2014年高考数学分类汇编:基本初等函数(有答案)
高考数学文科基本初等函数(Ⅰ)及应用最全讲解含答案解析
第三单元 基本初等函数(Ⅰ)及应用教材复习课“基本初等函数(Ⅰ)”相关基础知识一课过一、根式与幂的运算 1.根式的性质 (1)(n a )n=a .(2)当n 为奇数时,na n =a .(3)当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).(4)负数的偶次方根无意义. (5)零的任何次方根都等于零. 2.有理数指数幂 (1)分数指数幂:①正分数指数幂:a m n =na m (a >0,m ,n ∈N *,且n >1).②负分数指数幂:a -m n =1a m n =1n a m (a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的运算性质. ①a r ·a s =ar +s(a >0,r ,s ∈Q ).②(a r)s =a rs (a >0,r ,s ∈Q ).③(ab )r =a r b r(a >0,b >0,r ∈Q ). 二、对数及对数运算 1.对数的定义一般地,如果a x =N (a >0,且a ≠1),那么数x 叫作以a 为底N 的对数,记作x =log a N ,其中a 叫作对数的底数,N 叫作真数.2.对数的性质 (1)log a 1=0,log a a =1. (2)a log a N =N ,log a a N =N . (3)负数和零没有对数. 3.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 (1)log a (M N )=log a M +log a N . (2)log a MN =log a M -log a N .(3)log a M n=n log a M (n ∈R ). (4)换底公式log a b =log m blog m a(a >0且a ≠1,b >0,m >0,且m ≠1). [小题速通] 1.化简(a 23·b -1)-12·a-12·b136a ·b 5(a >0,b >0)的结果是( )A .aB .abC .a 2bD.1a解析:选D 原式=a3-1b 12a -12b13a 16b56=a---111362·b+-151362=1a. 2.若x =log 43,则(2x -2-x )2=( ) A.94 B.54 C.103D.43解析:选D 由x =log 43,得4x =3,即4-x =13,(2x -2-x )2=4x -2+4-x =3-2+13=43.3.(log 23)2-4log 23+4+log 213=( )A .2B .2-2log 23C .-2D .2log 23-2解析:选B (log 23)2-4log 23+4+log 213=(log 23-2)2-log 23=2-log 23-log 23=2-2log 23.4.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )=( )A .11B .9C .7D .5解析:选C 由题意可得f (a )=2a +2-a =3,则f (2a )=22a +2-2a=(2a +2-a )2-2=7.[清易错]1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.易忽视字母的符号.2.在对数运算时,易忽视真数大于零. 1.化简-x 3x 的结果是( )A .--x B.x C .-xD.-x解析:选A 依题意知x <0,故-x 3x=--x 3x 2=--x . 2.若lg x +lg y =2lg(x -2y ),则 xy 的值为________. 解析:∵lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0, 即(x -y )(x -4y )=0,解得x =y 或x =4y . 又x >0,y >0,x -2y >0, 故x =y 不符合题意,舍去. 所以x =4y ,即xy =4. 答案:4二次函数[过双基]1.二次函数解析式的三种形式 (1)一般式:f (x )=ax 2+bx +c (a ≠0). (2)顶点式:f (x )=a (x -m )2+n (a ≠0). (3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0) 图象定义域 RR值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎤-∞,-b2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎦⎤-∞,-b2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减[小题速通]1.若二次函数y =-2x 2-4x +t 的图象的顶点在x 轴上,则t 的值是( ) A .-4 B .4 C .-2D .2解析:选C ∵二次函数的图象的顶点在x 轴上,∴Δ=16+8t =0,可得t =-2. 2.(2018·唐山模拟)如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,那么实数a 的取值范围为( )A .[8,+∞)B .(-∞,8]C .[4,+∞)D .[-4,+∞)解析:选A 函数f (x )图象的对称轴方程为x =a 2,由题意得a2≥4,解得a ≥8.3.(2017·宜昌二模)函数f (x )=-2x 2+6x (-2≤x ≤2)的值域是( ) A .[-20,4] B .(-20,4) C.⎣⎡⎦⎤-20,92 D.⎝⎛⎭⎫-20,92 解析:选C 由函数f (x )=-2x 2+6x 可知,二次函数f (x )的图象开口向下,对称轴为x =32,当-2≤x <32时,函数f (x )单调递增,当32≤x ≤2时,函数f (x )单调递减,∴f (x )max =f ⎝⎛⎭⎫32=-2×94+6×32=92,又f (-2)=-8-12=-20,f (2)=-8+12=4,∴函数f (x )的值域为⎣⎡⎦⎤-20,92.[清易错]易忽视二次函数表达式f (x )=ax 2+bx +c 中的系数a ≠0.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________.解析:由已知得⎩⎪⎨⎪⎧a >0,4ac -164a =0,⇒⎩⎪⎨⎪⎧a >0,ac -4=0.答案:a >0,ac =41.幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. 2.常见的5种幂函数的图象3.常见的5种幂函数的性质1.幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )解析:选C 令f (x )=x α,则4α=2,∴α=12,∴f (x )=x 12.故C 正确.2.(2018·贵阳监测)已知幂函数y =f (x )的图象经过点⎝⎛⎭⎫13,3,则f ⎝⎛⎭⎫12=( ) A.12 B .2 C. 2D.22解析:选C 设幂函数的解析式为f (x )=x α,将⎝⎛⎭⎫13,3代入解析式得3-α=3,解得α=-12,∴f (x )=x -12,f ⎝⎛⎭⎫12=2,故选C.3.若函数f (x )=(m 2-m -1)x m 是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值是( )A .-1B .2C .3D .-1或2解析:选B ∵f (x )=(m 2-m -1)x m 是幂函数,∴m 2-m -1=1,解得m =-1或m =2.又f (x )在x ∈(0,+∞)上是增函数,所以m =2.[清易错]幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.幂函数y =xm 2-2m -3(m ∈Z )的图象如图所示,则m 的值为( )A .-1<m <3B .0C .1D .2解析:选C 从图象上看,由于图象不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图象看,函数是偶函数,故m 2-2m -3为负偶数,将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.指数函数指数函数的图象与性质y =a x (a >0,且a ≠1)a >10<a <11.函数f(x )=a x -2+1(a >0,且a ≠1)的图象必经过点( )A .(0,1)B .(1,1)C .(2,0)D .(2,2)解析:选D 由f (2)=a 0+1=2,知f (x )的图象必过点(2,2). 2.函数f (x )=1-2x 的定义域是( ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(-∞,+∞)解析:选A 要使f (x )有意义须满足1-2x ≥0,即2x ≤1,解得x ≤0. 3.函数y =a x -a (a >0,且a ≠1)的图象可能是( )解析:选C 当x =1时,y =a 1-a =0,所以函数y =a x -a 的图象过定点(1,0),结合选项可知选C.4.设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >bD .b >c >a解析:选A 构造指数函数y =⎝⎛⎭⎫25x(x ∈R ),由该函数在定义域内单调递减可得b <c ;又y =⎝⎛⎭⎫25x (x ∈R )与y =⎝⎛⎭⎫35x (x ∈R )之间有如下结论:当x >0时,有⎝⎛⎭⎫35x >⎝⎛⎭⎫25x ,故⎝⎛⎭⎫3525>⎝⎛⎭⎫2525,即a >c ,故a >c >b .5.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .余弦函数解析:选C 由指数运算的规律易知,a x +y =a x ·a y ,即令f (x )=a x ,则f (x +y )=f (x )f (y ),故该函数为指数函数.[清易错]指数函数y =a x (a >0,且a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.若函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,则a 的值为________.解析:当a >1时,f (x )=a x 为增函数, f (x )max =f (2)=a 2,f (x )mi n =f (1)=a . ∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍去)或a =32>1.∴a =32.当0<a <1时,f (x )=a x 为减函数, f (x )max =f (1)=a ,f (x )mi n =f (2)=a 2. ∴a -a 2=a2.即a (2a -1)=0,∴a =0(舍去)或a =12.∴a =12.综上可知,a =12或a =32.答案:12或32对数函数的图象与性质当0<x <1时,y ∈(-∞,0);当x >1时,y ∈(0,+∞) 当0<x <1时,y ∈(0,+∞); 当x >1时,y ∈(-∞,0) 在(0,+∞)上为增函数在(0,+∞)上为减函数1.若函数f (x )=log a (3x -2)(a >0,且a ≠1)的图象经过定点A ,则A 点坐标是( ) A.⎝⎛⎭⎫0,23 B.⎝⎛⎭⎫23,0 C .(1,0) D .(0,1)答案:C2.已知a >0,且a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )解析:选B 由题意知,y =a x 的定义域为R ,y =log a (-x )的定义域为(-∞,0),故排除A 、C ;当0<a <1时,y =a x 在R 上单调递减,y =log a (-x )在(-∞,0)上单调递增;当a >1时,y =a x 在R 上单调递增,y =log a (-x )在(-∞,0)上单调递减,结合B 、D 图象知,B 正确.3.函数y =log 2|x +1|的单调递减区间为__________,单调递增区间为__________. 解析:作出函数y =log 2x 的图象,将其关于y 轴对称得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).答案:(-∞,-1) (-1,+∞)4.函数f (x )=log a (x 2-2x -3)(a >0,a ≠1)的定义域为________.解析:由题意可得x 2-2x -3>0,解得x >3或x <-1,所以函数的定义域为{x |x >3或x <-1}.答案:{x |x >3或x <-1}[清易错]解决与对数函数有关的问题时易漏两点: (1)函数的定义域. (2)对数底数的取值范围. 1.(2018·南昌调研)函数y =log 23(2x -1) 的定义域是( )A .[1,2]B .[1,2)C.⎣⎡⎦⎤12,1D.⎝⎛⎦⎤12,1解析:选D 要使函数有意义,则⎩⎪⎨⎪⎧log 23(2x -1)≥0,2x -1>0,解得12<x ≤1.2.函数y =log a x (a >0,且a ≠1)在[2,4]上的最大值与最小值的差是1,则a 的值为________. 解析:当a >1时,函数y =log a x 在[2,4]上是增函数, 所以log a 4-log a 2=1,即log a 2=1,所以a =2. 当0<a <1时,函数y =log a x 在[2,4]上是减函数, 所以log a 2-log a 4=1,即log a 12=1,所以a =12.故a =2或a =12.答案:2或 12一、选择题1.函数f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,x 12,x >0,满足f (x )=1的x 的值为( )A .1B .-1C .1或-2D .1或-1解析:选D 由题意,方程f (x )=1等价于⎩⎪⎨⎪⎧x ≤0,2-x -1=1或⎩⎪⎨⎪⎧x >0,x 12=1,解得x =-1或1.2.函数f (x )=ln|x -1|的图象大致是( )解析:选B 令x =1,x -1=0,显然f (x )=ln|x -1|无意义,故排除A ;由|x -1|>0可得函数的定义域为(-∞,1)∪(1,+∞),故排除D ;由复合函数的单调性可知f (x )在(1, +∞)上是增函数,故排除C ,选B.3.(2018·郑州模拟)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 结合二次函数y =ax 2+bx +c (a ≠0)的图象知: 当a <0,且abc >0时,若-b2a <0,则b <0,c >0,故排除A ,若-b2a>0,则b >0,c <0,故排除B. 当a >0,且abc >0时,若-b2a <0,则b >0,c >0,故排除C ,若-b2a>0,则b <0,c <0,故选项D 符合. 4.设a =0.32,b =20.3,c =log 25,d =log 20.3,则a ,b ,c ,d 的大小关系是( ) A .d <b <a <c B .d <a <b <c C .b <c <d <aD .b <d <c <a解析:选B 由对数函数的性质可知c =log 25>2,d =log 20.3<0, 由指数函数的性质可知0<a =0.32<1,1<b =20.3<2, 所以d <a <b <c .5.(2018·长春模拟)函数y =4x +2x +1+1的值域为( )A .(0,+∞)B .(1,+∞)C .[1,+∞)D .(-∞,+∞)解析:选B 令2x =t ,则函数y =4x +2x +1+1可化为y =t 2+2t +1=(t +1)2(t >0). ∵函数y =(t +1)2在(0,+∞)上递增, ∴y >1.∴所求值域为(1,+∞).故选B. 6.(2017·大连二模)定义运算:x y =⎩⎪⎨⎪⎧x ,xy ≥0,y ,xy <0,例如:=3,(-=4,则函数f (x )=x 2x -x 2)的最大值为( )A .0B .1C .2D .4解析:选D 由题意可得f (x )=x2x -x 2)=⎩⎪⎨⎪⎧x 2,0≤x ≤2,2x -x 2,x >2或x <0,当0≤x ≤2时,f (x )∈[0,4];当x >2或x <0时,f (x )∈(-∞,0).综上可得函数f (x )的最大值为4,故选D.7.已知函数f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,且在x =0处有意义,则该函数为( )A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数解析:选D 由题意知,f (0)=lg(2+a )=0,∴a =-1,∴f (x )=lg ⎝⎛⎭⎫21-x -1=lg x +11-x ,令x +11-x >0,则-1<x <1,排除A 、B ,又y =21-x -1=-1+-2x -1在(-1,1)上是增函数,∴f (x )在(-1,1)上是增函数.选D.8.(2018·湖北重点高中协作校联考)设函数f (x )=1-x +1,g (x )=ln(ax 2-3x +1),若对任意x 1∈[0,+∞),都存在x 2∈R ,使得f (x 1)=g (x 2),则实数a 的最大值为( )A.94 B .2 C.92D .4解析:选A 设g (x )=ln (ax 2-3x +1)的值域为A ,因为函数f (x )=1-x +1在[0,+∞)上的值域为(-∞,0],所以(-∞,0]⊆A ,因此h (x )=ax 2-3x +1至少要取遍(0,1]中的每一个数,又h (0)=1,于是,实数a 需要满足a ≤0或⎩⎪⎨⎪⎧a >0,9-4a ≥0,解得a ≤94.故选A.二、填空题9.(2018·连云港调研)当x >0时,函数y =(a -8)x 的值恒大于1,则实数a 的取值范围是________.解析:由题意知,a -8>1,解得a >9. 答案:(9,+∞)10.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝⎛⎭⎫12的值等于________. 解析:设f (x )=x α, 又f (4)=3f (2), ∴4α=3×2α, 解得α=log 23, ∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12log 23=13. 答案:1311.若函数f (x )=⎩⎪⎨⎪⎧e 1-x ,x ≤1,ln (x -1),x >1,则使得f (x )≥2成立的x 的取值范围是________.解析:由题意,f (x )≥2等价于⎩⎪⎨⎪⎧ x ≤1,e 1-x ≥2或⎩⎪⎨⎪⎧x >1,ln (x -1)≥2,解得x ≤1-ln 2或x ≥1+e 2,则使得f (x )≥2成立的x 的取值范围是(-∞,1-ln 2]∪[1+e 2,+∞). 答案:(-∞,1-ln 2]∪[1+e 2,+∞)12.若对任意x ∈⎝⎛⎭⎫0,12,恒有4x<log a x (a >0且a ≠1),则实数a 的取值范围是________. 解析:令f (x )=4x ,则f (x )在⎝⎛⎭⎫0,12上是增函数,g (x )=log a x ,当a >1时,g (x )=log a x 在⎝⎛⎭⎫0,12上是增函数,且g (x )=log a x <0,不符合题意;当0<a <1时,g (x )=log a x 在⎝⎛⎭⎫0,12上是减函数,则⎩⎪⎨⎪⎧0<a <1,f ⎝⎛⎭⎫12≤g ⎝⎛⎭⎫12,解得22≤a <1.答案:⎣⎡⎭⎫22,1 三、解答题13.函数f (x )=log a x (a >0,a ≠1),且f (2)-f (4)=1. (1)若f (3m -2)>f (2m +5),求实数m 的取值范围; (2)求使f ⎝⎛⎭⎫x -4x =log 123成立的x 的值. 解:(1)由f (2)-f (4)=1,得a =12.∵函数f (x )=log 12x 为减函数且f (3m -2)>f (2m +5),∴0<3m -2<2m +5,解得23<m <7,故m 的取值范围为⎝⎛⎭⎫23,7.(2)f ⎝⎛⎭⎫x -4x =log 123,即x -4x =3,x 2-3x -4=0, 解得x =4或x =-1. 14.已知函数f (x )=a -22x+1为奇函数. (1)求a 的值;(2)试判断函数f (x )在(-∞,+∞)上的单调性,并证明你的结论;(3)若对任意的t ∈R ,不等式f [t 2-(m -2)t ]+f (t 2-m +1)>0恒成立,求实数m 的取值范围.解:(1)∵函数f (x )为奇函数,∴f (x )=-f (-x ), ∴a -22x +1=-a +22-x +1,∴2a =2·2x 2x +1+22x +1=2,∴a =1.(2)f (x )在R 上为单调递增函数.证明如下:设任意x 1,x 2∈R ,且x 1<x 2, 则f (x 1)-f (x 2)=1-22 x 1+1-1+22 x 2+1 =2(2 x 1-2 x 2)(2 x 1+1)(2 x 2+1).∵x 1<x 2,∴2 x 1-2 x 2<0,(2 x 1+1)(2 x 2+1)>0, ∴f (x 1)<f (x 2),∴f (x )为R 上的单调递增函数. (3)∵f (x )=1-22x+1为奇函数,且在R 上为增函数, ∴由f [t 2-(m -2)t ]+f (t 2-m +1)>0恒成立, ∴f [t 2-(m -2)t ]>-f (t 2-m +1)=f (m -t 2-1), ∴t 2-(m -2)t >m -1-t 2对t ∈R 恒成立, 化简得2t 2-(m -2)t -m +1>0, ∴Δ=(m -2)2+8(m -1)<0, 解得-2-22<m <-2+22,故m 的取值范围为(-2-22,-2+22).高考研究课(一) 幂函数、二次函数的 3类考查点——图象、性质、解析式 [全国卷5年命题分析][典例] (1)(2018·安徽江南七校联考)已知幂函数f (x )=(+2-2)·x n 2-3n (n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或-3(2)1.112,0.912,1的大小关系为________.[解析] (1)由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,当n =1时,函数f (x )=x-2为偶函数,其图象关于y 轴对称,且f (x )在(0,+∞)上是减函数,所以n =1满足题意;当n =-3时,函数f (x )=x 18为偶函数,其图象关于y 轴对称,而f (x )在(0,+∞)上是增函数,所以n =-3不满足题意,舍去.故选B.(2)把1看作112,幂函数y =x 12在(0,+∞)上是增函数. ∵0<0.9<1<1.1,∴0.912<112<1.112. 即0.912<1<1.112.[答案] (1)B (2)0.912<1<1.112[方法技巧]幂函数图象与性质的应用(1)可以借助幂函数的图象理解函数的对称性、单调性;(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.[即时演练]1.已知f (x )=x 12,若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b ) 解析:选C ∵0<a <b <1,∴0<a <b <1b <1a,又f (x )=x 12为增函数,∴f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a . 2.若(a +1)-13<(3-2a ) -13,则实数a 的取值范围是________________.解析:不等式(a +1)-13<(3-2a ) -13等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a . 解得23<a <32或a <-1.答案:(-∞,-1)∪⎝⎛⎭⎫23,32二次函数的解析式二次函数的解析式有一般式、顶点式、零点式.求二次函数的解析式时,要灵活选择解析式形式以确立解法.[典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.[解] 法一:用“一般式”解题 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二:用“顶点式”解题 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1),∴抛物线的对称轴为x =2+(-1)2=12,∴m =12.又根据题意,函数有最大值8,∴n =8, ∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:用“零点式”解题由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去).∴所求函数的解析式为f (x )=-4x 2+4x +7. [方法技巧]求二次函数解析式的方法根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:[即时演练]1.为了美观,在加工太阳镜时将下半部分轮廓制作成二次函数图象的形状(如图所示).若对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,则右轮廓线DFE 所在的二次函数的解析式为( )A .y =14(x +3)2B .y =-14(x -3)2C .y =-14(x +3)2D .y =14(x -3)2解析:选D 由题图可知,对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,所以点C 的纵坐标为0,横坐标的绝对值为3,即C (-3,0),因为点F 与点C 关于y 轴对称,所以F (3,0),因为点F 是右轮廓线DFE 所在的二次函数图象的顶点,所以设该二次函数为y =a (x -3)2(a >0),将点D (1,1)代入得,a =14,即y =14(x -3)2.2.已知二次函数f (x )是偶函数,且f (4)=4f (2)=16,则函数f (x )的解析式为________. 解析:由题意可设函数f (x )=ax 2+c (a ≠0),则f (4)=16a +c =16,f (2)=4a +c =4,解得a =1,c =0,故f (x )=x 2.答案:f(x)=x2二次函数的图象与性质高考对二次函数图象与性质进行单独考查的频率较低.常与一元二次方程、一元二次不等式等知识交汇命题是高考的热点,多以选择题、填空题的形式出现,考查二次函数的图象与性质的应用.常见的命题角度有:(1)二次函数的图象与性质;(2)二次函数的最值问题.1.(2018·武汉模拟)已知函数f(x)=ax2+2ax+b(1<a<3),且x1<x2,x1+x2=1-a,则下列结论正确的是()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.f(x1)与f(x2)的大小关系不能确定解析:选A f(x)的对称轴为x=-1,因为1<a<3,则-2<1-a<0,若x1<x2≤-1,则x1+x2<-2,不满足x1+x2=1-a且-2<1-a<0;若x1<-1,x2≥-1,则|x2+1|-|-1-x1|=x2+1+1+x1=x1+x2+2=3-a>0(1<a<3),此时x2到对称轴的距离大,所以f(x2)>f(x1);若-1≤x1<x2,则此时x1+x2>-2,又因为f(x)在[-1,+∞)上为增函数,所以f(x1)<f(x2).2.设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),且实数m的取值范围是()A.(-∞,0] B.[2,+∞)C.(-∞,0]∪[2,+∞) D.[0,2]解析:选D二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,则a≠0,f′(x)=2a(x -1)<0,x∈[0,1],所以a>0,即函数的图象开口向上,又因为对称轴是直线x=1.所以f(0)=f(2),则当f(m)≤f(0)时,有0≤m≤2.[方法技巧]解决二次函数图象与性质问题的2个注意点(1)抛物线的开口、对称轴位置、定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是结合二次函数在该区间上的单调性或图象求解.角度二:二次函数的最值问题3.已知二次函数f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值.解:(1)当a >0时,f (x )=ax 2-2x 图象的开口方向向上,且对称轴为x =1a . ①当1a ≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内, ∴f (x )在⎣⎡⎦⎤0,1a 上递减,在⎣⎡⎦⎤1a ,1上递增. ∴f (x )mi n =f ⎝⎛⎭⎫1a =1a -2a =-1a .②当1a >1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧, ∴f (x )在[0,1]上递减. ∴f (x )mi n =f (1)=a -2.(2)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a <0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )mi n =f (1)=a -2.综上所述,f (x )mi n =⎩⎪⎨⎪⎧a -2,a ∈(-∞,0)∪(0,1),-1a ,a ∈[1,+∞).4.已知a 是实数,记函数f (x )=x 2-2x +2在[a ,a +1]上的最小值为g (a ),求g (a )的解析式.解:f (x )=x 2-2x +2=(x -1)2+1,x ∈[a ,a +1],a ∈R ,对称轴为x =1.当a +1<1,即a <0时,函数图象如图(1),函数f (x )在区间[a ,a +1]上为减函数,所以最小值为f (a +1)=a 2+1;当a ≤1≤a +1,即0≤a ≤1时,函数图象如图(2),在对称轴x =1处取得最小值,最小值为f (1)=1;当a >1时,函数图象如图(3),函数f (x )在区间[a ,a +1]上为增函数,所以最小值为f (a )=a 2-2a +2.综上可知,g (a )=⎩⎪⎨⎪⎧a 2+1,a <0,1,0≤a ≤1,a 2-2a +2,a >1.[方法技巧]二次函数在闭区间上的最大值和最小值可能在三个地方取到:区间的两个端点处,或对称轴处.也可以作出二次函数在该区间上的图象,由图象来判断最值.解题的关键是讨论对称轴与所给区间的相对位置关系.1.(2016·全国卷Ⅲ)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <aD .c <a <b解析:选A 因为a =243,b =425=245,由函数y =2x 在R 上为增函数,知b <a ;又因为a =243=423,c =2513=523,由幂函数y =x 23在(0,+∞)上为增函数,知a <c .综上得b <a <c .故选A.2.(2016·全国卷Ⅱ)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4m解析:选B ∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B. 3.(2014·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析:当x <1时,由ex -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.答案:(-∞,8]一、选择题1.(2018·绵阳模拟)幂函数y =(m 2-3m +3)x m 的图象过点(2,4),则m =( ) A .-2 B .-1 C .1D .2解析:选D ∵幂函数y =(m 2-3m +3)x m的图象过点(2,4),∴⎩⎪⎨⎪⎧m 2-3m +3=1,2m =4,解得m =2.故选D.2.(2018·杭州测试)若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最小值为4,则实数a 的取值集合为( )A .[-3,3]B .[-1,3]C .{-3,3}D .{-1,-3,3}解析:选C ∵函数f (x )=x 2-2x +1=(x -1)2的图象的对称轴为直线x =1,f (x )在区间[a ,a +2]上的最小值为4,∴当a ≥1时,f (x )mi n =f (a )=(a -1)2=4,a =-1(舍去)或a =3;当a +2≤1,即a ≤-1时,f (x )mi n =f (a +2)=(a +1)2=4,a =1(舍去)或a =-3; 当a <1<a +2,即-1<a <1时,f (x )mi n =f (1)=0≠4. 故a 的取值集合为{-3,3}.故选C.3.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的结论是( ) A .②④ B .①④ C .②③D .①③解析:选B ∵二次函数的图象与x 轴交于两点,∴b 2-4ac >0,即b 2>4ac ,①正确; 对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象知,当x =-1时,y >0,即a -b +c >0,③错误; 由对称轴为x =-1知,b =2a ,又函数图象开口向下,∴a <0,∴5a <2a ,即5a <b ,④正确.故选B.4.若对任意a ∈[-1,1],函数F (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)解析:选B 由题意,令f (a )=F (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4,对任意a ∈[-1,1]恒成立,所以⎩⎪⎨⎪⎧f (1)=x 2-3x +2>0,f (-1)=x 2-5x +6>0,解得x <1或x >3. 5.若函数f (x )=mx 2-2x +3在[-1,+∞)上递减,则实数m 的取值范围为( ) A .(-1,0) B .[-1,0) C .(-∞,-1]D .[-1,0]解析:选D 当m =0时,f (x )=-2x +3在R 上递减,符合题意;当m ≠0时,函数f (x )=mx 2-2x +3在[-1,+∞)上递减,只需对称轴x =1m ≤-1,且m <0,解得-1≤m <0,综上,实数m 的取值范围为[-1,0].6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:选A ∵f (1)=3,∴不等式f (x )>f (1),即f (x )>3.∴⎩⎪⎨⎪⎧ x ≥0,x 2-4x +6>3或⎩⎪⎨⎪⎧x <0,x +6>3,解得x >3或-3<x <1. 7.已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2 017-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( )A .a >c >b >dB .a >b >c >dC .c >d >a >bD .c >a >b >d解析:选D f (x )=2 017-(x -a )(x -b )=-x 2+(a +b )x -ab +2 017,又f (a )=f (b )=2 017,c ,d 为函数f (x )的零点,且a >b ,c >d, 所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D.8.(2017·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B f (x )=⎝⎛⎭⎫x +a 22-a24+b , ① 当0≤-a 2≤1时,f (x )mi n =m =f ⎝⎛⎭⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b,1+a +b },∴M -m =max ⎩⎨⎧⎭⎬⎫a24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,∴M -m =f (1)-f (0)=1+a 与a 有关,与b 无关; ③当-a2>1时,f (x )在[0,1]上单调递减,∴M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关. 综上所述,M -m 与a 有关,但与b 无关. 二、填空题9.已知幂函数f (x )=x -m 2+2m +3(m ∈Z )在(0,+∞)上为增函数,且在其定义域内是偶函数,则m 的值为________.解析:∵幂函数f (x )在(0,+∞)上为增函数, ∴-m 2+2m +3>0,即m 2-2m -3<0,解得-1<m <3. 又m ∈Z ,∴m =0或m =1或m =2.当m =0或m =2时,f (x )=x 3在其定义域内为奇函数,不满足题意;当m =1时,f (x )=x 4在其定义域内是偶函数,满足题意.综上可知,m 的值是1. 答案:110.二次函数y =3x 2+2(m -1)x +n 在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,则实数m =________.解析:二次函数y =3x 2+2(m -1)x +n 的图象的开口向上,对称轴为直线x =-m -13,要使得函数在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,则x =-m -13=1,解得m =-2.答案:-211.(2018·南通一调)若函数f (x )=ax 2+20x +14(a >0)对任意实数t ,在闭区间[t -1,t +1]上总存在两实数x 1,x 2,使得|f (x 1)-f (x 2)|≥8成立,则实数a 的最小值为________.解析:由题意可得,当x ∈[t -1,t +1]时,[f (x )max -f (x )mi n ]mi n ≥8,当[t -1,t +1]关于对称轴对称时,f (x )max -f (x )mi n 取得最小值,即f (t +1)-f (t )=2at +a +20≥8,f (t -1)-f (t )=-2at +a -20≥8,两式相加,得a ≥8,所以实数a 的最小值为8.答案:812.设函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使得函数y =f (x )-bx 恰有2个零点,则实数a 的取值范围为_______.解析:显然x =0是y =f (x )-bx 的一个零点; 当x ≠0时,令y =f (x )-bx =0得b =f (x )x, 令g (x )=f (x )x =⎩⎪⎨⎪⎧x 2,x ≤a ,x ,x >a ,则b =g (x )存在唯一一个解.当a <0时,作出函数g (x )的图象,如图所示,显然当a <b <a 2且b ≠0时,b =g (x )存在唯一一个解,符合题意; 当a >0时,作出函数g (x )的图象,如图所示,若要使b =g (x )存在唯一一个解,则a >a 2,即0<a <1, 同理,当a =0时,显然b =g (x )有零解或两解,不符合题意. 综上,a 的取值范围是(-∞,0)∪(0,1). 答案:(-∞,0)∪(0,1) 三、解答题13.(2018·杭州模拟)已知值域为[-1,+∞)的二次函数f (x )满足f (-1+x )=f (-1-x ),且方程f (x )=0的两个实根x 1,x 2满足|x 1-x 2|=2.(1)求f (x )的表达式;(2)函数g (x )=f (x )-kx 在区间[-1,2]上的最大值为f (2),最小值为f (-1),求实数k 的取值范围.解:(1)由f (-1+x )=f (-1-x ),可得f (x )的图象关于直线x =-1对称, 设f (x )=a (x +1)2+h =ax 2+2ax +a +h (a ≠0), 由函数f (x )的值域为[-1,+∞),可得h =-1, 根据根与系数的关系可得x 1+x 2=-2,x 1x 2=1+ha ,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2= -4ha =2,解得a =1, ∴f (x )=x 2+2x .(2)由题意得函数g (x )在区间[-1,2]上单调递增, 又g (x )=f (x )-kx =x 2-(k -2)x .∴g (x )的对称轴方程为x =k -22, 则k -22≤-1,即k ≤0,故k 的取值范围为(-∞,0].14.(2018·成都诊断)已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2],f (x )≥0恒成立,求a 的取值范围.解:f (x )=⎝⎛⎭⎫x +a 22-a24-a +3,令f (x )在[-2,2]上的最小值为g (a ). (1)当-a2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,∴a ≤73.又a >4,∴a 不存在.(2)当-2≤-a2≤2,即-4≤a ≤4时,g (a )=f ⎝⎛⎭⎫-a 2=-a24-a +3≥0, ∴-6≤a ≤2.又-4≤a ≤4, ∴-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,∴a ≥-7.又a <-4,∴-7≤a <-4.综上可知,a 的取值范围为[-7,2].1.设函数f (x )=ax 2+bx +c (a >b >c )的图象经过点A (m 1,f (m 1))和点B (m 2,f (m 2)),f (1)=0.若a 2+[f (m 1)+f (m 2)]·a +f (m 1)·f (m 2)=0,则( )A .b ≥0B .b <0C .3a +c ≤0D .3a -c <0解析:选A 由f (1)=0可得a +b +c =0,若a ≤0,由a >b >c ,得a +b +c <0,这与a +b +c =0矛盾,故a >0,若c ≥0,则有b >0,a >0,此时a +b +c >0,这与a +b +c =0矛盾;所以c <0成立,因为a 2+[f (m 1)+f (m 2)]·a +f (m 1)·f (m 2)=0,所以(a +f (m 1))(a +f (m 2))=0,所以m 1,m 2是方程f (x )=-a 的两个根,Δ=b 2-4a (a +c )=b (b +4a )=b (3a -c )≥0,而a >0,c <0,所以3a -c >0,所以b ≥0.2.设函数f (x )=2ax 2+2bx ,若存在实数x 0∈(0,t ),使得对任意不为零的实数a ,b ,均有f (x 0)=a +b 成立,则t 的取值范围是________.解析:因为存在实数x 0∈(0,t ),使得对任意不为零的实数a ,b ,均有f (x 0)=a +b 成立, 所以2ax 2+2bx =a +b 等价于(2x -1)b =(1-2x 2)a .当x =12时,左边=0,右边≠0,即等式不成立,故x ≠12;当x ≠12时,(2x -1)b =(1-2x 2)a 等价于b a =1-2x 22x -1,设2x -1=k ,因为x ≠12,所以k ≠0,则x =k +12,则ba =1-2⎝⎛⎭⎫k +122k =12⎝⎛⎭⎫1k -k -2. 设g (k )=12⎝⎛⎭⎫1k-k -2, 则函数g (k )在(-1,0),(0,2t -1)上的值域为R . 又因为g (k )在(-∞,0),(0,+∞)上单调递减, 所以g (k )在(-1,0),(0,2t -1)上单调递减, 故当k ∈(-1,0)时,g (k )<g (-1)=-1;当k ∈(0,2t -1)时,g (k )>g (2t -1)=12⎝⎛⎭⎫12t -1-2t -1,故要使值域为R ,则g (2t -1)<g (-1),即12t -1-2t -1<-2,解得t >1. 答案:(1,+∞) 高考研究课(二)指数函数的2类考查点——图象、性质 [全国卷5年命题分析][典例] (1)函数f (x )=e ·x e 2x +1的大致图象是( )(2)(2018·广州模拟)若存在负实数使得方程2x -a =1x -1成立,则实数a 的取值范围是( )A .(2,+∞)B .(0,+∞)C .(0,2)D .(0,1)[解析] (1)因为f (-x )=e -x ·x 2e -2x +1=e x ·x 21+e 2x=f (x ),所以函数f (x )为偶函数,所以排除A 、D项.当x =0时,y =0,故排除B 项,选C.(2)在同一坐标系内分别作出函数y =1x -1和y =2x -a 的图象,则由图知,当a ∈(0,2)时符合要求.[答案] (1)C (2)C [方法技巧]指数函数图象问题的求解策略(1)画指数函数y =a x (a >0,a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关函数图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解. [即时演练] 1.函数f (x )=2|x-1|的图象是( )解析:选B 由题意得f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝⎛⎭⎫12x -1,x <1,结合图象知,选B.2.(2018·衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析:曲线|y |=2x +1与直线y =b 的图象如图所示,由图可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].角度一:比较大小或解不等式1.(2018·滕州模拟)下列各式比较大小正确的是( ) A .1.72.5>1.73 B .0.6-1>0.62C .0.8-0.1>1.250.2 D .1.70.3<0.93.1解析:选B A 中,∵函数y =1.7x 在R 上是增函数,2.5<3,∴1.72.5<1.73,故A 错误; B 中,∵y =0.6x 在R 上是减函数,-1<2, ∴0.6-1>0.62,故B 正确;C 中,∵0.8-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2, 即0.8-0.1<1.250.2,故C 错误;D 中, ∵1.70.3>1,0<0.93.1<1, ∴1.70.3>0.93.1,故D 错误.2.(2018·绍兴模拟)设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}解析:选B ∵f (x )为偶函数, 当x <0时,f (x )=f (-x )=2-x -4.∴f (x )=⎩⎪⎨⎪⎧2x-4,x ≥0,2-x -4,x <0,若f (x -2)>0,则有⎩⎪⎨⎪⎧ x -2≥0,2x -2-4>0或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0, 解得x >4或x <0. [方法技巧](1)比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.(2)有关指数不等式问题,应注意a 的取值,及结合指数函数的性质求解. 角度二:与指数函数有关的函数值域问题3.已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.解析:令t =2x ,∵0≤x ≤2,∴1≤t ≤4,又y =22x -1-3·2x +5,∴y =12t 2-3t +5=12(t -3)2+12,∵1≤t ≤4,∴t =1时,y max =52.答案:52[方法技巧]形如y =a 2x +b ·a x +c (a >0,且a ≠1)型函数最值问题多用换元法,即令t =a x 转化为y =t 2+bt +c 的最值问题,注意根据指数函数求t 的范围.角度三:与指数函数有关的单调性问题 4.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:选B 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝⎛⎭⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减,故选B.5.已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则f (-4)与f (1)的大小关系是________________.解析:∵|x +1|≥0,函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),∴a >1.由于函数f (x )=a |x+1|在(-1,+∞)上是增函数,且它的图象关于直线x =-1对称,则函数在(-∞,-1)上是减函数,故f (1)=f (-3),f (-4)>f (1).答案:f (-4)>f (1) [方法技巧]与指数函数有关的复合函数的单调性,要弄清复合函数由哪些基本初等函数复合而成,要注意数形结合思想的运用.角度四:与指数函数有关的最值与参数问题6.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y 的最大值为( ) A .2 B.32 C .1D.12解析:选C 由a x =b y =3,可得a =31x ,b =31y, 所以23=a +b =31x +31y≥23+11x y,则1x +1y ≤1,当且仅当x =y 时,等号成立. 故1x +1y 的最大值为1.7.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )+3m 有3个零点,则实数m 的取值范围是________.解析:因为函数g (x )=f (x )+3m 有3个零点,所以函数y =f (x )的图象与直线y =-3m 有三个不同的交点,作出函数y =f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象如图所示,则0<-3m <1,所以-13<x <0. 答案:⎝⎛⎭⎫-13,01.(2013·全国卷Ⅱ)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞)D .(-1,+∞)解析:选D 法一:不等式2x (x -a )<1可变形为x -a <⎝⎛⎭⎫12x.在同一平面直角坐标系内作出直线y =x -a 与y =⎝⎛⎭⎫12x的图象.由题意,在(0,+∞)上,直线有一部分在曲线的下方.观察可知,有-a <1,所以a >-1,选D.法二:由2x (x -a )<1得a >x -12x .令f (x )=x -12x ,即a >f (x )有解,则a >f (x )mi n .又y =f (x )在(0,+∞)上递增,所以f (x )>f (0)=-1, 所以a >-1,选D.2.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 3.(2015·江苏高考)不等式2x 2-x <4的解集为________. 解析:∵2x 2-x <4,∴2x 2-x <22, ∴x 2-x <2,即x 2-x -2<0,∴-1<x <2. 答案:{x |-1<x <2}4.(2015·山东高考)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.解析:当a >1时,函数f (x )=a x+b 在[]-1,0上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.答案:-32一、选择题。
2014届高考二轮复习课件:常考问题1 函数、基本初等函数的图象与性质 (1)
满足f(a+x)=f(x)(a不等于0),则其周期T=ka(k∈Z)的绝对
值.
知识与方法 热点玉提升 审题与答题
3.求函数最值(值域)常用的方法
(1)单调性法:适合于已知或能判断单调性的函数;
(2)图象法:适合于已知或易作出图象的函数; (3)基本不等式法:特别适合于分式结构或两元的函数;
(4)导数法:适合于可求导数的函数.
0,f(1)=1,f(2)=2,所以在一个周期内有f(1)+f(2)+„+
f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+„+f(2012)= f(1)+f(2)+335×1=335+3=338,选B. 答案 (1)B (2)B
知识与方法
热点玉提升
审题与答题
热点二 函数的图象及其应用 x [例 2] (1)函数 y=2-2sin x 的图象大致是 ( ).
1 5 a=f-2=f2,当
x2>x1>1 时,[f(x2)-f(x1)](x2-
x1)<0 恒成立,等价于函数 f(x)在(1,+∞)上单调递减,所 以 b>a>c.选 D.
知识与方法
热点玉提升
审题与答题
方法点评
根据函数图象的对称性可以把位于对称轴两侧
的函数值转化为同一侧的函数值, 这样就可以使用函数在对 称轴一侧的单调性比较函数值的大小, 因此在解决比较大小 问题时这是常用的解题思路.
x≤0,
,
图象如图所示. f(x)=x 解的个数即 y=f(x)与 y=x 图象的交点个数.由图知 两图象有 A,B,C 三个交点,故方程有 3 个解.
答案 (1)D (2)3
知识与方法 热点玉提升 审题与答题
热点三
2014高考数学分类汇编(文)函数含答案(word)
高考数学分类汇编(文科) 函数1. 【2014高考安徽卷文第5题】设 1.13.13log 7,2,0.8a b c ===则( )A.c a b <<B.b a c <<C.a b c <<D.b c a <<2.【2014高考安徽卷文第11题】=++⎪⎭⎫⎝⎛54log 45log 81163343-_____3. 【2014高考安徽卷文第14题】若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛f f . 4. 【2014高考北京卷文第2题】下列函数中,定义域是R 且为增函数的是( ) A.x y e -= B.3y x = C.ln y x = D.y x = 5.【2014高考北京卷文第6题】已知函数()x xx f 2log 6-=,在下列区间中,包含()x f 的零点的区间是( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+)6. 【2014高考北京卷文第8题】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟O 5430.80.70.5t p7.【2014高考大纲卷文第12题】奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .-2B .-1C .0D .18. 【2014高考福建卷文第8题】若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是()9. 【2014高考福建卷文第15题】函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是__________.10. 【2014高考广东卷文第5题】下列函数为奇函数的是( )A.122x x -B.3sin x xC.2cos 1x +D.22xx + 11. 【2014高考湖北卷文第9题】已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 3)(2-=,则函数3)()(+-=x x f x g 的零点的集合为( )A.{1,3}B.{3,1,1,3}--C.{27,1,3}-D.{27,1,3}--12. 【2014高考湖北卷文第15题】如图所示,函数)(x f y =的图象由两条射线和三条线段组成.若R ∈∀x ,)1()(->x f x f ,则正实数a 的取值范围是 .13. 【2014高考湖南卷文第4题】下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x=2.()1B f x x =+3.()C f x x = .()2xD f x -= 14. 【2014高考湖南卷文第15题】若()()ax ex f x++=1ln 3是偶函数,则=a ____________.15. 【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .16. 【2014高考江苏卷第13题】已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 .17. 【2014高考江西卷文第4题】已知函数2,0()()2,0x x a x f x a R x -⎧⋅≥=∈⎨<⎩,若[(1)]1f f -=,则=a ( )1.4A 1.2B .1C .2D 18.【2014高考辽宁卷文第3题】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>19. 【2014高考辽宁卷文第10题】已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334--20. 【2014高考辽宁卷文第16题】对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 . 21. 【2014高考全国1卷文第5题】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数22. 【2014高考全国1卷文第15题】设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.23. 【2014高考山东卷文第3题】函数1log 1)(2-=x x f 的定义域为( )A. (0,2)B. (0,2]C. ),2(+∞D. [2,)+∞24. 【2014高考全国2卷文第15题】偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.25. 【2014高考山东卷文第5题】已知实数,x y 满足(01)xy a a a <<<,则下列关系式恒成立的是( ) A.33xy > B.sin sin x y > C.22ln(1)ln(1)x y +>+ D.221111x y >++ 26. 【2014高考山东卷文第6题】已知函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )A.1,1ac >> B.1,01a c ><< C.01,1a c <<> D.01,01a c <<<<27.【2014高考山东卷文第9题】对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是(A) ()f x x =(B) 3()f x x = (C) ()tan f x x =(D) ()cos(1)f x x =+28. 【2014高考陕西卷文第7题】下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是(A )()3f x x = (B )()3xf x = (C )()23f x x = (D )()12xf x ⎛⎫= ⎪⎝⎭29. 【2014高考陕西卷文第10题】如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为(A )321122y x x x =-- (B )3211322y x x x =+- (C )314y x x =- (D )3211242y x x x =+-30. 【2014高考陕西卷文第12题】已知42a=,lg x a =,则x =________.31. 【2014高考四川卷文第7题】已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( )A 、d ac =B 、a cd =C 、c ad =D 、d a c =+ 32. 【2014高考四川卷文第13题】设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = . 33. 【2014高考天津卷卷文第4题】设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >>34. 【2014高考天津卷卷文第12题】函数2()lg f x x =的单调递减区间是________.35. 【2014高考天津卷卷文第14题】已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f ,若()x a x f y -=恰好有4个零点,则实数a 的取值范围是________36. 【2014高考浙江卷文第7题】已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( )A.3≤cB.63≤<cC. 96≤<cD.9>c37. 【2014高考浙江卷文第8题】在同一坐标系中,函数)0()(>=x x x f a,x x g a log )(=的图象可能是( )38. 【2014高考浙江卷文第15题】设函数⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x f ,若2))((=a f f ,则=a .39. 【2014高考浙江卷文第16题】已知实数a 、b 、c 满足0=++c b a ,1222=++c b a ,则a 的最大值为为_______.40. 【2014高考重庆卷文第4题】下列函数为偶函数的是( ).()1A f x x =- 2.()B f x x x =+ .()22x xC f x -=-.()22x x D f x -=+41. 【2014高考重庆卷文第10题】已知函数13,(1,0](),()()1,1]1,(0,1]x f x g x f x mx m x x x ⎧-∈-⎪==---+⎨⎪∈⎩且在(内有且仅有两个不同的零点,则实数m的取值范围是( )A.91(,2](0,]42-- B.111(,2](0,]42-- C.92(,2](0,]43-- D.112(,2](0,]43--42. 【2014高考上海卷文第3题】设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .43. 【2014高考上海卷文第11题】若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .44.【2014高考上海卷文第18题】已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解45. 【2014高考上海文第20题】设常数0≥a ,函数aax f x x -+=22)((1)若a =4,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.高考数学分类汇编(文科) 函数答案与详解1. 【2014高考安徽卷文第5题】设 1.13.13log 7,2,0.8a b c ===则( )A.c a b <<B.b a c <<C.a b c <<D.b c a <<14.3. 【2014高考安徽卷文第14题】若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛f f .考点:1.函数的奇偶性与周期性;2.分段函数求值.4. 【2014高考北京卷文第2题】下列函数中,定义域是R 且为增函数的是( ) A.x y e -= B.3y x = C.ln y x = D.y x =6. 【2014高考北京卷文第8题】加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图记录了三次实 验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟O5430.80.70.5t p【答案】B【解析】由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数2p at bt c =++的图象上,8. 【2014高考福建卷文第8题】若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是()【答案】B 【解析】试题分析:由函数()log 0,1a y x a a =>≠且的图象可知,3,a = 所以,x y a -=,33()y x x =-=-及3log ()y x =-均为减函数,只有3y x =是增函数,选B .考点:幂函数、指数函数、对数函数的图象和性质.9. 【2014高考福建卷文第15题】函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是__________.10. 【2014高考广东卷文第5题】下列函数为奇函数的是( )A.122x x-B.3sin x xC.2cos 1x +D.22xx + 【答案】A【解析】对于A 选项中的函数()12222xx x x f x -=-=-,函数定义域为R ,()()2222x x x x f x -----=-=- ()f x =-,故A 选项中的函数为奇函数;对于B 选项中的函数()3sin g x x x =,由于函数 31y x =与函数2sin y x =均为奇函数,则函数()3sin g x x x =为偶函数;对于C 选项中的函数()2cos 1h x x =+,定义域为R ,()()()2cos 12cos 1h x x x h x -=-+=+=,故函数()2cos 1h x x =+为偶函数;(学科,网)对于D 选项中的函数()22xx x ϕ=+,()13ϕ=,()312ϕ-=,则()()11ϕϕ-≠±,因此函数()22xx x ϕ=+为非奇非偶函数,故选A.【考点定位】本题考查函数的奇偶性的判定,着重考查利用定义来进行判断,属于中等题.11. 【2014高考湖北卷文第9题】已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 3)(2-=,则函数3)()(+-=x x f x g 的零点的集合为( )A.{1,3}B.{3,1,1,3}--C.{27,1,3}-D.{27,1,3}--12. 【2014高考湖北卷文第15题】如图所示,函数)(x f y =的图象由两条射线和三条线段组成.若R ∈∀x ,)1()(->x f x f ,则正实数a 的取值范围是 .【答案】)61,0( 【解析】试题分析:依题意,⎩⎨⎧<-->1)3(30a a a ,解得610<<a ,即正实数a 的取值范围是)61,0(.考点:函数的奇函数图象的的性质、分段函数、最值及恒成立,难度中等.13. 【2014高考湖南卷文第4题】下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )21.()A f x x=2.()1B f x x =+3.()C f x x = .()2xD f x -=14. 【2014高考湖南卷文第15题】若()()ax e x f x ++=1ln 3是偶函数,则=a ____________.15. 【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 . 【答案】2(,0)2-【解析】据题意222()10,(1)(1)(1)10,f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩解得202m -<<. 【考点】二次函数的性质.16. 【2014高考江苏卷第13题】已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 .17. 【2014高考江西卷文第4题】已知函数2,0()()2,0x x a x f x a R x -⎧⋅≥=∈⎨<⎩,若[(1)]1f f -=,则=a ( )1.4A 1.2B .1C .2D【考点定位】指数函数和对数函数的图象和性质.19. 【2014高考辽宁卷文第10题】已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334--20. 【2014高考辽宁卷文第16题】对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 . 【答案】1- 【解析】试题分析:设2a b t+=,则2b t a =-,代入到22420a ab b c -+-=中,得()()2242220a a t a t a c --+--=,即221260a ta t c -+-=……①21. 【2014高考全国1卷文第5题】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数22. 【2014高考全国1卷文第15题】设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________. 【答案】(,8]-∞ 【解析】试题分析:由于题中所给是一个分段函数,则当1x <时,由12x e-≤,可解得:1ln 2x ≤+,则此时:1x <;当1x ≥时,由132x ≤,可解得:328x ≤=,则此时:18x ≤≤,综合上述两种情况可得:(,8]x ∈-∞考点:1.分段函数;2.解不等式23. 【2014高考山东卷文第3题】函数1log 1)(2-=x x f 的定义域为( )A. (0,2)B. (0,2]C. ),2(+∞D. [2,)+∞ 【答案】C【解析】由已知22log 10,log 1,x x ->>,解得2x >,故选C . 考点:函数的定义域,对数函数的性质.24. 【2014高考全国2卷文第15题】偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.25. 【2014高考山东卷文第5题】已知实数,x y 满足(01)xy a a a <<<,则下列关系式恒成立的是( ) A.33xy > B.sin sin x y >C.22ln(1)ln(1)x y+>+ D.221111x y >++ 【答案】A【解析】由(01)x y a a a <<<知,,x y >所以,33x y >,选A .考点:指数函数的性质,不等式的性质.26. 【2014高考山东卷文第6题】已知函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象如右图,则下列结论成立的是( )B.1,1ac >> B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<<7.28. 【2014高考陕西卷文第7题】下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是(B )()3f x x = (B )()3xf x = (C )()23f x x = (D )()12xf x ⎛⎫= ⎪⎝⎭【答案】B 【解析】试题分析:A 选项:由()()3f x y x y +=+,()()333()f x f y x y xy =⋅=,得()()()f x y f x f y +≠,所以A 错误;B 选项:由()3x y f x y ++=,()()333x y x y f x f y +=⋅=,得()()()f x y f x f y +=;又函数()3xf x =是定义在R 上增函数,所以B 正确;29. 【2014高考陕西卷文第10题】如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为(A )321122y x x x =-- (B )3211322y x x x =+- (C )314y x x =- (D )3211242y x x x =+-【答案】A 【解析】试题分析:由题目图像可知:该三次函数过原点,故可设该三次函数为32()y f x ax bx cx ==++,则2()32y f x ax bx c ''==++,由题得:(0)1f '=-,(2)0f =,(2)3f '= 即184201243c a b c a b c =-⎧⎪++=⎨⎪++=⎩,解得12121a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以321122y x x x =--,故选A .考点:函数的解析式.30. 【2014高考陕西卷文第12题】已知42a=,lg x a =,则x =________.31. 【2014高考四川卷文第7题】已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( )A 、d ac =B 、a cd =C 、c ad =D 、d a c =+32. 【2014高考四川卷文第13题】设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .33. 【2014高考天津卷卷文第4题】设,,log ,log 2212-===πππc b a 则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >> 【答案】C. 【解析】试题分析:因为2221122log log 21,log log 10,(0,1),a b c πππ-=>==<==∈所以b c a >>,选C.考点:比较大小34. 【2014高考天津卷卷文第12题】函数2()lg f x x =的单调递减区间是________. 【答案】(,0).-∞函数()y f x =与||y a x =有三个交点,故0.a >当0x >,2a ≥时,函数()y f x =与||y a x =有一个交点,当0x >,02a <<时,函数()y f x =与||y a x =有两个交点,当0x <时,若y ax =-与254,(41)y x x x =----<<-相切,则由0∆=得:1a =或9a =(舍),因此当0x <,1a >时,函数()y f x =与||y a x =有两个交点,当0x <,1a =时,函数()y f x =与||y a x =有三个交点,当0x <,01a <<时,函数()y f x =与||y a x =有四个交点,所以当且仅当12a <<时,函数()y f x =与||y a x =恰有4个交点. 考点:函数图像(zxxk )36. 【2014高考浙江卷文第7题】已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( )B.3≤c B.63≤<cC. 96≤<cD.9>c 【答案】C37. 【2014高考浙江卷文第8题】在同一坐标系中,函数)0()(>=x x x f a,x x g a log )(=的图象可能是( )38. 【2014高考浙江卷文第15题】设函数⎪⎩⎪⎨⎧>-≤++=0,0,22)(22x x x x x x f ,若2))((=a f f ,则=a . 【答案】2【解析】试题分析:若0≤a ,则01)1(22)(22>++=++=a a a a f ,所以2]22[22=++-a a ,无解;若0>a ,则0)(2<-=a a f ,所以22)(2)(222=+-+-a a ,解得2=a .故2=a .考点:分段函数,复合函数,容易题.39. 【2014高考浙江卷文第16题】已知实数a 、b 、c 满足0=++c b a ,1222=++c b a ,则a 的最大值为为_______.40. 【2014高考重庆卷文第4题】下列函数为偶函数的是( ).()1A f x x =- 2.()B f x x x =+ .()22x x C f x -=- .()22x x D f x -=+41. 【2014高考重庆卷文第10题】已知函数13,(1,0](),()()1,1]1,(0,1]x f x g x f x mx m x x x ⎧-∈-⎪==---+⎨⎪∈⎩且在(内有且仅有两个不同的零点,则实数m 的取值范围是( )B.91(,2](0,]42-- B.111(,2](0,]42-- C.92(,2](0,]43-- D.112(,2](0,]43-- 【答案】A.42. 【2014高考上海卷文第3题】设常数a R ∈,函数2()1f x x x a =-+-,若(2)1f =,则(1)f = .【答案】3【解析】由题意(2)121f a =+-=,则2a =,所以(1)11143f =-+-=. 【考点】函数的定义.44. 【2014高考上海卷文第11题】若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .44.【2014高考上海卷文第18题】已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解(C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解45. 【2014高考上海文第20题】设常数0≥a ,函数aa x f x x -+=22)( (3)若a =4,求函数)(x f y =的反函数)(1x f y -=;(4)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.【答案】(1)121()2log 1x f x x -+⎛⎫=+ ⎪-⎝⎭,(,1)(1,)x ∈-∞-+∞;(2)1a =时()y f x =为奇函数,当0a =时()y f x =为偶函数,当0a ≠且1a ≠时()y f x =为非奇非偶函数.【解析】试题分析:(1)求反函数,就是把函数式2424x x y +=-作为关于x 的方程,解出x ,得1()x f y -=,再把此。
2014届高考数学(理)一轮复习【配套文档】:小题专项集训(三)基本初等函数 含答案
小题专项集训(三) 基本初等函数(时间:40分钟 满分:75分)一、选择题(每小题5分,共50分)1.幂函数y =f (x )的图象经过点错误!,则f 错误!的值为( ).A .1B .2C .3D .4解析 设f (x )=x n,∴f (4)=12,即4n =错误!,∴f 错误!=错误!n =4-n =2.答案 B2.(2013·湖南长郡中学一模)设函数f (x )=错误!若f (x )〉1成立,则实数x 的取值范围是( ).A .(-∞,-2)B 。
错误!C.错误!D .(-∞,-2)∪错误!解析 当x ≤-1时,由(x +1)2〉1,得x 〈-2,当x >-1时,由2x +2>1,得x 〉-错误!,故选D.答案D3.(2013·银川一模)设函数f(x)是奇函数,并且在R上为增函数,若0≤θ≤错误!时,f(m sin θ)+f(1-m)>0恒成立,则实数m的取值范围是( ).A.(0,1) B.(-∞,0)C.错误!D.(-∞,1)解析∵f(x)是奇函数,∴f(m sin θ)〉-f(1-m)=f(m-1).又f (x)在R上是增函数,∴m sin θ>m-1,即m(1-sin θ)〈1.当θ=错误!时,m∈R;当0≤θ〈错误!时,m〈错误!。
∵0<1-sin θ≤1,∴错误!≥1.∴m〈1。
故选D.答案D4.(2013·济南模拟)已知函数f(x)是奇函数,当x>0时,f(x)=a x(a〉0且a≠1),且f错误!=-3,则a的值为().A。
3 B.3 C.9 D。
错误!解析∵f(log错误!4)=f错误!=f(-2)=-f(2)=-a2=-3,∴a2=3,解得a=±错误!,又a>0,∴a=错误!。
答案A5.(2013·福州质检)已知a=20.2,b=0。
40.2,c=0。
40。
6,则().A.a〉b〉c B.a〉c〉bC.c>a〉b D.b>c>a解析由0.2〈0.6,0.4〈1,并结合指数函数的图象可知0。
高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)
第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
此时,a 的n 次方根用符号 表示。
当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。
此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。
正的n 次方根与负的n 次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。
3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。
有理数指数幂的运算性质同样使用于无理数指数幂。
(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。
基本初等函数经典复习题+答案
必修1根本初等函数复习题求函数的定义域时列不等式组的主要依据是:⑴偶次方根的被开方数不小于零;(2)对数式的真数必须大于零;⑶分式的分母不等于零;[4〕指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法(八)定义法:①任取xι,X 2∈D,且XKX2;Q)作差千(xι)—fa);(3)变形〔通常是因式分解和配方];④定号[即判断差千(x∣)-f(x2)的正负〕;@下结论[指出函数f(x)在给定的区间D 上的单调性].(B)图象法(从图象上看升降)⑹复合函数的单调性:复合函数Hg"]的单调性与构成它的函数u=g(x),y 二人。
的单调性密切相关,其规律:"同增异减〃 1、以下函数中,在区间(0,÷oo)不是增函数的是()1、暴的运算性质 〔1〕a r ∙a s = a r+s (r,5 ∈ R); 〔3〕a r ∙b r = (ab)r (r ∈ R) 2对数的运算性质 如果 α>0,且 awl, M >0, ① Iog“(M ・N)= Iogq M +log” N ; ③ IOg“M" =〃Iog"M,(Y ∈R). 换底公式:log” b = l°g 。
■ 〔 a IogC α(1)log b n= —log rt ⅛ ; [2 〃7 〔2〕S)' =α" ; (r,StR)(4)a" =yja n, (a>0,m,n E N ∖n> 1) a' = N Q IOga N = x N>0,那么:② log 噂=log” M Tog” N ;④ IOgQl= O, bg" = lO,且 awl ; c>0,且 CW1; b>0〕 log” b =; ---- ∙log/y = a x a>1 0<a<1 y = Iog tj X a>1 II0<a<1定义域R 值域y>0 在R 上单调递增 非奇非偶函数 函数图象都过定点[0, 1〕 3、定义域: 定义域R 值域y>0 在R 上单调递减 非奇非偶函数 函数图象都过定点〔〕 定义域x>0 值域为R在R 上递增 非奇非偶函数 函数图象都过定点定义域x>0值域为R 在R 上递减 非奇非偶函数 函数图象都过定点[1, 能使函数式有意义的实数X 的集合称为函数的定义域。
【高考复习】高考数学(理数)2014-2018年5年真题分类第02章函数的概念与基本初等函数Ⅰ(含答案解析)
D. y=ex- e-x
y
=
x
e
-
e
-x
为奇函数,故选
D.]
8.(2015 ·广东, 3) 下列函数中,既不是奇函数,也不是偶函数的是
(
)
A. y= x+ ex
1 B. y= x+x C.
y=
2
x+
1 2x
D.
y= 1+ x2
8.A [ 令 f ( x) = x+ex,则 f (1) = 1+ e,f ( - 1) =- 1+ e-1,即 f ( - 1) ≠ f (1) ,f ( -1) ≠-
3. D ∵函数 f ( x)为奇函数.若 f ( 1)=﹣ 1,则 f (﹣ 1) =1,又∵函数 f ( x)在(﹣
∞, +∞)单调递减,﹣ 1≤ f ( x﹣ 2)≤ 1,∴ f ( 1)≤ f ( x﹣ 2)≤ f (﹣ 1),∴﹣ 1≤ x﹣ 2
≤1,解得: x∈ [1 ,3] ,故选 D.
5.(2016 ·山东,9) 已知函数 f ( x) 的定义域为 R, 当 x<0 时 , f ( x) = x3-1 ;当 -1 ≤ x≤ 1 时,f (- x)
1 =- f ( x) ;当 x>2时, f
1
x+ 2
=f
1
x- 2
,则
f (6)
=(
)
A. - 2
B. - 1
C.0
D.2
5.D [
1 当 x>2时, f
f ( x2+ 2x) = | x+
1|
π
π
4.D [ 排除法, A 中,当 x1= 2 , x2=- 2 时, f (sin 2 x1) = f (sin 2 x2) = f (0) ,而 sin x1
2014年北京市北大附中高考数学二轮专题训练:函数概念与基本初等函数(ⅰ)(理科)(含详细答案解析)
2014年北京市北大附中高考数学二轮专题训练:函数概念与基本初等函数(Ⅰ)(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设函数f(x)=(2a﹣1)x+b是R上的减函数,则有()A.B.C.D.2.(5分)已知a=,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a3.(5分)函数﹣sinx在区间[0,2π]上的零点个数为()A.1个 B.2个 C.3个 D.4个4.(5分)已知,则f(3)=()A.3 B.2 C.1 D.45.(5分)函数f(x)=的定义域是()A.(0,2) B.(0,1)∪(1,2)C.(0,2]D.(0,1)∪(1,2]6.(5分)函数的零点所在区间是()A. B.C.D.7.(5分)已知函数在区间D上的反函数是它本身,则D可以是()A.〔﹣l,l〕B.〔0,1〕 C.(0,)D.〔,1〕8.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)9.(5分)函数的定义域为()A.(﹣4,﹣1)B.(﹣4,1)C.(﹣1,1)D.(﹣1,1]10.(5分)设定义域、值域均为R的函数y=f(x)的反函数y=f﹣1(x),且f(x)+f(﹣x)=2,则f﹣1(x﹣1)+f﹣1(3﹣x)的值为()A.2 B.0 C.﹣2 D.2x﹣411.(5分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|12.(5分)已知函数f(x)=x2+bx+c,且f(﹣3)=f(1).则()A.f(1)<c<f(﹣1)B.f(1)>c>f(﹣1)C.f(1)<f(﹣1)<c D.f(1)>f(﹣1)>c二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.(5分)已知函数f(x)=(x∈R)时,则下列结论正确的是(1)∀x∈R,等式f(﹣x)+f(x)=0恒成立(2)∃m∈(0,1),使得方程|f(x)|=m有两个不等实数根(3)∀x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2)(4)∃k∈(1,+∞),使得函数g(x)=f(x)﹣kx在R上有三个零点.14.(5分)设,若f(f(1))=1,则a=.15.(5分)已知函数在[0,3]上单调递增,则实数a的取值范围为.16.(5分)已知函数f(x)=在区间(﹣2,+∞)上为增函数,则a的取值范围是.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知函数f(x)=kx2+(3+k)x+3,其中k为常数,且k≠0.(1)若f(2)=3,求函数f(x)的表达式;(2)在(1)的条件下,设函数g(x)=f(x)﹣mx,若g(x)在区间[﹣2,2]上是单调函数,求实数m的取值范围;(3)是否存在k使得函数f(x)在[﹣1,4]上的最大值是4?若存在,求出k 的值;若不存在,请说明理由.18.(12分)已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数,求实数m的值.19.(12分)已知函数f(x)=log(a为常数).(1)若常数0<a<2,求f(x)的定义域;(2)若f(x)在区间(2,4)上是减函数,求a的取值范围.20.(12分)定义在实数集上的函数f(x)对任意x,y∈R,有f(x+y)+f(x﹣y)=2f(x)•f(y),且f(0)≠0,(1)求证:f(0)=1(2)求证:y=f(x)是偶函数.21.(12分)设f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,求证:(Ⅰ)a>0且;(Ⅱ)方程f(x)=0在(0,1)内有两个实根.22.(12分)已知≤a≤1,若f(x)=ax2﹣2x+1在区间[1,3]上的最大值M(a),最小值N(a),设g(a)=M(a)﹣N(a).(1)求g(a)的解析式;(2)判断g(a)单调性,求g(a)的最小值.2014年北京市北大附中高考数学二轮专题训练:函数概念与基本初等函数(Ⅰ)(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设函数f(x)=(2a﹣1)x+b是R上的减函数,则有()A.B.C.D.【分析】根据一次函数的单调性由x的系数可得2a﹣1<0,解可得答案.【解答】解:∵函数f(x)=(2a﹣1)x+b是R上的减函数,则2a﹣1<0∴a<故选:B.【点评】本题主要考查一次函数的单调性.2.(5分)已知a=,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a【分析】利用指数函数的单调性即可判断出.【解答】解:∵,∴b>c>a.故选:A.【点评】熟练掌握指数函数的单调性是解题的关键.3.(5分)函数﹣sinx在区间[0,2π]上的零点个数为()A.1个 B.2个 C.3个 D.4个【分析】解:令f(x)=0,则x=sinx,原问题在区间[0,2π]上的零点个数就转化为两个函数y=x和y=sinx的交点问题,分别画出它们的图象,由图知交点个数.【解答】解:令f(x)=0,则x=sinx,上的零点个数就转化为两个函数y=x和y=sinx的交点问题,分别画出它们的图象:由图知交点个数是2.故选:B.【点评】利用函数的图象可以加强直观性,同时也便于问题的理解.本题先由已知条件转化为确定f(x)的解析式,再利用数形结合的方法判断方程根的个数.4.(5分)已知,则f(3)=()A.3 B.2 C.1 D.4【分析】根据解析式先求出f(3)=f(5),又因5<6,进而求出f(5)=f(7),由7>6,代入第一个关系式进行求解.【解答】解:根据题意得,f(3)=f(5)=f(7)=7﹣4=3,故选:A.【点评】本题考查了分段函数求函数的值,根据函数的解析式和自变量的范围,代入对应的关系式进行求解,考查了观察问题能力.5.(5分)函数f(x)=的定义域是()A.(0,2) B.(0,1)∪(1,2)C.(0,2]D.(0,1)∪(1,2]【分析】根据函数的结构可以得到限制条件:分母不为零;真数大于零;被开方式大于等于零三个限制条件,再分别求解取交集即可.【解答】解:要使函数f(x)有意义,只需要,解得0<x<1或1<x≤2,所以定义域为(0,1)∪(1,2].故选:D.【点评】考察函数定义域的求解,只要掌握住常考察的形式对应的限制方式,求解时再细心点,这类题的分值就能把握住了.6.(5分)函数的零点所在区间是()A. B.C.D.【分析】如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.据此可判断出有零点的区间.【解答】解:∵f(1)=0,f()=﹣>0,f()=﹣<0.∴,根据函数零点的判断定理可知:函数在区间内一定有零点.故选:C.【点评】理解函数零点的判断定理是解题的关键.7.(5分)已知函数在区间D上的反函数是它本身,则D可以是()A.〔﹣l,l〕B.〔0,1〕 C.(0,)D.〔,1〕【分析】由题设条件,可以先求出函数的定义域,再观察四个选项,那一个的范围包含在所求的集合内,则其必为D.【解答】解:由题意0≤1﹣x2,故得﹣1≤x≤1,且函数的值域为[0,1]又函数在区间D上的反函数是其本身,故函数必为一单调函数且自变量与函数值取值范围相同由此知M=(0,1)故选:B.【点评】本题考点是反函数,考查具有反函数的函数本身所具有的特征,即其为一一对应的函数,本题中所给的函数为一偶函数,故可先求出其定义域再由题设要求反函数与原函数为同一函数得出符合条件的区间.8.(5分)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(,)B.(﹣,0)C.(0,)D.(,)【分析】根据导函数判断函数f(x)=e x+4x﹣3单调递增,运用零点判定定理,判定区间.【解答】解:∵函数f(x)=e x+4x﹣3∴f′(x)=e x+4当x>0时,f′(x)=e x+4>0∴函数f(x)=e x+4x﹣3在(﹣∞,+∞)上为f(0)=e0﹣3=﹣2<0f()=﹣1>0f()=﹣2=﹣<0∵f()•f()<0,∴函数f(x)=e x+4x﹣3的零点所在的区间为(,)故选:A.【点评】本题考察了函数零点的判断方法,借助导数,函数值,属于中档题.9.(5分)函数的定义域为()A.(﹣4,﹣1)B.(﹣4,1)C.(﹣1,1)D.(﹣1,1]【分析】由题意知,解得﹣1<x<1,由此能求出函数的定义域.【解答】解:由题意知,函数的定义域为,解得﹣1<x<1,故选:C.【点评】本题考查对数函数的定义域,解题时要注意不等式组的解法.10.(5分)设定义域、值域均为R的函数y=f(x)的反函数y=f﹣1(x),且f(x)+f(﹣x)=2,则f﹣1(x﹣1)+f﹣1(3﹣x)的值为()A.2 B.0 C.﹣2 D.2x﹣4【分析】利用互为反函数的定义域与值域互换的性质即可得出.【解答】解:∵x﹣1+3﹣x=2,f(x)+f(﹣x)=2,∴f﹣1(x﹣1)与f﹣1(3﹣x)互为相反数,∴f﹣1(x﹣1)+f﹣1(3﹣x)=0.故选:B.【点评】本题考查了互为反函数的定义域与值域互换的性质,属于基础题.11.(5分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.y= D.y=x|x|【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【解答】解:A.y=x+1为非奇非偶函数,不满足条件.B.y=﹣x2是偶函数,不满足条件.C.y=是奇函数,但在定义域上不是增函数,不满足条件.D.设f(x)=x|x|,则f(﹣x)=﹣x|x|=﹣f(x),则函数为奇函数,当x>0时,y=x|x|=x2,此时为增函数,当x≤0时,y=x|x|=﹣x2,此时为增函数,综上在R上函数为增函数.故选:D.【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性,比较基础.12.(5分)已知函数f(x)=x2+bx+c,且f(﹣3)=f(1).则()A.f(1)<c<f(﹣1)B.f(1)>c>f(﹣1)C.f(1)<f(﹣1)<c D.f(1)>f(﹣1)>c【分析】根据条件f(﹣3)=f(1).可得函数的对称轴为x=﹣1,然后根据函数的单调性和对称轴之间的关系即可得到结论.【解答】解:∵函数f(x)=x2+bx+c,且f(﹣3)=f(1).∴函数的对称轴为x=﹣1,且f(0)=c.∴函数f(x)在[﹣1,+∞)上单调递增.∴f(﹣1)<f(0)<f(1),即f(1)>c>f(﹣1),故选:B.【点评】本题主要考查二次函数的图象和性质,根据条件确定二次函数的对称性是解决本题的关键.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.(5分)已知函数f(x)=(x∈R)时,则下列结论正确的是(1)(2)(3)(1)∀x∈R,等式f(﹣x)+f(x)=0恒成立(2)∃m∈(0,1),使得方程|f(x)|=m有两个不等实数根(3)∀x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2)(4)∃k∈(1,+∞),使得函数g(x)=f(x)﹣kx在R上有三个零点.【分析】根据题意,依次分析命题:将﹣x代替x求出f(﹣x),判断出(1)对;通过分离参数,判断出f(x)在[0,+∞)上的单调性及值域判断出(2)对;通过对(1)(2)的推导过程得到f(x)在R上单调,判断出(3)对,通过另g(x)=0,分离出k,求出k的范围,判断出(4)错;即可得答案.【解答】解:∵函数f(x)=,∴f(﹣x)+f(x)=+=+=0恒成立,故(1)正确;∵函数f(x)=(x∈R)的在R上单调递增,且值域为(﹣1,1)∴函数y=|f(x)|在(﹣∞,0]上单调递减,在[0,+∞)上单调递增,且值域为[0,1)∴∀m∈(0,1),方程|f(x)|=m均有两个不等实数根,故(2)正确;由(1)知f(x)是奇函数,由(2)的推导知,f(x)在R上单调递增,所以∀x1,x2,若x1≠x2,则f(x1)≠f(x2),故(3)正确.令g(x)=0即f(x)﹣kx=0即k=≤1,所以当k∈(1,+ϖ),使得函数g (x)=f(x)﹣kx在R上无零点,故(4)错误.故答案为:(1)(2)(3)【点评】本题考查判断函数零点的个数常转化为求函数的值域、对于含绝对值的函数的处理方法常利用绝对值的意义去掉绝对值转化为分段函数处理.14.(5分)设,若f(f(1))=1,则a=1.【分析】由题意可得,f(1)=lg1=0,则f(f(1))=f(0)===a3,代入可求a【解答】解:由题意可得,f(1)=lg1=0∴f(f(1))=f(0)===a3∴a3=1即a=1故答案为1【点评】本题主要考查了分段函数的函数值的求解,解题的关键是对已知积分的求解,属于中档试题15.(5分)已知函数在[0,3]上单调递增,则实数a的取值范围为(0,).【分析】将原函数f(x)=log a(3﹣ax2)看作是函数:y=log aμ,μ=3﹣ax2的复合函数,利用对数函数与二次函数的单调性来研究即可.注意对数的真数必须大于0.【解答】解:设μ=3﹣ax2,则原函数f(x)=log a(3﹣ax2)是函数:y=log aμ,μ=3﹣ax2的复合函数,①当a>1时,y=log a u在(0,+∞)上是增函数,而函数μ=3﹣ax2在[0,3]上是减函数,根据复合函数的单调性,得函数f(x)在[0,3]上单调递减,与题意不符;②当0<a<1时,y=log a u在(0,+∞)上是减函数,函数μ=3﹣ax2在[0,3]上是减函数,根据复合函数的单调性,得函数f(x)在[0,3]上单调递增,且μ=3﹣ax2>0在[0,3]上恒成立,所以有,解得0<a<.综①②,得实数a的取值范围为(0,).故答案为:(0,).【点评】本题考查复合函数的单调性,对数函数的单调性,二次函数的单调性.是基础题.熟练掌握基本初等函数的单调性及其单调区间,理解并掌握判断复合函数单调性的方法:同增异减.16.(5分)已知函数f(x)=在区间(﹣2,+∞)上为增函数,则a的取值范围是{a|a>} .【分析】把函数f(x)解析式进行常数分离,变成一个常数和另一个函数g(x)的和的形式,由函数g(x)在(﹣2,+∞)为增函数得出1﹣2a<0,从而得到实数a的取值范围.【解答】解:∵函数f(x)==a+,结合复合函数的增减性,再根据f(x)在(﹣2,+∞)为增函数,可得g(x)=在(﹣2,+∞)为增函数,∴1﹣2a<0,解得a>,故答案为:{a|a>}.【点评】本题考查利用函数的单调性求参数的范围,属于基础题.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知函数f(x)=kx2+(3+k)x+3,其中k为常数,且k≠0.(1)若f(2)=3,求函数f(x)的表达式;(2)在(1)的条件下,设函数g(x)=f(x)﹣mx,若g(x)在区间[﹣2,2]上是单调函数,求实数m的取值范围;(3)是否存在k使得函数f(x)在[﹣1,4]上的最大值是4?若存在,求出k 的值;若不存在,请说明理由.【分析】(1)由f(2)=3,可得k的值,从而可得函数f(x)的表达式;(2)g(x)=f(x)﹣mx=﹣x2+(2﹣m)x+3,函数的对称轴为x=,根据g(x)在区间[﹣2,2]上是单调函数,可得或,从而可求实数m 的取值范围;(3)f(x)=kx2+(3+k)x+3的对称轴为,分类讨论,确定函数图象开口向上,函数f(x)在[﹣1,4]上的单调性,利用最大值是4,建立方程,即可求得结论.【解答】解:(1)由f(2)=3,可得4k+2(3+k)+3=3,∴k=﹣1∴f(x)=﹣x2+2x+3;(2)由(1)得g(x)=f(x)﹣mx=﹣x2+(2﹣m)x+3,函数的对称轴为x=∵g(x)在区间[﹣2,2]上是单调函数,∴或∴m≤﹣2或m≥6;(3)f(x)=kx2+(3+k)x+3的对称轴为①k>0时,函数图象开口向上,,此时函数f(x)在[﹣1,4]上的最大值是f(4)=16k+(3+k)×4+3=20k+15=4,∴,不合题意,舍去;②k<0时,函数图象开口向下,,1°若,即时,函数f(x)在[﹣1,4]上的最大值是f()=∴k2+10k+9=0,∴k=﹣1或k=﹣9,符合题意;2°若,即时,函数f(x)在[﹣1,4]上递增,最大值为f(4)=16k+(3+k)×4+3=20k+15=4,∴,不合题意,舍去;综上,存在k使得函数f(x)在[﹣1,4]上的最大值是4,且k=﹣1或k=﹣9.【点评】本题考查函数解析式的确定,考查二次函数的单调性与最值,考查分类讨论的数学思想,正确分类是关键.18.(12分)已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数,求实数m的值.【分析】由幂函数在(0,+∞)上是减函数,知m2﹣2m﹣3<0,由此能求出实数m的值.【解答】解:∵幂函数在(0,+∞)上是减函数,∴m2﹣2m﹣3<0,∴﹣1<m<3,又∵m∈N*,∴m=0,1,2,又∵图象关于y轴对称,当m=0时,y=x﹣3是奇函数,图象关于原点对称,故m=0不成立;当m=1时,y=x﹣4是偶函数,图象关于y轴对称,故m=1成立;当m=2时,y=x﹣3是奇函数,图象关于原点对称,故m=2不成立;∴m=1.【点评】本题考查幂函数的图象及其与指数的关系,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.19.(12分)已知函数f(x)=log(a为常数).(1)若常数0<a<2,求f(x)的定义域;(2)若f(x)在区间(2,4)上是减函数,求a的取值范围.【分析】(1)结合a的取值范围求不等式的解集;(2)利用换元法讨论函数的单调性从而求最值.【解答】解:(1)由,当0<a<2时,解得x<1或x>,故当0<a<2时,f(x)的定义域为{x|x<1或x>}(2)令,因为f((x)log u为减函数,故要使f(x)在(2,4)上是减函数,=a+在(2,4)上为增函数且为正值.故有≥0,∴1≤a<2.【点评】本题主要考查函数的定义域和函数的单调性,属于基础题.20.(12分)定义在实数集上的函数f(x)对任意x,y∈R,有f(x+y)+f(x﹣y)=2f(x)•f(y),且f(0)≠0,(1)求证:f(0)=1(2)求证:y=f(x)是偶函数.【分析】本题考查的是抽象函数及其应用类问题.在解答时:(1)在抽象表达式中令x=y=0代入表达式即可获得问题的解答;(2)在抽象表达式中令x=0,y不动,结合(1)的结论即可获得f(﹣y)与f(y)之间的关系,从而获得函数的奇偶性.【解答】解:(1)令x=y=0则有f(0)+f(0)=2f(0)f(0)即2f(0)=2f(0)f(0),因为f(0)≠0,所以f(0)=1.(2)令x=0则有f(y)+f(﹣y)=2f(0)f(y),∴f(﹣y)=f(y),所以y=f(x)是偶函数.【点评】本题考查的是抽象函数及其应用类问题.在解答的过程当中充分体现了抽象表达式的应用能力、特值的问题处理技巧以及必要的计算能力.同时函数的奇偶性定义也在题目中得到了体现.值得同学们体会和反思.21.(12分)设f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,求证:(Ⅰ)a>0且;(Ⅱ)方程f(x)=0在(0,1)内有两个实根.【分析】(I)先将f(0)>0,f(1)>0,利用函数式中的a,b,c进行表示,再结合等式关系利用不等式的基本性质即可得到a和的范围即可.(II)欲证明方程f(x)=0在(0,1)内有两个实根,根据根的存在性定理,只须证明某一个函数值小于0即可,最后只须证明在二次函数顶点处的函数值小于0即可.【解答】解:证明:(I)因为f(0)>0,f(1)>0,所以c>0,3a+2b+c>0.由条件a+b+c=0,消去b,得a>c>0;由条件a+b+c=0,消去c,得a+b<0,2a+b>0.故.(II)抛物线f(x)=3ax2+2bx+c的顶点坐标为,在的两边乘以,得.又因为f(0)>0,f(1)>0,而,所以方程f(x)=0在区间与内分别有一实根.故方程f(x)=0在(0,1)内有两个实根.【点评】本题主要考查二次函数的基本性质与不等式的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.22.(12分)已知≤a≤1,若f(x)=ax2﹣2x+1在区间[1,3]上的最大值M(a),最小值N(a),设g(a)=M(a)﹣N(a).(1)求g(a)的解析式;(2)判断g(a)单调性,求g(a)的最小值.【分析】(1)根据已知条件a>0,知函数是二次函数,其图象是开口向上的抛物线.因此讨论对称轴:x=与区间[1,3]的关系,得到函数的单调性后再找出相应的最值,即可得g(a)的解析式;(2)通过求导数,讨论其正负,可得到函数g(a)在区间[,]上单调减,而在(,1]上单调增,因此不难得出g(a)的最小值为g()=.【解答】解:(1)当≤a≤时N(a)=f(),M(a)=f(1),此时g(a)=f(1)﹣f()=a+﹣2;当<a≤1时N(a)=f(),M(a)=f(3),此时g(a)=f(3)﹣f()=9a+﹣6;∴g(a)=…(6分)(2)当≤a≤时,∵g(a)=a+﹣2,∴g′(a)=1﹣<0,∴g(a)在[,]上单调递减.同理可知g(a)在(,1]上单调递增∴g(a)min=g()=.…(12分)【点评】本题考查了二次函数在闭区间上的最值问题,属于基础题.研究二次函数的最值的关键是用其图象,或用导数研究它的单调性.。
2014各省高考函数试题及答案
2014年各省高考函数试题1.[2014·安徽卷] 设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( A )A.12B.32 C .0 D .-122.、[2014·北京卷] 下列函数中,在区间(0,+∞)上为增函数的是( A ) A .y =x +1 B .y =(x -1)2C .y =2-x D .y =log 0.5(x +1)3、[2014·福建卷] 已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是(D )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 4.[2014·江西卷] 函数f (x )=ln(x 2-x )的定义域为( C ) A .(0,1] B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)5.,[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为(C )A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞)6.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=____1____. 7.[2014·湖南卷] 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( C )A .-3B .-1C .1D .3 8.[2014·新课标全国卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( C )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 9.[2014·新课标全国卷Ⅱ] 已知偶函数f (x )在[0,+∞)单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围是_______(-1,3)_.10.、[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是____]2,(-∞____.11.、、[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-1所示,则下列函数图像正确的是( B )图1-1A BC D 图1-2 12.[2014·江西卷] 已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f [g (1)]=1,则a =( A ) A .1 B .2 C .3 D .-113.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则(C )A .a >b >cB .a >c >bC .c >a >bD .c >b >a 14.,[2014·山东卷] 设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( C ) A .[0,2] B .(1,3) C .[1,3) D .(1,4) 15.,,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( D )A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 3 16.[2014·陕西卷] 下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( D+ ) A .f (x )=x 12 B .f (x )=x 3C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x17.[2014·陕西卷] 已知4a =2,lg x =a ,则x =__10______.18.、[2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=____50____.19.[2014·天津卷] 函数f (x )=log 12(x 2-4)的单调递增区间为( D)A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 20.、[2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( D )A BC D 图1-2 图1-2 21.[2014·重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为_____41-___.22.[2014·湖北卷] 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( B )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-33,33 23.[2014·山东卷] 已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( B )A. ⎝⎛⎭⎫0,12B. ⎝⎛⎭⎫12,1 C. (1,2) D. (2,+∞)24.、[2014·湖南卷] 已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( B )A .(-∞,1e) B .(-∞,e)C.⎝⎛⎭⎫-1e ,eD.⎝⎛⎭⎫-e ,1e 25.[2014·天津卷] 已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为__()()+∞⋃,91,0______.26.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( C )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9 30.[2014·湖南卷] 某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( D )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1 27.[2014·陕西卷] 如图1-2,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( A )图1-2A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x28.、[2014·湖北卷] 设f (x )是定义在(0,+∞)上的函数,且f (x )>0,对任意a >0,b >0,若经过点(a ,f (a )),(b ,-f (b ))的直线与x 轴的交点为(c ,0),则称c 为a ,b 关于函数f (x )的平均数,记为M f (a ,b ),例如,当f (x )=1(x >0)时,可得M f (a ,b )=c =a +b2,即M f (a ,b )为a ,b的算术平均数.(1)当f (x )=_X _______(x >0)时,M f (a ,b )为a ,b 的几何平均数;(2)当f (x )=x______(x >0)时,M f (a ,b )为a ,b 的调和平均数2aba +b.(以上两空各只需写出一个符合要求的函数即可) 33.、[2014·辽宁卷] 已知定义在[0,1]上的函数f (x )满足: ①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )-f (y )|<12|x -y |.若对所有x ,y ∈[0,1],|f (x )-f (y )|<k 恒成立,则k 的最小值为( B ) A.12 B.14 C.12π D.1829.[2014·浙江卷] 设函数f 1(x )=x 2,f 2(x )=2(x -x 2),f 3(x )=13|sin 2πx |,a i =i99,i =0,1,2,…,99.记I k =|f k (a 1)-f k (a 0)|+|f k (a 2)-f k (a 1)|+…+|f k (a 99)-f k (a 98)|,k =1,2,3,则( B )A .I 1<I 2<I 3B .I 2<I 1<I 3C .I 1<I 3<I 2D .I 3<I 2<I 130.[2014·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2, x ≥0.若f [f (a )]≤2,则实数a 的取值范围是_(]2,-∞_______. 31.[2014·黄冈中学期末] 已知f (x )是定义在R 上以2为周期的偶函数,且当0≤x ≤1时,f (x )=log 12(1-x ),则f ⎝⎛⎭⎫-20114=( D ) A .-2 B.12C .1D .232.[2014·青岛期中] 若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则a 的取值范围是(B )A .a >15B .a >15或a <-1C .-1<a <15D .a <-133.[2014·成都检测] 定义在R 上的函数y =f (x ),f (0)≠0,当x >0时,f (x )>1,且对任意的a ,b ∈R ,有f (a +b )=f (a )f (b ).(1)求证:f (0)=1;(2)求证:对任意的x ∈R ,恒有f (x )>0; (3)若f (x )f (2x -x 2)>1,求x 的取值范围.()3,0。
基本初等函数(含有详解答案)
基本初等函数一、单项选择1. 已知幂函数)(x f y =的图象经过点(2,2),则=)4(f ( ) A.2 B.21 C.22 D.22 2. 下列式子正确的是( )A.2log 20=B.lg101=C.2510222⨯=122-=3. 函数y =3x 与y =-3-x 的图象关于下列哪种图形对称( )A .x 轴B .y 轴C .直线y =xD .原点中心对称4. 函数x e y -=的图象A.与x e y =的图象关于y 轴对称B.与x e y =的图象关于坐标原点对称C.与x e y -=的图象关于 y 轴对称D.与x e y -=的图象关于坐标原点对称5. 下列不等式中错误的是 ( )A 、B 、C 、D 、2log 3log 22>>>6. 若函数f(x)=log a (x +b)的大致图象如图所示,其中a ,b(a>0且a ≠1)为常数,则函数g(x)=a x +b 的大致图象是( )7. 若函数f (x )=log a (x 2-ax +3)(a >0且a ≠1),满足对任意的x 1、x 2,当x 1<x 2≤a 2时,f (x 1)-f (x 2)>0,则实数a 的取值范围为( )A .(0,1)∪(1,3)B .(1,3)C .(0,1)∪(1,23)D .(1,23)8. 设min{, }p q 表示p ,q 两者中的较小的一个,若函数221()min{3log , log }2f x x x =-,则满足()1f x <的x 的集合为 ( )A.(0,B. (0,+∞)C. ),16()2,0(+∞⋃D.),161(+∞ 9. 已知函数f(x)=)x (log 12+,若f(α)=1,则α=( )A .0B .1C .2D .310. 设全集I =R ,集合A ={y |y =x 2-2},B ={x |y =log 2(3-x )},则A )∩B 等于( )A .[-2,3)B .(-∞,-2]C .(-∞,3)D .(-∞,-2)11. 函数)34(log 1)(22-+-=x x x f 的定义域为( ) A.(1,2)(2,3) B.(,1)(3,)-∞+∞C.(1,3)D.[1,3]12. 电视台应某企业之约播放两套连续剧.其中,连续剧甲每次播放时间为80 min ,其中广告时间为1 min ,收视观众为60万;连续剧乙每次播放时间为40 min ,其中广告时间为1 min ,收视观众为20万.已知该企业与电视台达成协议,要求电视台每周至少播放6 min 广告,而电视台每周只能为该企业提供不多于320 min 的节目时间.则该电视台通过这两套连续剧所获得的收视观众最多为( )A .220万B .200万C .180万D .160万二、填空题13. 将一张厚度为0.04mm 的白纸对折至少 次(假设可能的话),其高度就可以超过珠穆朗玛峰的高度(8848m).14. 设530753801615625.a .,b .,c .,===则a,b,c 从小到大的关系为___________. 15. 已知1414log 7,log 5,a b ==则用,a b 表示35log 28= 。
2014届高考数学常考问题1 函数、基本初等函数的图象与性质
第一部分 17个常考问题专项突破常考问题1 函数、基本初等函数的图象与性质(建议用时:50分钟)1.(2013·北京卷)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ).A .y =1xB .y =e -xC .y =-x 2+1D .y =lg |x | 解析 y =1x 为奇函数;y =e -x 为非奇非偶函数;函数y =-x 2+1是偶函数,且在(0,+∞)上递减.答案 C2.设函数f (x )=⎩⎨⎧x ,x ≥0, -x ,x <0,若f (a )+f (-1)=2,则a 等于 ( ).A .-3B .±3C .-1D .±1 解析 依题意,得f (a )=2-f (-1)=2--(-1)=1.当a ≥0时,有 a =1,则a =1;当a <0时,有-a =1,a =-1.综上所述,a =±1.答案 D3.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是 ( ).解析 因为函数f (x ),g (x )都为偶函数,所以f (x )·g (x )也为偶函数.所以图象关于y 轴对称,排除A ,D.f (x )·g (x )=(-x 2+2)log 2|x |,当0<x <1时,f (x )·g (x )<0,排除B ,选C.答案 C4.(2013·天津卷)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2 a )+f (log 12a )≤2f (1),则a 的取值范围是( ). A .[1,2]B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]解析 ∵f (x )在R 上是偶函数,∴f ⎝ ⎛⎭⎪⎫log 12a =f (-log 2a )=f (log 2a ), 由题设,得2f (log 2a )≤2f (1),即f (log 2a )≤f (1),又f (x )在[0,+∞)上单调递增,∴|log 2a |≤1,解之得12≤a ≤2.答案 C5.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则下列结论中正确的是 ( ).A .f (4.5)<f (7)<f (6.5)B .f (7)<f (4.5)<f (6.5)C .f (7)<f (6.5)<f (4.5)D .f (4.5)<f (6.5)<f (7)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.∴f (4.5)=f ⎝ ⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12,f (7)=f (4+3)=f (3)=f (1), f (6.5)=f ⎝ ⎛⎭⎪⎫4+52=f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫32. 又f (x )在[0,2]上为增函数.所以f ⎝ ⎛⎭⎪⎫32>f (1)>f ⎝ ⎛⎭⎪⎫12,故有f (4.5)<f (7)<f (6.5).答案 A6.已知f (x )=ln(1+x )的定义域为集合M ,g (x )=2x +1的值域为集合N ,则M ∩N =________.解析 由对数与指数函数的知识,得M =(-1,+∞),N =(1,+∞),故M ∩N =(1,+∞).答案 (1,+∞)7.(2013·济南模拟)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.解析 f ′(x )=3x 2+1>0,∴f (x )在R 上为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知,f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0,令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,可得⎩⎨⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23. 答案 ⎝ ⎛⎭⎪⎫-2,23 8.已知函数y =f (x )是R 上的偶函数,对∀x ∈R 都有f (x +4)=f (x )+f (2)成立.当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2<0,给出下列命题: ①f (2)=0;②直线x =-4是函数y =f (x )图象的一条对称轴;③函数y =f (x )在[-4,4]上有四个零点;④f (2 014)=0.其中所有正确命题的序号为________.解析 令x =-2,得f (-2+4)=f (-2)+f (2),解得f (-2)=0,因为函数f (x )为偶函数,所以f (2)=0,①正确;因为f (-4+x )=f (-4+x +4)=f (x ),f (-4-x )=f (-4-x +4)=f (-x )=f (x ),所以f (-4+x )=f (-4-x ),即x =-4是函数f (x )的一条对称轴,②正确;当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2<0,说明函数f (x )在[0,2]上是单调递减函数,又f (2)=0,因此函数f (x )在[0,2]上只有一个零点,由偶函数知函数f (x )在[-2,0]上也只有一个零点,由f (x +4)=f (x ),知函数的周期为4,所以函数f (x )在(2,6]与[-6,-2)上也单调且有f (6)=f (-6)=0,因此,函数在[-4,4]上只有2个零点,③错;对于④,因为函数的周期为4,即有f (2)=f (6)=f (10)=…=f (2 014)=0,④正确.答案 ①②④9.已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )的图象上任意一点P 关于原点对称的点Q 的轨迹恰好是函数f (x )的图象.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围.解 (1)设P (x ,y )为g (x )图象上任意一点,则Q (-x ,-y )是点P 关于原点的对称点,因为Q (-x ,-y )在f (x )的图象上,所以-y =log a (-x +1),即y =-log a (1-x )(x <1).所以g (x )=-log a (1-x )(x <1).(2)f (x )+g (x )≥m ,即log a 1+x 1-x≥m . 设F (x )=log a 1+x 1-x,x ∈[0,1). 由题意知,只要F (x )min ≥m 即可.因为F (x )在[0,1)上是增函数,所以F (x )min =F (0)=0.故m 的取值范围是(-∞,0].10.已知二次函数f (x )=ax 2+bx +1(a >0),F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0.若f (-1)=0,且对任意实数x 均有f (x )≥0成立.(1)求F (x )的表达式;(2)当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求k 的取值范围.解 (1)∵f (-1)=0,∴a -b +1=0,∴b =a +1,∴f (x )=ax 2+(a +1)x +1.∵f (x )≥0恒成立,∴⎩⎨⎧a >0,Δ=(a +1)2-4a ≤0,即⎩⎨⎧a >0,(a -1)2≤0.∴a =1,从而b =2,∴f (x )=x 2+2x +1,∴F (x )=⎩⎨⎧x 2+2x +1 (x >0),-x 2-2x -1 (x <0).(2)由(1)知,g (x )=x 2+2x +1-kx =x 2+(2-k )x +1.∵g (x )在[-2,2]上是单调函数,∴k -22≤-2或k -22≥2,解得k ≤-2或k ≥6.所以k 的取值范围是(-∞,-2]∪[6,+∞).11.已知函数f (x )=e x -e -x (x ∈R 且e 为自然对数的底数). (1)判断函数f (x )的奇偶性与单调性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x 都成立?若存在,求出t ;若不存在,请说明理由.解 (1)∵f (x )=e x-⎝ ⎛⎭⎪⎫1e x ,且y =e x 是增函数,y =-⎝ ⎛⎭⎪⎫1e x 是增函数,所以f (x )是增函数.由于f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ),所以f (x )是奇函数.(2)由(1)知f (x )是增函数和奇函数,所以f (x -t )+f (x 2-t 2)≥0对一切x ∈R 恒成立⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 恒成立⇔x 2-t 2≥t -x 对一切x ∈R 恒成立⇔t 2+t ≤x 2+x 对一切x ∈R 恒成立⇔⎝ ⎛⎭⎪⎫t +122≤⎝ ⎛⎭⎪⎫x +122min 对一切x ∈R 恒成立⇔⎝ ⎛⎭⎪⎫t +122≤0⇔t =-12. 即存在实数t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x 都成立.。
2014年普通高等学校招生全国统一考试分类汇编3—基本初等函数及应用(文科)
2014年全国高考文科数学试题分类汇编(3)基本初等函数及应用(一) 函数及其表示 1.[2014·安徽卷] 14.若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. [解析]14.516 由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 2. [2014·北京卷] 下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x |[解析] 2.B 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 3.[2014·江西卷]21. 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率. (1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.解:21. (1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )= ⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90, 所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}.当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k 单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169.又8169<119,所以当n ∈S 时,p (n )的最大值为119. 4.[2014·山东卷] 3.函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞) [解析]3.C 若函数f (x )有意义,则log 2x -1>0,∴log 2x >1,∴x >2. (二) 反函数5.2014·全国卷] 5.[函数y =ln(3x +1)(x >-1)的反函数是( )A .y =(1-e x )3(x >-1)B .y =(e x -1)3(x >-1)C .y =(1-e x )3(x ∈R )D .y =(e x -1)3(x ∈R ) [解析] 5.D 因为y =ln(3x +1),所以x =(e y -1)3.因为x >-1,所以y ∈R ,所以函数y =ln(3x +1)(x >-1)的反函数是y =(e x -1)3(x ∈R ). (三) 函数的单调性与最值 6.[2014·北京卷] 2.下列函数中,定义域是R 且为增函数的是( )A .y =e -x B .y =x 3 C .y =ln x D .y =|x |[解析] 2.B 由定义域为R ,排除选项C ,由函数单调递增,排除选项A ,D. 7.[2014·湖南卷] 4.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x3 D .f (x )=2-x[解析]4.A 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对.8.[2014·江苏卷]19. 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解:19. (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立. 令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立.因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a . 由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e-1.9.[2014·四川卷] 15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号)[解析] 15.①③④ 若f (x )∈A ,则函数f (x )的值域为R ,于是,对任意的b ∈R ,一定存在a ∈D ,使得f (a )=b ,故①正确.取函数f (x )=x (-1<x <1),其值域为(-1,1),于是,存在M =1,使得函数f (x )的值域包含于[-M ,M ]=[-1,1],但此时函数f (x )没有最大值和最小值,故②错误.当f (x )∈A 时,由①可知,对任意的b ∈R ,存在a ∈D ,使得f (a )=b ,所以,当g (x )∈B 时,对于函数f (x )+g (x ),如果存在一个正数M ,使得f (x )+g (x )的值域包含于[-M ,M ],那么对于该区间外的某一个b 0∈R ,一定存在一个a 0∈D ,使得f (x )+f (a 0)=b 0-g (a 0),即f (a 0)+g (a 0)=b 0∉[-M ,M ],故③正确.对于f (x )=a ln(x +2)+xx 2+1(x >-2),当a >0或a <0时,函数f (x )都没有最大值.要使得函数f (x )有最大值,只有a =0,此时f (x )=xx 2+1(x >-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确10.[2014·四川卷]21. 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.解:21. (1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0.解得e -2<a <1. 所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.(四)函数的奇偶性与周期性 1.[2014·重庆卷] 4.下列函数为偶函数的是( )A .f (x )=x -1B .f (x )=x 2+xC .f (x )=2x -2-xD .f (x )=2x +2-x[解析] 4.DA 中,f (-x )=-x -1,f (x )为非奇非偶函数;B 中,f (-x )=(-x )2-x =x 2-x ,f (x )为非奇非偶函数;C 中,f (-x )=2-x -2x =-(2x -2-x )=-f (x ),f (x )为奇函数;D 中,f (-x )=2-x +2x =f (x ),f (x )为偶函数.故选D. 2.[2014·安徽卷]14. 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. [解析]14.516 由题易知f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76=-316+sin π6=516. 3.[2014·广东卷] 5.下列函数为奇函数的是( )A .2x -12x B .x 3sin x C .2cos x +1 D .x 2+2x[解析]5.A 对于A 选项,令f (x )=2x -12x =2x -2-x ,其定义域是R ,f (-x )=2-x -2x =-f (x ),所以A 正确;对于B 选项,根据奇函数乘奇函数是偶函数,所以x 3sin x 是偶函数;C 显然也是偶函数;对于D 选项,根据奇偶性的定义,该函数显然是非奇非偶函数. 4.[2014·湖北卷]9. 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}[解析]9.D 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x . 求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解. 当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D. 5.[2014·湖南卷]4.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( )A .f (x )=1x2 B .f (x )=x 2+1C .f (x )=x3 D .f (x )=2-x[解析]4.A 由偶函数的定义,可以排除C ,D ,又根据单调性,可得B 不对. 15.[2014·湖南卷] 若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.[解析]15.-32由偶函数的定义可得f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,∴2ax =-ln e 3x =-3x ,∴a =-32.6.[2014·江苏卷]19. 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.(1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解:19. (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立.因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a . 由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立, 当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立.故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e-1.7.[2014·全国卷] 12.奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( ) A .-2 B .-1 C .0 D .1[解析] 12.D 因为f (x +2)为偶函数,所以其对称轴为直线x =0,所以函数f (x )的图像的对称轴为直线x =2.又因为函数f (x )是奇函数,其定义域为R ,所以f (0)=0,所以f (8)=f (-4)=-f (4)=-f (0)=0,故f (8)+f (9)=0+f (-5)=-f (5)=-f (-1)=f (1)=1. 8.[2014·新课标全国卷Ⅱ] 15.偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________. [解析]15.3 因为函数图像关于直线x =2对称,所以f (3)=f (1),又函数为偶函数,所以f (-1)=f (1),故f (-1)=3. 9.[2014·全国新课标卷Ⅰ]5. 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数[解析] 5.C 因为f (x )是奇函数,g (x )是偶函数,所以有f (-x )=-f (x ),g (-x )=g (x ),于是f (-x )· g (-x )=-f (x )g (x ),即f (x )g (x )为奇函数,A 错;|f (-x )|g (-x )=|f (x )|g (x ),即|f (x )|g (x )为偶函数,B 错;f (-x )|g (-x )|=-f (x )|g (x )|,即f (x )|g (x )|为奇函数,C 正确; |f (-x )g (-x )|=|f (x )g (x )|,即f (x )g (x )为偶函数,所以D 也错. 10.[2014·四川卷] 13.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. [解析] 13.1 由题意可知,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-12f ⎝⎛⎭⎫-12=-4⎝⎛⎭⎫-122+2=1.(五) 二次函数 1.[2014·江苏卷]10. 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. [解析] 10.⎝⎛⎭⎫-22,0 因为f (x )=x 2+mx -1是开口向上的二次函数,所以函数的最大值只能在区间端点处取到,所以对于任意x ∈[m ,m +1],都有f (x )<0,只需⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,解得⎩⎨⎧-22<m <22,-32<m <0,即m ∈⎝⎛⎭⎫-22,0.2.[2014·全国卷]14.函数y =cos 2x +2sin x 的最大值为________.14.32 [解析] 因为y =cos 2x +2sin x =1-2sin x 2+2sin x =-2⎝⎛⎭⎫sin x -122+32,所以当sin x =12时函数y =cos 2x +2sin x 取得最大值,最大值为32.(六) 指数与指数函数 [2014·安徽卷]5. 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b[解析]5.B 因为2>a =log 37>1,b =21.1>2,c =0.83.1<1,所以c <a <b . [2014·福建卷] 8.若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-3[解析]8.B 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B.[2014·辽宁卷] 3. 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b[解析] 3.D 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .[2014·全国新课标卷Ⅰ] 15.设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.[解析] 15.(-∞,8] 当x <1时,由e x -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8. [2014·山东卷] 5.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .x 3>y 3 B .sin x >sin y C .ln(x 2+1)>ln(y 2+1) D.1x 2+1>1y 2+1[解析]5.A 因为a x <a y (0<a <1),所以x >y ,所以x 3>y 3恒成立.故选A. [2014·陕西卷] 7.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝⎛⎭⎫12x[解析] 7.B 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝⎛⎭⎫12x为单调递减函数,所以排除选项D.[2014·陕西卷] 12.已知4a =2,lg x =a ,则x =________.[解析]12.10 4a =2,即22a =2,可得a =12,所以lg x =12,所以x =1012=10.[2014·四川卷] 7. 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c[解析] 7.B 因为5d =10,所以d =log 510,所以cd =lg b ·log 510=log 5b =a ,故选B. [2014·四川卷] 9.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] [解析]9.B 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直, 则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10,即|P A |+|PB |≥|AB |=10. 又|P A |+|PB |=(|P A |+|PB |)2= |P A |2+2|P A ||PB |+|PB |2≤ 2(|P A |2+|PB |2)=2 5,所以|P A |+|PB |∈[10,2 5],故选B.[2014·天津卷] 4.设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a[解析]4.C ∵a =log 2π>1,b =log 12π<0,c =1π2<1,∴b <c <a .(七) 对数与对数函数 [2014·天津卷] 12. 函数f (x )=lg x 2的单调递减区间是________.[解析]12.(-∞,0) 函数f (x )=lg x 2的单调递减区间需满足x 2>0且y =x 2单调递减,故x ∈(-∞,0).[2014·安徽卷] 11.⎝⎛⎭⎫1681-34+log 354+log 345=________.[解析] 11.278 原式=⎣⎡⎦⎤⎝⎛⎭⎫234-34 +log 3⎝⎛⎭⎫54×45=⎝⎛⎭⎫23-3=278.[2014·浙江卷] 8.在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-2[解析] 8.D 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.[2014·福建卷] 8.若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-3[解析]8.B 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B. [2014·广东卷]13. 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.[解析] 13.5 在等比数列中,a 1a 5=a 2a 4=a 23=4.因为a n >0,所以a 3=2,所以a 1a 2a 3a 4a 5=(a 1a 5)(a 2a 4)a 3=a 53=25,所以log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5.[2014·辽宁卷]3. 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b[解析]3.D 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .[2014·山东卷]6. 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1[解析] 6.D 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1. [2014·四川卷]7. 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c[解析] 7.B 因为5d =10,所以d =log 510,所以cd =lg b ·log 510=log 5b =a ,故选B. 9.、[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+2 3C .6+4 3 D .7+4 3[解析]9.D 由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,则4a +3b =1,所以a +b =(a +b )⎝⎛⎭⎫4a +3b =7+4b a +3a b ≥7+2 4b a ·3a b =7+4 3,当且仅当4b a =3a b ,即a =4+2 3,b =2 3+3时等号成立,故其最小值是7+4 3.(八)幂函数与函数的图像 [2014·浙江卷] 8.在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D图1-2[解析] 8.D 只有选项D 符合,此时0<a <1,幂函数f (x )在(0,+∞)上为增函数,且当x ∈(0,1)时,f (x )的图像在直线y =x 的上方,对数函数g (x )在(0,+∞)上为减函数.故选D.[2014·福建卷]8. 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A BC D 图1-3[解析] 8.B 由函数y =log a x 的图像过点(3,1),得a =3.选项A 中的函数为y =⎝⎛⎭⎫13x,其函数图像不正确;选项B 中的函数为y =x 3,其函数图像正确;选项C 中的函数为y =(-x )3,其函数图像不正确;选项D 中的函数为y =log 3(-x ),其函数图像不正确,故选B. [2014·湖北卷] 15.如图1-4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.[解析] 15.⎝⎛⎭⎫0,16 “∀x ∈R ,f (x )>f (x -1)”等价于“函数y =f (x )的图像恒在函数y =f (x -1)的图像的上方”,函数y =f (x -1)的图像是由函数y =f (x )的图像向右平移一个单位得到的,如图所示.因为a >0,由图知6a <1,所以a 的取值范围为⎝⎛⎭⎫0,16.[2014·江苏卷]13.已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________. [解析]13.⎝⎛⎭⎫0,12 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝⎛⎭⎫0,12.[2014·全国新课标卷Ⅰ] 15.设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.[解析]15.(-∞,8] 当x <1时,由e x -1≤2,得x <1;当x ≥1时,由x 13≤2,解得1≤x ≤8,综合可知x 的取值范围为x ≤8. [2014·山东卷] 6.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <16.D [解析] 由该函数的图像通过第一、二、四象限,得该函数是减函数,∴0<a <1.∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.(九) 函数与方程[2014·北京卷] 6.已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )的零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)[解析]6.C 方法一:对于函数f (x )=6x -log 2x ,因为f (2)=2>0,f (4)=-0.5<0,根据零点的存在性定理知选C.方法二:在同一坐标系中作出函数h (x )=6x 与g (x )=log 2x 的大致图像,如图所示,可得f (x )的零点所在的区间为(2,4).[2014·浙江卷]7. 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6C .6<c ≤9 D .c >9[解析]7.C 由f (-1)=f (-2)=f (-3)得⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-8+4a -2b +c =-27+9a -3b +c ⇒⎩⎪⎨⎪⎧-7+3a -b =0,19-5a +b =0⇒⎩⎪⎨⎪⎧a =6,b =11, 则f (x )=x 3+6x 2+11x +c ,而0<f (-1)≤3,故0<-6+c ≤3,∴6<c ≤9,故选C.[2014·重庆卷]10. 已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23[解析] 10.A 作出函数f (x )的图像,如图所示.函数g (x )=f (x )-mx -m 的零点为方程f (x )-mx -m =0的根,即为函数y =f (x )与函数y =m (x +1)图像的交点.而函数y =m (x +1)的图像恒过定点P (-1,0),由图易知有两交点的边界有四条,其中k PO =0,k P A =12,k PB =-2,第四条为过P 点的曲线y =1x +1-3的切线PC .将y =m (x +1)(m ≠0)代入y =1x +1-3,得mx 2+(2m +3)x +m +2=0,则由Δ=(2m +3)2-4m (m +2)=4m +9=0,得m =-94,即k PC =-94,所以由图可知满足条件的实数m 的取值范围是⎝⎛⎭⎫-94,-2∪⎝⎛⎭⎫0,12.[2014·福建卷]15. 函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.[解析] 15.2 当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2,即在区间(-∞,0)上,函数只有一个零点.当x >0时,f (x )=2x -6+ln x ,令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图像, 则两函数图像只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点. 综上可知,函数f (x )的零点的个数是2. [2014·湖北卷] 9.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}[解析] 9.D 设x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x . 求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解. 当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.故选D.[2014·江苏卷]13.已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________. [解析] 13.⎝⎛⎭⎫0,12 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝⎛⎭⎫0,12.[2014·江西卷] 4.已知函数f (x )=⎩⎪⎨⎪⎧a ·2,x ≥0,2-x ,x <0(a ∈R ).若f [f (-1)]=1,则a =( )A.14B.12C .1D .2 [解析]4.A 因为f (-1)=21=2,f (2)=a ·22=4a =1,所以a =14.15.[2014·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.[解析] 15.2 令t =f (a ),若f (t )=2,则t 2+2t +2=2 满足条件,此时t =0或t =-2,所以f (a )=0或f (a )=-2,只有-a 2=-2满足条件,故a = 2.[2014·全国卷]21. 函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.21.解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ).(i)若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1时成立.故此时f (x )在R 上是增函数. (ii)由于a ≠0,故当a <1时,f ′(x )=0有两个根; x 1=-1+1-a a ,x 2=-1-1-aa. 若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数. 当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎡⎭⎫-54,0∪(0,+∞).[2014·天津卷] 14.已知函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0.若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.14.(1,2) [解析] 在同一坐标系内分别作出y =f (x )与y =a |x |的图像,如图所示,当y =a |x |与y =f (x )的图像相切时,联立⎩⎪⎨⎪⎧-ax =-x 2-5x -4,a >0,整理得x 2+(5-a )x +4=0,则Δ=(5-a )2-4×1×4=0,解得a =1或a =9(舍去)(十) 函数模型及其应用 [2014·北京卷]8. 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟 [解析] 8.B 由题意得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,解之得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2,∴p =-0.2t 2+1.5t -2=-0.2(t -3.75)2+0.8125,即当t =3.75时,p 有最大值.[2014·陕西卷]10. 如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x10.A [解析] 由题意可知,该三次函数的图像过原点,则其常数项为0,不妨设其解析式为y =f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c ,∴f ′(0)=-1,f ′(2)=3,可得c =-1,3a +b =1.又y =ax 3+bx 2+cx 过点(2,0),∴4a +2b =1,∴a =12,b =-12,c =-1,∴y =f (x )=12x 3-12x 2-x .(十一)导数及其运算[2014·陕西卷]21. 设函数f (x )=ln x +mx ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.21.解:(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增. ∴x =e 时,f (x )取得极小值f (e)=ln e +ee=2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*)设h (x )=f (x )-x =ln x +mx -x (x >0),∴(*)等价于h (x )在(0,+∞)上单调递减.由h ′(x )=1x -m x 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立,∴m ≥14⎝⎛⎭⎫对m =14,h ′(x )=0仅在x =12时成立,∴m 的取值范围是⎣⎡⎭⎫14,+∞.[2014·安徽卷]20.设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. [2014·北京卷]20.已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论) 20.解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3. 令f ′(x )=0,得x =-22或x =22.因为f (-2)=-10,f ⎝⎛⎫-22=2,f ⎝⎛⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3,所以切线方程为y -y 0=(6x 20-3)(x -x 0),因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0,设g (x )=4x 3-6x 2+t +3, 则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. [2014·福建卷] 22.已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 22.解:方法一:(1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2.令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0,即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:对任意给定的正数c ,取x 0=1c,由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1c x ,即x <c e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <c e x 成立,只要e x >kx 成立.而要使e x >kx 成立,则只需要x >ln(kx ),即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x 0=0,当x ∈(x 0,+∞)时,恒有x <c e x . ②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x ,所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c ,当x ∈(x 0,+∞)时,恒有x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法三:(1)同方法一. (2)同方法一.(3)证明:①若c ≥1,取x 0=0,由(2)的证明过程知,e x >2x , 所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x ,即x <c e x . ②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1.令h ′(x )=0得x =ln 1c .当x >ln 1c 时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c ,则h (x 0)=c e2ln 2c -2ln 2c =2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增,所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0,即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . [2014·广东卷]11.曲线y =-5e x +3在点(0,-2)处的切线方程为________.[解析] 11.5x +y +2=0 ∵y ′=-5e x ,∴所求切线斜是k =-5e 0=-5,∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.[2014·江苏卷]11. 在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________. 11.-3 [解析] 易知y ′=2ax -bx 2.根据题意有⎩⎨⎧-5=4a +b2,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,故a +b =-3.[2014·江苏卷]23.已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪nf n -1⎝⎛⎫π4+π4f n ⎝⎛⎫π4=22都成立.23.解: (1)由已知,得f 1(x )=f ′0(x )=⎝⎛⎭⎫sin x x ′=cos x x -sin xx 2, 于是f 2(x )=f 1′(x )=⎝⎛⎭⎫cos x x ′-⎝⎛⎭⎫sin x x 2′= -sin x x -2cos x x 2+2sin x x 3,所以f 1⎝⎛⎫π2=-4π2,f 2⎝⎛⎫π2=-2π+16π3. 故2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2=-1.(2)证明:由已知得,xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf 0′(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎭⎫x +π2.类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π),3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎫x +3π2,4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎫x +k π2.因为[kf k -1(x )+xf k (x )]′=kf k -1′(x )+f k (x )+xf k ′(x )=(k +1)f k (x )+xf k +1(x ),。
2014年高考数学—函数(解答+答案)
2014年高考数学—函数1.(14安徽文20.(本小题满分13分)设函数23()1(1)f x a x x x =++--,其中0a >(1) 讨论()f x 在其定义域上的单调性;(2) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值.2.(14北京文20. (本小题满分13分))已知函数3()23f x x x =-.(1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论)3.(14福建文22.(本小题满分14分))已知函数a ax e x f x ()(-=为常数)的图像与y 轴交于点A ,曲线)(x f y =在点处的切线斜率为1-。
(I ) 求a 的值及函数)(x f 的极值;(II ) 证明:当0>x 时,x e x <2;(Ⅲ)证明:对任意给定的正数c ,总存在0x ,使得当),(0+∞∈x x 时,恒有x ce x <。
4.(14广东文21.)已知函数321()1()3f x x x ax a R =+++∈ (1)求函数()f x 的单调区间;(2)当0a <时,试讨论是否存在011(0,)(,1)22x ∈U ,使得01()=()2f x f5.(14湖北文21.(本小题满分14分))π为圆周率,e 2.71828=L 为自然对数的底数. (Ⅰ)求函数ln ()x f x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.6.(14湖南文21.(本小题满分13分))已知函数()cos sin 1(0)f x x x x x =-+>. (1)求()f x 的单调区间;(2)记i x 为()f x 的从小到大的第(*)i i N ∈个零点,证明:对一切*n N ∈,有2221211123n x x x +++<L7.(14江西文18.(本小题满分12分))已知函数x a ax x x f )44()(22++=,其中0<a .(1)当4-=a 时,求)(x f 的单调递增区间;(2)若)(x f 在区间]4,1[上的最小值为8,求a 的值.已知函数()(cos )2sin 2f x x x x π=---,2()(1x g x x ππ=--. 证明:(1)存在唯一0(0,)2x π∈,使0()0f x =; (2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.9.(14大纲文21. (本小题满分12分))函数32()33(0)f x ax x x a =++≠.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间(1,2)是增函数,求a 的取值范围.10.(14山东文(20) (本小题满分13分)) 设函数1()ln 1x f x a x x -=++ ,其中a 为常数. (I)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(II )讨论函数()f x 的单调性.设函数()ln ,m f x x m R x=+∈ (Ⅰ)m e =(e 为自然对数的底数)时,求()f x 的极小值; (Ⅱ)讨论函数()()3g x f x π'=-零点的个数; (Ⅲ)若对任意()()0,1f b f a b a b a->><-恒成立,求m 的取值范围。
2014年高考数学题分类汇编函数...
2014年高考数学题分类汇编函数与导数一、选择题1.【2014·全国卷Ⅰ(理3,文5)】设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】C2. 【2014·全国卷Ⅰ(理6)】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【答案】C3. 【2014·全国卷Ⅰ(理11,文12)】已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】B4. 【2014·全国卷Ⅱ(理8)】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a =A. 0B. 1C. 2D. 3 【答案】 D【解析】..3.2)0(,0)0(.11-)(),1ln(-)(D a f f x a x f x ax x f 故选联立解得且==′=∴+=′∴+= 5【2014·全国卷Ⅱ(理12)】设函数()sin x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞ 【答案】C 。
【解析】.2.||,34∴34)]([,2||||,3)]([3πsin3)(2222020020C m m m m x f x m x x f m x x f 故选解得,,即的极值为><++≥+∴≤=±= 6.【2014·全国卷Ⅱ(文3)】函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件【答案】C7.【2014·全国卷Ⅱ(文11)】若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是( )(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 【答案】D8. 【2014·全国大纲卷(理7)】曲线1x y xe -=在点(1,1)处切线的斜率等于( ) A .2e B .e C .2 D .1 【答案】C9. 【2014·全国大纲卷(理12)】函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =-- 【答案】D10.【2014·全国大纲卷(文5)】函数1)(1)y x =>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)x y e x =->- C .3(1)()x y e x R =-∈ D .3(1)()x y e x R =-∈ 【答案】D11.【2014·全国大纲卷(文12)】奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .-2B .-1C .0D .1 【答案】D12. 【2014·山东卷(理3)】函数()f x =(A )1(0,)2(B )(2,)+∞(C )1(0,)(2,)2+∞ (D )1(0,][2,)2+∞13.【2014·山东卷(文3)】函数2()log 1f x x =-的定义域为( )(A) (0,2)(B) (0,2] (C) )+∞ (D) [2,)+∞【答案】C14.【2014·山东卷(理5)】已知实数,x y 满足x y a a <(01a <<),则下列关系式恒成立的是 (A )221111x y >++(B )22ln(1)ln(1)x y +>+ (C )sin sin x y > (D )22x y >15.【2014·山东卷(文5)】已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是 (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ 【答案】A16.【2014·山东卷(文6)】已知函数log ()(,0,1)a y x c a c a a =+>≠为常数,其中的图象如右图,则下列结论成立的是0,1a c >>(B) 1,01a c ><<(C) 01,1a c <<> (D) 01,01a c <<<<【答案】D17.【2014·山东卷(文9)】对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,xEO都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是(A) ()f x = (B) 3()f x x =(C) ()tan f x x =(D) ()cos(1)f x x =+【答案】D18.【2014·山东卷(理6)】直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为(A )B )C )2(D )419.【2014·山东卷(理8)】已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是(A )1(0,)2(B )1(,1)2(C )(1,2)(D )(2,)+∞20.【2014·安徽卷(理6)】设函数()(f x x R ∈)满足()()f x f x sinx π+=+.当0x π≤≤时,()0f x =,则236f π⎛⎫= ⎪⎝⎭( )A .12B C .0 D .12-【解析】⑴由条件知:23555551551132sin 2sin sin 066666626622f f f f f πππππππππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=++++=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选A ;21.【2014·安徽卷(文、理9)】若函数()12f x x x a =+++的最小值3,则实数a 的值为( ) A . 5或8 B . 1-或5 C . 1-或4- D . 4-或8 【答案】D .22.【2014·安徽卷(文5)】设3log 7a =, 3.32b =, 3.30.8c =,则( ) A. b a c << B. c a b << C. c b a << D. a c b << 【答案】B23.【2014·浙江卷(理6,文8)】已知函数32()f x x ax bx c =+++ 且0(1)(2)(3)3f f f ≤-≤-≤-≤,则( )A.3≤cB.63≤<cC.96≤<cD. 9>c1842(1)(2)(3)12793a b c a b cf f f a b c a b c-+-+=-+-+⎧-=-=-⇒⎨-+-+=-+-+⎩解: 611a b =⎧⇒⎨=⎩ 0(1)369f c <-≤⇒<≤ 24.【2014·浙江卷(理7,文8)】在同意直角坐标系中,函数x xg x x x f a a log )(),0()(=≥=的图像可能是( )00(1,1)0(0,0)(1,1)1,()a a x x a A B a g x a <≠⎧⎪>>⎨⎪⎩,,恒过解:幂函数恒过、,显然排除、可知递减矛盾舍图像随着增大越翘01,()C a g x D<<可得此时递增矛盾舍去,故选 25.【2014·浙江卷(理10)】设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99 ==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I <<22111211132991...19999999999999999i i i I --⨯-⎛⎫⎛⎫⎛⎫-=⨯⇒=+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭解:2211299(21)2999999999999i i i i i ----⎛⎫⎛⎫--+= ⎪ ⎪⎝⎭⎝⎭ 2250(980)1009821992999999I +⨯=⨯⨯=<⨯⨯故 3110219998sin 2sin 2sin 2sin 2...sin 2sin 23999999999999I ππππππ⎛⎫=-+-++- ⎪⎝⎭ 12574(2s i n 22s i n 2)139999ππ=->213I I I <<故26.【2014·北京卷(理2)】下列函数中,在区间(0,)+∞上为增函数的是( ).A y = 2.(1)B y x=- .2x C y -= 0.5.l o g (1)D y x =+27.【2014·北京卷(文2)】下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.y x =C.ln y x =D.y x = 【答案】B 。
2014-2019年高考数学真题分类汇编专题2:函数2(基本函数)
2014-2019年高考数学真题分类汇编专题2:函数(基本函数)(一)二次函数、二次方程和二次不等式选择题1.(2014•北京文)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系2(p at bt c a =++,b ,c 是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为( B )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟2.(2015•陕西理)对二次函数2()(f x ax bx c a =++为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( A ) A .1-是()f x 的零点 B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上3.(2016•浙江文)已知函数2()f x x bx =+,则“0b <”是“(()f f x 的最小值与()f x 的最小值相等”的(A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.(2017•浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则(M m - B ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关 填空题1.(2014•江苏)已知函数2()1f x x mx =+-,若对于任意[x m ∈,1]m +,都有()0f x <成立,则实数m 的取值范围是 (,0) .2.(2014•浙江文)设函数2222,0(),0x x x f x x x ⎧++=⎨->⎩…,若(f f (a ))2=,则a =3.(2014•浙江文)已知实数a ,b ,c 满足0a b c ++=,2221a b c ++=,则a 的最大值是.4.(2014•浙江理)设函数22,0(),0x x x f x x x ⎧+<=⎨-⎩…,若(f f (a ))2…,则实数a 的取值范围是 ( .5.(2015•广东文)不等式2340x x --+>的解集为 (4,1)- .(用区间表示)6.(2015•湖北文)a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为g (a ).当a = 2 时,g (a )的值最小.7.(2016•江苏)函数y =的定义域是 [3-,1] .8.(2017•北京文11)已知0x …,0y …,且1x y +=,则22x y +的取值范围是 1[2,1] .9.(2019江苏4)函数y =的定义域是 [1-,7] .10.(2019•天津文10)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 2(1,)3- .11.(2019•浙江)已知a R ∈,函数3()f x ax x =-.若存在t R ∈,使得2|(2)()|3f t f t +-…,则实数a 的最大值是43. 解答题1.(2015•浙江文)设函数2()(,)f x x ax b a b R =++∈.(Ⅰ)当214a b =+时,求函数()f x 在[1-,1]上的最小值g (a )的表达式.(Ⅱ)已知函数()f x 在[1-,1]上存在零点,021b a -剟,求b 的取值范围. 2.(2015•浙江理)已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1-,1]上的最大值. (1)证明:当||2a …时,(,)2M a b …;(2)当a ,b 满足(,)2M a b …时,求||||a b +的最大值. (二)指数运算与指数函数选择题1.(2014•湖南理)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( D )A .2p q+ B .(1)(1)2p q ++C .pqD 12.(2014•陕西文理)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( B ) A .3()f x x =B .()3xf x =C .12()f x x =D .1()()2x f x =3.(2015•山东文)设0.60.6a =, 1.50.6b =,0.61.5c =,则a ,b ,c 的大小关系( C ) A .a b c <<B .a c b <<C .b a c <<D .b c a <<4.(2015•四川文)某食品保鲜时间y (单位:小时)与储藏温度x (单位:C)︒满足函数关系( 2.718kx b y e e +==⋯为自然对数的底数,k ,b 为常数).若该食品在0C ︒的保鲜时间是192小时,在22C ︒的保鲜时间是48小时,则该食品在33C ︒的保鲜时间是( C ) A .16小时B .20小时C .24小时D .28小时5.(2015•安徽理)设:12p x <<,:21x q >,则p 是q 成立的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件6.(2016•浙江文)已知函数()f x 满足:()||f x x …且()2x f x …,x R ∈.( B ) A .若f (a )||b …,则a b … B .若f (a )2b …,则a b … C .若f (a )||b …,则a b …D .若f (a )2b …,则a b …7.(2016•山东理)设集合{|2x A y y ==,}x R ∈,2{|10}B x x =-<,则(A B = C )A .(1,1)-B .(0,1)C .(1,)-+∞D .(0,)+∞8.(2017•新课标Ⅰ理)已知集合{|1}A x x =<,{|31}x B x =<,则( A ) A .{|0}AB x x =< B .AB R =C .{|1}A B x x =>D .A B =∅9.(2018•新课标Ⅰ文)设函数2,0()1,0x x f x x -⎧=⎨>⎩…,则满足(1)(2)f x f x +<的x 的取值范围是( D )A .(-∞,1]-B .(0,)+∞C .(1,0)-D .(,0)-∞填空题1.(2014•上海文理)若2132()f x x x-=-,则满足()0f x <的x 的取值范围是 (0,1) .2.(2015•四川理)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C)︒满足函数关系( 2.718kx b y e e +==⋯为自然对数的底数,k 、b 为常数).若该食品在0C ︒的保鲜时间是192小时,在22C ︒的保鲜时间是48小时,则该食品在33C ︒的保鲜时间是 24 小时. 3.(2015•江苏)不等式224xx-<的解集为 (1,2)- .(三)对数运算与对数函数选择题1.(2014•四川文)已知0b >,5log b a =,lgb c =,510d =,则下列等式一定成立的是( B ) A .d ac =B .a cd =C .c ad =D .d a c =+2.(2015•新课标Ⅰ文)已知函数1222,1()(1),1x x f x log x x -⎧-⎪=⎨-+>⎪⎩…,且f (a )3=-,则(6)(f a -= A )A .74-B .54-C .34-D .14-3.(2015•新课标Ⅱ理)设函数211(2),1()2,1x log x x f x x -+-<⎧=⎨⎩…,则2(2)(log 12)(f f -+= C )A .3B .6C .9D .124.(2017•北京文理)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010,则下列各数中与MN最接近的是( D ) (参考数据:30.48)lg ≈ A .3310B .5310C .7310D .93105.(2014•安徽文)设3log 7a =, 3.32b =, 1.10.8c =,则( B ) A .b a c <<B .c a b <<C .c b a <<D .a c b <<6.(2014•安徽理)“0x <”是“(1)0ln x +<”的( B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2014•福建文理)若函数log (0,1)a y x a a =>≠的图象如图所示,则下列函数图象正确的是( B )A .B .CD .8.(2014•山东文)函数()f x =的定义域为( C )A .(0,2)B .(0,2]C .(2,)+∞D .[2,)+∞9.(2014•山东文)已知函数log ()(a y x c a =+,c 为常数,其中0a >,1)a ≠的图象如图所示,则下列结论成立的是( D )A .1a >,1c >B .1a >,01c <<C .01a <<,1c >D .01a <<,01c <<10.(2014•山东理)函数()f x =的定义域为( C )A .1(0,)2B .(2,)+∞C .(0,1)(22⋃,)+∞D .(0,1][22,)+∞11.(2014•辽宁文理)已知132a -=,21log 3b =,121log 3c =,则( D ) A .a b c >>B .a c b >>C .c b a >>D .c a b >>12.(2014•江西理)函数2()()f x ln x x =-的定义域为( C ) A .(0,1)B .[0,1]C .(-∞,0)(1⋃,)+∞D .(-∞,0][1,)+∞13.(2014•四川理)已知()(1)(1)f x ln x ln x =+--,(1,1)x ∈-.现有下列命题: ①()()f x f x -=-;②22()2()1xf f x x =+③|()|2||f x x …其中的所有正确命题的序号是( A ) A .①②③B .②③C .①③D .①②14.(2014•天津文)设2log a π=,12log b π=,2c π-=,则( C ) A .a b c >>B .b a c >>C .a c b >>D .c b a >>15.(2014•浙江文理)在同一直角坐标系中,函数()(0)a f x x x =>,()log a g x x =的图象可能是( D )A .B .C .D .16.(2015•湖北文)函数256()3x x f x lg x -+=-的定义域为( C )A .(2,3)B .(2,4]C .(2,3)(3⋃,4]D .(1-,3)(3⋃,6]17.(2015•陕西文理)设()f x lnx =,0a b <<,若p f =,()2a bq f +=,1(2r f =(a )f +(b )),则下列关系式中正确的是( B ) A .q r p =<B .p r q =<C .q r p =>D .p r q => 18.(2015•陕西文理)设集合2{|}M x x x ==,{|0}N x lgx =…,则(M N = A )A .[0,1]B .(0,1]C .[0,1)D .(-∞,1]19.(2015•四川文)设a ,b 为正实数,则“1a b >>”是“22log log 0a b >>”的( A ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件20.(2015•四川理)设a 、b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的( B ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件21.(2015•重庆文)函数22()log (23)f x x x =+-的定义域是( D ) A .[3-,1]B .(3,1)-C .(-∞,3][1-,)+∞D .(-∞,3)(1-⋃,)+∞22.(2015•重庆理)“1x >”是“12(2)0log x +<”的( B )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件23.(2016•新课标Ⅰ文)若0a b >>,01c <<,则( B ) A .log log a b c c <B .log log c c a b <C .c c a b <D .a b c c >24.(2016•新课标Ⅰ理)若1a b >>,01c <<,则( C ) A .c c a b < B .c c ab ba <C .log log b a a c b c <D .log log a b c c <25.(2016•新课标Ⅱ文)下列函数中,其定义域和值域分别与函数10lgx y =的定义域和值域相同的是(D ) A .y x =B .y lgx =C .2x y =D.y =26.(2016•浙江文)已知a ,0b >且1a ≠,1b ≠,若log 1a b >,则( D ) A .(1)(1)0a b --< B .(1)()0a a b -->C .(1)()0b b a --<D .(1)()0b b a -->27.(2017•新课标Ⅰ理)设x 、y 、z 为正数,且235x y z ==,则( D ) A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<28.(2017•山东理)设函数y =A ,函数(1)y ln x =-的定义域为B ,则(A B =D )A .(1,2)B .(1,2]C .(2,1)-D .[2-,1)29.(2018•新课标Ⅲ理12)设0.2log 0.3a =,2log 0.3b =,则( B ) A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+30.(2018•天津文5)已知372a log =,131()4b =,1315c log =,则a ,b ,c 的大小关系为( D )A .a b c >>B .b a c >>C .c b a >>D .c a b >>31.(2018•天津理5)已知2log a e =,2b ln =,121log 3c =,则a ,b ,c 的大小关系为( D ) A .a b c >> B .b a c >> C .c b a >> D .c a b >>32.(2019•新课标Ⅰ文理)已知2log 0.2a =,0.22b =,0.30.2c =,则( B ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<33.(2019•天津文5)已知2log 7a =,3log 8b =,0.20.3c =,则a ,b ,c 的大小关系为( A ) A .c b a <<B .a b c <<C .b c a <<D .c a b <<34.(2019•天津理)已知5log 2a =,0.5log 0.2b =,0.20.5c =,则a ,b ,c 的大小关系为( A ) A .a c b <<B .a b c <<C .b c a <<D .c a b <<35.(2019•浙江理6)在同一直角坐标系中,函数1xy a =,11()2ay og x =+,(0a >且1)a ≠的图象可能是(D ) A .B . C .D .填空题1.(2014•安徽文)34331654()log log 8145-++=278. 2.(2014•陕西文理)已知42a =,lgx a =,则x3.(2014•重庆理)函数22()log log (2)f x x =的最小值为 14- .4.(2015•上海文理)方程1122log (95)log (32)2x x ---=-+的解为 2x = . 5.(2015•四川文)20.01log 16lg +的值是 2. 6.(2015•浙江文)计算:2log = 12- ,24332log log +=7.(2015•浙江理)若4log 3a =,则22a a -+= . 8.(2015•安徽文)15122()22lglg -+-= 1- . 9.(2016•浙江理)已知1a b >>,若5log log 2a b b a +=,b a a b =,则a = 4 ,b = 2 . 10.(2018•新课标Ⅰ文)已知函数22()log ()f x x a =+,若f (3)1=,则a = 7- .11.(2019新课标Ⅱ理14)已知()f x 是奇函数,且当0x <时,()ax f x e =-.若(2)8f ln =,则a = 3- . 12.(2015•北京文)32-,123,2log 5三个数中最大数的是 2log 5 .13.(2015•福建理)若函数6,2()(03log ,2a x x f x a x x -+⎧=>⎨+>⎩…且1)a ≠的值域是[4,)+∞,则实数a 的取值范围是 (1,2].14.(2018•江苏5)函数()f x =的定义域为 [2,)+∞ .(四)幂函数1.(2016•新课标Ⅲ文理)已知432a =,233b =,1325c =,则( A ) A .b a c <<B .a b c <<C .b c a <<D .c a b <<2.(2017•上海)已知四个函数:①y x =-,②1y x=-,③3y x =,④12y x =,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为 13 .3.(2018•上海)已知{2α∈-,1-,11,22-,1,2,3},若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则α= 1- .。
完整版)基本初等函数经典复习题+答案
完整版)基本初等函数经典复习题+答案1、幂的运算性质1) $a^r\cdot a^s=a^{r+s}$,其中$r,s\in R$;2) $(a^r)^s=a^{rs}$,其中$r,s\in R$;3) $a^r\cdot b^r=(ab)^r$,其中$r\in R$;4) $a^{-n}=\dfrac{1}{a^n}$,其中$a>0,n\in N^*,n>1$。
2、对数的运算性质若$a>0$且$a\neq 1$,$M>0,N>0$,则有:1) $a^x=N\iff \log_a N=x$;2) $\log_a(MN)=\log_a M+\log_a N$;3) $\log_a\dfrac{M}{N}=\log_a M-\log_a N$;4) $\log_a M^n=n\log_a M$,其中$n\in R$;5) $\log_a 1=0$;6) 换底公式:$\log_a b=\dfrac{\log_c b}{\log_c a}$,其中$a>0,a\neq 1,c>0,c\neq 1,b>0$。
3、函数的定义域能使函数式有意义的实数$x$的集合称为函数的定义域。
求函数的定义域时,需要注意以下几点:1) 偶次方根的被开方数不小于零;2) 对数式的真数必须大于零;3) 分式的分母不等于零;4) 指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法A) 定义法:1.任取$x_1,x_2\in D$,且$x_1<x_2$;2.作差$f(x_1)-f(x_2)$;3.变形(通常是因式分解和配方);4.定号(即判断差$f(x_1)-f(x_2)$的正负);5.下结论(指出函数$f(x)$在给定的区间$D$上的单调性)。
B) 图象法(从图象上看升降)。
C) 复合函数的单调性:复合函数$f[g(x)]$的单调性与构成它的函数$u=g(x),y=f(u)$的单调性密切相关,其规律为“同增异减”。
2014-2019年高考数学真题分类汇编专题2:函数4(函数的图像)带详细答案
2014-2019年高考数学真题分类汇编专题2:函数(函数的图像)(一)基本函数图像的应用选择题1.(2014•上海理)设2(),0()1,0x a x f x x a x x ⎧-⎪=⎨++>⎪⎩…,若(0)f 是()f x 的最小值,则a 的取值范围为( ) A .[1-,2] B .[1-,0] C .[1,2] D .[0,2]【考点】分段函数的应用【分析】当0a <时,显然(0)f 不是()f x 的最小值,当0a …时,解不等式:220a a --…,得12a -剟,问题解决.【解答】解;当0a <时,显然(0)f 不是()f x 的最小值, 当0a …时,2(0)f a =, 由题意得:21a x a x++…, 解不等式:220a a --…,得12a -剟,02a ∴剟,故选:D .【点评】本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题. 2.(2014•山东理)已知函数()|2|1f x x =-+,()g x kx =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( ) A .1(0,)2B .1(2,1)C .(1,2)D .(2,)+∞【考点】函数的零点【分析】画出函数()f x 、()g x 的图象,由题意可得函数()f x 的图象(蓝线)和函数()g x 的图象(红线)有两个交点,数形结合求得k 的范围.【解答】解:由题意可得函数()f x 的图象(蓝线) 和函数()g x 的图象(红线)有两个交点, 如图所示:12OA K =,数形结合可得112k <<, 故选:B .【点评】本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题. 3.(2014•辽宁文)已知()f x 为偶函数,当0x …时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -…的解集为( )A .1[4,24][33,7]4B .3[4-,11][34-,2]3C .1[3,34][43,7]4D .3[4-,11][33-,3]4【考点】分段函数的应用【分析】先求出当0x …时,不等式1()2f x …的解,然后利用函数的奇偶性求出整个定义域上1()2f x …的解,即可得到结论.【解答】解:当[0x ∈,1]2,由1()2f x =,即1cos 2x π=,则3x ππ=,即13x =,当12x >时,由1()2f x =,得1212x -=,解得34x =, 则当0x …时,不等式1()2f x …的解为1334x 剟,(如图) 则由()f x 为偶函数,∴当0x <时,不等式1()2f x …的解为3143x --剟, 即不等式1()2f x …的解为1334x 剟或3143x --剟, 则由13134x -剟或31143x ---剟,解得4734x 剟或1243x剟, 即不等式1(1)2f x -…的解集为12{|43x x 剟或47}34x 剟, 故选:A .【点评】本题主要考查不等式的解法,利用分段函数的不等式求出0x …时,不等式1()2f x …的解是解决本题的关键.4.(2015•北京理)如图,函数()f x 的图象为折线ACB ,则不等式2()log (1)f x x +…的解集是( )A .{|10}x x -<…B .{|11}x x -剟C .{|11}x x -<…D .{|12}x x -<…【考点】指、对数不等式的解法【分析】在已知坐标系内作出2log (1)y x =+的图象,利用数形结合得到不等式的解集. 【解答】解:由已知()f x 的图象,在此坐标系内作出2log (1)y x =+的图象,如图满足不等式2()log (1)f x x +…的x 范围是11x -<…;所以不等式2()log (1)f x x +…的解集是{|11}x x -<…; 故选:C .【点评】本题考查了数形结合求不等式的解集;用到了图象的平移.5.(2015•山东理)设函数31,1()2,1x x x f x x -<⎧=⎨⎩…,则满足(f f (a )())2f a =的a 的取值范围是( )A .2[3,1]B .[0,1]C .2[3,)+∞D .[1,)+∞【考点】分段函数的应用【分析】令f (a )t =,则()2t f t =,讨论1t <,运用导数判断单调性,进而得到方程无解,讨论1t …时,以及1a <,1a …,由分段函数的解析式,解不等式即可得到所求范围. 【解答】解:令f (a )t =,则()2t f t =, 当1t <时,312t t -=,由()312t g t t =--的导数为()322t g t ln '=-,在1t <时,()0g t '>,()g t 在(,1)-∞递增,即有()g t g <(1)0=, 则方程312t t -=无解; 当1t …时,22t t =成立,由f (a )1…,即311a -…,解得23a …,且1a <; 或1a …,21a …解得0a …,即为1a …. 综上可得a 的范围是23a ….故选:C .【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.6.(2016•天津理)已知函数2(43)3,0()(0,1)(1)1,0ax a x a x f x a a log x x ⎧+-+<⎪=>≠⎨++⎪⎩…在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A .(0,2]3B .2[3,3]4C .1[3,23]{}34D .1[3,23){}34【考点】函数的零点与方程根的关系;分段函数的应用【分析】利用函数是减函数,根据对数的图象和性质判断出a 的大致范围,再根据()f x 为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出a 的范围. 【解答】解:log (1)1y a x =++在[0,)+∞递减,则01a <<, 函数()f x 在R 上单调递减,则:23402010(43)03(01)1a aa a a log -⎧⎪⎪<<⎨⎪+-+++⎪⎩……;解得,1334a 剟; 由图象可知,在[0,)+∞上,|()|2f x x =-有且仅有一个解, 故在(,0)-∞上,|()|2f x x =-同样有且仅有一个解,当32a >即23a >时,联立2|(43)3|2x a x a x +-+=-, 则△2(42)4(32)0a a =---=,解得34a =或1(舍去), 当132a 剟时,由图象可知,符合条件, 综上:a 的取值范围为1[3,23]{}34,故选:C .【点评】本题考查了方程的解个数问题,以及参数的取值范围,考查了学生的分析问题,解决问题的能力,以及数形结合的思想,属于中档题.7.(2017•天津文)已知函数||2,1()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩…,设a R ∈,若关于x 的不等式()||2x f x a +…在R 上恒成立,则a 的取值范围是( ) A .[2-,2]B .[-C .[-D.[-【考点】分段函数的应用【分析】根据题意,作出函数()f x 的图象,令()||2xg x a =+,分析()g x 的图象特点,将不等式()||2x f x a +…在R 上恒成立转化为函数()f x 的图象在()g x 上的上方或相交的问题,分析可得(0)(0)f g …,即2||a …,解可得a 的取值范围,即可得答案.【解答】解:根据题意,函数||2,1()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩…的图象如图: 令()||2xg x a =+,其图象与x 轴相交与点(2,0)a -, 在区间(,2)a -∞-上为减函数,在(2,)a -+∞为增函数, 若不等式()||2xf x a +…在R 上恒成立,则函数()f x 的图象在 ()g x 上的上方或相交,则必有(0)(0)f g …,即2||a …,解可得22a -剟, 故选:A .【点评】本题考查分段函数的应用,关键是作出函数()f x 的图象,将函数的恒成立问题转化为图象的上下位置关系.8.(2017•天津理)已知函数23,1()2,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩…,设a R ∈,若关于x 的不等式()||2x f x a +…在R 上恒成立,则a 的取值范围是( ) A .47[16-,2] B .47[16-,39]16C.[-2] D.[-39]16【考点】函数恒成立问题;分段函数的应用【分析】讨论当1x …时,运用绝对值不等式的解法和分离参数,可得22133322x x a x x -+--+剟,再由二次函数的最值求法,可得a 的范围;讨论当1x >时,同样可得322()22x x a x x-++剟,再由基本不等式可得最值,可得a 的范围,求交集即可得到所求范围. 【解答】解:当1x …时,关于x 的不等式()||2xf x a +…在R 上恒成立, 即为22332xx x a x x -+-+-+剟,即有22133322x x a x x -+--+剟, 由2132y x x =-+-的对称轴为114x =<,可得14x =处取得最大值4716-;由2332y x x =-+的对称轴为314x =<,可得34x =处取得最小值3916,则47391616a-剟① 当1x >时,关于x 的不等式()||2xf x a +…在R 上恒成立, 即为22()2x x a x x x -+++剟,即有322()22x x a x x-++剟,由32()2322yx x x =-+-=-…1)x =>取得最大值-由1222y x x x x=+=…(当且仅当21)x =>取得最小值2.则2a -② 由①②可得,47216a -剟. 另解:作出()f x 的图象和折线||2xy a =+ 当1x …时,23y x x =-+的导数为21y x '=-, 由1212x -=-,可得14x =,切点为1(4,45)16代入2x y a =--,解得4716a =-;当1x >时,2y x x=+的导数为221y x '=-,由22112x -=,可得2(2x =-舍去), 切点为(2,3),代入2xy a =+,解得2a =. 由图象平移可得,47216a -剟. 故选:A .【点评】本题考查分段函数的运用,不等式恒成立问题的解法,注意运用分类讨论和分离参数法,以及转化思想的运用,分别求出二次函数和基本不等式求最值是解题的关键,属于中档题.9.(2017•山东理)已知当[0x ∈,1]时,函数2(1)y mx =- 的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1][23,)+∞B .(0,1][3,)+∞C .[23,)+∞D .(0[3,)+∞【考点】函数的图象与图象的变换【分析】根据题意,由二次函数的性质分析可得:2(1)y mx =- 为二次函数,在区间1(0,)m为减函数,1(m ,)+∞为增函数,分2种情况讨论:①、当01m <…时,有11m…,②、当1m >时,有11m <,结合图象分析两个函数的单调性与值域,可得m 的取值范围,综合可得答案. 【解答】解:根据题意,由于m 为正数,2(1)y mx =- 为二次函数,在区间1(0,)m为减函数,1(m ,)+∞为增函数,函数y m =+为增函数, 分2种情况讨论: ①、当01m <…时,有11m…, 在区间[0,1]上,2(1)y mx =- 为减函数,且其值域为2[(1)m -,1],函数y m =为增函数,其值域为[m ,1]m +, 此时两个函数的图象有1个交点,符合题意; ②、当1m >时,有11m<, 2(1)y mx =- 在区间1(0,)m为减函数,1(m ,1)为增函数,函数y m =为增函数,其值域为[m ,1]m +,若两个函数的图象有1个交点,则有2(1)1m m -+…,解可得0m …或3m …, 又由m 为正数,则3m …;综合可得:m 的取值范围是(0,1][3,)+∞; 故选:B .【点评】本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m 的分类讨论. 10.(2019•新课标2理)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是( ) A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]11.(2018•新课标Ⅰ理9)已知函数,0(),0x e x f x lnx x ⎧=⎨>⎩…,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是( ) A .[1-,0)B .[0,)+∞C .[1-,)+∞D .[1,)+∞【考点】分段函数的应用【分析】由()0g x =得()f x x a =--,分别作出两个函数的图象,根据图象交点个数与函数零点之间的关系进行转化求解即可.【解答】解:由()0g x =得()f x x a =--,作出函数()f x 和y x a =--的图象如图:当直线y x a =--的截距1a -…,即1a -…时,两个函数的图象都有2个交点, 即函数()g x 存在2个零点, 故实数a 的取值范围是[1-,)+∞, 故选:C .【点评】本题主要考查分段函数的应用,利用函数与零点之间的关系转化为两个函数的图象的交点问题是解决本题的关键.12.(2019•天津文8)已知函数1,()1,1x f x x x⎧⎪=⎨>⎪⎩剟若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为( ) A .5[4,9]4B .5(4,9]4C .5(4,9]{1}4D .5[4,9]{1}4【考点】分段函数的应用【分析】分别作出()y f x =和14y x =-的图象,考虑直线经过点(1,2)和(1,1)时,有两个交点,直线与1y x =在1x >相切,求得a 的值,结合图象可得所求范围. 【解答】解:作出函数1,()1,1x f x x x ⎧⎪=⎨>⎪⎩剟的图象,以及直线14y x =-的图象,关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,即为()y f x =和14y x a =-+的图象有两个交点,平移直线14y x =-,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得94a =或54a =, 考虑直线与1y x =在1x >相切,可得2114ax x -=,由△210a =-=,解得1(1a =-舍去), 综上可得a 的范围是5[4,9]{1}4.故选:D .【点评】本题考查分段函数的运用,注意运用函数的图象和平移变换,考查分类讨论思想方法和数形结合思想,属于中档题.填空题1.(2014•新课标Ⅰ文)设函数113,1(),1x e x f x x x -⎧<⎪=⎨⎪⎩…,则使得()2f x …成立的x 的取值范围是 8x … .【考点】分段函数的应用【分析】利用分段函数,结合()2f x …,解不等式,即可求出使得()2f x …成立的x 的取值范围. 【解答】解:1x <时,12x e -…,21x ln ∴+…,1x ∴<;1x …时,132x …,8x ∴…, 18x ∴剟,综上,使得()2f x …成立的x 的取值范围是8x …. 故答案为:8x ….【点评】本题考查不等式的解法,考查分段函数,考查学生的计算能力,属于基础题.2.(2014•上海理)设2,(,)(),[,)x x a f x x x a ∈-∞⎧=⎨∈+∞⎩,若f (2)4=,则a 的取值范围为 (-∞,2] .【考点】分段函数的应用【分析】可对a 进行讨论,当2a >时,当2a =时,当2a <时,将a 代入相对应的函数解析式,从而求出a 的范围.【解答】解:当2a >时,f (2)24=≠,不合题意; 当2a =时,f (2)224==,符合题意; 当2a <时,f (2)224==,符合题意;2a ∴…,故答案为:(-∞,2].【点评】本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.3.(2015•浙江文)已知函数2,1()66,1x x f x x x x ⎧⎪=⎨+->⎪⎩…,则((2)f f -= 12- ,()f x 的最小值是6 . 【考点】函数的最值及其几何意义【分析】由分段函数的特点易得((2))f f -=的值;分别由二次函数和基本不等式可得各段的最小值,比较可得.【解答】解:由题意可得2(2)(2)4f -=-=,((2))f f f ∴-=(4)614642=+-=-; 当1x …时,2()f x x =,由二次函数可知当0x =时,函数取最小值0;当1x >时,6()6f x x x=+-,由基本不等式可得6()666f x x x x x =+--=…,当且仅当6x x=即x =6;2660-<,()f x∴的最小值为6故答案为:12-;6 【点评】本题考查函数的最值,涉及二次函数的性质和基本不等式,属中档题.4.(2015•浙江理)已知函数223,1()(1),1x x f x xlg x x ⎧+-⎪=⎨⎪+<⎩…,则((3))f f -= 0 ,()f x 的最小值是 3 . 【考点】函数的值【分析】根据已知函数可先求(3)1f -=,然后代入可求((3))f f -;由于1x …时,2()3f x x x =+-,当1x <时,2()(1)f x lg x =+,分别求出每段函数的取值范围,即可求解【解答】解:223,1()(1),1x x f x xlg x x ⎧+-⎪=⎨⎪+<⎩…, (3)101f lg ∴-==,则((3))f f f -=(1)0=,当1x …时,2()33f x x x=+-…,即最小值3, 当1x <时,211x +…,2()(1)0f x lg x =+…最小值0,故()f x 的最小值是3-.故答案为:0;3.【点评】本题主要考查了分段函数的函数值的求解,属于基础试题.5.(2015•江苏)已知函数()||f x lnx =,20,01()|4|2,1x g x x x <⎧=⎨-->⎩…,则方程|()()|1f x g x +=实根的个数为 4 . 【考点】函数的零点与方程根的关系【分析】:由|()()|1f x g x +=可得()()1g x f x =-±,分别作出函数的图象,即可得出结论.【解答】解:由|()()|1f x g x +=可得()()1g x f x =-±.()g x 与()()1h x f x =-+的图象如图所示,图象有2个交点()g x 与()()1x f x ϕ=--的图象如图所示,图象有两个交点;所以方程|()()|1f x g x +=实根的个数为4.故答案为:4.【点评】本题考查求方程|()()|1f x g x +=实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.6.(2015•安徽文)在平面直角坐标系xOy 中,若直线2y a =与函数||1y x a =--的图象只有一个交点,则a 的值为 12- . 【考点】函数的零点与方程根的关系【分析】由已知直线2y a =与函数||1y x a =--的图象特点分析一个交点时,两个图象的位置,确定a .【解答】解:由已知直线2y a =是平行于x 轴的直线,由于y x a =-为一次函数,其绝对值的函数为对称图形,故函数||1y x a =--的图象是折线,所以直线2y a =过折线顶点时满足题意,所以21a =-,解得12a =-; 故答案为:12-.【点评】本题考查了函数的图象;考查利用数形结合求参数.7.(2016•天津文)已知函数2(43)3,0()(0,1)(1)1,0ax a x a x f x a a log x x ⎧+-+<⎪=>≠⎨++⎪⎩…在R 上单调递减,且关于x 的方程|()|23x f x =-恰有两个不相等的实数解,则a 的取值范围是 1[3,2)3 . 【考点】分段函数的应用【分析】由减函数可知()f x 在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|()|f x 和23x y =-的图象,根据交点个数判断3a 与2的大小关系,列出不等式组解出. 【解答】解:()f x 是R 上的单调递减函数,2(43)3y x a x a ∴=+-+在(-∞.,0)上单调递减,log (1)1a y x =++在(0,)+∞上单调递减,且()f x 在(,0)-∞上的最小值大于或等于(0)f . ∴34020131a a a -⎧⎪⎪<<⎨⎪⎪⎩……,解得1334a 剟. 作出|()|y f x =和23x y =-的函数草图如图所示: 由图象可知|()|23x f x =-在[0,)+∞上有且只有一解,|()|23x f x =-恰有两个不相等的实数解, 2(43)323x x a x a ∴+-+=-在(,0)-∞上只有1解, 即28(4)3203x a x a +-+-=在(,0)-∞上只有1解, ∴28(4)4(32)0384302a a a ⎧---=⎪⎪⎨-⎪-<⎪⎩或28(4)4(32)03320a a a ⎧--->⎪⎨⎪-<⎩,解得5136a =或23a <, 又1334a 剟,∴1233a <…. 故答案为1[3,2)3.【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.8.(2017•新课标Ⅲ文理)设函数1,0()2,0x x x f x x +⎧=⎨>⎩…,则满足1()()12f x f x +->的x 的取值范围是 1(4-,)+∞ .【考点】函数的值【分析】根据分段函数的表达式,分别讨论x 的取值范围,进行求解即可.【解答】解:若0x …,则1122x --…, 则1()()12f x f x +->等价为11112x x ++-+>,即122x >-,则14x >-, 此时104x -<…, 当0x >时,()21x f x =>,1122x ->-, 当102x ->即12x >时,满足1()()12f x f x +->恒成立, 当11022x ->-…,即102x >…时,1111()12222f x x x -=-+=+>,此时1()()12f x f x +->恒成立, 综上14x >-, 故答案为:1(4-,)+∞. 【点评】本题主要考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键.9.(2018•天津文14)已知a R ∈,函数2222,0()22,0x x a x f x x x a x ⎧++-=⎨-+->⎩….若对任意[3x ∈-,)+∞,()||f x x …恒成立,则a 的取值范围是 1[8,2] . 【考点】函数恒成立问题【分析】根据分段函数的表达式,结合不等式恒成立分别进行求解即可.【解答】解:当0x …时,函数2()22f x x x a =++-的对称轴为1x =-,抛物线开口向上,要使0x …时,对任意[3x ∈-,)+∞,()||f x x …恒成立,则只需要(3)|3|3f --=…,即9623a -+-…,得2a …,当0x >时,要使()||f x x …恒成立,即2()22f x x x a =-+-,在射线y x =的下方或在y x =上,由222x x a x -+-…,即220x x a -+…,由判别式△180a =-…, 得18a …,综上128a 剟, 故答案为:1[8,2].【点评】本题主要考查不等式恒成立问题,利用分段函数的不等式分别进行转化求解即可.注意数形结合.10.(2018•天津理14)已知0a >,函数222,0()22,0x ax a x f x x ax a x ⎧++=⎨-+->⎩….若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 (4,8) .【考点】分段函数的应用【分析】分别讨论当0x …和0x >时,利用参数分离法进行求解即可.【解答】解:当0x …时,由()f x ax =得22x ax a ax ++=,得20x ax a ++=,得2(1)a x x +=-,得21x a x =-+, 设2()1x g x x =-+,则22222(1)2()(1)(1)x x x x x g x x x +-+'=-=-++, 由()0g x '>得21x -<<-或10x -<<,此时递增,由()0g x '<得2x <-,此时递减,即当2x =-时,()g x 取得极小值为(2)4g -=,当0x >时,由()f x ax =得222x ax a ax -+-=,得220x ax a -+=,得2(2)a x x -=,当2x =时,方程不成立,当2x ≠时,22x a x =- 设2()2x h x x =-,则22222(2)4()(2)(2)x x x x x h x x x ---'==--, 由()0h x '>得4x >,此时递增,由()0h x '<得02x <<或24x <<,此时递减,即当4x =时,()h x 取得极小值为h (4)8=, 要使()f x ax =恰有2个互异的实数解,则由图象知48a <<,故答案为:(4,8)【点评】本题主要考查函数与方程的应用,利用参数分离法结合函数的极值和导数之间的关系以及数形结合是解决本题的关键.(二)函数图像的判断1.(2015•新课标Ⅱ文理)如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )A .B .C .D .【考点】正切函数的图象【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当04x π剟时,tan BP x =,AP =此时()tan f x x =,04x π剟,此时单调递增,当P 在CD 边上运动时,344x ππ剟且2x π≠时, 如图所示,1tan tan()tan tan PQ POB POQ x POQ OQ OQ π∠=-∠==-∠=-=-, 1tan OQ x∴=-, 11tan PD AO OQ x ∴=-=+,11tan PC BO OQ x =+=-,PA PB ∴+,当2x π=时,PA PB +=当P 在AD 边上运动时,34x ππ剟,tan PA PB x +=, 由对称性可知函数()f x 关于2x π=对称, 且()()42f f ππ>,且轨迹为非线型, 排除A ,C ,D ,故选:B .【点评】本题主要考查函数图象的识别和判断,根据条件先求出04x π剟时的解析式是解决本题的关键.2.(2015•北京理)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油D .甲车以80千米/小时的速度行驶1小时,消耗10升汽油【考点】函数的图象与图象的变换【分析】根据函数图象的意义逐项分析各说法是否正确.【解答】解:对于A ,由图象可知当速度大于40/km h 时,乙车的燃油效率大于5/km L ,∴当速度大于40/km h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误;对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误;对于C ,由图象可知当速度小于80/km h 时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故C 正确;对于D ,由图象可知当速度为80/km h 时,甲车的燃油效率为10/km L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故D 错误.故选:C .【点评】本题考查了函数图象的意义,属于中档题.3.(2015•浙江文)函数1()()cos (f x x x x xππ=--剟且0)x ≠的图象可能为( ) A . B .C .D .【考点】函数的图象与图象的变换【分析】由条件可得函数()f x 为奇函数,故它的图象关于原点对称;再根据但是当x 趋向于0时,()0f x >,结合所给的选项,得出结论.【解答】解:对于函数1()()cos (f x x x x xππ=--剟且0)x ≠,由于它的定义域关于原点对称, 且满足1()()cos ()f x x x f x x-=-+=-,故函数()f x 为奇函数,故它的图象关于原点对称. 故排除A 、B .当x π=,()0f x <,故排除C ,但是当x 趋向于0时,()0f x <,故选:D .【点评】本题主要考查函数的奇偶性的判断,奇函数的图象特征,函数的定义域和值域,属于中档题.4.(2015•安徽理)函数2()()ax b f x x c +=+的图象如图所示,则下列结论成立的是( )A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【考点】函数的图象与图象的变换【分析】分别根据函数的定义域,函数零点以及(0)f 的取值进行判断即可.【解答】解:函数在P 处无意义,由图象看P 在y 轴右边,所以0c ->,得0c <,2(0)0b f c=>,0b ∴>, 由()0f x =得0ax b +=,即b x a=-, 即函数的零点0b x a=->, 0a ∴<,综上0a <,0b >,0c <,故选:C .【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及(0)f 的符号是解决本题的关键.5.(2016•浙江文)函数2sin y x =的图象是( )A .B .C .D【考点】函数的图象与图象的变换【分析】根据函数奇偶性的性质,以及函数零点的个数进行判断排除即可.【解答】解:22sin()sin x x -=,∴函数2sin y x =是偶函数,即函数的图象关于y 轴对称,排除A ,C ;由2sin 0y x ==,则2x k π=,0k …,则x =0k …, 故函数有无穷多个零点,排除B ,故选:D .【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.6.(2017•新课标Ⅰ文)函数sin 21cos x y x =-的部分图象大致为( )A .B .C .D .【考点】函数的图象与图象的变换【分析】判断函数的奇偶性排除选项,利用特殊值判断即可. 【解答】解:函数sin 21cos xy x=-,可知函数是奇函数,排除选项B , 当3x π=时,2()1312f π==-A ,x π=时,()0f π=,排除D .故选:C .【点评】本题考查函数的图形的判断,三角函数化简,函数的奇偶性以及函数的特殊点是判断函数的图象的常用方法.7.(2017•新课标Ⅲ文)函数2sin 1xy x x=++的部分图象大致为( ) A . B . C . D .【考点】函数的图象与图象的变换【分析】通过函数的解析式,利用函数的奇偶性的性质,函数的图象经过的特殊点判断函数的图象即可. 【解答】解:函数2sin 1x y x x =++,可知:2sin ()xf x x x =+是奇函数,所以函数的图象关于原点对称, 则函数2sin 1xy x x=++的图象关于(0,1)对称, 当0x +→,()0f x >,排除A 、C ,当x π=时,1y π=+,排除B . 故选:D .【点评】本题考查函数的图象的判断,函数的奇偶性以及特殊点是常用方法. 8.(2018•浙江)函数||2sin 2x y x =的图象可能是( )A .B .C .D .【考点】函数的图象与图象的变换;正弦函数的图象 【分析】直接利用函数的图象和性质求出结果.【解答】解:根据函数的解析式||2sin 2x y x =,得到:函数的图象为奇函数, 故排除A 和B . 当2x π=时,函数的值也为0,故排除C . 故选:D .【点评】本题考查的知识要点:函数的性质和赋值法的应用.9.(2018•新课标Ⅱ文理3)函数2()x xe ef x x --=的图象大致为( )A .B .C .D .【考点】函数的图象与图象的变换;6B :利用导数研究函数的单调性【分析】判断函数的奇偶性,利用函数的定点的符号的特点分别进行判断即可. 【解答】解:函数22()()()x x x xe e e ef x f x x x -----==-=--,则函数()f x 为奇函数,图象关于原点对称,排除A , 当1x =时,f (1)10e e=->,排除D .当x →+∞时,()f x →+∞,排除C , 故选:B .【点评】本题主要考查函数的图象的识别和判断,利用函数图象的特点分别进行排除是解决本题的关键. 10.(2019•新课标Ⅰ文理)函数2sin ()cos x xf x x x +=+的图象在[π-,]π的大致为( )A .B .C .D .【考点】3A :函数的图象与图象的变换,三角函数的图象与性质【分析】由()f x 的解析式知()f x 为奇函数可排除A ,然后计算()f π,判断正负即可排除B ,C . 【解答】解:2sin ()cos x xf x x x+=+,[x π∈-,]π, 22sin sin ()()cos()cos x x x xf x f x x x x x --+∴-==-=--++,()f x ∴为[π-,]π上的奇函数,因此排除A ;又22sin ()0cos 1f πππππππ+==>++,因此排除B ,C ; 故选:D .【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.11.(2019•新课标Ⅲ理7)函数3222x xx y -=+在[6-,6]的图象大致为( )A .B .C .D .【考点】函数的图象与图象的变换【分析】由3222x xx y -=+的解析式知该函数为奇函数可排除C ,然后计算4x =时的函数值,根据其值即可排除A ,D .【解答】解:由32()22x xx y f x -==+在[6-,6],知332()2()()2222x x x xx x f x f x ----==-=-++,()f x ∴是[6-,6]上的奇函数,因此排除C又f (4)1182721=>+,因此排除A ,D .故选:B .【点评】本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题. 12.(2019•浙江)在同一直角坐标系中,函数1xy a =,11()2ay og x =+,(0a >且1)a ≠的图象可能是( )A .B .C .D .【考点】函数的图象与图象的变换【分析】对a 进行讨论,结合指数,对数的性质即可判断; 【解答】解:由函数1xy a=,11()2a y og x =+, 当1a >时,可得1xy a =是递减函数,图象恒过(0,1)点, 函数11()2a y og x =+,是递增函数,图象恒过1(2,0);当10a >>时,可得1x y a=是递增函数,图象恒过(0,1)点, 函数11()2a y og x =+,是递减函数,图象恒过1(2,0);∴满足要求的图象为:D故选:D .【点评】本题考查了指数函数,对数函数的图象和性质,属于基础题.填空题1.(2017•北京文理14)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中i A 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点i B 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,1i =,2,3.(1)记i Q 为第i 名工人在这一天中加工的零件总数,则1Q ,2Q ,3Q 中最大的是 1Q . (2)记i p 为第i 名工人在这一天中平均每小时加工的零件数,则1p ,2p ,3p 中最大的是 .【考点】函数的图象与图象的变换【分析】(1)若i Q 为第i 名工人在这一天中加工的零件总数,则i i Q A =的综坐标i B +的纵坐标;进而得到答案.(2)若i p 为第i 名工人在这一天中平均每小时加工的零件数,则i p 为i i A B 中点与原点连线的斜率;进而得到答案.【解答】解:(1)若i Q 为第i 名工人在这一天中加工的零件总数, 11Q A =的纵坐标1B +的纵坐标; 22Q A =的纵坐标2B +的纵坐标, 33Q A =的纵坐标3B +的纵坐标,由已知中图象可得:1Q ,2Q ,3Q 中最大的是1Q ,(2)若i p 为第i 名工人在这一天中平均每小时加工的零件数, 则i p 为i i A B 中点与原点连线的斜率, 故1p ,2p ,3p 中最大的是2p 故答案为:1Q ,2p【点评】本题考查的知识点是函数的图象,分析出i Q 和i p 的几何意义,是解答的关键.。
普通高等学校招生全国统一考试分类汇编3—基本初等函数及应用(理科)S
2014年普通高等学校招生全国统一考试分类汇编(3)基本初等函数及应用1. 【2014高考安徽卷理第6题】设函数))((R x x f ∈满足.sin )()(x x f x f +=+π当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B. 23 C.0 D.21- 2. 【2014高考北京版理第2题】下列函数中,在区间(0,)+∞为增函数的是( )A .y =.2(1)y x =- C .2x y -= D .0.5log (1)y x =+3. 【2014高考福建卷第4题】若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图像正确的是( )4. 【2014高考福建卷第7题】已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( )A.()x f 是偶函数B. ()x f 是增函数C.()x f 是周期函数D.()x f 的值域为[)+∞-,15. 【2014高考湖北卷理第10题】已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=,若R ∈∀x ,)()1(x f x f ≤-,则实数a 的取值范围为( ) A.]61,61[-B.]66,66[-C. ]31,31[-D. ]33,33[- 6. 【2014高考湖北卷理第14题】设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(ba cb a M f +==,即),(b a M f 为b a ,的算术平均数.(1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数; (2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab+2; (以上两空各只需写出一个符合要求的函数即可)7. 【2014高考湖南卷第3题】已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( )A. 3-B. 1-C. 1D. 38. 【2014高考湖南卷第8题】某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.2p q + B.(1)(1)12p q ++-19. 【2014高考湖南卷第10题】已知函数())0(212<-+=x e x x f x 与())ln(2a x x x g ++=图象上存在关于y 轴对称的点,则a 的取值范围是( ) A. )1,(e -∞ B. ),(e -∞ C. ),1(e e - D. )1,(ee - 10. 【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 .11. 【2014高考江苏卷第13题】已知()f x 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21()22f x x x =-+,若函数()y f x a =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 .12. 【2014江西高考理第2题】函数)ln()(2x x x f -=的定义域为( ) A.)1,0( B. ]1,0[ C. ),1()0,(+∞-∞ D. ),1[]0,(+∞-∞13. 【2014江西高考理第3题】已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( )A.1B. 2C. 3D. -1 14. 【2014辽宁高考理第3题】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a>>15. 【2014辽宁高考理第12题】已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( )A .12 B .14 C .12π D .1816. 【2014全国1高考理第3题】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A .)()(x g x f 是偶函数B .)(|)(|x g x f 是奇函数 C..|)(|)(x g x f 是奇函数 D .|)()(|x g x f 是奇函数17. 【2014全国2高考理第15题】已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.18. 【2014山东高考理第3题】函数1)(log 1)(22-=x x f 的定义域为( )A. )21,0(B. ),2(+∞C. ),2()21,0(+∞D. ),2[]21,0(+∞19. 【2014山东高考理第8题】 已知函数()21,().f x x g x kx =-+=若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( ) A.1(0,)2 B.1(,1)2C.(1,2)D.(2,)+∞考点:函数与方程,函数的图象.20.【2014四川高考理第9题】已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-.现有下列命题: ①()()f x f x -=-;②22()2()1xf f x x =+;③|()|2||f x x ≥.其中的所有正确命题的序号是( ) A .①②③ B .②③ C .①③ D .①② 【考点定位】1、函数的奇偶性;2、对数运算;3、函数与不等式.21. 【2014四川高考理第12题】设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f = .22. 【2014浙江高考理第6题】已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c23. 【2014浙江高考理第7题】在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )24. 【2014浙江高考理第15题】设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______25. 【2014重庆高考理第12题】函数2()log )f x x =的最小值为_________.26. 【2014陕西高考理第7题】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( ) (A )()12f x x= (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3x f x =27. 【2014陕西高考理第11题】已知,lg ,24a x a==则x =________. 28. 【2014天津高考理第4题】函数212log 4f x x 的单调递增区间是( ) (A )0,(B ),0 (C )2,(D ),229. 【2014天津高考理第14题】已知函数23f x x x ,x R .若方程10f x a x 恰有4个互异的实数根,则实数a 的取值范围为__________. 【答案】()()0,19,+∞.30. 【2014大纲高考理第12题】函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--(注:本资料素材和资料部分来自网络,仅供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年高考数学分类汇编基本初等函数一、选择题1.(2013年高考(安徽文))23log 9log 4⨯=( )A .14B .12C .2D .42.(2013年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是 ( )A .()ln 2y x =+B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+3 .(2013年高考(重庆文))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0M x R f g x =∈> {|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞4 .(2013年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+5 .(2013年高考(四川文))函数(0,1)xy a a a a =->≠的图象可能是6 .(2013年高考(山东文))函数1()ln(1)f x x =++( )A .[2,0)(0,2]-B .(1,0)(0,2]-C .[2,2]-D .(1,2]-7.(2013年高考(广东文))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e =D.y =8.(2013年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B = ( )A .(1,2)B .[1,2]C .[,)12D .(,]129 .(2013年高考(新课标理))设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为 ( )A .1ln 2-Bln 2)-C .1ln 2+Dln 2)+10 .(2013年高考(四川理))函数1(0,1)xy a a a a=->≠的图象可能是11.(2013年高考(江西理))下列函数中,与函数( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx13.(2013年高考(湖南理))已知两条直线1l :y=m 和2l : y=821m +(m>0),1l 与函数2log y x =的图像从左至右相交于点A,B ,2l 与函数2log y x =的图像从左至右相交于C,D .记线段AC 和BD 在X 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为 ( )A. B.C.D.二、填空题13.(2013年高考(上海文))方程03241=--+x x的解是_________.14.(2013年高考(陕西文))设函数发0,()1(),0,2x x f x x ìï³ïï=íï<ïïïî,则((4))f f -=_____15.(2013年高考(北京文))已知()(2)(3)f x m xm x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.16.(2013年高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.17.(2013年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是______.18.(2013年高考(江苏))函数x x f 6log 21)(-=的定义域为____.三、解答题19.(2013年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.基本初等函数参考答案一、选择题1. 【解析】选D 23lg9lg 42lg32lg 2log 9log 44lg 2lg3lg 2lg3⨯=⨯=⨯= 2.解析:A.()ln 2y x =+在()2,-+∞上是增函数. 3. 【答案】:D【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->所以1x <或3log 5x >;由()2g x <得322x -<即34x<所以3l o g 4x <故(,1)M N =-∞【考点定位】本题考查了利用直接代入法求解函数的解析式以及指数不等式的解法.本题以函数为载体,考查复合函数,关键是函数解析式的确定.4. 【解析】函数x y2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B.5. [答案]C[解析]采用特殊值验证法. 函数(0,1)x y a a a a =->≠恒过(1,0),只有C 选项符合. [点评]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.6. 解析:要使函数)(x f 有意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B.7.解析:D.()()f x f x -===.8. 【解析】选D{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9. 【解析】选A函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d =设函数min min 11()()1()1ln 222x x g x e x g x e g x d '=-⇒=-⇒=-⇒=由图象关于y x =对称得:PQ最小值为min 2ln 2)d =-10. [答案]C[解析]采用排除法. 函数(0,1)x y a a a a =->≠恒过(1,0),选项只有C 符合,故选C. [点评]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.11. D 【解析】本题考查常有关对数函数,指数函数,分式函数的定义域以及三角函数的值域.函数y =的定义域为()(),00,-∞+∞ ,而答案中只有s i n x y x =的定义域为()(),00,-∞+∞ .故选D.【点评】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0:(4)实际问题还需要考虑使题目本身有意义.体现考纲中要求了解一些简单函数的定义域,来年需要注意一些常见函数:带有分式,对数,偶次根式等的函数的定义域的求法. 13. 【答案】B【解析】在同一坐标系中作出y=m,y=821m +(m>0),2log y x =图像如下图,由2log x = m,得122,2m mx x -==,2log x = 821m +,得821821342,2m m x x +-+==.依照题意得8218218218212222,22,22m m mmmm m m b a b a++--+--+-=-=-=-821821222m m mm +++==.8141114312122222m m m m +=++-≥-=++,min ()b a ∴=.【点评】在同一坐标系中作出y=m,y=821m +(m>0),2log y x =图像,结合图像可解得.821m =+xm二、填空题 13. [解析] 0322)2(2=-⋅-x x ,0)32)(12(=-+x x ,32=x ,3log 2=x .14.解析:41(4)()162f --==,((4))(16)4f f f -==15. 【答案】(4,0)-【解析】首先看()22x g x =-没有参数,从()22x g x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),所以舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,所以30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,所以4m >-,又0m <,故(4,0)m ∈-,综上,m 的取值范围是(4,0)-.【考点定位】 本题考查学生函数的综合能力,涉及到二次函数的图像的开口,根的大小,涉及到指数函数,还涉及到简易逻辑中的“或”,还考查了分类讨论的思想,对m 进行讨论.16. 【答案】2【解析】()lg ,()1f x x f ab == ,lg()1ab ∴=2222()()lg lg 2lg()2f a f b a b ab ∴+=+==【考点定位】本小题考查的是对数函数,要求学生会利用对数的运算公式进行化简,同时也要求学生对于基础的对数运算比较熟悉. 17. 518.【答案】(0. 【考点】函数的定义域,二次根式和对数函数有意义的条件,解对数不等式.【解析】根据二次根式和对数函数有意义的条件,得1266000112log 0log 620<x >x >x >x x x x ≤-≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩.三、解答题19. [解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x xx x 得101122<<+-x x因为01>+x ,所以1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==由单调性可得]2lg ,0[∈y .因为yx 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x。