变频器结构和故障处理

变频器结构和故障处理
变频器结构和故障处理

变频器原理、结构和故障处理讲课稿变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。?1.整流器,它与单相或三相交流电源相连接,产生脉动的直流电压。2.中间电路,有以下三种作用:

a. 使脉动的直流电压变得稳定或平滑,供逆变器使用。

b. 通过开关电源为各个控制线路供电。?

c.可以配置滤波或制动装置以提高变频器性能。?3. 逆变器,将固定的直流电压变换成可变电压和频率的交流电压。 4.控制电路,它将信号传送给整流器、中间电路和逆变器,同时它也接收来自这些部分的信号。其主要组成部分是:输出驱动电路、操作控制电路。主要功能是: ?a. 利用信号来开关逆变器的半导体器件。

b. 提供操作变频器的各种控制信号。

c. 监视变频器的工作状态,提供保护功能。

在现场对变频器以及周边控制装置的进行操作的人员,如果对一些常见的故障情况能作出判断和处理,就能大大提高工作效率,并且避免一些不必要的损失。为此,我们总结了一些变频器的基本故障,供大家作参考。以下检测过程无需打开变频器机壳,仅仅在外部对一

些常见现象进行检测和判断。

1,上电跳闸或变频器主电源接线端子部分出现火花。

检测办法和判断:断开电源线,检查变频器输入端子是否短路,检查变频器中间电路直流侧端子P、N是否短路。可能原因是整流器损坏或中间电路短路。

2,上电无显示?检测办法和判断:断开电源线,检查电源是否是否有缺相或断路情况,如果电源正常则再次上电后则检查检查变频器中间电路直流侧端子P、N是否有电压,如果上述检查正常则判断变频器内部开关电源损坏。

3,开机运行无输出(电动机不启动)?检测办法和判断:断开输出电机线,再次开机后观察变频器面板显示的输入频率,同时测量交流输出端子。可能原因是变频器启动参数设置或运行端子接线错误、也可能是逆变部分损坏或电动机没有正确链接到变频器。

4,运行时“过电压”保护,变频器停止输出

检测办法和判断:检查电网电压是否过高,或者是电机负载惯性太大并且加减速时间太短导致的制动问题,请参考第8条。

5, 运行时“过电流”保护,变频器停止输出

检测办法和判断:电机堵转或负载过大。可以检查负载情况或适当调整变频器参数。如无法奏效则说明逆变器部分出现老化或损坏。?6,运行时“过热”保护,变频器停止输出

检测办法和判断:视各品牌型号的变频器配置不同,可能是环境温度过高超过了变频器允许限额,检查散热风机是否运转或是电动机过热

导致保护关闭。

7,运行时“接地”保护,变频器停止输出

检测办法和判断:参考操作手册,检查变频器及电机是否可靠接地,或者测量电机的绝缘度是否正常。

8,制动问题(过电压保护)

检测办法和判断:如果电机负载确实过大并需要在短时间内停车,则需购买带有制动单元的变频器并配置相当功率的制动电阻。如果已经配置了制动功能,则可能是制动电阻损坏或制动单元检测失效。

9,变频器内部发出腐臭般的异味

检测办法和判断:切勿开机,很可能是变频器内部主滤波电容有破损漏液现象。

10,如判断出变频器部件损坏,则联系供应商或送交专业维修中心处理。?变频器故障分析?目前人们所说的交流调速系统,主要指电子式电力变换器对交流电动机的变频调速系统。变频调速系统以其优越于直流传动的特点,在很多场合中都被作为首选的传动方案,现代变频调速基本都采用16位或32位单片机作为控制核心,从而实现全数字化控制,调速性能与直流调速基本相近,但使用变频器时,其维护工作要比直流复杂,一旦发生故障,企业的普通电气人员就很难处理,这里就变频器常见的故障分析一下故障产生的原因及处理方法。

0 g8M$ a' m5b:g, k*}2 c8 d0 I?一、参数设置类故障?常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数设置不正确,会导致变频器不能正常工作。

1、参数设置$P*L+ x- t4 C& n, ~; I8?

常用变频器,一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。在这些参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系统的要求。所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行: O* i!f& ?8p3X( D+S&B/ D0P?(1)确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。

(2)变频器采取的控制方式,即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。?(3)设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情况选择启动方式,可以用面板、外部端子、通讯方式等几种。

(4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式之和。正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。

2、参数设置类故障的处理?一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个公司的变频器其参数恢复方式也不相同。

二、过压类故障

变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器直流电为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压Ud= 1.35U线=513V。在过电压发生时,直流母线的储能电容将被充电,当电压上至760V左右时,变频器过电压保护动作。因此,变频器来说,都有一个正常的工作电压范围,当电压超过这个范围时很可能损坏变频器,常见的过电压有两类。?1、输入交流电源过压%s+ [3 g7 F, q

这种情况是指输入电压超过正常范围,一般发生在节假日负载较轻,电压升高或降低而线路出现故障,此时最好断开电源,检查、处理。?2、发电类过电压/ u8 M2? q"`8 [#e3}?这种情况出现的概率较高,主要是电机的同步转速比实际转速还高,使电动机处于发电状态,而变频器又没有安装制动单元,有两起情况可以引起这一故障。?(1)当变频器拖动大惯性负载时,其减速时间设的比较小,在减速过程中,变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现故障,而纸机中经常发生在干燥部分,处理这种故障可以增加再生制动单元,或者修改变频器参数,把变频器减速时间设的长一些。增加再生制动单元功能包括能量消耗型,并联直流母线吸收型、能量回馈型。能量消耗型在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制功率管的通

断。并联直流母线吸收型使用在多电机传动系统,这种系统往往有一台或几台电机经常工作于发电状态,产生再生能量,这些能量通过并联母线被处于电动状态的电机吸收。能量回馈型的变频器网侧变流器是可逆的,当有再生能量产生时可逆变流器就将再生能量回馈给电网。

(2)多个电动施动同一个负载时,也可能出现这一故障,主要由于没有负荷分配引起的。以两台电动机拖动一个负载为例,当一台电动机的实际转速大于另一台电动机的同步转速时,则转速高的电动机相当于原动机,转速低的处于发电状态,引起故障。在纸机经常发生在榨部及网部,处理时需加负荷分配控制。可以把处于纸机传动速度链分支的变频器特性调节软一些。5Z& N9 ?' i- W7 \/ C?三、过流故障?过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。

四、过载故障

过载故障包括变频过载和电机器过载。其可能是加速时间太短,直流制动量过大、电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检

修。

五、其他故障 ; P,}; W+ _+ p0 ~' e. R

1、欠压

说明变频器电源输入部分有问题,需检查后才可以运行。?2、温度过高 " e C7 B8 B* i) q#t?如电动机有温度检测装置,检查电动机的散热情况;变频器温度过高,检查变频器的通风情况。变频器的维修?在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。一、静态测试1、测试整流电路找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P 端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。

2、测试逆变电路将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障二、动态测试在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点: 1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会

出现炸机(炸电容、压敏电阻、模块等)。2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。3、上电后检测故障显示内容,并初步断定故障及原因。 4、如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障 5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载测试。三、故障判断1、整流模块损坏一般是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染的设备等。 2、逆变模块损坏一般是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。在确定无任何故障下,运行变频器。 3、上电无显示一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,也有可能是面板损坏。4、上电后显示过电压或欠电压一般由于输入缺相,电路老化及电路板受潮引起。找出其电压检测电路及检测点,更换损坏的器件。5、上电后显示过电流或接地短路一般是由于电流检测电路损坏。如霍尔元件、运放等。6、启动显示过电流一般是由于驱动电路或逆变模块损坏引起。 7、空载输出电压正常,带载后显示过载或过电流该种情况一般是由

于参数设置不当或驱动电路老化,模块损伤引起。

变频器的安装和使用注意问题

安装外围设备问题: + u- O$ r2 Y, B?在安装变频器时首先要了解变频器的使用场合,根据现场的需要设置不同的外围设备。这里变频器的主要外围设备有:空气断路器、电磁接触器、交流电抗器、制动电阻、直流电抗器、输出交流电抗器,无线噪声滤波器等等。 . R 5 M3 z. p% b. C?1.空气断路器是一种不仅能正常接触和断开电路,并能在过电流、逆电流、短路和失(欠)电压等非正常情况下动作的自动电器。其主要作用是保护交、直流电路内的电气设备,也可以不频繁地操作电路。在这里用来迅速切断变频器,防止变频器及其线路故障导致电源故障。?2.交流电抗器又叫AC电抗器、电源协调用的交流电抗器。其主要功能是防止电源电网的谐波干扰。 ' U9 I0

W5 L+ D&X

3.交流接触器简称接触器。它是用来频繁远距离接通和分断交直流电路,或大电容控制电路的自动电器。这里主要用于变频器出现故障时,自动切断主电源并防止掉电及故障后再起动。* ^4 a# Y;

L% M# A, }5 ~1 [

4.无线电噪声滤波器又叫电源滤波器,其主要作用是为了抑制从金属管线上传导无线电信号到设备中,或者抑制干扰信号从干扰源设备通过电源传导。在变频器中的作用是抑制干扰信号从变频器通过电源线传导到电源或电动机。; T& W6`4 b6 \0 s:\?5.直流电抗器主要是为了抑制变频器产生的高次谐波,它的作用效果比交流电抗

器更好。

6.输出交流电抗器又叫输出侧抗干扰滤波器,它是为了抑制变频器产生的高频干扰滤波影响电源侧的滤波器。,V: |5 ?( k6 H+ J.

[?7.过滤罩主要是防止粉尘进入变频器。

变频器安装的步骤如下:?一、货物核查二、对主回路进行安装前的绝缘测试三、对控制回路进行安装前的绝缘实验四、变频器安装对周围环境的要求。0c9 F, y% K" \?(1) 环境温度:一般适用在-10℃-40℃、湿变在底于90%的环境工作中。环境温度若高于40℃时候,每升高1℃,变频器应降额5%使用。0 O2 a( V3

A4 ]5 Z

(2) 安装现场的普通要求:1)无腐蚀、无易燃易爆气体、液体 2)无灰尘、漂浮性的纤维及金属颗粒。3)所安装场所的基础、墙壁应坚固无损伤、无震动 4)要避免阳光直射5)无电磁干扰

(3) 变频器的安装空间及通风:变频器内部装有冷却风扇以强制风冷,为了使冷却循环效果良好,所以必须将变频器垂直安装。将多台变频器安装在同一装置或控制箱里时,为减少相互热影响,建议要横向并列安装。# O1 q$ i) X' c9 y% L8 G?(4) 变频器盖板的拆卸:在安装中,需要对变频器进行测试、检查、接线等,这就需要对其盖板进行拆卸。要注意不同变频器的特点,根据他们的特点来安装。 ( P7 ~7 e-{%x2K2 ]# r

(5)变频器的接线:1)接线是否有误2)电线的线屑,尤其是金属屑、短断头及其螺杆、螺母是否掉落在变频器内部 3)螺杆是否拧紧,

电线是否有松动 4)端子接线的裸露部分是否与别的端子带电部分相碰,是否触及了变频器外壳。" |/ ^1 b% G5 {

(6)控制回路接线的注意事项:1)控制回路与主回路的接线,以及与其他动力线、电力线应分开走线,并保持一定距离。2)变频器控制回路中的继电器触点端子引线,与其他控制回路端子的连线要分开走线,以免触点闭合或断开时造成干扰信号。3)为了防止噪声等信号引起的干扰,使变频器产生误动作,控制回路采用屏蔽线。 " [- J$ V5 S( C+ \?(7)对变频其的特殊安装。 6 d) z; ]6 [%

i3{.d; D$ v$ b. ]

变频器使用的时候注意问题: 8 k$ x1 w"[3Y6 D: N

1)物理的使用环境注意事项

产品的工作温度一般要求在0~50℃,但为了保证工作安全、可靠、使用时应考虑留有裕度,最好控制载40℃以下。绝对不允许把发热元件或发热元件紧靠变频器的底部安装。+ f. u$ `9 V!Q+ Y4 U6 w?2) 电气环节要注意事项 8 X! T5 H. r+ H5 ], L?1.防止电磁干扰z9 L# j; P# Y. `( J# T?2. 防

止输入端过电压

3) 参数设置注意事项

在使用变频器之前,将变频器输出电压设为380V,基底频率设为50H Z;对驱动泵类和风机负载最高频率和上限频率设置为50HZ,下限频率15~20HZ;加减速根据电机的容量和负载量确定。?4)接线过程中的注意事项?在安装、测试、维修过程中,常需要进行端子接线。

切记不要将电源线接到变频器的输出端子上;也不要将变频器输出端子排上的“N”端子误认为电源中性线端子。控制回路接线应与主回路接线尽量远离。 3 ]7 c! s v2 q/ s9 b! x?5)变频器的接地和防雷?变频器的正确接地是提高控制系统灵敏度、抑制噪声能力的重要手段,变频器接地端子E(G)接地电阻越小越好,接地导线截面应不小于2平方毫米。长度应控制在20米。在雷电活跃地区,如果电源是架空进线,应在进线处装设变频专用避雷器,或按规范要求在离变频器20米的远处预埋钢管保护接地。?6)变频器运行的注意事项?试运转时,最好先不带负载先运行一次,然后带轻载运行,最后再带载运行。变频器的运行与停止操作不要采用通断变频器电源的方式。+ P1 ?9 X7 E9 I2 @: k-~

7)变频器与负载的配置

c7 N9 I5 w(|) M1 B$ ?

变频器常见问题:?: Y( J- E+ c;j* Y7 g5 ^?一.为什么漏电断路器在使用变频器时易跳闸?K' `2 i, `,z3 t5

~ o% t( @

这是因为变频器的输出波形含有高次谐波,而电机及变频器与电机间的电缆会产生泄漏电流,该泄漏电流比工频驱动电机时大了许多,所

以产生该现象。

变频器操作输出侧的漏电流大约为工频操作时的3倍多,外加电动机等漏电流,选择漏电保护器的动作电流应该大于工频时漏电流的10

倍。

变频器线路板常见维修方法

变频器线路板常见维修方法 往往变频器的故障只有一点,而对于维修者最重要的就是找到故障点,有针对性地处理问题,尽量减少无用的拆卸,尤其是要尽量减少使用烙铁的次数。除了经验,掌握正确的检查方法是非常必要的。正确的方法可以帮助维修者由表及里,由繁到简,快速的缩小检测范围,最终查出故障并适当处理而修复。 首先谈谈故障的检查方法 报警参数检查法: 所有的变频器都以不同的方式给出故障指示,对于维修者来说是非常重要的信息。通常情况下,变频器会针对电压、电流、温度、通讯等故障给出相应的报错信息,而且大部分采用微处理器或DSP处理器的变频器会有专门的参数保存3次以上的报警记录。 (例1)某变频器有故障,无法运行并且LED显示“UV”(under voltage的缩写),说明书中该报警为直流母线欠压。因为该型号变频器的控制回路电源不是从直流母线取的,而是从交流输入端通过变压器单独整流出的控制电源。所以判断该报警应该是真实的。所以从电源入手检查,输入电源电压正确,滤波电容电压为0伏。由于充电电阻的短路接触器没动作,所以与整流桥无关。故障范围缩小到充电电阻,断电后用万用表检测发现是充电电阻断了。更换电阻马上就修好了。 (例2)有一台三垦IF 11Kw的变频器用了3年多后,偶尔上电时显示“AL5”(alarm 5 的缩写),说明书中说CPU被干扰。经过多次观察发现是在充电电阻短路接触器动作时出现的。怀疑是接触器造成的干扰,在控制脚加上阻容滤波后果然故障不再发生了。 (例3)一台富士E9系列3.7千瓦变频器,在现场运行中突然出现OC3(恒速中过流)报警停机,断电后重新上电运行出现OC1(加速中过流)报警停机。我先拆掉U、V、W到电机的导线,用万用表测量U、V、W之间电阻无穷大,空载运行,变频器没有报警,输出电压正常。可以初步断定变频器没有问题。原来是电机电缆的中部有个接头,用木版盖在地坑的分线槽中,绝缘胶布老化,工厂打扫卫生进水,造成输出短路。 (例4)三肯SVF303,显示“5”,说明书中“5”表示直流过压。电压值是由直流母线取样后(530V左右的直流)通过分压后再由光耦进行隔离,当电压超过一定阀值时,光耦动作,给处理器一个高电平。过压报警,我们可以看一下电阻是否变值,光耦是否有短路现象等。 由以上的事例当中不难看出,变频器的报警提示对处理问题有多么重要,提示你正确的处理问题的方向。 类比检查法:

变频器IGBT模块故障维修案例

故障现象 某一抽油机变频器设备,是1140v/30kw抽油机专用变频器,运行过程中中间一相IGBT模块处被烧黑,其上母线尖峰吸收电容(3μf/1200v无感电容两只串联再并联)一个腿被打断,不能正常运行。 初步判断 用万用表检测主电路部分,中间一相被熏黑,但检测好,其他两相也正常。 维修过程 (1)首先更换损坏器件。将3μf /1200v电容更换后,再将隔离开关合上,给控制柜送电,控制柜没反应,电源灯不亮,电压表没有指示。 (2)输入端接有高压熔断器,怀疑是它损坏了。用万用表高压档检测熔断器后三个端子对电压,都正常,均为690v,因控制电路用是220v电源,怀疑1140/220v变压器有问题。后来断电后用万用表检测熔断器两端阻值,有一相通,另两相断,断定原判断有误,有两相熔断器烧断。检测熔断器,有电显示,应是未断那相1140/220v变压器初级绕组串过去,因是单相供电,形不成电压,1140v/220v变压器不工作,控制柜因不到电压而不能工作。 (3)将熔断器更换后,柜子送电正常,工频启动,工作正常,工频维修完毕。接着维修变频部分。 (4)通控制电。一送电,显示板上故障保护灯就亮,怀疑干扰,但多次送、停电都这样,因处于保护状态,不能开机。后将短路保护插线拔掉(因主电路没通电,控制电路送电,无影响),送电正常。开机也正常,用万用表检测频率到达50hz时电压,三相输出电压都平衡,线间电压为8.2v,对中线为5.0v,工作正常。 (5)检查短路保护板。将输入端短路保护取样电流传感器拔下,测量板上电源电压,±12v正常,但+5v供电电压+3.0v,将集成快74hc14拔下,+5v正常,说明该集成块已经损坏,更换一只新的。 (6)将输入端短路保护取样电流传感器插上。先插正母线上电流传感器,测±12v,工作正常;再插负母线上电流传感器,测±12v电压,+12v+ 9.0v,-12v 正常。说明负母线上电流传感器损坏。将该电流传感器取下更换。 (7)将拔下线都插上,并与主板连接好。通控制电,工作正常。为进一步

变频器维修检测常用方法

变频器维修检测常用方法 如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。 一、静态测试 1、测试整流电路 找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。 2、测试逆变电路 将红表棒接到P端黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果否则可确定逆变模块故障 二、动态测试 在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点: 1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。 2、检查变频器各接插口是否已正确连接,是否有镙丝松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。 3、上电后检测故障显示内容并初步断定故障及原因。 4、如未显示故障首先检查参数是否有异常并将参数复归后进行空载(不接电机)情况下启动变频器并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况则模块或驱动板等有故障 5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载测试。 三、故障判断 1、整流模块损坏 一般是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染的设备等。 2、逆变模块损坏 一般是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。在确定无任何故障下,运行变频器。 3、上电无显示 一般是由于开关电源损坏或预充电电路损坏使直流电路无直流电压引起,如启动电阻损坏,也有可能是面板损坏。 4、上电后显示过电压或欠电压 一般由于输入缺相,电路老化及电路板受潮引起。找出其电压检测电路及检测点,更换损坏的器件。 5、上电后显示过电流或接地短路 一般是由于电流检测电路损坏。如霍尔元件、运放等。 6、启动显示过电流 一般是由于驱动电路或逆变模块损坏引起。 7、空载输出电压正常带载后显示过载或过电流 该种情况一般是由于参数设置不当或驱动电路老化模块损伤引起。

富士变频器常见故障及判断报告

富士变频器常见故障及判断 一、富士变频器常见故障及判断 (1) OC报警键盘面板LCD显示:加、减、恒速时过电流。对于短时间大电流的OC (损坏) :电机电缆过长、电缆选型临界造成的输出漏电流过大或输出电缆接头松动和电缆受损造成的负载电流升高时产生的电弧效应。小容量( 7.5G 11以下)变频器的24V风扇电源短路时也会造成OC324V风扇电源会损它功能正常。若出现“1、OC 2”报警且不能复位或一上电就显示“OC 3”;若一按RUN键就显示“OC 3” (2) OLU报警键盘面板LCD显示:变频器过负载。当G/P9系列变频器出现此报警时可通过三种方法解决:首先修改一下“转矩提升”、“加减速时间”和“节能运行”的参数设置;其次用卡表测量变频器的输出是否真正过大;最后用示波器观察主板左上角检测点的输出来判断主板是否已经损坏。 (3) OU1报警键盘面板LCD显示:加速时过电压。当通用变频器出现“OU 一下电机的在线自整定。另外在启动时用万用表测量一下中间直流环 LCD

780VDC时OU报警;当低于350VDC LU报警。 (4) LU报警键盘面板LCD显示:欠电压。如果设备经常“LU欠 (H03设成1后确认)然后提高变频器的载波频率(参数F26)。若E9设备LU欠电压报警且(电源)驱动板出了问题。 (5) EF报警键盘面板LCD显示:对地短路故障。G/P9系列变频器出现此报警时可能是主板或霍尔元件出现了故障。 (6)Er1报警键盘面板LCD显示:存贮器异常。关于G/P9系列变频器“ER1不复位”故障的处理:去掉FWD—CD 直按住RESET键直到LED电源指示灯熄灭再松手;然后再重新上ER1这种方法也不能解除 (7) Er7报警键盘面板LCD显示:自整定不良。G/P11系列变频器 (小容量变频器)。另外就是检查内部接触器是否吸合(30G 11以上;且当变频器带载输出时才会报警)、接触器的辅助触点是否接触良好;若内部接触器不吸合可首先检查驱动板上的1A 保险管是否损坏。也可能是驱动板出了问题—可检查送给主板的两芯信号是否正常。 (8)Er2报警键盘面板LCD显示:面板通信异常。11kW以上的变频器当24V风扇电源短路时会出现此报警(主板问题)。对于E9系 DTG

变频器控制字状态字

字体大小:大| 中| 小2010-02-11 12:51 - 阅读:143 - 评论:3 工控网曾有过关于主题的文章,很精华,没找到链接,抱歉!下面给您一篇我曾摘自工控网的技术文章: 1.通讯方式的设定:PPO 4,这种方式为0 PKW/6 PZD,输入输出都为6个PZD,(只需要在STEP7里设置,变频器不需要设置); PROFIBUS的通讯频率在变频器里也不需要设置,PLC方面默认为1.5MB. 在P60=7设置下,设置P53=3,允许CBP(PROFIBUS)操作. P918.1设置变频器的PROFIBUS地址. 2.设置第一与第二个输入的PZD为PLC给变频器的控制字,其余四个输入PZD这里没有用到. 设置第一与第二个输出的PZD为变频器给PLC的状态字,设置第三个为变频器反馈给PLC 的实际输出频率的百分比值, 第四个为变频器反馈给PLC的实际输出电流的百分比值,其余两个输出PZD这里没有用到. 3.PLC给变频器的第一个PZD存储在变频器里的K3001字里. K3001有16位,从高到底为3115到3100(不是3001.15到3001.00). 变频器的参数P554为1时变频器启动为0时停止,P571控制正转,P572控制反转. 如果把P554设置等于3100,那么K3001的位3100就控制变频器的启动与停止,P571设置等于3101则3101就控制正转, P572设置等于3102则3102就控制反转.(变频器默认P571与P572都为1时正转,都为0时为停止).

经过这些设置后K3001就是PLC给变频器的第一个控制字. 此时K3001的3100到3115共16位除了位3110控制用途都不是固定的,所以当设置P554设置等于3101时则3101可以控制启动与停止, P571等于3111时则3111控制正转,等等. K3001的位3110固定为“控制请求”,这位必须为1变频器才能接受PLC的控制讯号,所以变频器里没有用一个参数对应到这个位, 必须保证PLC发过来第一个字的BIT 10为1. 这里设置为:P554=3100,P571=3101,P572=3102,当PLC发送W#16#0403时(既 0000,0100,0000,0011)变频器正转. 4.PLC给变频器的第二个PZD存储在变频器里的K3002字里. 变频器的参数P443存放给定值. 如果把参数P443设置等于K3002,那么整个字K3002就是PLC给变频器的主给定控制字. PLC发送过来的第二个字的大小为0到16384(十进制),(对应变频器输出的0到100%),当为8192时,变频器输出频率为25Hz. 5.变频器的输出给PLC的第一个PZD字是P734.1,第二个PZD字是P734.2,等等. 要想把PLC接收的第一个PZD用作第一个状态字,需要在变频器里把P734.1=0032(既字 K0032), 要想把PLC接收的第二个PZD用作第二个状态字,需要在变频器里把P734.2=0033(既字 K0032). (K0032的BIT 1为1时表示变频器准备好,BIT 2表示变频器运行中,等等.) (变频器里存贮状态的字为K0032,K0033等字,而变频器发送给PLC的PZD是P734.1,P734.2等) 在变频器里把P734.3=0148,在变频器里把P734.4=0022,则第三个和第四个变频器PZD分别包

变频器常用的几种控制方式

变频器常用的几种控制方 式 Prepared on 22 November 2020

变频器常用的几种控制方式 变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2、变频器中常用的控制方式 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。 V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差

富士变频器维修实例

很多工厂供电是发电机发电,当发电机有故障时,输出高压电常把变频器及电子仪器烧坏!这种情况是我们经常见过的,去年深圳就有一家拉丝厂一次就坏了二十几台30KW变频器, 停产十几天,造成重大损失,工厂在发电机搞了很多保护方法可效果不太明显!后来我们想 了一个被动的保护方法,就是在变频器或仪器的输入端的空气开关上加了压敏电阻(380V 用821K,220V471K),这样当有高压电时压敏就会短路,空气开关跳闸,保护了变频器,变频器故障率大大减小,压敏电阻很便宜,这个方法可说是花小钱办大事 2: 最近维修一台安川616G5-55KW变频器,损坏严重,其原来是有一个快熔断了(三相 各有一个快熔),电工可能是没有经验,没有检查模块是否有问题,又一时找不到快熔,就 用一条铜线代替,开机后发出一声巨响,两个模块炸裂,吸收回路坏,推动板也无法维修,换新板,造成重大损失!按我们经验,如果快熔断则模块大多有问题,但模块坏快熔不一定断!铜线代替快熔的做法我们已见过不少次!3: 有一位电工打来电话,说他在给变频器 试机时发现变频器输出电压有1000多伏(输入380V),问是否是变频器故障?是否会烧电机?他还不明白变频器只会降压,不会升压!!原来他是用数字万用表测量,由于变频器输 出电压是高频载波,普通没防干扰的数字表在这里测量是很不准! 4 今天有的朋友打来 电话,说到压敏电阻问题,他问到有的变频器里面输入端也有压敏电阻,也应该有保作用!但根据我们修过的变频器的实际情况来看,轻伤的就只烧断电路板的铜线,重伤的就烧坏整 流模块,开关电源,CPU板,电容,造成重伤的原因可能是当压敏电阻短路爆炸时它的金 属碎片到处飞;爆炸时发出强大的静电及电磁波(很象雷击);烧断电路板的铜线使空气开 关不动作。所以在变频器外面另加压敏电阻情况就好很多! 5 有的人 买模块时要求型号一字不差!其实完全没必要这样,如模块7MBR25NF-120与 7MBR25NE-120的参数是一样的,前者只多了四个定位脚!由于IGBT模块的驱动是电压 控制,有更好的互换性,只要耐压、电流参数一样,不同型号的IGBT模块很多是可互换!有的安装尺寸不同的还可另钻孔!GTR模块则还需要考虑其放大倍数,互换性差一点!我 们维修变频器那么便宜就是充分利用模块的互换性,避开用市场上热销的模块,不然模块价 格高或难找到! 6 怎样选购模块:维修变频器,判定模块的质量也是关键!首先你要看 模块是否被拆开过(看外观痕迹),现在有很多模块是维修过的,参数正常但质量很差!耐 压值是最重要的参数,可用耐压表测量,输入380V的变频器的输出模块耐压值要大于1000V,220V则要600V!电流则可用电容表来比较判定大小!IGBT模块还可以用指针式万用表10K 档检测其是否能动作,用指针(黑—红)去触发模块的G—E,可使模块C—E导通,当G—E 短接时则C—E关闭!这方法是最简单最基本的测量方法,是维修新手可以做到的,专业 的可不是这样测量!7 不少人维修变频器更换的模块没几天又坏掉,弄不 清原因就拿到我们这里来,原来是有的螺丝没拧紧!看起来好象是小事,但对变频器却是致 命的!我们发现,有很多变频器当装在有震动的设备上(如工业洗衣机、机床等)运行一段 时间后,其主回路的连接螺丝和模块的紧固螺丝容易松动,此时最先损坏一般是模块,如果 换了模块后没有紧固其它螺丝,则模块很快坏掉,就埋怨模块质量不好!也特别强调不要把 变频器装在有震动的设备上,不然多好的变频器可能很快就坏了!8 很多人搞不清富士 G9-5.5KW变频器整流模块CVM40CD120的结构,在这里简单说一下: 整流部分:R、S、T、A(+)、N-(-)充电可控硅:A、P1、Gth(触发) 制动管:DB、N-、G7(触发);DB、B+ 是其续流二极管电源开关管:D8、S8、G8热敏电阻:Th1、Th29 富士G9变 频器3.7KW-7.5KW有一个共同的问题:其散热风扇功率大,转速高,当在尘多的工作环境中寿 命会比较短!当风扇坏了以后变频器也不会马上跳“过热”保护(可能是保护温度值设置太高),这时整个变频器的内部温度很高,使到驱动电路及电源电路的小电容容易老化,通常是开关 电源最先停止工作!变频器没有显示!!这时候应把风扇及电源电路的二个小电容换掉就可

变频器控制字状态字

字体大小: | | 2010-02-11 12:51 - 阅读:143 - :3 工控网曾有过关于主题的文章,很精华,没找到链接,抱歉!下面给您一篇我曾摘自工控网的技术文章: 1.通讯方式的设定:PPO 4,这种方式为0 PKW/6 PZD,输入输出都为6个PZD,(只需要在STEP7里设置,变频器不需要设置);PROFIBUS的通讯频率在变频器里也不需要设置,PLC方面默认为. 在P60=7设置下,设置P53=3,允许CBP(PROFIBUS)操作. 设置变频器的PROFIBUS地址. 2.设置第一与第二个输入的PZD为PLC给变频器的控制字,其余四个输入PZD这里没有用到. 设置第一与第二个输出的PZD为变频器给PLC的状态字,设置第三个为变频器反馈给PLC的实际输出频率的百分比值, 第四个为变频器反馈给PLC的实际输出电流的百分比值,其余两个输出PZD这里没有用到. 给变频器的第一个PZD存储在变频器里的K3001字里. K3001有16位,从高到底为3115到3100(不是到. 变频器的参数P554为1时变频器启动为0时停止,P571控制正转,P572控制反转.

如果把P554设置等于3100,那么K3001的位3100就控制变频器的启动与停止,P571设置等于3101则3101就控制正转, P572设置等于3102则3102就控制反转.(变频器默认P571与P572都为1时正转,都为0时为停止). 经过这些设置后K3001就是PLC给变频器的第一个控制字. 此时K3001的3100到3115共16位除了位3110控制用途都不是固定的,所以当设置P554设置等于3101时则3101可以控制启动与停止, P571等于3111时则3111控制正转,等等. K3001的位3110固定为“控制请求”,这位必须为1变频器才能接受PLC的控制讯号,所以变频器里没有用一个参数对应到这个位, 必须保证PLC发过来第一个字的BIT 10为1. 这里设置为:P554=3100,P571=3101,P572=3102,当PLC发送W#16#0403时(既0000,0100,0000,0011)变频器正转. 给变频器的第二个PZD存储在变频器里的K3002字里. 变频器的参数P443存放给定值. 如果把参数P443设置等于K3002,那么整个字K3002就是PLC给变频器的主给定控制字. PLC发送过来的第二个字的大小为0到16384(十进制),(对应变频器输出的0到100%),当为8192时,变频器输出频率为25Hz. 5.变频器的输出给PLC的第一个PZD字是,第二个PZD字是,等等.

变频器电压电流典型检测方法

变频器电压电流典型检测方法 1.前言 变频器最主要的特点是具有高效率的驱动性能及良好的控制特性。简单地说变频器是通过改变电机输入电压的频率来改变电机转速的。从电机的转速公式可以看出,调节电机输入电压的频率f,即可改变电机的转速n。目前几乎所有的低压变频器均采用图1所示主电路拓扑结构。 部分1为整流器,作用是把交流电变为直流电,部分2为无功缓冲直流环节,在此部分可以采用电容作为缓冲元件,也可用电感作为缓冲元件。部分3是逆变器部分,作用是把直流电变为频率可调整的三相交流电。中间环节采用电容器的这种变频器称之为交直交电压型变频器,这种方式是目前通用型变频器广泛应用的主回路拓扑。本文将重点讨论这种结构在电压、电流检测设计中应注意的一些问题。变频器在运行过程中为什么要对电压、电流进行检测呢这就需要从电机的结构和控制特性上说起: ①三相异步电动机的转矩是由电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。 ②变频器运行中,过载起动电流为额定电流的~倍;过流保护为额定电流的~3倍(根据不同性质的负载要求选择不同的过流保护点);另外还有电流闭环无跳闸、失速防止等功能都与变频器运行过程中的电流有关。 ③为了改善变频器的输出特性,需要对变频器进行死区补偿,几种常用的死区补偿方法均需检测输出电流。 ④电动机在运转中如果降低指令频率过快,则电动状态将变为发电状态运行,再生出来的能量贮积在变频器的直流电容器中,由于电容器的容量和耐压的关系,就需要对电压进行及时、准确地检测,给变频器提供准确、可靠的信息,使变频器在过压时进行及时、有效的保护处理。同时变频器上电过程、下电过程都需要判断当前直流母线电压的状态来判断程序下一步的动作。 鉴于电压、电流检测的重要性,在变频器设计中采用对电压、电流进行准确、有效检测的方法是十分必要的。 2.在线测量电压的几种方案设计 变频器的过电压或欠电压集中表现在直流母线的电压值上。正常情况下,变频器直流电压为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压。在过电压发生时,直流母线的储能电容将被充电,主电路内的逆变器件、整流器件以及滤波电容等都可能受到损害,当电压上升至约800V左右时,变频器过电压保护功能动作;另外变频器发生欠压时(350V左右)也不能正常工作。对变频器而言,有一个正常的工作电压范围,当电压超过或低于这个范围时均可能损坏变频器,因此,必须在线检测母线电压,常用的电压检测方案有三种。 1)变压器方案 图2中,P为直流母线电压正(+),N为直流母线电压负(-)。 变频器控制回路的电源电压一般采用开关电源的方式来获得,利用开关变压器的特点,在副边增加一组绕组N4(匝数根据实际电路参数决定)作为母线电压的采样输出,开关变压器的原边电压为母线电压,而副边输出电压随着原边输入电压的变化而线性地发生变化,这样既能起到强弱电隔离作用又能起到降压作用,把此采样信号经过处理可以送到DSP内进行A/D采样实现各种保护工作。 2)线性光耦方案

变频器最常见的十大故障

变频器最常见的十大故障 一、过流(OC) 过流是变频器报警最为频繁的现象。 1.1现象 (1)重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2实例 (1)一台LG-IS3-43.7kW变频器一启动就跳“OC” 分析与维修:首先打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2)一台BELTRO-VERT2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,再次将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 (1)实例 一台台安N2系列3.kW变频器在停机时跳“OU”。

分析与维修:首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压。还有就是电压检测电路发生故障而出现欠压问题。 3.1举例 (1)变频器上电跳“Uu” 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触器动作,因为这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常。继而检查24V直流电源,经仔细检查该电压是经过LM7824稳压管稳压后输出的,测量该稳压管已损坏,找一新品更换后上电工作正常。 (2)一台DANFOSSVLT5004变频器,上电显示正常,但是加负载后跳“DCLINKUNDERVOLT”(直流回路电压低)。 分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发现该整流桥有一路桥臂开路,更换新品后问题解决。 四、过热(OH)。 过热也是一种比较常见的故障,主要原因:周围温度过高,风机堵转,温度传感器性能不良,马达过热。 举例:一台ABBACS50022kW变频器客户反映在运行半小时左右跳“OH”。 分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。

变频器中常见的检测与保护电路共11页word资料

变频器中常见的检测与保护电路 您好,欢迎来到阿里巴巴 变频器中常见的检测与保护电路(2011/06/01 18:47)1引言 控制系统反馈量检测的精确程度,从某种意义上说,很大程度上决定了控制系统所能达到的控制品质。检测电路是变频调速系统的重要组成部分,它相当于系统的"眼睛和触觉"。检测与保护电路设计的合理与否,直接关系到系统运行的可靠性和控制精度。 2变频器常用检测方法和器件 2.1电流检测方法 图1电流互感示意图 电流信号检测的结果可以用于变频器转矩和电流控制以及过流保护信号。电流信号的检测主要有以下几种方法。 (1)直接串联取样电阻法 这种方法简单、可靠、不失真、速度快,但是有损耗,不隔离,只适用于小电流并不需要隔离的情况,多用于只有几个kva的小容量变频器中。 (2)电流互感器法 这种方法损耗小,与主电路隔离,使用方便、灵活、便宜,但线性度较低,工作频带窄(主要用来测工频),且有一定滞后,多用于高压大电流的场合。如图1所示。 图1中,r为取样电阻,取样信号为: us=i2r=i1r/m(1) 式中,m为互感器绕组匝数。 电流互感器测量同相的脉冲电流ip时,副边也要用恢复二极管整流,以消除原边复位电流对取样信号的影响,如图2(a)所示。在这种电路中,互感器磁芯单向磁化,剩磁大,限制了电流测量范围,可以在副边加上一个退磁回路,以扩展其测量范围,如图2(b)所示。 电流互感器检测后一般要通过整流后再用电阻取样,如图2(a)。由于主回路电流会有尖峰,如图3(a),这种信号用于峰值电流控制和保护都会有问题。

图2电流互感器及范围扩展 随着脉宽的减小,前沿后斜坡峰值可能比前沿尖峰还低,就会造成保护电路误动作,所以要对电流尖峰进行处理。处理的方法见图3(b),和rs并联一个不大的电容cs,再加一个合适的rc参数,就能有效地抑制电流尖峰。如图3(c)所示。 图3电流取样信号的处理 (3)霍尔传感器法 它具有精度高、线性好、频带宽、响应快、过载能力强和不损失测量电路能量等优点。其原理如图4所示。 图4中,ip为被测电流,这是一种磁场平衡测量方式,精度比较高,若lem的变流比为1:m,则取得电压us也符合式(1)。在通用变频器中霍尔传感器已成为电流检测的主力。 2.2电压检测方法 电压信号检测的结果可以用于变频器输出转矩和电压控制以及过压、欠压保护信号。电压信号的检测可用电阻分压、线性光耦、电压互感器或霍尔传感器等方法。 图4霍尔电流检测方法 (1)电阻分压法:用电阻网络将高压进行分压,得到按比例缩小的低电压。该方法使用简单,但其精度受外界环境(主要是温度)影响较大,且不能实现隔离,如果作为模拟反馈量进行a/d转换,需要加入隔离放大器。该方法适用于低压系统。 (2)电压互感器法:与电流互感器类似,只能用于检测交流电压,适用于高压系统中。 (3)霍尔电压传感器法:原理与霍尔电流传感器类似,如图5所示。 (4)线性光耦法:霍尔电压传感器具有反应速度快和精度高的特点,但是在小功率的变频器中,采用霍尔传感器的成本昂贵,而采用高性能的光耦则可降低成本。像hp公司生产的线性光耦hcnr200/201等具有很高的线性度和灵敏度,可精确地传送电压信号。图6是一个用 hcnr200/201测量电压的实际电路,光耦实际上起直流变压器的作用。图6中,原边运放采用的是单电源供电的lm2904,副边运放采用精密运

变频器常见故障及处理

变频器常见故障 (1) 变频器驱动电机抖动 在接修一台安川616PC5-5.5kW变频器时,客户送修時标明电机行抖动,此时第一反应是输出电压不平衡.在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1.5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不是参数问题,又怀疑是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此看来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3) 变频器跳过流 在接修一台台安N2系列,400V,3.7kW变频器时,客户标明在起动时显示过电流。在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。 (4) 变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查看,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5) 变频器小电容炸裂 在接修一台三肯SVF7.5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决

变频器注意事项

6SE70 一、O008闭锁看参数R550的状态显示 1、控制字BIT0 OFF1 P554,故障复位后启动命令P554还在,则闭锁,此时停止后 再启动,正常 2、控制字BIT1 OFF2 P555 P556 P557为0,改为1即可 3、控制字BIT2 OFF3 P558 P559 P560为0,改为1即可 4、控制字BIT3 逆变器使能P561为0则启动时会显示O011,改为1即可 5、控制字BIT4 斜坡使能P562为0则启动时速度为0.00,改为1即可 6、控制字BIT5 斜坡开始P563为0则启动时速度为0.00,改为1即可 7、控制字BIT6 设定值使能P564为0则启动时速度为0.00,改为1即可 8、控制字BIT8 点动0 (P568),P554为0时有效 9、控制字BIT9 点动1 (P569)P554为0时有效 当P568和P569同时为1时,变频器启动时显示O008,闭锁。不需要点动功能时,将两个参数设成0. 10、控制字BIT11 正转(P571) 11、控制字BIT12 反转(P572) P571和P572一个为1,一个为0,则能实现正反转;或两个都为1,则变频器直接由速度给定P443控制;如果都为0,则启动时速度为0,并报警A035 12、控制字BIT13 电位计+ (P573)P554为1时有效 13、控制字BIT14 电位计- (P574)P554为1时有效 正常时两个参数为0,当都为1时,速度为0,无法控制变频器的速度。 14、控制字BIT15 外部故障P575为0则报F035,改为1即可 一般正常启动运行的控制字显示是R550: 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 上例是P571=1 P572=1,反转靠速度给定。当然也可以一个为1,一个为0,但是不能都为0,否则无法给定速度,且报警A035。 二、BICO数据组切换。 P590参数切换 有可能故障出在:参数已经设置好,能够实现功能,比如网络控制,P554.1=3100,P443.1=3002(即第一套参数),但无法启动,此时看R012(BICO参数组)是否为1,如果等于2,说明P590为1,则改成0后正常。 三、故障代码 F011:过流 F021:过热 F015 F053:堵转(检查编码器) F037:变频器的模拟量输入选择了电流型,且低于下限4mA(如果选择了4—20mA)。

PLC通过现场总线控制变频器

PLC通过现场总线控制变频器的运行 设计一个实际工程中用过的PLC通过现场总线控制变频器的例子(如:西门子PLC通过Profibus现场总线控制MM440变频器或6se70系列变频器;再如罗克韦尔的PLC通过DeviceNet总线控制其SSc160系列变频器或PowerFlex4,40,400,PowerFlex70,700,700s,700L等类型的变频器),需要把PLC型号、相应的变频器型号、各种参数及情况、控制系统实现的功能等说明清楚,贴出程序并加以说明。 一、先说说配置情况吧; 1、硬件配置: 1.1 PLC,使用的是ABB AC500系列的CPU+CM578扩展模块。任何一款AC500的CPU都可支持,只需额外增加一块通讯模块即可实现现场总线的方式。目前我介绍的是CM578通讯模块,该模块是支持CANopen现场总线的。 1.2 变频器,邦飞利ACT401系列变频器+CM-CAN通讯模块。ACT401系列变频器是邦飞利公司应用当今先进的电机磁场定向控制理论,采用高性能的功率模块,利用德国先进的变频器制造工艺,制造出的新一代变频器。CM-CAN通讯模块是ACT401系列变频器通讯子板,用于将变频器扩展到CANopen网络中。 2、拓扑结构 使用SyCon软件实现网络拓扑以及PDO的配置。 从上图可以看出,CM578作为CANopen主站,ACT401系列变频器作为CANopen从站。地址分别设置为4和90。通信波特率为:500kbit/s. 通过SyCon配置的基本情况是:PLC对变频器的控制字和给定频率(PDO1(rx)),以及变频器的状态字与变频器实际输出频率(PDO2(tx))。控制字是指PLC对变频器发出的控制字以及故障复位指令;状态字是指变频器当前的状态机以及故障位的状态。 二、控制情况 1、PLC根据变频器状态机的状态,通过送给变频器相应的控制字来实现对变频器的控制,PLC送给变频器的控制字是通过PDO来实现的。具体控制逻辑图如下。

变频器故障检测常用方法

变频器故障检测常用方法 变频器故障检测方法 静态测试 1、测试整流电路 找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,正常时有几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,说明整流桥有故障。B.红表棒接P端时,电阻无 穷大,可以断定整流桥故障或启动电阻出现故障。 2、测试逆变电路 将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒N端, 重复以上步骤应得到相同结果,否则可确定逆变模块有故障。 动态测试 在表态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点: 1、上电之前,须确认输入电压是否有误,将380V电源接入 220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。 2、检查变频器各接播口是否已正确连接,连接是否有松动,连 接异常有时可能会导致变频器出现故障,严重时会出炸机等情况。 3、上电后检测故障显示内容,并初步断定故障及原因。 4、如未显示故障,首先检查参数是否有异常,如果查不出问题 先把原来的参数记录起来,再将参数恢复原厂,在空载(不接电机)

情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障。 5、在输出电压正常(无缺相、三相平衡)的情况下,负载测试, 尽量是满负载测试。 故障判断 1、整流模块损坏 通常是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电 网电压,有无电焊机等对电网有污染的设备等。 2、逆变模块损坏 通常是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱 动板之后,须注意检查马达及连接电缆。在确定无任何故障下,才 能运行变频器。 3、上电无显示 通常是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,操作面板损坏同样会产生这种状况。 4、显示过电压或欠电压 通常由于输入缺相,电路老化及电路板受潮引起。解决方法是找出其电压检测电路及检测点,更换损坏的器件。 5、显示过电流或接地短路 通常是由于电流检测电路损坏。如霍尔元件、运放电路等。 6、电源与驱动板启动显示过电流 通常是由于驱动电路或逆变模块损坏引起。 7、空载输出电压正常,带载后显示过载或过电流

三菱变频器维修技术案例-变频器维修培训

三菱变频器常见故障分析及维修案例 三菱变频器经过近20年的发展,产品质量和功能都相当稳定与完善。特别是随着功率器件以及IC芯片的不断改进,变频器产品也是不断地推陈出新,从早期使用分立元件的K系列、Z系列,到现在使用IPM、PIM模块的A系列,三菱变频器应该说又上了一个新台阶。我们应该提到的是在大功率模块的应用上,三菱变频器可能更有优势,因为三菱公司本身就是一个著名的半导体生产厂家,在功率器件的开发上更是走在了前端,特别是三菱公司的IPM模块,以其卓越的性能被众多变频器厂家所采用。现在的三菱变频器从应用来说主要可以分为以下几大类: (1) 通用型的A系列,较早有A200系列,以及经济型的A024、A044系列; (2) 风机水泵专用型的F系列, 包括早期的F400系列以及现在广泛使用的F500系列; (3) 经济型的E系列和简易型的S系列。 为了满足市场的需要,三菱变频器还开发了应用于多种场合的选件卡,主要包括要求精确转速的PG反馈卡、用于精确定位的定位控制卡、用于压力控制的PI控制卡以及用于扩展输出点的继电器和晶体管输出卡。变频器功能的不断加强和选件卡的开发,使得三菱变频器更好地满足了不同用户的需要,也成为三菱变频器能够迅速壮大的动力。 2 常见故障的处理 以下我们就三菱变频器的一些常见故障在这里和广大使用者做一个探讨。 2.1 早期产品的故障 由于三菱变频器进入中国市场较早, 所以有些老的产品仍在使用,我们先就这些产品的故障做一分析。早期我们能碰到的产品主要包括Z系列和A200系列的变频器。小功率Z024系列变频器我们常见的故障现象有OC、ERR、无显示等。 OC引起的原因主要有以下两种可能。 (1) 驱动电路老化 由于较长年限的使用,必然导致元器件的老化,从而引起驱动波形发生畸变,输出电压也就不稳定了,所以经常一运行就出现OC报警。 (2) IPM模块的损坏也会引起OC报警 Z024系列的机器使用的功率模块不仅含有过流,欠压等检测电路,而且还包含有放大驱动电路,所以不管是检测电路的损坏,驱动电路的损坏, 或者大功率晶体管的损坏都有可能引起OC报警。 (3) 无显示故障的原因则多数是由于开关电源厚膜的损坏引起的。 (4) ERR故障是一个欠压故障,通常是由于电压检测回路电阻或连线出现问题而导致故障的产生,而不是实际输入电压真的出现欠电压。A200系列的OC故障多数是由于驱动电路的损坏而引起的,它的驱动电路采用了一块陶瓷封装的厚膜电路,这给维修带来了一定的困难,其厚膜电路主要是基于一块驱动光耦而设计的电路。 (5).此外我们还会碰到一些LV故障,欠压故障的出现也多半由于母线检测电路出现了故障,三菱变频器也为此设计了一块用于检测电压和电流的厚膜电路。开关电源脉冲变压器的损坏也是A200系列变频器的一个常见故障,由于开关电源输出负载的短路,或母线电压的突变而导致脉冲变压器初、次级绕组的损坏。 2、A500和E500系列常见故障

相关文档
最新文档