握平方差公式以及完全平方公式的变形是解题的关键.举一反三:【变式1】已知实数m ,n 满足6m n +=,3=-mn .(1)求()()22m n ++的值;(2)求22m n +的值.【答案】(1)13(2)42【分析】(1)先根据多项式乘以多项式的计算法则将所求式子变形为()24mn m n +++,再把已知条件式整体代入求解即可;(2)根据()2222m n m n mn +=+-进行求解即可.(1)解:()()22m n ++224mn m n =+++()24mn m n =+++,∴当6m n +=,3=-mn 时,原式326413=-+⨯+=;(2)解:∵6m n +=,3=-mn ,∴()()2222262336642m n m n mn +=+-=-⨯-=+=.【点拨】本题主要考查了多项式乘多项式——化简求值,完全平方公式的变形求值,正确计算是解题的关键.【变式2】利用我们学过的完全平方公式及不等式知识能解决方程或代数式的一些问题,请阅读下列材料:阅读材料:若22228160m mm n n -+-+=,求m 、n 的值.解:∵22228160m mn n n -+-+=,∴()()22228160m mn n n n -++-+=,∴()()2240m n n -+-=,∴()20m n -=,()240n -=,∴4n =,4m =.根据你的观察,探究下面的问题:(1)已知2245690a ab b b ++++=,求a 、b 的值;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足2242460a a b b -+-+=,求c 的值;【答案】(1)63a b ==-,;(2)2c =.【分析】(1)将多项式拆分为完全平方展开式的形式,最后配凑为完全平方,再根据平方的性质求解;(2)先配凑完全平方公式求出a ,b 值,再根据三角形三边关系求出第三边.(1)解:∵2245690a ab b b ++++=,∴22244690a ab b b b +++++=,∴()()22230a b b +++=,∴2030a b b +=+=,,∴63a b ==-,;(2)解:∵2242460a a b b -+-+=,∴()22442210a ab b -++-+=∴()()222210a b -+-=,∴2010a b -=-=,,解得21a b ==,,∵a 、b 、c 是ABC 的三边长,∴2121c -<<+,即13c <<,∵c 是正整数,∴2c =.【点拨】本题考查完全平方公式的应用,三角形三边关系的应用,解题的关键是合理配凑完全平方公式.6、请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示阴影图形的面积的和(只需表示,不必化简)①________________②________________;(2)由(1)你能得到怎样的等量关系?请用式子表示:________________(3)如果图中的a b a b 、(>)满足225314a b ab +==,.求:①a b +的值②22a b -的值【答案】(1)①22a b +,②22a b ab +-()(2)22a b +=22a b ab +-();(3)①9a b +=±,②45【分析】(1)根据阴影部分的面积与空白部分的面积关系即可求出结果;(2)根据阴影部分的面积相等即可求出结果;(3)根据完全平方式与已知条件即可求出对应值.(1)解:∵图中阴影部分的面积由两部分组成,第一部分的面积为2a ,第二部分的面积为:2b ;∴阴影部分的面积的第一种表示方法为22a b +.∵大正方形的面积为()2222a b a ab b +=++;空白部分的面积为2ab ab ab +=,∴阴影部分的面积为:()22222222a b ab a ab b ab a b +-=++-=+,故答案为:①22a b +;②()22a b ab +-.(2)解:由(1)可知阴影部分的面积相等,∴()2222a b a b ab +=+-,故答案为:()2222a b a b ab +=+-;(3)解:①∵()2222a b a b ab +=+-,∴()2222a b ab a b ++=+,∵225314a b ab +==,,∴()25321481a b +=+⨯=,∴9a b +=±,∵0a >,0b >,∴9a b +=;②∵()2222a b a b ab +=+-,∴()()2222222222a b a b ab a ab b ab a b ab +=+-=++-=-+,∴()2222a b ab a b +-=-,∵225314a b ab +==,,∴5321425-⨯=,∴()225a b -=,∴5a b -=±,∵0a >,0b >,a b>∴5a b -=,∴()()229545a b a a b b -⨯-=+==.【点拨】本题考查了完全平方式和平方差公式的几何意义,熟练公式法是解题的关键.举一反三:【变式1】图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于___________;面积等于___________.(2)观察图2,请你写出下列三个代数式()()22a b a b +-,,ab 之间的等量关系为___________.(3)运用你所得到的公式,计算:若m 、n 为实数,且5mn =,4m n -=,试求m n +的值.【答案】(1)a b -,()2a b -或()24a b ab +-(2)()()22a b a b +--4ab =(3)±6【分析】(1)根据图中给出的数据即可求得图乙中阴影部分正方形边长,根据正方形的面积公式求得面积;(2)用两种不同方式求得阴影部分面积可得关于()2a b +、()2a b -、ab 的等式;(3)根据(2)中结论即可解题.解:(1)图中阴影部分边长为a b -,则阴影部分的面积为()2a b -或()24a b ab +-故答案为:a b -;()2a b -或()24a b ab +-;(2)用两种不同的方法表示阴影的面积:方法一:阴影部分为边长()a b =-的正方形,故面积()()()2a b a b a b =--=-;方法二:阴影部分面积a b =+为边长的正方形面积-四个以a 为长、b 为宽的4个长方形面积()24a b ab =+-;∴22()4()a b ab a b +-=-;即()()22a b a b +--4ab =,故答案为:()()224a b a b ab +--=;(3)由(2)得,()()224m n m n mn +--=,∴()22420m n +-=,∴m n +=±6.【点拨】本题考查了完全平方公式的计算,考查了正方形面积计算,本题中求得22()4()a b ab a b +-=-是解题的关键.【变式2】通常,用两种不同的方法计算同一个图形的面积可以得到一个恒等式图将一个边长为a b +的正方形图形分割成四部分(两个正方形和两个长方形),请观察图形,解答下列问题:(1)根据图中条件,用两种方法表示该图形的总面积,可得如下公式:;(2)如果图中的a 、(0)b a b >>满足2270a b +=,15ab =,求a b +的值;(3)已知22(9)(1)124x x ++-=,求(9)(1)x x +-.【答案】(1)()2222a b a ab b +=++;(2)10;(3)12.【分析】(1)依据该图形的总面积为2()a b +或222a ab b ++可得结果;(2)由(1)题结果可得222()2a b a ab b +=++,将2270a b +=,15ab =可求得2()a b +即a b +的值;(3)设9x a +=,1x b -=,则(9)(1)10a b x x -=+--=,依据222()2a b a b ab -=+-代入计算可求得12ab =即可求出(9)(1)x x +-.(1)解:该图形的总面积为:2()a b +或222a ab b ++故答案为:()2222a b a ab b +=++;(2)由(1)题结果可得222()2a b a ab b +=++,∴当2270a b +=,15ab =时,2()70215100a b +=+⨯=,∴10010a b +=;(3)设9x a +=,1x b -=,∴(9)(1)10a b x x -=+--=,则2222(9)(1)x x a b ++-=+,∵222()2a b a b ab -=+-,10a b -=,22124a b +=,∴1001242ab =-,∴12ab =,∴(9)(1)12x x +-=.【点拨】本题考查了完全平方公式的证明及应用;解题的关键是熟练掌握完全平方公式.【类型四】因式分解➽➼直接进行因式分解✮✮因式分解的应用7、因式分解.(1)2123mn n -;(2)228168a ab b -+【答案】(1)()34n m n -(2)28()a b -【分析】(1)利用提公因式进行分解,即可解答;(2)先提公因式,然后再利用完全平方公式继续分解即可解答.解:(1)()223143mn n n m n =--;(2)228168a ab b -+228(2)a ab b =-+28()a b =-.【点拨】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.举一反三:【变式1】因式分解:(1)322363a a b ab -+.(2)2()16()a x y y x -+-【答案】(1)()23a a b -(2)()()()44x y a a -+-【分析】(1)提取公因式3a ,再根据完全平方公式分解因式即可;(2)将()y x -变形为()x y --,提取公因式()x y -,再根据平方差公式分解因式.(1)解:原式()2232a a ab b =-+()23a a b =-;(2)解:原式()()216a x y x y =---()()216x y a =--()()()44x y a a =-+-【点拨】本题考查了综合提公因式与公式法分解因式,熟练掌握常用因式分解的方法是解题的关键.【变式2】我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:()()()()2222222424222x xy y x xy y x y x y x y -+-=-+-=--=---+.②拆项法:例如:()()()()()22222321412121213x x x x x x x x x +-=++-=+-=+-++=-+.仿照以上方法分解因式:(1)22441x x y +-+;(2)268x x -+.【答案】(1)()()2121x y x y +++-(2)()()24x x --【分析】(1)采用分组法,结合完全平方公式和平方差公式分解因式即可;(2)将原式先变形为2268691x x x x -++-=-,再按照完全平方公式和平方差公式分解因式即可.(1)解:22441x x y +-+22441x x y =++-()2221x y =+-()()2121x y x y =+++-;(2)解:268x x -+2691x x =-+-()231x =--()()3131x x =-+--()()24x x =--.【点拨】本题主要考查了因式分解,解题的关键是理解分组分解法,熟练掌握平方差公式,完全平方公式.8、利用完全平方公式进行因式分解,解答下列问题:(1)因式分解:244x x -+=________.(2)填空:①当2x =-时,代数式244x x ++=_______;②当x =________时,代数式2690x x -+=.③代数式2820x x ++的最小值是________.(3)拓展与应用:求代数式226828a b a b +-++的最小值.【答案】(1)2(2)x -(2)①0②3③4(3)3【分析】(1)根据完全平方公式将原式进行因式分解即可;(2)①将2x =-代入求解即可;②解方程2690x x -+=,即可获得答案;③将代数式变形为2(4)4x ++,根据非负数的性质即可确定答案;(3)将代数式226828a b a b +-++变形为22(3)(4)3a b -+++,根据非负数的性质即可确定答案.(1)解:2244(2)x x x -+=-.故答案为:2(2)x -;(2)①当2x =-时,244x x -+2(2)4(2)4=--⨯-+0=;②∵2690x x -+=,∴2(3)0x -=,∴当3x =时,代数式2690x x -+=;③∵2820x x ++2(4)4x =++,又∵2(4)0x +≥,∴当4x =-时,代数式2820x x ++的最小值是4.故答案为:①0;②3;③4;(3)解:∵原式22698163a ab b =-+++++22(3)(4)3a b =-+++,又∵2(3)0a -≥,(4)0b +≥,∴原式3≥,代数式226828a b a b +-++的最小值是3.【点拨】本题主要考查了因式分解的应用、代数式求值、非负数的性质等知识,解题关键是理解题意,利用因式分解的方法和非负数的性质解答.举一反三:【变式1】仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m -+有一个因式是()3x +,求另一个因式以及m 的值.解:设另一个因式为()x n +,得()()243x x m x x n -+=++则()22433x x m x n x n-+=+++∴343n m n+=-⎧⎨=⎩解得:7n =-,21m =-∴另一个因式为()7x -,m 的值为-21.问题:(1)已知二次三项式26x x a ++有一个因式是()5+x ,求另一个因式以及a 的值;(2)已知二次三项式26x x p --有一个因式是()23x +,求另一个因式以及p 的值.【答案】(1)另一个因式()1x +,a 的值为5(2)另一个因式为()35x -,p 的值为15【分析】(1)设另一个因式是()x b +,则()224=33x x m x x b b -++++,根据对应项的系数相等即可求得b 和k .(2)设另一个因式是()3x m +,利用多项式的乘法法则展开,再根据对应项的系数相等即可求出m 和p .(1)解:设另一个因式为()x b +()()265x x a x x b ++=++则()22655x x a x b x b++=+++∴565b b a+=⎧⎨=⎩解得:1b =,5a =另一个因式()1x +,a 的值为5(2)解:设另一个因式为()3x m +,得()()26323x x p x m x --=++,则()2266923x x p x m x m--=+++∴9213m m p+=-⎧⎨=-⎩解得:5m =-,15p =∴另一个因式为()35x -,p 的值为15.【点拨】本题考查了因式分解的意义,正确理解因式分解与整式的乘法互为逆运算是解题的关键.【变式2】(1)计算:20232022(2)(2)-+-;(2)一个长方形的长与宽分别为a ,b ,若该长方形的周长为14,面积为5,求2332363ab a b a b ++的值.【答案】(1)20222-;(2)105【分析】(1)逆用同底数幂的乘法公式进行运算即可;(2)根据长方形的周长为14,面积为5,得出()214a b +=,5ab =,然后对2332363ab a b a b ++进行分解因式,最后整体代入求值即可.解:(1)20232022(2)(2)-+-()()()20222022222=-⨯-+-20222022222=-⨯+()2022212=-+⨯20222=-;(2)∵长方形的周长为14,面积为5,∴()214a b +=,5ab =,即7a b +=,5ab =,2332363ab a b a b++()2232ab b ab a =++()2=+3ab a b=⨯⨯357=.105【点拨】本题主要考查了幂的运算,分解因式的应用,解题的关键是熟练掌握同底数幂的乘法,完全平方公式,注意整体代入思想的应用.。
整式的乘法和因式分解专题复习
整式的乘法与因式分解专题复习一、知识点总结:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:—2a2bc的系数为—2,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:a2 -2ab x 1,项有a2、- 2ab、x、1,二次项为a2、- 2ab,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幕的乘法法则:a m LJa n= a m "( m,n都是正整数)同底数幕相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:(a • b)2|_(a b)‘ 二(a b)55、幕的乘方法则:(a m)n二a mn( m,n都是正整数)幕的乘方,底数不变,指数相乘。
如:(-35)2 =310幕的乘方法则可以逆用:即a mn=(a m)n=(a n)m丄 6 2 3 3 2如:4 = (4 ) = (4 )6、积的乘方法则:(ab)n二a n b n( n是正整数)积的乘方,等于各因数乘方的积。
32、5 5/3、5/2、5 5 15 10 5如:(一2x y z) = (-2) *(x ) *(y ) *z = -32x y z7、同底数幕的除法法则:a m_'a n =a m* ( a = 0,m, n都是正整数,且m「n)同底数幕相除,底数不变,指数相减。
如:(ab)4" (ab) = (ab)3 = a3b38 零指数和负指数;a0 =1,即任何不等于零的数的零次方等于1。
1a国p( a = 0, p是正整数),即一个不等于零的数的- p次方等于这个数的p次方的精品文库倒数。
整式的乘法和因式分解知识点汇总
整式的乘法和因式分解知识点汇总1.一元整式的乘法:一元整式是只含有一个变量的整式,例如3x^2+2x+1、一元整式的乘法就是将两个一元整式相乘,可以使用分配律和合并同类项的方法。
例如:(3x+2)(2x-5)=3x*2x+3x*(-5)+2*2x+2*(-5)=6x^2-15x+4x-10=6x^2-11x-102.多项式的乘法:多项式是含有多个项的整式,例如(3x+2)(2x-5)。
多项式的乘法可以通过将每个项相乘,并使用分配律和合并同类项的方法进行简化。
例如:(3x+2)(2x-5)=3x*2x+3x*(-5)+2*2x+2*(-5)=6x^2-15x+4x-10=6x^2-11x-103.完全平方公式:完全平方公式是一种特殊的乘法形式,将一个一元二次多项式乘积进行简化。
完全平方公式为(a + b)^2 = a^2 + 2ab + b^2例如:(x+3)(x+3)=x^2+2*x*3+3^2=x^2+6x+9因式分解知识点汇总:1.因式分解的基本思想:因式分解是将一个多项式表示为若干个乘积的形式,其中每个乘积称为一个因式。
通过因式分解,可以简化计算和解决问题。
2.因式分解的基本方法:2.1提取公因式:将多项式中的公因式提取出来,得到一个公因式和一个因式为公因式的多项式。
例如:2x^2+4x=2x(x+2)2.2公式法:使用已知的公式,例如完全平方公式、差平方公式等,将多项式进行因式分解。
例如:x^2-9=(x+3)(x-3)2.3分组分解法:将多项式中的各项进行分组,并找出可以进行因式分解的共同因式。
例如:ax + bx + ay + by = (a + b)(x + y)2.4平方差公式:将一个二次多项式表示为两个平方的差。
例如:x^2-4=(x+2)(x-2)2.5公因式平方差公式:将一个二次多项式表示为公因式的平方减去另一个平方。
例如:x^2-y^2=(x+y)(x-y)2.6公式的逆运算:将一个多项式进行展开,得到可以进行因式分解的形式。
整式的乘法与因式分解复习
1、判断正误:
(1)x2 y2 (x y)(x y);
(× )
(2)x2 y2 (x y)(x y);
(√ )
(3) x2 y2 (x y)(x y); ( × )
(4) x2 y2 (x y)(x y). ( × )
其中x2和y2前面的符号如何时可以用平方差公式?
1、若(a+b)2=11, (a-b)2=7,求:ab的值. 2、若a-b=8,ab=20,
求:(1)a2+b2的值; (2)a+b的值.
3、已知:4x2+9y2+4x-6y+2=0,求x、y的值.
乘法公式:
完全平方公式
(a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2
判断下列各式的计算是否正确,错误的请加以改正
乘法公式: 平方差公式
(a+b) (a-b) =a2-b2
判断下列各式能否用平方差公式,若能请直接说出结果.
(1)(a+b) (-a-b)
(4)(a-b) (a-b)
分解因式:(3)16x2+24x+9;(4)-x2+4xy-4y2.
把下列各式分解因式: (1)a2 ( x-y)-b2 ( x-y); (2)a4-16; (3)81x4-72x2y2+16y4; (4) ( x2-2x)2+2 ( x2-2x)+1; (5) (a2 - a)2-(a - 1) 2 .
知识梳理
概念: 把一个多项式化成几个整式的积的形式叫做因式分解.
与整式乘法的关系
因式分解
多项式
整式乘法
几个整式的积
因 式
提公因式法
中考数学复习《整式的乘法与因式分解》专题训练-附带参考答案
中考数学复习《整式的乘法与因式分解》专题训练-附带参考答案一、选择题1.下列计算正确的是( )A .(3a)2=6a 2B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 2⋅a =a 32.若8x =21,2y =3,则23x−y 的值是( )A .7B .18C .24D .633.计算(−2ab)(ab −3a 2−1)的结果是( )A .−2a 2b 2+6a 3bB .−2a 2b 2−6a 3b −2abC .−2a 2b 2+6a 3b +2abD .−2a 2b 2+6a 3b −14.若(x −1)(x +4)=x 2+ax +b ,则a 、b 的值分别为( ).A .a =5,b =4B .a =3,b =−4C .a =3,b =4D .a =55.下列运算中,计算正确的是( )A .(−a +2b)(−a −2b)=a 2−4b 2B .(a −2b)(2a +b)=a 2−4b 2C .(a −2b)(2b −a)=a 2−4b 2D .(a +2b)(−a −2b)=a 2−4b 26.分解因式4x 2−y 2的结果是( )A .(4x +y)(4x −y)B .4(x +y)(x −y)C .(2x +y)(2x −y)D .2(x +y)(x −y) 7.设a =x −2017,b =x −2019,c =x −2018若a 2+b 2=34,则c 2的值是( )A .16B .12C .8D .48.把多项式x 2+ax+b 分解因式,得(x+1)(x ﹣3)则a ,b 的值分别是( )A .a=2,b=3B .a=﹣2,b=﹣3C .a=﹣2,b=3D .a=2,b=﹣3 二、填空题9.计算(√3−1)(√3+1)的结果等于 .10.若a m = 4,a 2m+n = 128,则a n= 11.因式分解:a 3−16a = .12.若(x +3)(x +m)=x 2−2x −15.则m = .13.已知a+ 1a =3,则a 2+ 1a 2 的值是 .三、解答题14.计算下列各题:(1);(2).15.因式分解:(1)(2)16.已知x=2−√3,y=2+√3求下列代数式的值:(1)x2+2xy+y2;(2)x2−y2.17.为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:方法一:S小正方形=;方法二:S小正方形=;(2)(m+n)2,(m−n)2,4mn这三个代数式之间的等量关系为;(3)根据(2)题中的等量关系,解决如下问题:①已知:a−b=5,ab=−6求:(a+b)2的值;②已知:a−1a=1,求:(a+1a)2的值.18.观察下列分解因式的过程:x2+2xy−3y2解:原式=x2+2xy+y2−y2−3y2=(x2+2xy+y2)−4y2=(x+y)2−(2y)2=(x+y+2y)(x+y−2y)=(x+3y)(x−y)像这种通过增减项把多项式转化成适当的完全平方形式的方法,在代数计算与推理中往往能起到巧妙解题的效果.(1)请你运用上述方法分解因式:x2+4xy−5y2;(2)若M=2(3x2+3x+1),N=4x2+2x−3比较M、N的大小,并说明理由;(3)已知Rt△ABC中∠C=90°,三边长a,b,c满足c2+25=8a+6b,求△ABC的周长.参考答案1.【答案】D2.【答案】A3.【答案】C4.【答案】B5.【答案】A6.【答案】C7.【答案】A8.【答案】B9.【答案】210.【答案】811.【答案】a(a+4)(a−4)12.【答案】-513.【答案】714.【答案】(1)解:(2)解:15.【答案】(1)解:== ;(2)解:== .16.【答案】(1)解:∵x =2−√3∴x +y =4∴x 2+2xy +y 2=(x +y)2=42=16;(2)解:∵x =2−√3∴x +y =4∴x 2−y 2=(x +y)(x −y)=4×(−2√3)=−8√3.17.【答案】(1)(m −n)2;(m +n)2−4mn(2)(m +n)2=(m −n)2+4mn(3)(3)①a −b =5∴(a +b)2=(a −b)2+4ab=52+4×(−6)=25+(−24)=1;②(a +1a )2=(a −1a )2+4⋅a ⋅1a=12+4=1+4=5.18.【答案】(1)解:x 2+4xy −5y 2=x 2+4xy +4y 2−4y 2−5y 2 =(x 2+4xy +4y 2)−9y 2=(x +2y)2−9y 2=(x +2y +3y)(x +2y −3y)=(x +5y)(x −y);(2)解:M >N理由:∵M =2(3x 2+3x +1)∴M −N=2(3x 2+3x +1)−(4x 2+2x −3)=2x 2+4x +5=2x2+4x+2+3=2(x2+2x+1)+3=2(x+1)2+3∵(x+1)2≥0∴2(x+1)2+3≥3∴M−N≥3>0∴M>N.(3)解:由题意∴a2+b2+25=8a+6b∴a2+b2−8a−6b+25=0∴a2−8a+16+b2−6b+9=0∴(a2−8a+16)+(b2−6b+9)=0∴(a−4)2+(b−3)2=0∵(a−4)2≥0,(b−3)2≥0∴a−4=0,b−3=0∴a=4,b=3由题意∴△ABC的周长是3+4+5=12.。
整式的乘除与因式分解复习课件
1、利用因式分解计算:
(1)200312 00210012
(2)(1-
1 22
)(1-312
)(1-412
)…(1-
1 102
)
(3)20042-4008×2005+20052
(4)9.92-9.9×0.2+0.01
2、若a、b、c为△ABC的三边,且满足 a2+b2+c2=ab+ac+bc,试判断△ABC 的形状。
(一)整式的乘法
1、同底数幂的乘法 3、积的乘方 5、单项式乘以单项式 7、多项式乘以多项式 9、完全平方公式
2、幂的乘方 4、同底数的幂相除 6、单项式乘以多项式 8、平方差公式
(二)整式的除法
1、单项式除以单项式 2、多项式除以单项式
知你 识回
忆 起 了 吗 ? 就 这 些
(一)整式的乘法
1、同底数幂的乘法 法则:同底数幂相乘,底数不变,指数相加。
8.整式的除法:
(1)、同底数幂的除法
一般地,我们有
a a a m n
mn (其中a≠0,m、n为
正整数,并且m>n )
即:同底数幂相除,底数不变,指数相减。
a0 1(a 0)
即任何不等于0的数的0次幂都等于1
(2)、单项式除以单项式
法则:单项式除以单项式,把它们的系数、同 底数幂分别相除作为商的一个因式,对于只在被 除式里含有的字母,则连同它的指数作为商的一 个因式。 (3)、多项式除以单项式
(1).公因式:一个多项式的各项都含有的公共
的因式,叫做这个多项式各项的公因式
(2)找公因式:找各项系数的最大公约
数与各项都含有的字母的最低次幂的积。
. (3) 提公因式法:一般地,如果多项式的各
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式
④单项式乘法法则对于三个以上的单项式相乘同样适用。
⑤单项式乘以单项式,结果仍是一个单项式。
如:
10、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,
即 ( 都是单项式)
注意:
①积是一个多项式,其项数与多项式的项数相同。
②运算时要注意积的符号,多项式的每一项都包括它前面的符号。
如: ,项有 、 、 、1,二次项为 、 ,一次项为 ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。
4、同底数幂的乘法法则: ( 都是正整数)
同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。
4.如果a +b -2a+4b+5=0,求a、b的值
5一个正方形的边长增加4cm,面积就增加56cm,求原来正方形的边长
4.单项式、多项式的乘除运算
1)(a- b)(2a+ b)(3a2+ b2);
2)[(a-b)(a+b)]2÷(a2-2ab+b2)-2ab.
3)已知 , ,求 的值。
4)若x、y互为相反数,且 ,求x、y的值
( 是正整数),即一个不等于零的数的 次方等于这个数的 次方的倒数。
如:
9、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
注意:
①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
②相同字母相乘,运用同底数幂的乘法法则。
如:
5、幂的乘方法则: ( 都是正整数)
幂的乘方,底数不变,指数相乘。如:
幂的乘方法则可以逆用:即
如:
6、积的乘方法则: ( 是正整数)
积的乘方,等于各因数乘方的积。
如:( =
7、同底数幂的除法法则: ( 都是正整数,且
同底数幂相除,底数不变,指数相减。如:
8、零指数和负指数;
,即任何不等于零的数的零次方等于1。
完全平方和公式:
完全平方差公式:
1)利用平方差公式计算:2009×2007-20082
2)(a-2b+3c-d)(a+2b-3c-d)
三,变式练习
1.广场内有一块边长为2aM的正方形草坪,经统一规划后,南北方向要缩短3M,东西方向要加长3M,则改造后的长方形草坪的面积是多少?.
2.已知 求 的值
3、已知 ,求xy的值
如:
13、完全平方公式:
公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。
注意:
完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。
14、三项式的完全平方公式:
15、单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
A、 B、 C、 D、
4、下列多项式中能用平方差公式分解因式的是( )
(A) (B) (C) (D)
5、如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )
A. –3B. 3C. 0D. 1
6、一个正方形的边长增加了 ,面积相应增加了 ,则这个正方形的边长为( )
A、6cm B、5cm C、8cm D、7cm
③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。]
如:
11、多项式与多项式相乘的法则;
多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。
如:
12、平方差公式: 注意平方差公式展开只有两项
公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。
整式的乘法与因式分解专题复习
一、知识点总结:
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如: 的系数为 ,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项+b2的值是( )
(A)148(B)76(C)58(D)52
6.(1)( +3y)2-( -3y)2;(2)(x2-2x-1)(x2+2x-1);
7.(1- )(1- )(1- )…(1- )(1- )的值.
8.已知x+ =2,求x2+ ,x4+ 的值.
9.已知(a-1)(b-2)-a(b-3)=3,求代数式 -ab的值.
四,提高练习
1.(2x2-4x-10xy)÷( )= x-1- y.
2.若x+y=8,x2y2=4,则x2+y2=_________.
3.代数式4x2+3mx+9是完全平方式则m=___________.
4.(-a+1)(a+1)(a2+1)等于( )
(A)a4-1(B)a4+1(C)a4+2a2+1(D)1-a4
注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式
如:
16、多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。
即:
17、因式分解:
常用方法:提公因式法、公式法、配方法、十字相乘法……
二、知识点分析:
10.若(x2+px+q)(x2-2x-3)展开后不含x2,x3项,求p、q的值.
五,课后作业
1、下列运算中,正确的是( )
A.x2·x3=x6B.(ab)3=a3b3C.3a+2a=5a2D.(x³)²= x5
2、下列从左边到右边的变形,是因式分解的是( )
(A) (B)
(C) (D)
3、下列各式是完全平方式的是()
1.同底数幂、幂的运算:
am·an=am+n(m,n都是正整数).
(am)n=amn(m,n都是正整数).
1、若 ,则a=;若 ,则n=.
2、计算
3、若 ,则 =.
2.积的乘方
(ab)n=anbn(n为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
1、计算:
3.乘法公式
平方差公式: