(完整版)初中数学七年级绝对值练习题
初一上册数学绝对值经典题
初一上册数学绝对值经典题经典题 1已知|x| = 3,|y| = 5,且x > y,求x + y的值。
解析:因为|x| = 3,所以x = ±3;因为|y| = 5,所以y = ±5。
又因为x > y,当x = 3时,y只能取-5,此时x + y = 3 + (-5) = -2;当x = -3时,y只能取-5,此时x + y = -3 + (-5) = -8。
综上,x + y的值为-2或-8。
经典题 2若|a - 2| + (b + 3)^2 = 0,求a + b的值。
解析:因为|a - 2|是非负数,(b + 3)^2也是非负数,两个非负数的和为0,则这两个非负数都为0。
所以a - 2 = 0,b + 3 = 0,解得a = 2,b = - 3。
则a + b = 2 + (-3) = -1。
经典题 3化简| -2| - | - 5|解析:| -2| = 2,| - 5| = 5所以| -2| - | - 5| = 2 - 5 = -3经典题 4已知a,b互为相反数,c,d互为倒数,m的绝对值为2,求|m| - cd + (a + b/m)的值。
解析:因为a,b互为相反数,所以a + b = 0;因为c,d互为倒数,所以cd = 1;因为|m| = 2,所以m = ±2。
当m = 2时,|m| - cd + (a + b/m) = 2 - 1 + (0/2) = 1;当m = -2时,|m| - cd + (a + b/m) = 2 - 1 + (0/-2) = 1。
综上,|m| - cd + (a + b/m)的值为1。
经典题 5比较-| -3|和-(-3)的大小。
解析:-| -3| = -3,-(-3) = 3因为-3 < 3,所以-| -3| < -(-3)。
初一绝对值练习题及答案
初一绝对值练习题及答案初一数学上册学习资料第三讲绝对值绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。
绝对值的定义及性质绝对值简单的绝对值方程化简绝对值式,分类讨论绝对值几何意义的使用绝对值的定义:绝对值的性质:绝对值的非负性,可以用下式表示|a|=若|a|=a,则;若|a|=-a,则;任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,若|a|=|b|,则|ab|= ;|ab|= ;|a|2= = ;|a+b||a|+|b| |a-b|||a|-|b|| |a|+|b||a+b| |a|+|b||a-b|[例1]绝对值大于2.1而小于4.2的整数有多少个?若ab A.a<0,b<0B.a>0,b<0C.a<0,b>0D.ab <0下列各组判断中,正确的是A.若|a|=b,则一定有a=b B.若|a|>|b|,则一定有a>bC. 若|a|>b,则一定有|a|>|b|D.若|a|=b,则一定有a2=设a,b是有理数,则|a+b|+9有最小值还是最大值?其值是多少?[巩固] 绝对值小于 3.1的整数有哪些?它们的和为多少?[巩固] 有理数a与b满足|a|>|b|,则下面哪个答案正确A.a>bB.a=bC.a [巩固] 若|x-3|=3-x,则x的取值范围是____________[巩固] 若a>b,且|a| A.a<0B.a>0 C.b<0 D.b >0[巩固] 设a,b是有理数,则-8-|a-b|是有最大值还是最小值?其值是多少?[例2]若3|x-2|+|y+3|=0,则若|x+3|+2=0,求2+2=0,则;若|x-a|+2=0,则;若|x-a|+|x-b|=0,则;已知x是有理数,且|x|=|-4|,那么x=____已知x是有理数,且-|x|=-|2|,那么x=____已知x是有理数,且-|-x|=-|2|,那么x=____如果x,y表示有理数,且x,y满足条件|x|=5,|y|=2,|x-y|=y-x,那么x+y的值是多少?巩固|x|=4,|y|=6,求代数式|x+y|的值3解方程:|x?5|?5?0 |4x+8|=1 |3x+2|=-1y的值是多少? x?4n)的值 y?x已知|x-1|=2,|y|=3,且x与y互为相反数,求13x2?xy?4y的值若已知a与b互为相反数,且|a-b|=4,求a?ab?b a2?ab?1的值已知a=-1|2a?4b2,b=-13,求|2?4|a?2b|?2|4b?3?|2a?3||的值若|a|=b,求|a+b|的值化简:|a-b|化简:|3.14-π| |8-x|有理数a,b,c在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b| C B 0 A已知a,b,c在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|数a,b在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||若a b?0,化简|a|-|b|+|a+b|+|ab|若-2≤a≤0,化简|a+2|+|a-2|已知x0,|y|>|z|>|x|,求|x+z|+|y+z|-|x-y|的值如果0 已知x 若a ||3a|?a|若abc≠0,则abc|a|?|b|?|c|的所有可能值有理数a,b,c,d,满足|abcd||a||b||c||d|abcd??1,求a?b?c?d的值化简|x+5|+|2x-3|化简:|2x-1|求|m|+|m-1+|m-2|的值例1求下列各数的绝对值:-38; 0.15;a; 3b;a-2; a-b.例2判断下列各式是否正确:|-a|=|a|;-|a|=|-a|;若|a|=|b|,则a=b;若a=b,则|a|=|b|;若|a|>|b|,则a>b;若a>b,则|a|>|b|;若a>b,则|b-a|=a-b.例3判断对错.如果一个数的相反数是它本身,那么这个数是0.如果一个数的倒数是它本身,那么这个数是1和0.如果一个数的绝对值是它本身,那么这个数是0或1.如果说“一个数的绝对值是负数”,那么这句话是错的.如果一个数的绝对值是它的相反数,那么这个数是负数.例已知2+|b+3|=0,求a、b.例5填空:若|a|=6,则a=______;若|-b|=0.87,则b=______;若x+|x|=0,则x是______数.例判断对错:没有最大的自然数.有最小的偶数0.没有最小的正有理数.没有最小的正整数.有最大的负有理数.有最大的负整数-1.没有最小的有理数.有绝对值最小的有理数.例比较下列每组数的大小,在横线上填上适当的关系符号|-0.01|______-|100|;-______-|-3|;-[-]_______0;当a<3时,a-3______0;|3-a|______a-3.例8在数轴上画出下列各题中x的范围:|x|≥4;|x|<3;2<|x|≤5.例求绝对值不大于2的整数;已知x是整数,且2.5<|x|<7,求x.例10解方程:已知|14-x|=6,求x;*已知|x+1|+4=2x,求x.*例11 化简|a+2|-|a-3|1,解:|-38|=38;|+0.15|=0.15;∵a<0,∴|a|=-a;∵b>0,∴3b>0,|3b|=3b;∵a<2,∴a-2<0,|a-2|=-=2-a;说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数一个结论是错误的,只要能举出反例即可.如第小题中取a=1,则-|a|=-|1|=-1,而|-a|=|-1|=1,所以-|a|≠|-a|.同理,在第小题中取a=-1,b=0,在第、小题中取a=5,b=-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第小题是正确的.证明步骤如下:此题证明的依据是利用|a|的定义,化去绝对值符号即可.对于证明第、、小题要注意字母取零的情况.2,解:其中第、、、小题不正确,、、、小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便.3,解:T. F.-1的倒数也是它本身,0没有倒数. F.正数的绝对值都等于它本身,所以绝对值是它本身的数是正数和0.T.任何一个数的绝对值都是正数或0,不可能是负数,所以这句话是错的.F.0的绝对值是0,也可以认为是0的相反数,所以少了一个数0.说明:解判断题时应注意两点:必须“紧扣”概念进行判断;要注意检查特殊数,如0,1,-1等是否符合题意.分析:根据平方数与绝对值的性质,式中2与|b+3|都是非负数.因为两个非负数的和为“0”,当且仅当每个非负数的值都等于0时才能成立,所以由已知条件必有a-1=0且b+3=0.a、b即可求出.4,解:∵2≥0,|b+3|≥0,又2+|b+3|=0∴a-1=0且b+3=0∴a=1,b=-3.说明:对于任意一个有理数x,x2≥0和|x|≥0这两条性质是十分重要的,在解题过程中经常用到.分析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数.,解:∵|a|=6,∴a=±6;∵|-b|=0.87,∴b=±0.87;∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.说明:“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下四点:6,解:T.F.数的范围扩展后,偶数的范围也随之扩展.偶数包含正偶数,0,负偶数,所以0不是最小的偶数,偶数没有最小的.T. F.有最小的正整数1. F.没有最大的负有理数. T. T. T.绝对值最小的有理数是0.分析:比较两个有理数的大小,需先将各数化简,然后根据法则进行比较.,解:|-0.01|>-|100|;->-|-3|;-[-]<0;当a<3时,a-3<0,|3-a|>a-3.说明:比较两个有理数大小的依据是:①在数轴上表示的两个数,右边的数总比左边的数大,正数大于0,大于一切负数,负数小于0,小于一切正数,两个负数,绝对值大的反而小.②两个正分数,若分子相同则分母越大分数值越小;若分母相同,则分子越大分数值越大;也可将分数化成小数来比较.绝对值综合练习题一姓名___________1、有理数的绝对值一定是A、正数B、整数C、正数或零D、自然数、绝对值等于它本身的数有A、0个B、1个C、2个D、无数个、下列说法正确的是A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等 C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数、比较 1112、3、4的大小,结果正确的是A、111112<3<4B、12<4<3C、1<1<1D、1<1<14233245、若|a|=|b|,则a=b。
七年级数学绝对值专项练习题集
绝对值综合练习题一1、有理数的绝对值一定是( )A 、正数B 、整数C 、正数或零D 、自然数2、绝对值等于它本身的数有( )A 、0个B 、1个C 、2个D 、无数个3、下列说法正确的是( )A 、—|a|一定是负数B 只有两个数相等时它们的绝对值才相等C 、若|a|=|b|,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数4、比较21、31、41的大小,结果正确的是( ) A 、21<31<41 B 、21<41<31 C 、41<21<31 D 、31<21<41 5、若有理数在数轴上的对应点如下图所示,则下列结论中正确的是( )A 、a>|b|B 、a<bC 、|a|>|b|D 、|a|<|b|6、判断。
(1)若|a|=|b|,则a=b 。
(2)若a 为任意有理数,则|a|=a 。
(3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( )(4)|31_|和31_互为相反数。
( ) 7、相反数等于-5的数是______,绝对值等于5的数是________。
8、-4的倒数的相反数是______。
9、绝对值小于∏的整数有________。
10、若|-x|=2,则x=____;若|x -3|=0,则x=______;若|x -3|=1,则x=_______。
11、实数a 、b 在数轴上位置如图所示,则|a|、|b|的大小关系是_______。
12、比较下列各组有理数的大小。
(1)-0.6○-60 (2)-3.8○-3.9(3)0○|-2| (4)43-○54- 13、已知|a|+|b|=9,且|a|=2,求b 的值。
14、已知|a|=3,|b|=2,|c|=1,且a<b<c ,求a 、b 、c 的值。
一、选择题1、 如果m>0, n<0, m<|n|,那么m ,n ,-m , -n 的大小关系( )A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m2、绝对值等于其相反数的数一定是…………………( )A .负数B .正数C .负数或零D .正数或零3、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………( )A .0个B .1个C .2个D .3个4、如果,则的取值范围是 ………………………( )A .>OB .≥OC .≤OD .<O5、绝对值不大于11.1的整数有………………………………( )A .11个B .12个C .22个D .23个6、绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在7、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个8、下列各数中,互为相反数的是( )A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 9、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数10、│a │= -a,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数11、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
(完整版)初一数学绝对值经典练习题
绝对值经典练习1、判断题:⑴、|-a|=|a|.⑵、-|0|=0.⑶、|-312|=-312.⑷、-(-5)-(-5)››-|-5|.⑸、如果a=4,a=4,那么那么那么|a|=4.|a|=4.⑹、如果、如果|a|=4,|a|=4,|a|=4,那么那么a=4.⑺、任何一个有理数的绝对值都是正数、任何一个有理数的绝对值都是正数..⑻、绝对值小于3的整数有2, 1, 0.⑼、-a 一定小于0.⑽、如果、如果|a|=|b|,|a|=|b|,|a|=|b|,那么那么a=b.⑾、绝对值等于本身的数是正数、绝对值等于本身的数是正数..⑿、只有1的倒数等于它本身的倒数等于它本身..⒀、若、若|-X|=5|-X|=5|-X|=5,则,则X=-5.⒁、数轴上原点两旁的点所表示的两个数是互为相反数、数轴上原点两旁的点所表示的两个数是互为相反数..⒂、一个数的绝对值等于它的相反数,那么这个数一定是负数、一个数的绝对值等于它的相反数,那么这个数一定是负数..2、填空题:⑴、当a_____0时,时,-a -a -a››0;⑵、当a_____0时,1a ‹0;⑶、当a_____0时,时,--1a ›0;⑷、当a_____0时,时,|a||a||a|››0;⑸ 、当a_____0时,时,-a -a -a››a; ⑹ 、当a_____0时,时,-a=a;-a=a; ⑺ 、当a ‹0时,时,|a|=______;|a|=______;⑻ 、绝对值小于4的整数有的整数有_______________________________________________________________________________________;; ⑼ 、如果m ‹n ‹0,0,那么那么那么|m|____|n|;|m|____|n|; ⑽ 、当k+3=0时,时,|k|=_____;|k|=_____;⑾ 、若a 、b 都是负数,且都是负数,且|a||a||a|››|b|,|b|,则则a____b; ⑿ 、|m-2|=1,|m-2|=1,则则m=_________; ⒀ 、若、若|x|=x,|x|=x,|x|=x,则则x=________;⒁ 、倒数和绝对值都等于它本身的数是、倒数和绝对值都等于它本身的数是__________;__________;⒂ 、有理数a 、b 在数轴上的位置如图所示,则在数轴上的位置如图所示,则|a|=___;|b|=____;|a|=___;|b|=____; ⒃ 、-223的相反数是的相反数是_____________________,倒数是,倒数是,倒数是__________________,绝对值是,绝对值是,绝对值是_____________________;;⒄ 、绝对值小于10的整数有的整数有_______________个,其中最小的一个是个,其中最小的一个是个,其中最小的一个是_______________;; ⒅ 、一个数的绝对值的相反数是、一个数的绝对值的相反数是-0.04-0.04-0.04,这个数是,这个数是,这个数是_____________________;; ⒆ 、若a 、b 互为相反数,则互为相反数,则|a|____|b|;|a|____|b|; ⒇ 、若、若|a|=|b|,|a|=|b|,|a|=|b|,则则a 和b 的关系为的关系为__________.__________.3、 选择题:⑴ 、下列说法中,错误的是、下列说法中,错误的是__________A .+5的绝对值等于5 B.B.绝对值等于绝对值等于5 的数是5 C .-5的绝对值是5 D.+5D.+5、、-5的绝对值相等 ⑵、如果⑵、如果|a|=||a|=| 1b|,|,那么那么a 与b 之间的关系是 A.a 与b 互为倒数 B.a与b互为相反数C.a〮b=-1 D.a〮b=1或a〮b=-1 ⑶、绝对值最小的有理数是⑶、绝对值最小的有理数是_______ _______A .1 B.0 C.-1 D.D.不存在不存在 ⑷、如果a+b=0,a+b=0,下列格式不一定成立的是下列格式不一定成立的是下列格式不一定成立的是_______ _______A .a=1bB.|a|=|b|C.a=-bD.a ≤0时,b ≤0⑸、如果a <0,那么那么_______ _______A .|a||a|‹‹0 B.-(-a)B.-(-a)››0 C.|a|C.|a|››0 D.-a D.-a‹‹0⑹、有理数a 、b 在数轴上的对应点的位置,分别在原点的两旁,那么在数轴上的对应点的位置,分别在原点的两旁,那么|a||a||a|与与|b|之间的大小关系是之间的大小关系是_______ _______A .|a||a|››|b| B.|a|B.|a|‹‹|b| C.|a|=|b| D.D.无法确定无法确定 ⑺、下列说法正确的是⑺、下列说法正确的是________ ________A .一个数的相反数一定是负数 B.B.两个符号不同的数叫互为相反数两个符号不同的数叫互为相反数 C .|-(+x)|=x D.-|-2|=-2 ⑻、绝对值最小的整数是⑻、绝对值最小的整数是_______ _______A .-1 B.1 C.0 D.D.不存在不存在⑼、下列比较大小正确的是⑼、下列比较大小正确的是_______ _______ A .−56<−45 B.-(-21)B.-(-21)‹‹+(-21) C.-|-1012|›823 D.-|-723|=-(-723) ⑽、绝对值小于3的负数的个数有的负数的个数有______ ______A.2B.3C.4D.D.无数无数⑾、若a 、b 为有理数,那么下列结论中一定正确的是为有理数,那么下列结论中一定正确的是_____ _____A .若a ‹b,b,则则|a||a|‹‹|b| B.B.若若a ›b,b,则则|a||a|››|b| C.C.若若a=b,a=b,则则|a|=|b| D.D.若若a ≠b,b,则则|a||a|≠≠|b|4、计算下列各题:⑴ 、|-8|-|-5| ⑵、(-3-3))+|-3| ⑶、⑶、|-9||-9|×(+5+5)) D 、15÷|-3|5、填表a13−1212 -a -5 7 +14 -(0.1) |a|126、比较下列各组数的大小:⑴ 、-3与-12; ⑵、-0.5与|-2.5|; ⑶、0与-|-9|; ⑷、|-3.5|与-3.57、把下列各数用“‹”连接起来:⑴、 5, 0, |-3|, -3, |- 13|, -(-8), -[−(−8)]; ⑵ 、 123, -512, 0, -614;⑶ 、|-5|, -6, -(-5), -(-10), -|-10|⑷ (|∆|+|∆|)×(-O)=-10,求O、∆,其中O 和∆表示整数.8、比较下列各组数的大小:⑴、-(-912)与-(-812); ⑵、|-572|与50% ⑶、-π与-3.14 ⑷、- 311与-0.273绝对值经典练习答案:1.⑴、√ ⑵、√ ⑶、× ⑷、√ ⑸、√ ⑹、× ⑺、× ⑻、× ⑼、× ⑽、× ⑾、× ⑿、× ⒀、× ⒁、× ⒂、×2.2.⑴‹⑴‹ ⑵‹ ⑶‹ ⑷≠ ⑸‹ ⑹= ⑺-a ⑻±⑻±11,±2,±3,0⑼、>⑽>⑽3 3 ⑾‹ ⑿3或1 ⒀≧⒀≧0 0 ⒁1 ⒂-a -a、、b ⒃223 −38 223 ⒄19 -9 ⒅±⒅±0.04 0.04 ⒆= ⒇相等或互为相反数3.3.⑴⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.4.⑴⑴3 ⑵0 ⑶45 ⑷5 5 a 5 0 -7- 14 0.1 -a-130 12 -12 |a| 13 5712140.16.⑴‹ ⑵‹ ⑶› ⑷›7.7.⑴⑴[−(−8)]‹-3-3‹‹0‹|- 13|‹|-3||-3|‹‹5‹-(-8-8)); ⑵-614‹-512‹0‹123;⑶-|-10|-|-10|‹‹-6-6‹‹-|-5|-|-5|‹‹|-5||-5|‹‹-(-10-10)); ⑷5, 5, 1或1, 1, 5或-1-1,, -1-1,, 5或-5-5,, -5-5,, 1 8.⑴› ⑵‹ ⑶‹ ⑷›。
初一数学《绝对值》专项练习(含答案)
绝对值姓名:__________班级:__________考号:__________一 、选择题1.已知|x|=0.19,|y|=0.99,且0<yx ,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.82.已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号3.如果|-a|=-a ,则a 的取值范围是(A 、a >OB 、a ≥OC 、a ≤OD 、a <O4.如果a 的绝对值是2,那么a 是( )A 、2B 、-2C 、±2D 、21±5.已知a 、b 互为相反数,且|a-b|=6,则|b-1|的值为( )A 、2B 、2或3C 、4D 、2或46.若|x+y|=y-x ,则有( )A 、y >0,x <0B 、y <0,x >0C 、y <0,x <0D 、x=0,y ≥0或y=0,x ≤07.下列说法,不正确的是( )A .数轴上的数,右边的数总比左边的数大B .绝对值最小的有理数是0C .在数轴上,右边的数的绝对值比左边的数的绝对值大D .离原点越远的点,表示的数的绝对值越大8.给出下面说法,其中正确的有( )(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m ,则m <0;(4)若|a|>|b|,则a >b ,A 、(1)(2)(3)B 、(1)(2)(4)C 、(1)(3)(4)D 、(2)(3)(4)9.一个数与这个数的绝对值相等,那么这个数是( )A 、1,0B 、正数C 、非正数D 、非负数11.若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数12.若|a-3|=2,则a+3的值为( )A 、5B 、8C 、5或1D 、8或413.如果|x-1|=1-x ,那么( )A 、x <1B 、x >1C 、x ≤1D 、x ≥114.已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-315.如图,下列各数中,数轴上点A 表示的可能是( )A .2的平方B .-3.4的绝对值C .-4.2的相反数D .512的倒数16.已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是() A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b17.a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A 、6B 、-4C 、-2a+2b+6D 、2a-2b-618.在-(-2),-|-7|,3-+,23-,115⎛⎫-+⎪⎝⎭中,负数有()A.1个B.2个C.3个D.4个19.若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a20.有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c| (3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个21.下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥22.到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4二、填空题23.若220x x-+-=,则x的取值范围是24.23-的相反数的绝对值的倒数是25.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________26.若3230x y-++=,则yx的值是多少?27.若x<2,则|x-2|+|2+x|=________________28.当x __________时,|2-x|=x-229.在数轴上表示数a的点到原点的距离是13,那么a=30.计算:3π-= ,若23x-=,则x=31.已知|x|=2,|y|=3,且xy<0,则x+y的值为 _________同可能.当a、b、c都是正数时,M= ______;当a、b、c中有一个负数时,则M= ________;当a、b、c中有2个负数时,则M= ________;当a、b、c都是负数时,M=__________ .33.若x<-2,则|1-|1+x||=______;若|a|=-a,则|a-1|-|a-2|= ________34.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________35.绝对值不大于7且大于4的整数有个,是36.2的绝对值是.37.绝对值等于2的数有个,是38.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=39.的相反数是 ;倒数是 ;绝对值是 . 40.若|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= ________41.如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________43.已知a ,b ,c 的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________三 、解答题44.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 45.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.46.如果3a b -+47.已知:①52a b ==,,且a b <;分别求a b ,的值48.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-49.已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 50.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-51.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--52.已知a a =-,0b <,化简22442(2)24323a ba b a b b a +--+++-- 53.()02b 1a 2=-++,分别求a ,b 的值54.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--绝对值答案解析一、选择题1.A2.C;由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=03.C4.C5.D6.D;解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0 又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0 ∴x=0,y≥0或y=0,x≤0选D.7.C8.A9.D10.B11.B12.D13.C14.C15.B16.D17.A;根据已知条件先去掉绝对值即可求解.18.C19.C20.B21.B22.A二 、填空题23.2x ≤24.3227.4或-2x28.x ≥229.13a =±30.3π-,5x =或1-31.±132.当a 、b 、c 中都是正数时,M=1+1+1=3;当a 、b 、c 中有一个负数时,不妨设a 是负数,则M=-1+1+1=1;当a 、b 、c 中有2个负数时,不妨设a ,b 是负数,则M=-1-1+1=-1; 当a 、b 、c 都是负数时,M=-1-1-1=-3;故M 有4种不同结果.33.-2-x ,-134.2y+3;根据数轴图可知:x >0,y <-1,∴|y-x|=x-y ,|y+1|=-1-y ,|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3. 35.6个,5±、6±、7±237.2个,2±38.解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y ->∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=;.40.∵|a|+a=0,|ab|=ab,|c|-c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c-b≥0,a-c≤0,∴原式=-b+a+b-c+b-a+c=b.故答案为b.41.3b-a42.【解析】根据绝对值的定义,对本题需去括号,那么牵涉到x的取值,因而分①当x<-1;②当-1≤x≤5;③当x>5这三种情况讨论该式的最小值.【答案】①当x<-1,|x+1|+|x-5|+4=-(x+1)+5-x+4=8-2x>10,②当-1≤x≤5,|x+1|+|x-5|+4=x+1+5-x+4=10,③当x>5,|x+1|+|x-5|+4=x+1+x-5+4=2x>10;所以|x+1|+|x-5|+4的最小值是10.故答案为:10.43.2a;由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.三、解答题44.解:∵a a=-∴0a≤∵0b<∴20a b+<,230a-<∴原式=22(2)42(2)24323a ba b a b b a-++-++++-=242222a b a b a b-+++++=42a b+45.解:如图所示,得0a b<<,01c<<∴0a b+<,10b-<,0a c-<,10c->∴原式=()(1)()(1)a b b a c c-++-+---=11a b b a c c--+-+--+=2-46.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.47.解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±48.∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=49.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.50.解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=51.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=52.解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+ 53.()02,012≥-≥+b a 可得02,01=-=+b a ;所以2,1=-=b a54.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2 -++-+-+=--+-++=a b b a b a a a b b a b a b。
初一数学绝对值经典练习题
绝对值经典演习【1 】1、断定题:⑴.|-a|=|a|.⑵.-|0|=0.⑶.|-3|=-3.⑷.-(-5)›-|-5|.⑸.假如a=4,那么|a|=4.⑹.假如|a|=4,那么a=4.⑺.任何一个有理数的绝对值都是正数.⑻.绝对值小于3的整数有2, 1, 0.⑼.-a必定小于0.⑽.假如|a|=|b|,那么a=b.⑾.绝对值等于本身的数是正数.⑿.只有1的倒数等于它本身.⒀.若|-X|=5,则X=-5.⒁.数轴上原点两旁的点所暗示的两个数是互为相反数.⒂.一个数的绝对值等于它的相反数,那么这个数必定是负数.2、填空题:⑴.当a_____0时,-a›0;⑵.当a_____0时,‹0;⑶.当a_____0时,-›0;⑷.当a_____0时,|a|›0;⑸.当a_____0时,-a›a;⑹.当a_____0时,-a=a;⑺.当a‹0时,|a|=______;⑻.绝对值小于4的整数有_____________________________;⑼.假如m‹n‹0,那么|m|____|n|;⑽.当k+3=0时,|k|=_____;⑾.若a.b都是负数,且|a|›|b|,则a____b;⑿.|m-2|=1,则m=_________;⒀.若|x|=x,则x=________;⒁.倒数和绝对值都等于它本身的数是__________;⒂.有理数a.b在数轴上的地位如图所示,则|a|=___;|b|=____;⒃.-2的相反数是_______,倒数是______,绝对值是_______;⒄.绝对值小于10的整数有_____个,个中最小的一个是_____;⒅.一个数的绝对值的相反数是-0.04,这个数是_______;⒆.若a.b互为相反数,则|a|____|b|;⒇.若|a|=|b|,则a和b的关系为__________.3、选择题:⑴.下列说法中,错误的是_____A.+5的绝对值等于5 B.绝对值等于5 的数是5C.-5的绝对值是5 D.+5.-5的绝对值相等⑵.假如|a|=||,那么a与b之间的关系是A.a与b互为倒数B.a与b互为相反数C.a〮b=-1D.a〮b=1或a〮b=-1⑶.绝对值最小的有理数是_______⑷.假如a+b=0,下列格局不必定成立的是_______A.a=⑸.假如a,那么_______A.|a|‹0 B.-(-a)›0 C.|a|›0 D.-a‹0⑹.有理数a.b在数轴上的对应点的地位,分离在原点的两旁,那么|a|与|b|之间的大小关系是_______⑺.下列说法准确的是________C.|-(+x)|=x D.-|-2|=-2⑻.绝对值最小的整数是_______⑼.下列比较大小准确的是_______A. B.-(-21)‹+(-21) C.-|-10|›8 D.-|-7|=-(-)⑽.绝对值小于3的负数的个数有______⑾.若a.b为有理数,那么下列结论中必定准确的是_____A.若a‹b,则|a|‹|b| B.若a›b,则|a|›|b|C.若a=b,则|a|=|b|D.若a≠b,则|a|≠|b|4.盘算下列各题:⑴.|-8|-|-5| ⑵.(-3)+|-3| ⑶.|-9|(+5) D.15|-3|5.填表a12-(0.1) -a-57+|a|0126.比较下列各组数的大小:⑴.-3与-7.把下列各数用“‹”衔接起来:⑴. 5, 0, |-3|, -3, |-|, -(-8), -;⑵.1, -, 0, -6;⑶.|-5|, -6, -(-5), -(-10), -|-10|⑷(|+|)(-)=-10,求O.,个中O和暗示整数.8.比较下列各组数的大小:⑴.-(-9)与-(-8);⑵.|-|与50⑶.-与-3.14 ⑷.-绝对值经典演习答案:1.⑴.√⑵.√⑶.×⑷.√⑸.√⑹.×⑺.×⑻.×⑼.×⑽.×⑾.×⑿.×⒀.×⒁.×⒂.×2.⑴‹ ⑵‹ ⑶‹ ⑷≠ ⑸‹ ⑹= ⑺-a ⑻±1,±2,±3,0⑼.>⑽3 ⑾‹ ⑿3或1 ⒀≧0 ⒁1 ⒂-a.b ⒃2⒄19 -9 ⒅±0.04 ⒆⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3 ⑵0 ⑶45 ⑷55a50-7-0-12 -a-|a|576.⑴‹ ⑵‹ ⑶› ⑷›7.⑴‹-3‹0‹|-|‹|-3|‹5‹-(-8);⑵-6‹-5‹0‹1;⑶-|-10|‹-6‹-|-5|‹|-5|‹-(-10);⑷5, 5, 1或1, 1, 5或-1, -1, 5或-5, -5, 18.⑴›⑵‹⑶‹⑷›。
初一(七年级)数学绝对值练习题及答案解析
初一(七年级)数学绝对值练习题及答案解析基础检测:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱= a , 则 a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果 x < y < 0, 那么︱x ︱︱y︱。
7.︱x - 1 ︱ =3 ,则 x =。
8.若︱x+3︱+︱y -4︱= 0,则 x + y = 。
9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。
10.︱x ︱<л,则整数x = 。
11.已知︱x︱-︱y︱=2,且y =-4,则 x = 。
12.已知︱x︱=2 ,︱y︱=3,则x +y = 。
13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。
14. 式子︱x +1 ︱的最小值是,这时,x值为。
15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值。
19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱。
七年级绝对值的计算题
七年级绝对值的计算题一、绝对值的基本概念1. 定义绝对值的定义:一个数在数轴上所对应点到原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
用符号表示:公式2. 性质非负性:公式,任何数的绝对值都是非负的。
二、绝对值的计算题类型及解析1. 简单的绝对值计算例1:计算公式解析:根据绝对值的定义,负数的绝对值是它的相反数。
因为公式,所以公式。
例2:计算公式解析:因为正数的绝对值是它本身,公式,所以公式。
例3:计算公式解析:根据定义,公式的绝对值是公式,即公式。
2. 含有运算符号的绝对值计算例1:计算公式解析:先分别计算绝对值,公式,公式,然后再进行加法运算,公式。
例2:计算公式解析:先求绝对值,公式,公式,然后做减法,公式。
例3:计算公式解析:先计算括号内的值,公式,然后求公式,因为公式,所以公式。
3. 含有字母的绝对值计算(简单情况)例1:已知公式,计算公式解析:将公式代入公式,因为公式,根据绝对值定义公式。
例2:若公式,化简公式解析:因为公式,根据正数的绝对值是它本身,所以公式。
例3:若公式,化简公式解析:因为公式,根据负数的绝对值是它的相反数,所以公式。
4. 较复杂的绝对值计算(多个绝对值组合或方程形式)例1:计算公式解析:先分别计算各个绝对值内的值,公式。
再求绝对值,公式,公式,公式。
最后进行计算:公式。
例2:解方程公式解析:根据绝对值的定义,当公式,即公式时,方程化为公式,解得公式。
当公式,即公式时,方程化为公式,即公式,解得公式。
所以方程的解为公式或公式。
初一数学绝对值专项练习带答案解析
绝对值一.选择题(共16小题)1.相反数不不小于它自身旳数是()A.正数B.负数C.非正数D.非负数2.下列各对数中,互为相反数旳是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数旳一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不对旳旳是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数旳数是()A.a3和b3B.a2和b2C.﹣a和﹣b D .和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数旳一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣旳相反数是()A.﹣ B.C.±D .﹣8.﹣旳相反数是()A.B.﹣C .D .﹣9.下列各组数中,互为相反数旳是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴旳单位长度为1.如果点B,C表达旳数旳绝对值相等,那么点A表达旳数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所相应旳点,其中有一点是原点,并且MN=NP=PR=1.数a相应旳点在M与N之间,数b相应旳点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么如下判断对旳旳是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上旳位置如图所示,其相应旳数分别是a和b.对于如下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中对旳旳是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b在数轴上旳位置如图所示,则下列各式中错误旳是()A.b<aB.|b|>|a|C.a+b>0 D.ab<016.﹣3旳绝对值是()A.3 B.﹣3 C .D .二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|旳值为.18.已知|x|=4,|y |=2,且xy<0,则x﹣y旳值等于.19.﹣2旳绝对值是,﹣2旳相反数是.20.一种数旳绝对值是4,则这个数是.21.﹣旳绝对值是.22.如果x、y都是不为0旳有理数,则代数式旳最大值是.23.已知+=0,则旳值为.24.计算:|﹣5+3|旳成果是.25.已知|x|=3,则x旳值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们懂得,|m|=.目前我们可以用这一结论来化简具有绝对值旳代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|旳零点值).在实数范畴内,零点值m=﹣1和m=2可将全体实数提成不反复且不漏掉旳如下3种状况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分如下3种状况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m ﹣1.综上讨论,原式=通过以上阅读,请你解决如下问题:(1)分别求出|x﹣5|和|x﹣4|旳零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|旳最小值.28.同窗们都懂得|5﹣(﹣2)|表达5与(﹣2)之差旳绝对值,也可理解为5与﹣2两数在数轴上所对旳两点之间旳距离,试摸索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件旳整数x,使得|x+5|+|x﹣2|=7成立旳整数是.(3)由以上摸索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|与否有最小值?如果有,写出最小值;如果没有,阐明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x ﹣y)旳值.30.求下列各数旳绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值旳知识回答问题:(1)探究:①数轴上表达5和2旳两点之间旳距离是;②数轴上表达﹣2和﹣6旳两点之间旳距离是;③数轴上表达﹣4和3旳两点之间旳距离是;(2)归纳:一般地,数轴上表达数m和数n旳两点之间旳距离等于|m﹣n|.(3)应用:①如果表达数a和3旳两点之间旳距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表达数a旳点位于﹣4与3之间,求|a+4|+|a﹣3|旳值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|旳值最小,最小值是多少?请阐明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表达旳数分别为﹣3,0,1,点P为数轴上任意一点,其表达旳数为x.(1)如果点P到点A,点B旳距离相等,那么x=;(2)当x=时,点P到点A,点B旳距离之和是6;(3)若点P到点A,点B旳距离之和最小,则x旳取值范畴是;(4)在数轴上,点M ,N表达旳数分别为x1,x2,我们把x1,x2之差旳绝对值叫做点M,N之间旳距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度旳速度从点O沿着数轴旳负方向运动时,点E以每秒1个单位长度旳速度从点A沿着数轴旳负方向运动、点F 以每秒4个单位长度旳速度从点B沿着数轴旳负方向运动,且三个点同步出发,那么运动秒时,点P 到点E,点F旳距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表达有理数a、b,则A、B两点之间旳距离可以表达为|a﹣b|.根据阅读材料与你旳理解回答问题:(1)数轴上表达3与﹣2旳两点之间旳距离是.(2)数轴上有理数x与有理数7所相应两点之间旳距离用绝对值符号可以表达为.(3)代数式|x+8|可以表达数轴上有理数x与有理数所相应旳两点之间旳距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|旳最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a旳值.36.如图,数轴上旳三点A,B,C分别表达有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求旳值;(2)若b≠0,且,求旳值.参照答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21..22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|旳零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式旳最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范畴内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范畴内不成立)∴综上所述,符合条件旳整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)旳摸索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表达5和2旳两点之间旳距离是3,②数轴上表达﹣2和﹣6旳两点之间旳距离是4,③数轴上表达﹣4和3旳两点之间旳距离是7;(3)应用:①如果表达数a和3旳两点之间旳距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表达数a旳点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间旳距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x ﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B旳距离之和是6,∴点P在点A旳左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B旳右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B旳距离之和最小,因此x旳取值范畴是﹣3≤x≤1;(4)设运动时间为t,点P表达旳数为﹣3t,点E表达旳数为﹣3﹣t,点F表达旳数为1﹣4t,∵点P到点E,点F旳距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所相应两点之间旳距离用绝对值符号可以表达为|x﹣7|,(3)代数式|x+8|可以表达数轴上有理数x与有理数﹣8所相应旳两点之间旳距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|旳最小值即|1007﹣(﹣1008)|=.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,由于a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,由于a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,由于a﹣b=﹣10<0,符题意;因此a+b=﹣6;④当a=﹣8,b=﹣2时,由于a﹣b=﹣6<0,符题意,因此a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一种0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。
完整版)初一数学绝对值经典练习题
完整版)初一数学绝对值经典练习题绝对值的经典练1.判断题:⑴、对⑵、对⑶、错。
正确的是 |-3^2|=3^2=9⑷、对⑸、对⑹、错。
正确的是如果 a=4,那么 a 或 -a 都可以⑺、对⑻、错。
正确的是 -2,-1,0,1,2⑼、错。
正确的是 a 可以是 0 或负数⑽、错。
正确的是如果 a=b 或 a=-b,那么 |a|=|b|⑾、对⑿、错。
正确的是只有 1 的倒数等于 1⒀、对⒁、对⒂、错。
正确的是这个数既可以是正数也可以是负数2.填空题:⑴、当 a0⑵、当 a>0 时,a>0⑶、当 a0⑷、当a≠0 时,|a|>0⑸、当 a>0 时,-a<a⑹、当 a=0 时,-a=a⑺、当 a<0 时,|a|=-a⑻、绝对值小于 4 的整数有 -3,-2,-1,0,1,2,3⑼、如果 mn⑽、当 k+3=0 时,|k|=3⑾、如果 a、b 都是负数,且 |a|>|b|,则 a<b⑿、如果 |m-2|=1,则 m=3 或 m=1⒀、如果 |x|=x,则x≥0⒁、倒数和绝对值都等于它本身的数是 1 或 -1⒂、|a|=3,|b|=1⒃、-2/3 的相反数是 2/3,倒数是 -3/2,绝对值是 2/3⒄、绝对值小于 10 的整数有 19 个,其中最小的一个是 -9⒅、一个数的绝对值的相反数是 -0.04,这个数是 0.04 或-0.04⒆、如果 a、b 互为相反数,则 |a|=|b|⒇、如果 |a|=|b|,则 a 可以等于 b 或 -b3.选择题:⑴、选 D。
+5 和 -5 的绝对值相等。
⑵、选 C。
|a|=|b| 表示 a 和 b 的距离相等,所以它们互为相反数。
⑶、选 C。
绝对值最小的有理数是 0,但是它不是一个负数。
4、计算下列各题:⑴、|-8|-|-5|=8-5=3⑵、(-3)+|-3|= -3+3=0⑶、|-9|×(+5)= 45D、15÷|-3|= -55、填表a -a |a|1 -1 13 -3 357 57 571 -1 12 2 24 -4 41/12 -1/12 1/1212 12 120.1) 0.1 0.16、比较下列各组数的大小:⑴、-3< -2⑵、-0.5<|-2.5|⑶、-π<-3.14⑷、-0.2731<-2/57、把下列各数用“‹”连接起来:⑴、5‹|-3|‹-3‹|-3|‹-8‹-8⑵、1‹-5‹-6⑶、|-5|‹-6‹-5‹-10‹10⑷(|∆|+|∆|)×(-O)=-10,求O、∆,其中O和∆表示整数.10/-O,因为绝对值为正数,所以-10/-O必须为正数,即O>0.因此,O只能为1,此时|∆|+|∆|=10,∆只能为5.所以,O=1,∆=5.2.该公式表示:当a不等于b时,c等于d减去a与b之差的绝对值加上1,2或3,否则c等于3或1,取决于a是否大于等于1或小于等于-2.改写:这个公式描述了一个条件语句,如果a不等于b,则c等于d减去a和b之间的差的绝对值加上1、2或3.如果a等于b,则c等于3或1,具体取决于a是否大于等于1或小于等于-2.3.这个问题是一个选择题,答案分别是B、D、B、A、C、D、D、C、A、D、C。
(完整版)初一绝对值练习(含例题、基础、拨高)
综合练习题一1、有理数的绝对值一定是( )A 、正数B 、整数C 、正数或零D 、自然数 2、绝对值等于它本身的数有( )A 、0个B 、1个C 、2个D 、无数个 3、下列说法正确的是( ) A 、—|a|一定是负数B 只有两个数相等时它们的绝对值才相等C 、若|a|=|b|,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数 4、比较21、31、41的大小,结果正确的是( ) A 、21<31<41 B 、21<41<31 C 、41<21<31 D 、31<21<415、( )A 、a>|b|B 、a<bC 、|a|>|b|D 、|a|<|b| 6、判断。
(1)若|a|=|b|,则a=b 。
(2)若a 为任意有理数,则|a|=a 。
(3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( ) (4)|31_|和31_互为相反数。
( ) 7、相反数等于-5的数是______,绝对值等于5的数是________。
8、-4的倒数的相反数是______。
9、绝对值小于∏的整数有________。
10、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
11、实数的大小关系是_______。
12、比较下列各组有理数的大小。
(1)-0.6○-60 (2)-3.8○-3.9(3)0○|-2| (4)43-○54-13、已知|a|+|b|=9,且|a|=2,求b的值。
14、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
绝对值综合练习题二一、选择题1、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m2、绝对值等于其相反数的数一定是…………………()A.负数 B.正数C.负数或零D.正数或零3、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………()A.0个B.1个C.2个D.3个4、如果,则的取值范围是………………………()A.>O B.≥OC .≤OD .<O5、绝对值不大于11.1的整数有………………………………( )A .11个B .12个C .22个D .23个 6、绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在 7、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个 8、下列各数中,互为相反数的是( )A 、│-32│和-32 B 、│-23│和-32C 、│-32│和23D 、│-32│和32 9、下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数 10、│a │= -a,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数 11、下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
初一(七年级)数学绝对值练习题及答案解析
初一(七年级)数学上册绝对值同步练习题基础检测:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱= a ,则 a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果x <y < 0, 那么︱x︱︱y︱。
7.︱x - 1 ︱=3 ,则x=。
8.若︱x+3︱+︱y -4︱= 0,则x +y = 。
9.有理数a ,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。
10.︱x ︱<л,则整数x = 。
11.已知︱x︱-︱y︱=2,且y =-4,则x =。
12.已知︱x︱=2,︱y︱=3,则x+y= 。
13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x︱+︱y︱=。
14.式子︱x +1 ︱的最小值是,这时,x值为。
15.下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C任何数的绝对值一定是正数D任何数的绝对值都不是负数16.下列说法错误的个数是( )(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1 D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子 a b a b c+++ + m -c d 的值。
19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个 乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8,记做︱-8︱。
初一上册数学绝对值专项练习带答案
绝对值一.选择题共16小题1.相反数不大于它本身的数是A.正数 B.负数 C.非正数D.非负数2.下列各对数中,互为相反数的是A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为A.a2与b2B.a3与b5C.a2n与b2n n为正整数D.a2n+1与b2n+1n为正整数4.下列式子化简不正确的是A.+﹣5=﹣5 B.﹣﹣0.5=0.5C.﹣|+3|=﹣3 D.﹣+1=15.若a+b=0,则下列各组中不互为相反数的数是A.a3和b3B.a2和b2C.﹣a和﹣b D .和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣2018的相反数是A.﹣2018 B.2018 C.±2018 D .﹣8.﹣2018的相反数是A.2018B.﹣2018 C .D .﹣9.下列各组数中,互为相反数的是A.﹣1与﹣12B.1与﹣12C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是A.﹣4 B.﹣5 C.﹣6 D.﹣2 11.化简|a﹣1|+a﹣1=A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是A.甲乙 B.丙丁 C.甲丙 D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是A.b<aB.|b|>|a| C.a+b>0 D.ab<016.﹣3的绝对值是A.3 B.﹣3 C .D .二.填空题共10小题17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|= .三.解答题共14小题27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2称﹣1,2分别为|m+1|与|m﹣2|的零点值.在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:1m<﹣1;2﹣1≤m<2;3m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:1当m<﹣1时,原式=﹣m+1﹣m﹣2=﹣2m+1;2当﹣1≤m<2时,原式=m+1﹣m﹣2=3;3当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:1分别求出|x﹣5|和|x﹣4|的零点值;2化简代数式|x﹣5|+|x﹣4|;3求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣﹣2|表示5与﹣2之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:1求|5﹣﹣2|= .2找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.3由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷x﹣y 的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:1探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;2归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.3应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a= ;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a 取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.1如果点P到点A,点B的距离相等,那么x= ;2当x= 时,点P到点A,点B的距离之和是6;3若点P到点A,点B 的距离之和最小,则x的取值范围是;4在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:1数轴上表示3与﹣2的两点之间的距离是.2数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为.3代数式|x+8|可以表示数轴上有理数x 与有理数所对应的两点之间的距离;若|x+8|=5,则x= .4求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:a﹣b﹢|a﹣b|.40.当a≠0时,请解答下列问题:1求的值;2若b ≠0,且,求的值.参考答案与试题解析一.选择题共16小题1. D.2. B.3. D.4. D.5. B.6.B.7. B .8. A.9. A.10. A.11. C.12.A.13. D.14.C.15.C.16. A.二.填空题共10小题17..18.6或﹣6 .19. 2 , 2 .20.4,﹣4 .21.2018 .22. 1 .23.﹣1 .24. 2 .25.±3 .26. = 3 .三.解答题共14小题27.解答1令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;2当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.3当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:1原式=|5+2|=7故答案为:7;2令x+5=0或x ﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣x+5﹣x﹣2=7,﹣x﹣5﹣x+2=7,x=5范围内不成立当﹣5<x<2时,∴x+5﹣x﹣2=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴x+5+x﹣2=7,x+5+x﹣2=7,2x=4,x=2,x=2范围内不成立∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;3由2的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷x﹣y=6÷﹣+=﹣36.30.解答解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;3应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x+1﹣x﹣2﹣x﹣3=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x﹣2﹣x﹣3=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x﹣3=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=x+1+x ﹣2+x﹣3=3x﹣4.33.解:1由题意得,|x﹣﹣3|=|x﹣1|,解得x=﹣1;2∵AB=|1﹣﹣3|=4,点P到点A,点B的距离之和是6, ∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣﹣3=6,解得x=2,综上所述,x=﹣4或2;3由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;4设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣﹣3﹣t|=|﹣3t﹣1﹣4t|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:1﹣1;2﹣4或2;3﹣3≤x≤1;4或2.34.解:1|3﹣﹣2|=5,2数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x﹣7|, 3代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13, 4如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣﹣1008|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴a﹣b﹢|a﹣b|=a﹣b+a﹣b=2a﹣2b.40.解:1当a>0时,=1;当a<0时,=﹣1;2∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。
初一有理数绝对值题50练
初一有理数绝对值题50练一、基础概念理解1、绝对值的定义:数轴上表示一个数的点与原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。
例如,5 的绝对值是 5,-3 的绝对值是 3,0 的绝对值是 0。
练习 1:求下列各数的绝对值:(1)-7 (2)8 (3)0 (4)-12练习 2:若一个数的绝对值是 4,求这个数。
练习 3:绝对值等于本身的数是()A 正数B 负数C 非负数D 非正数二、简单计算2、计算绝对值的运算。
例如:| 5 + 3 |=| 2 |= 2练习 4:计算:(1)| 7 9 |(2)| 3 + 8 |(3)| 5 12 |练习 5:已知| a |= 3,| b |= 5,且 a < b,求 a + b 的值。
练习 6:若| x 2 |= 5,求 x 的值。
三、比较大小3、利用绝对值比较有理数的大小。
两个负数比较大小,绝对值大的反而小。
例如:比较 3 和 5 的大小。
因为| 3 |= 3,| 5 |= 5,3 <5,所以 3 > 5。
练习 7:比较下列各组数的大小:(1) 1 和 4 (2)0 和 2 (3) 05 和 2练习 8:如果 a < 0,b < 0,且| a |<| b |,那么 a 和 b 的大小关系是()A a > bB a = bC a < bD 无法确定练习 9:有理数 a、b 在数轴上的位置如图所示,比较| a |和| b |的大小。
(数轴略)四、综合应用4、绝对值在实际问题中的应用。
例如:出租车的收费标准是起步价 8 元(3 千米以内),超过 3 千米的部分每千米 15 元。
某人乘坐出租车行驶了 x 千米(x > 3),则应付车费为 8 + 15(| x 3 |)元。
练习 10:某工厂生产一种零件,规定零件的尺寸误差不能超过±05毫米,若生产的零件尺寸为 x 毫米,用绝对值表示零件尺寸的误差范围。
练习 11:一足球队在一场比赛中的胜负情况可以用净胜球数来表示,若净胜球数为正数,则表示赢球;若净胜球数为负数,则表示输球;若净胜球数为 0,则表示平局。
初一数学绝对值试题及答案
初一数学绝对值试题及答案一、选择题(每题2分,共10分)1. 绝对值的几何意义是什么?A. 数轴上点到原点的距离B. 数轴上点到任意点的距离C. 数轴上点到最近的整数点的距离D. 数轴上点到最近的负整数点的距离2. 若|a|=3,则a的值可以是:A. 3B. -3C. 3或-3D. 无法确定3. 计算|-5|的结果是多少?A. 5B. -5B. 0D. 14. 已知|a-b|=2,若a=1,那么b的值可以是:A. 3B. -1C. 1或-1D. 无法确定5. 若|a|=|b|,且a>b,则a和b的关系是:A. a和b相等B. a和b互为相反数C. a和b同号D. 无法确定二、填空题(每题2分,共10分)6. 若|x-2|=3,则x的值为______。
7. 绝对值不大于5的所有整数的和是______。
8. 若|-4|=|4|,则|-4|的值为______。
9. 绝对值最小的数是______。
10. 若|a|=5,且a<0,则a的值为______。
三、解答题(每题5分,共20分)11. 已知|a|=4,|b|=2,且a>b,求a和b的所有可能值。
12. 若|3x-5|=4,求x的值。
13. 已知|a|=3,|b|=2,求|a+b|的最大值和最小值。
14. 计算|-3.5|+|-2.5|-|5.5|的结果。
四、综合题(每题10分,共20分)15. 某商店在一天内销售了x件商品,每件商品的利润为y元。
如果x 的绝对值表示销售量,y的绝对值表示利润,那么商店一天的总利润是多少?16. 某工厂生产了a个零件,每个零件的成本为b元。
如果|a|表示生产量,|b|表示成本,且a和b都是正数,那么工厂一天的总成本是多少?答案:一、选择题1. A2. C3. A4. B5. B二、填空题6. 5或-17. 08. 49. 010. -5三、解答题11. a=4, b=2或a=4, b=-2或a=-4, b=2或a=-4, b=-212. x=3或x=113. 最大值5,最小值114. 4四、综合题15. 总利润=xy16. 总成本=ab结束语:通过本次试题的练习,同学们应该对绝对值的概念有了更深入的理解,并且在实际问题中能够灵活运用绝对值的性质进行计算。
初中数学七年级绝对值练习题
《绝对值》练习一.选择题1. -3的绝对值是( )(A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是A .负数B .正数C .负数或零D .正数或零3. 若│x│+x=0,则x 一定是 ( )A .负数B .0C .非正数D .非负数5.绝对值最小的数( )A .不存在B .0C .1D .-16.当一个负数逐渐变大(但仍然保持是负数)时( )A .它的绝对值逐渐变大B .它的相反数逐渐变大C .它的绝对值逐渐变小D .它的相反数的绝对值逐渐变大7.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个12.______7.3=-;______0=;______3.3=--;______75.0=+-.(2)若x x =-1,求x .2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?拓展题1.7=x ,则______=x ; 7=-x ,则______=x .2.若2<a<4,化简|2-a|+|a -4|.3. 已知|4-a|+|2-5b|=0, 求a+b5.b <c <0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|四、解答题1.若|x -2|+|y+3|+|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值.2.若2<a<4,化简|2-a|+|a -4|.3.(1)若x x =1,求x .(2)若x x=-1,求x .2.(1)对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:(1)如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数, 则必有x+y=0.现已知:|a|+a=0,求a的取值范围。
初一数学绝对值经典练习题
初一数学绝对值经典练习题绝对值是数学中常见的概念之一,初一阶段学生学习绝对值也是很重要的一部分。
下面我将给你提供一些初一数学中关于绝对值的经典练习题,并解答每个题目。
1.计算以下绝对值:a) |3| b) |-5| c) |0| d) |-3| e) |10|解答:a) |3| = 3b) |-5| = 5c) |0| = 0d) |-3| = 3e) |10| = 102.计算下列绝对值:a) |7 - 9|b) |12 - 7|c) |5 - 5|d) |-9 + 9|e) |11 - 17|解答:a) |7 - 9| = |-2| = 2b) |12 - 7| = |5| = 5c) |5 - 5| = |0| = 0d) |-9 + 9| = |0| = 0e) |11 - 17| = |-6| = 63.解方程:a) |x - 5| = 3b) |2x + 1| = 7c) |7 - x| = 4d) |5x - 3| = 0e) |x + 1| = |x - 1|解答:a) |x - 5| = 3当x - 5 > 0时,x - 5 = 3,解得x = 8;当x - 5 < 0时,-(x - 5) = 3,解得x = 2;所以方程的解为x = 8或x = 2。
b) |2x + 1| = 7当2x + 1 > 0时,2x + 1 = 7,解得x = 3;当2x + 1 < 0时,-(2x + 1) = 7,解得x = -4;所以方程的解为x = 3或x = -4。
c) |7 - x| = 4当7 - x > 0时,7 - x = 4,解得x = 3;当7 - x < 0时,-(7 - x) = 4,解得x = 11;所以方程的解为x = 3或x = 11。
d) |5x - 3| = 0当5x - 3 > 0时,5x - 3 = 0,解得x = 0.6;当5x - 3 < 0时,-(5x - 3) = 0,解得x = 0.6;所以方程的解为x = 0.6。
初一数学绝对值练习题完整版
初一数学绝对值练习题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】绝对值经典练习1、 判断题:⑴ 、|-a|=|a|. ⑵ 、-|0|=0. ⑶ 、|-312|=-312.⑷ 、-(-5)-|-5|.⑸ 、如果a=4,那么|a|=4. ⑹ 、如果|a|=4,那么a=4.⑺ 、任何一个有理数的绝对值都是正数. ⑻ 、绝对值小于3的整数有2,1,0. ⑼ 、-a 一定小于0.⑽ 、如果|a|=|b|,那么a=b.⑾ 、绝对值等于本身的数是正数. ⑿ 、只有1的倒数等于它本身. ⒀ 、若|-X|=5,则X=-5.⒁ 、数轴上原点两旁的点所表示的两个数是互为相反数.⒂ 、一个数的绝对值等于它的相反数,那么这个数一定是负数.2、 填空题:⑴ 、当a_____0时,-a?0; ⑵⑶ 、当a_____0时,1a 0; ⑷⑸ 、当a_____0时,-1a 0; ⑹⑺ 、当a_____0时,|a|?0; ⑻ 、当a_____0时,-a?a; ⑼⑽ 、当a_____0时,-a=a; ⑾ 、当a?0时,|a|=______;⑿ 、绝对值小于4的整数有_____________________________; ⒀ 、如果mn0,那么|m|____|n|; ⒁⒂ 、当k+3=0时,|k|=_____;⒃、若a 、b 都是负数,且|a|?|b|,则a____b;⒄ 、|m-2|=1,则m=_________;⒅ 、若|x|=x,则x=________;⒆ 、倒数和绝对值都等于它本身的数是__________;⒇ 、有理数a 、b 在数轴上的位置如图所示,则|a|=___;|b|=____; 21 、-223的相反数是_______,倒数是______,绝对值是_______; 22 、绝对值小于10的整数有_____个,其中最小的一个是_____; 23 、一个数的绝对值的相反数是-0.04,这个数是_______; 24 、若a 、b 互为相反数,则|a|____|b|;25、若|a|=|b|,则a 和b 的关系为__________.3、 选择题:⑴ 、下列说法中,错误的是_____A .+5的绝对值等于5B.绝对值等于5的数是5 C .-5的绝对值是5D.+5、-5的绝对值相等 ⑵、如果|a|=| 1b |,那么a 与b 之间的关系是A.a 与b 互为倒数B.a与b互为相反数C.a?b=-1 D.ab=1或ab=-1 ⑶、绝对值最小的有理数是_______A .1B.0C.-1D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______A .a=1b B.|a|=|b|C.a=-bD.a ≤0时,b ≤0⑸、如果a <0,那么_______A .|a|?0B.-(-a) 0C.|a|?0D.-a?0⑹、有理数a 、b 在数轴上的对应点的位置,分别在原点的两旁,那么|a|与|b|之间的大小关系是_______A .|a|?|b|B.|a|?|b|C.|a|=|b|D.无法确定 ⑺、下列说法正确的是________A .一个数的相反数一定是负数B.两个符号不同的数叫互为相反数 C .|-(+x)|=xD.-|-2|=-2 ⑻、绝对值最小的整数是_______A .-1B.1C.0D.不存在⑼、下列比较大小正确的是_______A .−56<−45B.-(-21)+(-21)C.-|-1012|?823D.-|-723|=-(-723)⑽、绝对值小于3的负数的个数有______A.2B.3C.4D.无数⑾、若a 、b 为有理数,那么下列结论中一定正确的是_____A .若ab,则|a||b|B.若ab,则|a||b|C.若a=b,则|a|=|b|D.若a ≠b,则|a|≠|b|4、计算下列各题:⑴ 、|-8|-|-5|⑵、(-3)+|-3|⑶、|-9|×(+5)D 、15÷|-3|5、填表6、比较下列各组数的大小:⑴ 、-3与-12;⑵、-0.5与|-2.5|;⑶、0与-|-9|;⑷、|-3.5|与-3.57、把下列各数用“”连接起来:⑴、5,0,|-3|,-3,|- 13|,-(-8),-[−(−8)]; ⑵ 、123,-512,0,-614;⑶ 、|-5|,-6,-(-5),-(-10),-|-10|⑷ (||+||)×(-O)=-10,求O、,其中O 和表示整数.8、比较下列各组数的大小:⑴、-(-912)与-(-812);⑵、|-572|与50%⑶、-π与-3.14⑷、- 311与-0.273绝对值经典练习答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×2.⑴?⑵?⑶?⑷≠⑸?⑹=⑺-a ⑻±1,±2,±3,0⑼、>⑽3⑾?⑿3或1⒀≧0⒁1⒂-a 、b ⒃223 −38 223⒄19-9⒅±0.04⒆=⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3⑵0⑶45⑷57.⑴[−(−8)]-30|- 13||-3|5-(-8);⑵-614-5120123;⑶-|-10|-6-|-5||-5|-(-10);⑷5,5,1或1,1,5或-1,-1,5或-5,-5,1 8.⑴?⑵?⑶?⑷?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《绝对值》练习
一.选择题
1. -3的绝对值是( )
(A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是
A .负数
B .正数
C .负数或零
D .正数或零
3. 若│x│+x=0,则x 一定是 ( )
A .负数
B .0
C .非正数
D .非负数
5.绝对值最小的数( )
A .不存在
B .0
C .1
D .-1
6.当一个负数逐渐变大(但仍然保持是负数)时( )
A .它的绝对值逐渐变大
B .它的相反数逐渐变大
C .它的绝对值逐渐变小
D .它的相反数的绝对值逐渐变大
7.下列说法中正确的是( )
A .a -一定是负数
B .只有两个数相等时它们的绝对值才相等
C .若b a =则a 与b 互为相反数
D .若一个数小于它的绝对值,则这个数是负数
8.绝对值不大于11.1的整数有( )
A .11个
B .12个
C .22个
D .23个
12.______7.3=-;______0=;______3.3=--;______75.0=+-.
(2)若x x =-1,求x .
2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:
+15 -10 +30 -20 -40
指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?
拓展题
1.7=x ,则______=x ; 7=-x ,则______=x .
2.若2<a<4,化简|2-a|+|a -4|.
3. 已知|4-a|+|2-5b|=0, 求a+b
5.b <c <0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|
四、解答题
1.若|x -2|+|y+3|+|z -5|=0,计算:
(1)x ,y ,z 的值.
(2)求|x|+|y|+|z|的值.
2.若2<a<4,化简|2-a|+|a -4|.
3.(1)若
x x =1,求x .
(2)若x x
=-1,求x .
2.(1)对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?
(2)对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少
3.阅读下列解题过程,然后答题:
(1)如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数, 则必有x+y=0.现已知:|a|+a=0,求a的取值范围。
(2)已知:|a-1|+(a-1)=0,求a的取值范围.
4.(1)已知|x|=3 ,|y|=1,且x-y<0, 求x+y
(2)已知|a|=3,|b|=5 ,且a<b, 求a-b
(3)已知∣a-4∣+∣B-2∣=0,求a,b的值
(4)已知|4+a|+|2-5b|=8, 求a+b
3.a<b<0<c,化简:
(1)|2a-b|+2|b-c|-2|c-a|+3|b|
(2)|a-b|+|b|+|c-a|
4.c<b<0<a,化简|a+c|-|a-b-c|-|b-a|+|b+c|
5.b<c<0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|
9.某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检
请用绝对值知识说明:
(1)哪几瓶是合乎要求的(即在误差范围内的)?
(2)哪一瓶净含量最接近规定的净含量?。