高频,模拟乘法器汇总

合集下载

模拟乘法器及其应用讲解

模拟乘法器及其应用讲解

模拟乘法器及其应用摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

The integrated analog multiplier is the second one of the analog integrated circuitoperational amplifier after the general linear integrated circuits, is a multi use. Can be usedas broadband, suppressed carrier double balanced modulator, does not require a coupling transformer or tuning circuit, also can be used as SSB multiplication detector of high performance, AM modulator / demodulator, FM demodulator, mixer, multiplier, the phasedetector, and it can also complete theamplifier combining mathematical operation many, such as multiplication division,involution, evolution, etc..一、实验目的1.了解模拟乘法器的工作原理2.掌握利用乘法器实现AM调制、DSB调制、同步检波、倍频等几种频率变换电路的原理3.学会综合地、系统地应用已学到模、数字电与高频电子线路技术的知识,通过MATLAB掌握对AM调制、DSB调制、同步检波、倍频电路的制作与仿真技术,提高独立设计高频单元电路和解决问题的能力。

MC1594L四象限模拟乘法器

MC1594L四象限模拟乘法器

MC1594L四象限模拟乘法器模拟相乘器是一种时变参量电路。

在高频电路中,相乘器是实现频率变换的基本组件,与一般非线性器件相比,相乘器可进一步克服某些无用的组合频率分量,使输出信号频谱得以净化。

在通信系统及高频电子技术中应用最广的乘法器有两种,一种是二极管平衡相乘器,另一种是由双极型或 MOS 器件构成的四象限模拟相乘器。

随着集成电路的发展,这些相乘器还具有工作频带宽、温度稳定性好等优点,广泛用于调制、解调及混频电路中。

四象限模拟乘法器又大致分为两种。

一种是在集成高频电路中经常用到的乘法器,它们大多属于非理想乘法电路,是为了完成某种功能而制成的一种专用集成电路,如电视接收机中的视频信号同步检波电路、相位检波电路以及调频立体声接收机中的立体声解码电路等。

这种乘法电路均采用差动电路结构。

另一种是较为理想的模拟乘法器,属于通用的乘法电路,用户可用这种乘法器按需要设计,完成其功能。

常用的集成化模拟乘法器的产品有 BG314 、MC1494L/MC1594L 、MC1495L/MC1595L 、XR-2208/XR2208M 、AD530 、AD532 、AD533 、A D534 、AD632 、BB4213 、BB421等。

相乘器的基本特性及实现方法:若输入信号分别用v 1 ( t ) 和v 2 ( t ) 表示,输出信号用v o ( t ) 表示,则理想模拟乘法器的传输特性方程可表示为v o ( t )= K v 1 ( t ) v 2 ( t ) (4-18)式中,K 是乘法器的比例系数或增益系数。

该式表明,对一个理想的相乘器,其输出电压的瞬时值v o ( t ) 仅与两个输入电压在同一时刻的瞬时值v 1 ( t ) 和v 2 ( t ) 的乘积成正比,而不包含任何其它分量。

输入电压v 1 ( t ) 和v 2 ( t ) 可以是任意的,即其波形、幅度、极性和频率 ( 包括直流 ) 均不受限制。

1.MC1594L四象限乘法器原理图:用MC1594L模拟乘法器做交流电压乘法器(其原理图):2.各部分电路进行分析:该电路主要分为三个部分:(1)电压调整器:电压调整器就是使输出电压在一定条件下保持稳定当输入电压改变,负载条件变时,输出电压要尽可能保持不变。

实验四 集成电路模拟乘法器的应用

实验四  集成电路模拟乘法器的应用

实验四集成电路模拟乘法器的应用模拟乘法器是利用晶体管的非线性特性,经过电路上的巧妙设计,在输出中仅保留两路输入信号中由非线性部分产生的信号的乘积项,从而获得良好的乘积特性的集成器件。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。

采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。

所以目前在无线通信、广播电视等方面应用较多。

集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

本实验仅介绍MC1496集成模拟乘法器。

一、实验目的1.了解模拟乘法器(MC1496)的组成结构与工作原理,掌握其调整与特性参数的测量方法。

2.掌握利用乘法器实现振幅调制(AM与DSB)、同步检波、混频、倍频等几种频率变换电路的原理及设计方法。

3.学会综合地、系统地应用已学到模电、数电与高频电子线路的知识,掌握对振幅调制、同步检波、鉴频、混频和倍频电路的设计与仿真技能,提高独立解决问题的能力。

二、实验设备与仪器高频实验箱 WHLG-2 一台数字双踪示波器 TDS-1002 一台高频信号发生器 WY-1052 一台数字万用表一块三、实验任务与要求1、模拟乘法器1496的构成、基本原理说明①集成模拟乘法器的内部结构MC1496集成模拟乘法器的内部电路结构和引脚排列如图4-1所示。

图4-1 MC1496的内部电路及引脚图MC1496是双平衡四象限模拟乘法器。

其中V1、V2与V3、V4组成双差分放大器,V5、V6组成的单差分放大器用以激励V1~V4。

V7、V8及其偏置电路组成差分放大器V5、V6的恒流源。

引脚8与10接输入电压C u ,1与4接另一输入电压t u ,输出电压o u 从引脚6与12输出。

引脚2与3外接电阻R E ,对差分放大器V5、V6产生串联电流负反馈,以扩展输入电压y u 的线性动态范围。

《模拟乘法器》课件

《模拟乘法器》课件
《模拟乘法器》PPT课件
# 模拟乘法器 本课程将介绍模拟乘法器的原理及其应用。
模拟乘法器的定义
பைடு நூலகம்
作用
模拟乘法器用于实现模拟 信号的乘法运算,将不同 信号相乘得到新的信号。
原理
模拟乘法器基于电子元件 的特性,通过电压或电流 乘法进行运算。
分类
模拟乘法器可以根据不同 的实现方式和应用场景进 行分类。
模拟乘法器的应用
电子测量中的应用
模拟乘法器在测量仪器中用于信号放大和校正,提高测量精度。
通信系统中的应用
模拟乘法器在通信系统中用于信号调制、解调和频谱分析。
音频系统中的应用
模拟乘法器在音频系统中用于音频效果处理和音频信号放大。
模拟乘法器的实现
电路实现
模拟乘法器可以通过电路设计和集成电路制 造来实现。
软件实现
模拟乘法器也可以通过软件算法来实现,例 如在数字信号处理中。
2 应用前景
模拟乘法器在未来将继续发挥重要作用,随着科技的发展将有更广泛的应用。
参考文献
1. 2. 3.
Author 1. Title 1. Publisher 1. Author 2. Title 2. Publisher 2. Author 3. Title 3. Publisher 3.
模拟乘法器的应用案例
电子秤上的应用
模拟乘法器在电子秤中用于 测量物体的重量并进行计算。
无线电通信系统中 的应用
模拟乘法器在无线电通信系 统中用于信号调制和解调, 实现高质量的通信。
音频放大器中的应 用
模拟乘法器在音频放大器中 用于调节音量和音频效果的 处理。
总结
1 优点和不足
模拟乘法器的优点包括快速响应和高精度,但也存在精度损失和成本较高的不足。

实验三 模拟乘法器应用实验报告

实验三 模拟乘法器应用实验报告

实验题目:乘法器调幅(AM、DSB、SSB)、同步检波、混频及倍频实验原理:2TP3(2P3、2Q3)—载波(本振)信号输入端;2Q4—调制信号(或高频已调信号)输入端;2TP4—调制信号(或高频已调信号)输入端测试点;2TP5(2P5)—乘法器同相输出端;2TP5A—乘法器反相输出端;2TP6(2Q6)—2.5MHz带通滤波器输出;2W11—调制信号(或高频已调信号)输入端幅度调节;2W1—乘法器1、4输入端平衡调节;2W2—增益调节。

图3.1 乘法器调幅、混频实验电路图2TP9(2P9)—载波(本振)信号输入端;2TP10(2P10)—高频已调信号输入端;2TP11(2P11)—同步检波输出端;2W5—1、4输入端平衡调节。

图3.2 乘法器同步检波器电路图2TP7(2P7)—信号输入端;2TP8(2P8)—信号输出端;2W3—调节中心频率;2W4—调节输出幅度。

实验内容及步骤:一. 普通波调幅(AM )1. 电路连接《调幅与调频接收模块》接±12V 电源电压;打开“乘法器调幅 混频”电路的电源开关(电源指示灯点亮);2TP3接载波信号C u (20KHz ,100mV PP );2TP4接调制信号u Ω(1kHz 、300mVpp );用示波器同时观测C u 、u Ω和同相输出端(2TP5)。

注:C u 由示波器(Wave Gen )提供;u Ω由信号源(F20A A 路)提供,并以u Ω所接示波器通道做触发源。

2. 电路调整调节2W11,使2TP4端幅度最大;调节示波器使波形清晰稳定;调节2W1,使2TP5输出信号为AM 已调波AM u (如图3.4);调节2W2,使AM u 的波峰、波谷无压缩失真(2W1、2W2往往配合调节)。

3. 时域测量记录或存储C u 、u Ω和AM u 的时域波形,按图3.4计算调制度m :图3.4 AM 波时域波形%100⨯+-=BA BA m4.频域测量①频谱仪射频输入(RF IN)接反相输出端2TP5A。

模拟乘法器

模拟乘法器

图1:基础模拟乘法器与乘法器象限的定义从数学角度来看,乘法是一种“四象限”运算——换言之,两个输入可能为正,也可能为负,输出亦是如此。

然而,用于生产电子乘法器的某些电路仅支持单极性信号。

如果两个信号都必须是单极性的,结果形成一个“单象限”乘法器,输出同样也会是单极性的。

如果其中一个信号为单极性,而其他信号可能为正或负,则乘法器就是一个“二象限”输出可能为两个极性之一(因而为“双极性”)。

用于产生一象限或二象限乘法器的电路可能比四象限乘法器所需电路要简单,由于许多应用并不需要全四象限乘法,因此,常用的是仅支持一象限或二象限的精密器件。

一个示例是AD539,这是一款宽带双通道二象限乘法器,具有一个单极性Vy 输入,其相对受限带宽为5 MHz,还有两个双极性Vx输入,每个乘法器各一个,带宽为60 MHz。

图2显示的是AD539的框图。

图2:AD539模拟乘法器框图最简单的电子乘法器采用对数放大器。

计算依赖于以下事实:两个数的对数之和的反对数为这两些数字之积(如图3所示)。

图3:利用对数放大器实现乘法运算图4:基础跨导乘法器这是一种性能很差的乘法器,因为(1) Y 输入被随V Y 非线性变化的V BE 抵消;之间存在指数关系,因而X 输入呈现非线性;(3) 比例因子随温度而变化。

图5:基础跨导乘法器如此,吉尔伯特单元有三个不便之处:(1) 其X输入为差分电流;(2) 其输出为差分电流;输入为单极性电流——因此吉尔伯特单元只是一个二象限乘法器。

通过交叉耦合两个这样的单元并使用两个电压-电流转换器(如图6所示),我们可以把基础架构转换成一种带电压输入的四象限器件,如AD534。

在中低频率下,可以用一个减法器放大器把输出端的差分电流转换成电压。

鉴于其电压输出架构,AD534的带宽仅为1 MHz 左右,而后续版本AD734的带宽则为10 MHz。

图6:AD534:一款四象限跨导线性乘法器Q1A和Q1B以及Q2A和Q2B形成两个吉尔伯特单元的两对核心长尾对,而Q3A 则为两个单元的线性化晶体管。

模拟乘法器调幅

模拟乘法器调幅

100.1 99.9 0.2% 100
每经过一次平衡调幅,两 个边带之间的相对距离都
第一次
要加宽一次。
O

100kHz
f 调制滤波
1897~1899.9kHz
2100.1~2103kHz
2100.11899.9 10% 2000
第二次
O

2MHz
f 调制滤波
23897~23899.9kHz 28100.1~28103kHz 16%
模拟乘法器调幅
12
R7
3
4 C3 3.3k
C4 6 0.005
R8 5
C5
C6
0.005
1k
R9
R11
12
1
vDSB
v0
0.1
56 1.2k C7 0.1
14 13 12 11 10 9 8 R10
1496 820
C1
123 4 5 6 7

0.1
R2
R3
1k 1k
R1
R5
100 10k
R6
C2
3.3k 0.005
12
R4 1k
● XFC1596(或者MC1596)
抑制载漏的调整:当 0,C 0 可调 RP 51kΩ C 0
9.6 单边带信号的产生
1. 滤波器法 vΩ
Ω
vDSB(t) 平衡 调幅器 ω0±Ω
优点:原理简单
cosω0 t ω0
带通 滤波器
vSSB(t)
ω0+Ω 或ω0-Ω
缺点:带通滤波器制作困难 用2Fmin / f0表示相对距离!!

滤波器容易制作
O

7.3 模拟乘法器及其在运算电路中的应用

7.3  模拟乘法器及其在运算电路中的应用

′ uO
uI3
R2 100k R1 N uI1 10k P +A uI2 R1 R2
uO
ห้องสมุดไป่ตู้
§7.3
模拟乘法器及其 在运算电路中的应用
一、模拟乘法器简介
模拟乘法器有两个输入端,一个输出端, 模拟乘法器有两个输入端,一个输出端,输入 及输出均对“ 而言。 及输出均对“地”而言。模拟乘法器的符号如图所 输入的两个模拟信号是互不相关的物理量, 示。输入的两个模拟信号是互不相关的物理量,输 出电压是它们的乘积, 出电压是它们的乘积,即
uX uY uO
uo=kuXuY
理想模拟乘法器应具备的条件: 理想模拟乘法器应具备的条件: 1、 ri1和ri2为无穷大; 、 为无穷大; 2、 ro为零; 、 为零;
+ ∆u X ro + ∆uO -
+ ∆uY - -
ri2
ri1
k ∆uX ∆uY
3、k值不随信号幅值而变化,且不随频率变化; 、 值不随信号幅值而变化 且不随频率变化; 值不随信号幅值而变化, 4、当uX或uY为零时, uo为零,电路没有失调电压、 、 为零时, 为零,电路没有失调电压、 电流和噪声。 电流和噪声。
i2 A + R3
uI2
uO
i1 = i2
′ uO kuI 2 uO uI 1 =− =− R1 R2 R2
R2 uI 1 uO = − kR1 uI 2
3、开方运算电路
在运算电路中, 在运算电路中,必须 R2 + - R1 保证电路引入的是负反 uI 馈。所以uI小于零。 所以 小于零。 i
′ uO
二、变跨导型模拟乘法器的工作原理(自学) 变跨导型模拟乘法器的工作原理(自学)

《模拟相乘器》课件

《模拟相乘器》课件

模拟相乘器的组成
输入信号源
提供需要相乘的两个信号。
乘法器
实现信号的相乘操作。
输出缓冲器
将相乘后的结果输出。
模拟相乘器的工作流程
输入信号源将两个需 要相乘的信号输入到 乘法器中。
输出缓冲器将相乘后 的结果输出,完成一 次模拟相乘过程。
乘法器根据数学模型 对输入信号进行相乘 操作。
模拟相乘器的数学模型
模拟相乘器
目录
Contents
• 引言 • 模拟相乘器的工作原理 • 模拟相乘器的实现方法 • 模拟相乘器的性能分析 • 模拟相乘器的优化策略 • 模拟相乘器的未来发展
01 引言
模拟相乘器简介
模拟相乘器是一种电子设备,用于模拟两个数相乘的过程。它通常由输入端、输 出端和内部电路组成,通过接收两个输入信号,经过内部电路处理后,输出两个 输入信号的乘积。
02
动态功耗主要与信号处理过程中的电流变化和时钟频率有关。
能效优化
03
通过优化电路设计和降低时钟频率,可以降低模拟相乘器的功
耗,提高其能效比。
05 模拟相乘器的优化策略
算法优化
பைடு நூலகம்
1 2
并行化算法
通过同时处理多个数据,减少计算时间,提高效 率。
迭代算法
通过迭代方式逐步逼近结果,减少计算量,提高 精度。
模拟相乘器的响应时间取决于其内部电路的传输延迟和信号处理 速度。
并行处理
通过并行处理技术,可以加快模拟相乘器的速度,提高其处理能力 。
时序控制
优化时序控制逻辑,确保信号处理的时序正确性,也是提高速度的 一种方法。
功耗分析
静态功耗
01
模拟相乘器的静态功耗主要由电路内部的漏电流和偏置电流产

3.实验三模拟乘法器

3.实验三模拟乘法器

2.混频后与滤波后信号波形与频谱的测量 a)用示波器CH1通道测量 7号板 的TP5 ,用CH2通道测量7号板 TP6
V
V
t

t
0
0
《TP5混频信号波形》
《TP6滤波信号波形》
《TP5信号频谱波形》幻灯片 9
《TP6信号频谱波形》
c)画出 TP5 和 TP6 频谱波形:幻灯片 8
相 对 振 幅
0
高频电子线路实验
实验实训中心——高频电子线路实验室
实验三 模拟乘法混频器
一、实验目的
1、了解模拟乘法混频器的工作原理。 2、会用示波器测量模拟乘法混频器混频输出与滤波后中频输出的信号波 形与频谱。
注:本次抄写2、7、8、10、11、12页
本次实验需要实验模块: 1号板、6号板、6号板、7号板
《TP5信号频谱波形》
相 对 振 幅
0
《TP6信号频谱波形》
3、本振信号电压幅值改变对混频输出中频信号幅值影响的测量
注:示波器CH1接7号板TP7,CH2接7号板TP6
表1:
7号板TP7
本振信号VPP(mV )
200
300
400
500
600
700
7号板TP6
中频信号
VPP(V )
六、实验总结
根据步骤2观察到的信号波形,说明信号的混频、滤波输出中频信号的过程


拟 TP5 瓷



乘法器 输出



P6
TP6 差频输出
频率计 RFIN (频6率号计板)
A通道
示波器 C示H波2接器TP6 负极接GND
五、实验内容

高频电路实验及Multisim仿真汇总

高频电路实验及Multisim仿真汇总

实验一 高频小信号放大器一、单调谐高频小信号放大器图1.1 高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp ;s rad CLw p /936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===357.0544.10I O v V V A 4.325输入波形:输出波形:3、利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电相应的图,压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

二、下图为双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0 输入端波形:输出端波形:V1=19.512mV V0=200.912mV Av0=V0/V1=10.197 2、利用软件中的波特图仪观察通频带,并计算矩形系数。

实验二高频功率放大器一、高频功率放大器原理仿真,电路如图所示:(Q1选用元件Transistors中的 BJT_NPN_VIRTUAL)图2.1 高频功率放大器原理图1、集电极电流ic(1)设输入信号的振幅为0.7V,利用瞬态分析对高频功率放大器进行分析设置。

要设置起始时间与终止时间,和输出变量。

(2)将输入信号的振幅修改为1V,用同样的设置,观察i的波形。

c (提示:单击simulate菜单中中analyses选项下的transient analysis...命令,在弹出的对话框中设置。

在设置起始时间与终止时间不能过大,影响仿真速度。

例如设起始时间为0.03s,终止时间设置为0.030005s。

在output variables页中设置输出节点变量时选择vv3#branch即可)(3)根据原理图中的元件参数,计算负载中的选频网络的谐振频率ω0,以及该网络的品质因数Q L 。

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。

在模拟电路中,电压和电流可以在一定范围内取任意值。

这是理解模拟电路的关键起点。

二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。

当正向偏置时,电流容易通过;反向偏置时,电流极小。

二极管常用于整流电路,将交流转换为直流。

2、三极管三极管分为 NPN 型和 PNP 型。

它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。

三极管在放大电路中应用广泛。

3、场效应管场效应管分为结型和绝缘栅型。

它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。

三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。

2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。

3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。

四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。

1、理想运算放大器特性具有“虚短”和“虚断”的特点。

“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。

2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。

五、反馈电路反馈可以改善放大器的性能。

1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。

负反馈能稳定放大倍数、改善频率特性等。

2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。

六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。

1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。

multisim乘法器元器件名称

multisim乘法器元器件名称

multisim乘法器元器件名称在电路设计和仿真软件Multisim中,乘法器(Multiplier)是一种重要的元器件,也被称为乘法运算器。

它用于执行数字信号的乘法运算,将两个输入信号相乘,并产生乘积作为输出。

Multisim中的乘法器可以模拟真实世界中的乘法运算,使得用户能够设计和测试各种数字信号处理和数字电子电路。

乘法器元器件在现实世界中有许多应用,包括数字信号处理、通信系统、图像处理、音频处理等等。

乘法器元器件在Multisim中的名称有多种,包括但不限于以下几种:1. Voltage-Controlled Voltage Source(VCVS):这是一种常见的乘法器元器件,用于将两个输入信号相乘并输出乘积。

它的输入和输出都是电压信号,可以通过控制输入电压和增益来调整输出乘积。

2. Voltage-Controlled Current Source(VCCS):这也是一种常见的乘法器元器件,在输入信号为电压的情况下将其转换为对应的电流,并将两个输入信号的电流相乘得到输出乘积。

3. Analog Multiplier(模拟乘法器):这是一种专门用于模拟乘法运算的元器件。

它可以模拟真实世界中的乘法运算,接受两个输入信号,进行乘法运算,并输出乘积。

4. Digital Multiplier(数字乘法器):这是一种专门用于数字信号处理的乘法器元器件。

它可以接受两个二进制数作为输入,并根据乘法规则计算出它们的乘积。

除了上述几种常见的乘法器元器件名称之外,Multisim还提供了许多其他类型的乘法器元器件,用于满足不同的设计需求。

例如,它还提供了带有不同精度和位宽的乘法器元器件,以满足不同的数值计算需求。

对于每种乘法器元器件,Multisim提供了丰富的参数设置选项,用户可以根据具体需求对其进行配置。

例如,可以设置乘法器的输入幅度范围、输出增益、偏置电压等参数。

此外,还可以设置输出乘积的数据格式(如浮点数、定点数、二进制等)和位宽。

模拟电子技术4.4模拟乘法器

模拟电子技术4.4模拟乘法器
ui2 对数电路 ln ui2 电路
➢除法电路
uo
ui1 ui2
求对数,得:
ln uo
ln ui1 ui2
ln ui1 ln ui2
再求指数,得:
u eln ui1 ln ui2 o
电路方块图:
ui 1 ui 2
对数电路 ln ui1 对数电路 ln ui2
减法 ln ui1 ln ui2 指数电路 电路
(1)平方运算
K
ui
uo
平方运算电路
K
K
ui
4次方运算电路
uo Kui2
uo uo K 2ui4
(2)除法运算
K
uo1
uI 2
uo1 Kui2uo
R2 i2
ui1
R1
-
i1
A
+
R
因为 i1 = i2 ,所以:
uo
ui1 uo1
R1
R2
uo
R2 R1 K
ui1 ui 2
(3)平方根运算
K
4.4 模拟乘法器
由对数和指数电路组成的乘除电路
➢乘法电路
uo = ui1ui2
求对数,得: ln uo ln(ui1ui2 ) ln ui1 ln ui2
u e 再求指数,得: o
ln ui1 ln ui2
电路的方块图:
ui1 对数电路 ln ui1 求和 ln ui1 ln ui2 指数电路 uo ui1ui2
uo1
R2 i2
ui1
R1
-
i1
A
+
R
ui1 uo1
R1
R2
uo1
R2 R1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验课程名称:高频电子线路MC1496 是目前常用的平衡调制/解调器。

它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。

MC1496 的和内部电路与外部引脚图如图1(a)(b)所示(a)1496内部电路 (b)1496引脚图图1 MC1496的内部电路及引脚图它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。

一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。

为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。

引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。

各引脚功能如下:1:SIG+ 信号输入正端 2: GADJ 增益调节端3:GADJ 增益调节端 4: SIG- 信号输入负端5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端 9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端13: NC 空脚 14: V- 负电源(2)Multisim建立MC1496电路模块MC1496内部结构multisim电路图和电路模块如图2所示。

图2 MC1496的内部电路及电路模块引脚图2、AM与DSB电路的设计与仿真调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。

把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三体管),经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。

幅度调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带(DSB)信号,抑制载波和一个边带的单边带(SSB)信号。

利用模拟乘法器相乘原理实现调幅是很方便的,工作原理如下:在乘法器的一个输入端输入载波信号另一输入端输入调制信号,则经乘法器相乘,可得输出抑制载波的双边带调幅信号的表达为:若要输出普通调幅信号,只要调节外部电路的平衡电位器,使输出信号中有载波即可。

输出信号表达式为:普通振幅调制电路的原理框图与抑制载波双边带振幅调制电路的原理框图如图3所示图3① AM与DSB电路的设计查集成模拟乘法器MC1496 应用资料(附录1),得典型应用电路如图4所示。

图4 1496构成的振幅调制电路电原理图图中载波信号经高频耦合电容C1输入到Uc ⑩端,C3为高频旁路电容,使⑧交流接地。

调制信号经高频耦合电容C2输入到U Ω④端,C5为高频旁路电容,使①交流接地。

调制信号U AM 从⑿脚单端输出。

电路采用双电源供电,所以⑤脚接Rb 到地。

因此,改变R 5也可以调节I 0的大小,即:则:当VEE=-8V ,I 5=1mA 时,可算得:(MC1496器件的静态电流一般取I 0=I 5=1mA 左右) R 5={(8-0.75)/(1X10-3)}-500=6.75K Ω 取标称电阻,则R5=6.8K ΩMC1496的②③脚外接电阻RB ,对差分放大器T5、T6产生电流负回授,可调节乘法器的增益,扩展输入信号U Ω动态范围。

因为:U Ω≤I 5RB式中 I 5为5脚的电流,当选I 5=1mA ,Uy=1V(峰值)时,由上式可确定RB :RB ≥U Ω/I5=1/1X10-3=1K Ω负载电阻RC 的选择由于共模静态输出电压为:U 6=U 12=V CC -I 5R L式中U 6、U 12是6脚与12脚的静态电压。

当选U 6=U 12=8V ,V CC =12V ,I 5=1mA 时,R L =(V CC -U 6)/I 5=(12-8)/(1X10-3)=4K Ω,取标称电阻RL=3.9K Ω。

电阻R1、R2、R3与RC1、RC2提供芯片内晶体管的静态偏置电压,保证各管工作在放大状态。

阻值的选取应满足如下关系:12641108,,v v v v v v ===V v v V 2)(1586≥-≥, Vv v V 7.2)(1518≥-≥, V v v V 7.2)(1551≥-≥所以取:R1=R2=1K Ω R3=51Ω R4=R5=750Ω,R6=R7=1K Ω,WR1=10 K Ω电阻R4、R5、WR1、R6和R7用于将直流负电源电压分压后供给MC1496的1、4脚内部的差分对三极管基极偏置电压。

通过调节RP ,可使MC1496的1、4端的直流电位差为零,即U Ω输入端只有调制信号输入而没有直流分量,则调幅电路的输出为抑制载波的双边带调幅波;若调节RP ,使MC1496的1、4端的直流电位差不为零,则电路有载波分量输出,为普通调幅波。

耦合电容与高频电容的选择电容C1与C2应选择得使其电抗在载波频率上低于5Ω,即:1/ωC1=1/ωC2≤5Ω 所以取C1=C3=0.1uf,C2=C5=4.7uf,由此得到实际的模拟乘法器1496构成的振幅调制电路与测量系统电原理图,如图5。

Ω+--=≈5007.0550R V u I I EE图5 1496构成的振幅调制电路电原理图②AM与DSB电路的仿真1)全载波振幅调制(AM)(1)按设计电路设置元件参数并用Multisim完成电路连接。

(2)当电路平衡时,即UΩ=0,Uo=0 , 模拟乘法器1496的静态特性数据如表1。

(3) 调R15(99%),使模拟乘法器①④脚间电压为+200mV,即电路不平衡。

按设计要求加入信号,载波信号UX:f=1MHZ /60-100mV 调制信号Uy:f=2KHz/150mV,此时实现AM调制。

信号时域波形和频域图形如图6所示。

此条件时,M=50%M=(A-B)/(A+B)=50%(4)调R15使AM信号过调制,即使M>100%。

当M>100%时,过零点为一条直线。

实验测得信号波形如图7所示。

图6 图721) 抑制载波振幅调制(DSB)(1) 令UΩ=0,调WR1,使模拟乘法器①④脚间电压为0V,即电路平衡。

按设计要求加入信号,载波信号UX:f=500KHZ /50mV 调制信号Uy:f=2KHz/200mV,此引脚⑧⑩①④⑥12 ②③⑤14电压(V) 5.990 5.989 -0.016 -0.016 7.947 7.947 -0.639 -0.639 -6.846 -8时实现DSB调制。

信号的时域和频域波形如图8所示。

图8实验测得DSB过零点信号波形如图9所示。

为M曲线。

实验测得DSB过零点信号波形如图9所示。

为M曲线。

图9(2)同步检波器电路设计与仿真①同步检波器电路设计振幅调制信号的解调过程称为检波。

常用方法有包络检波和同步检波两种。

由于普通调幅波(AM)信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。

而双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,所以无法用包络检波进行解调,必须采用同步检波方法。

MC1496模拟乘法器构成的同步检波解调器电路原理框图10所示。

其中y端输入同步载波信号U C,x端输入已调波信号U S。

解调器输出信号经低通后输出解调信号。

其1496构成的同步检波电路与外接元件参数与AM调制电路无异,仅需接一低通滤波器实际设计电路如图11所示;图10图 11②同步检波器电路仿真HB1LM1496IO1IO2IO3IO4IO5IO6IO8IO10IO12IO14V112 VV28 VC10.1µFC21µFR41kΩR51kΩR651ΩR73.9kΩR83.9kΩC30.1µFR96.8kΩR101kΩR111kΩR1251ΩR131kΩR1451ΩR1550kΩKey=A50%C40.1µF R1610kΩC510000pFC610000pFA11 V/V 0 VYXV3150mVrms500kHz0°V4200mVrms2kHz0°XSC1A B C DGT1、按设计电路设置元件参数并用EWB 完成电路连接。

2、调RW1使电路平衡时,即Uc=U Ω=0,Uo=03、按设计要求加入信号,(载波信号UX :f=1MHZ /50mV 调制信号Uy :f=2KHz/200mV ), a .按已知条件产生DSB 信号图12b. 按同步检波工作原理加入信号,得实验数据如图12所示。

(3)混频器电路设计与仿真混频电路的作用是在本地振荡电压的作用下,将载频为fc 的高频已调信号不失真地变换为载频为f 的中频已调信号。

由于乘法器可以产生只包含两个输入信号之和频及差频分量的输出信号,所以用模拟乘法器和带通滤波器可以方便地实现混频功能。

其原理框图如图13所示:①混频器电路设计由1496模拟乘法器构成混频电路和外接元件参数与AM 调制电路无异,仅输出端需接465KHZ 谐振回路,其设计的电路如图14所示。

但必须保证模拟乘法器工作在平衡状态。

图14②混频器电路仿真HB1LM1496IO1IO2IO3IO4IO5IO6IO8IO10IO12IO14V112 VV28 VC10.1µF C21µF R41kΩR51kΩR651ΩR73.9kΩR83.9kΩC30.1µFR96.8kΩR101kΩR111kΩR1251ΩR131kΩR1451ΩR1550kΩKey=A50%C40.1µF C5430pFC6430pFV4200mVrms 1030kHz0°V350mV565kHz 2kHz AML1470µHXSC2ABExt Trig++__+_xU yU 用模拟乘法器实现混频,就是在 端和 相差一中频,再经过带通滤波器取出中频信号。

端分别加上两个不同频率的信号,两信号1、按设计电路设置元件参数并完成电路连接。

2、调RW1使电路平衡时,即Uc=U Ω=0,Uo=03、按设计要求加入信号,得实验数据如图15所示图16(4)倍频器电路设计与仿真 ①倍频器电路设计由模拟相乘器构成的倍频器电路原理框图如图16所示:当输入信号为: x y i u u u == , 图15即模拟相乘器接成如图16所示, 就构成了平方运算电路, 其输出与输入的关系是:2o x y i u Ku u Ku == 如果 sin x y i im u u u u wt ===则有 22(sin )[(1cos 2)]2o im im u K u wt Ku wt ==+因此, 只要在图14的输出端加一隔直电容, 便可实现正弦波的二倍频。

相关文档
最新文档