沈阳工业大学《半导体物理》教学PPT第二章

合集下载

半导体物理与器件ppt课件

半导体物理与器件ppt课件

2.23
h h K为波数=2π/λ, λ为波长。 2mE 15 P
2.3薛定谔波动方程的应用

2.3.2无限深势阱(变为驻波方程) 与时间无关的波动方程为:
2 x 2m 2 E V x x 0 2 x
2.13
由于E有限,所以区域I和III 中:
课程主要内容
固体晶格结构:第一章 量子力学:第二章~第三章 半导体物理:第四章~第六章 半导体器件:第七章~第十三章

1
绪论

什么是半导体
按固体的导电能力区分,可以区分为导体、半导体和绝缘体
表1.1 导体、半导体和绝缘体的电阻率范围 材料 电阻率ρ(Ωcm) 导体 < 10-3 半导体 10-3~109 绝缘体 >109
分别求解与时间无关的波动方程、与时间有关的波 动方程可得自由空间中电子的波动方程为:
j j x, t A exp x 2mE Et B exp x 2mE Et




2.22
说明自由空间中的粒子运动表现为行波。 沿方向+x运动的粒子: x, t A exp j kx t
18
2.3薛定谔波动方程的应用

无限深势阱(前4级能量)
随着能量的增加,在任意给 定坐标值处发现粒子的概率 会渐趋一致
19
2.3薛定谔波动方程的应用

2.3.3阶跃势函数
入射粒子能量小于势垒时也有一定概率穿过势垒 (与经典力学不同)

20
2.3薛定谔波动方程的应用

2.3.3阶跃势函数 Ⅰ区域 21 x 2mE 2 1 x 0 2.39 2

半导体器件物理学习资料二PPT课件

半导体器件物理学习资料二PPT课件
这时空间电荷的数量一定,空间电荷区不再继续扩 展,保持一定的宽度,同时存在一定的内建电场。一般在 这种情况下的P-N结称为热平衡状态下的P-N结(简称平 衡P-N结)。
.
上海电子信息职业技1术2 学院
半导体器件物理
平衡P-N结的能带图
第二章 P-N结
N型、P型半导体的能带图,图中EFn和EFp分别表示N型和 P型半导体的费米能级。
半导体器件物理
第二章 P-N结
P-N结
采用合金、扩散、离子注入等制造工艺,可 以在一块半导体中获得不同掺杂的两个区域,这 种P型和N型区之间的冶金学界面称为P-N结。
双极型及MOS型半导体器件是由一个或几个P-N结组 成的,P-N结是很多半导体器件的心脏,所以研究P-N结 的交、直流特性,是搞清器件机理的基础。
在内建电场作用下,载流子作漂移运动。显然,电子和 空穴的漂移运动方向与它们各自扩散运动的方向相反。
因此,内建电场起到阻碍电子和空穴继续扩散的作用。
.
上海电子信息职业技1术0 学院
半导体器件物理
第二章 P-N结
.
上海电子信息职业技术11 学院
半导体器件物理 2.2 平衡P-N结
第二章 P-N结
随着扩散运动的进行,空间电荷逐渐增多,空间电荷 区逐渐扩展;同时,内建电场逐渐增强,载流子的漂移运 动逐渐加强,在没有外加电压的情况下,载流子的扩散和 漂移最终达到动态平衡,即从N区向P区扩散过去多少电 子,同时就有同样多的电子在内建电场作用下返回N区。 因而电子的扩散电流和漂移电流的大小相等,方向相反, 从而相互抵消。对于空穴,情况完全相似。因此没有净电 流流过P-N结,即净电流为零。
制作方法
第二章 P-N结
合金法
把一小粒铝放在一块N型单晶硅片上,加热到一 定温度,形成铝硅的熔融体,然后降低温度,熔融体 开始凝固,在N型硅片上形成一含有高浓度铝的P型 硅薄层,它和N型硅衬底的交界面即为P-N结(称之 为铝硅合金结)。

半导体物理第二章ppt课件

半导体物理第二章ppt课件

引进有效质量,半导体中的电子所受的外力与
加速的关系和牛顿第二定律类似。
3、引进有效质量的意义:

a= f
m
* n
可以看出有效质量概括了半导体内
部势场的作用,使得在解决半导体中电子在
外力作用下的运动规律时,可以不涉及半导
体内部势场的作用。
课堂练习:习题3(P58)
2.6.3 状态密度、态密度有效质量、电导有效质量
近出现了一些空的量子状态,在外电场的作用下, 停留在价带中的电子也能够起导电的作用,把价带 中这种导电作用等效于把这些空的量子状态看做带 正电荷的准粒子的导电作用,常称这些空的量子状 态为空穴
2.3.2 金属、半导体、绝缘体的能带
2.4 半导体的带隙结构
间接能隙结构—即价带的最高 点与导带的最低点处于K空间 的不同点
3、 测不准关系
当微观粒子处于某一状态时,它的力学量(坐 标、动量、能量等)一般不具有确定的数值。
如: p g xh 同 一 粒 子 不 可 能 同 时 确 定 其 坐 标 和 动 量
测不准原理告诉我们,对微观粒子运动状态分 析,需用统计的方法。
4、 波函数
波函数 r ,t 描述量子力学的状态
= hk m
h2k 2 E
2m
对于波矢为k的运动状态,自由电子的能量E和动
量P,速度v均有确定的数值,因此,波矢量 k可
用以描述自由电子的运动状态,不同的k值标致
自由电子的不同状态。
6、 单原子电子
电子的运动服从量子力学,处于一系列特定的 运动状态---量子态,要完全描述原子中的一个电 子的运动状态,需要四个量子数。
氧的电子组态表示的意思:第一主轨道上有两个电子 ,这两个电子的亚轨道为s,(第一亚层);第二主轨 道有6个电子,其中有2个电子分布在s 亚(第一亚层) 轨道上,有4个电子分布在p亚轨道上(第二亚层)

张宝林-《半导体物理》[课件-总结]-文档资料

张宝林-《半导体物理》[课件-总结]-文档资料

莲藕批发供货合同模板甲方(供货方):__________地址:_____________________联系电话:_________________法定代表人:_______________身份证号码:______________乙方(采购方):__________地址:_____________________联系电话:_________________法定代表人:_______________身份证号码:______________根据《中华人民共和国合同法》及相关法律法规的规定,甲乙双方本着平等自愿、诚实信用的原则,就莲藕的批发供货事宜,经协商一致,签订本合同,以资共同遵守。

第一条产品信息1. 产品名称:莲藕。

2. 规格型号:______________________。

3. 质量标准:符合国家相关标准及行业规定。

4. 包装要求:应符合运输及储存要求,确保产品在运输过程中不受损害。

第二条供货数量及价格1. 供货数量:乙方每次采购的莲藕数量为______吨,具体数量以乙方订单为准。

2. 单价:每吨莲藕的价格为人民币______元(含税),价格随市场波动可进行调整,双方应提前协商确定。

3. 总价:根据实际供货数量乘以单价计算。

第三条交货时间及地点1. 交货时间:甲方应在乙方下达订单后______天内完成供货。

2. 交货地点:乙方指定的地点,具体地址以乙方订单为准。

第四条运输方式及费用1. 运输方式:______________________。

2. 运输费用:由______方承担。

第五条质量验收1. 乙方在收到货物后______小时内进行验收,如发现质量问题,应在______小时内书面通知甲方。

2. 甲方在接到乙方通知后应及时处理,如确属甲方责任,甲方应负责更换或退货。

第六条付款方式及期限1. 付款方式:乙方应在收到货物并验收合格后______天内支付货款。

2. 付款期限:乙方应在合同约定的付款期限内支付全部货款。

半导体物理学第二章-PPT

半导体物理学第二章-PPT
大家好
9
施主:掺入在半导体中的杂质原子,能够向半导体中提供导电的电子, 并成为带正电的离子。如Si中的P 和As
N型半导体
半导体的掺杂
施主能级
大家好
10
2.1.3 受主杂质 受主能级
在硅中掺入3价的硼B,硼原子有3个价电子,与周围四个硅原子形成共价鍵,缺少一个电子,必须从周围获得一个电子,成为负电中心B-。硼的能级距价带能级顶部很近,容易得到电子。负电中心B-不能移动;而价带顶的空穴易于被周围电子填充,形成空穴的移动,即“导电空穴”。这种能够接受电子的杂质称之为“受主杂质”,或P型杂质。受主杂质获得电子的过程称之为“受主电离”;受主束缚电子的能量状态称之为“受主能级EA”;受主能级比价带顶EV高“电离能EA” 。
大家好
11
受主:掺入在半导体中的杂质原子,能够向半导体中提供导电的空穴, 并成为带负电的离子。如Si中的B
P型半导体
半导体的掺杂
受主能级
大家好
12
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受主和施主杂质,它们在禁带中引入了能级;受主能级比价带顶高 ,施主能级比导带底低 ,均为浅能级,这两种杂质称为浅能级杂质。杂质处于两种状态:中性态和离化态。当处于离化态时,施主杂质向导带提供电子成为正电中心;受主杂质向价带提供空穴成为负电中心。
大家好
30
杂质在GaAs中的位置
替代Ⅲ族时,周围是四个Ⅴ族原子替代Ⅴ族时,周围是四个Ⅲ族原子
大家好
31
IV族元素碳、硅、锗等掺入III-V族化合物中,若取代III族元素起施主作用;若取代V族元素起受主作用。总效果是施主还是受主与掺杂条件有关。
例如,硅在砷化镓中引入一个浅的施主能级,即硅起施主作用,向导带提供电子。当硅杂质浓度达到一定程度后,导带电子浓度趋向饱和,杂质的有效浓度反而降低。

《半导体物理器》幻灯片

《半导体物理器》幻灯片
2、本课程的考核方式、答疑时间
半导体物理基础
1.1半导体中的电子状态
●半导体中电子的波函数和能量谱值 ●能带 ●有效质量 ●导带电子和价带空穴 ●Si/Ge/GaAs的能带结构 ●杂质和缺陷能级
请复习《半导体物理基础》相关知识点!
半导体物理基础
1.2载流子的统计分布
●导带电子浓度 nN Cex pEC K E T F (1-57)
《半导体物理器》幻灯片
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
半导体物理基础
概述
1、本课程的主要内容
研究由不同半导体材料组成半导体器件时,载流子的运动规律和电压-电 流等电学特性。
方法: 1)分析半导体器件时,应先将整个器件分为若干个区。 2)给出边界条件。 3)求解出各个区中的少子浓度分布、少子浓度梯度分布、电场分布、电势 分布、电流密度分布等,最终求得器件的各个端电流。
半导体物理基础
1.5载流子的输运
2.扩散运动和扩散电流
电子扩散电流密度 qDnn 空穴扩散电流密度qDpp
3.流密度
(1-129)
D ——扩散系数
在漂移和扩散同时存在的情况下,空穴和电子的流密度分别 为:
SpppD p p
S n nn D n n (1-133)
半导体物理基础
1.5载流子的输运
4. 电流密度 空穴和电子的电流密度分别为:
j p p q p q D p p j n n q n q D n n (1-135)
在一维情况下,空穴和电子的电流分别为:
IpqAppDpd dp x InqAnnDnd dn x (1-137)
式中A为电流垂直流过的面积

【精品】半导体物理(SEMICONDUCTOR PHYSICS )PPT课件

【精品】半导体物理(SEMICONDUCTOR PHYSICS )PPT课件

第二章 半导体的能带与杂质能级
2.1 半导体中电子共有化运动与能带 2.2 半导体中的电子的E(k)~k关系 有效质量和
k空间等能面 2.3 Si、Ge和GaAs的能带结构 2.4 本征半导体和杂质半导体
2.1 半导体中电子共有化运动与能带
一、孤立原子中的电子状态
1. 单电子原子
En
m0q4 8 ε02h2
1.1 半导体的晶体结构
一、晶体的基本知识
长期以来将固体分为:晶体和非晶体。 晶体的基本特点:
具有一定的外形和固定的熔点,组成晶体的原子(或 离子)在较大的范围内(至少是微米量级)是按一定的方式 有规则的排列而成——长程有序。(如Si,Ge,GaAs)
晶体又可分为:单晶和多晶。 单晶:指整个晶体主要由原子(或离子)的一种规则排列方式
对多电子原子,电子能量同样是不连续的。由主量子 数、角量子数、磁量子数、自旋量子数描述。
二、自由电子状态(一维)
一维恒定势场中的自由电子,遵守薛定谔方程
2 d 2ψ(x) Vψ(x) Eψ(x) 2m0 dx2
如果势场V=0,则此方程的解为
ψ(x) Aei2kx
代表一个沿方向传播的平面波,k具有量子数的作用。 其中Ψ(x)为自由电子的波函数,A为振幅,k为平面波 的波数,k=1/λ, λ为波长。规定k为矢量,称为波矢, 波矢k的方向为波面的法线方向。
• 虽然这两种点缺陷同时存在,但由于在Si、Ge中形成间隙 原子一般需要较大的能量,所以肖特基缺陷存在的可能性 远比弗仑克尔缺陷大,因此Si、Ge中主要的点缺陷是空位
(a) 弗仑克尔缺陷
(b) 肖特基缺陷
图1.11 点缺陷
• 化合物半导体GaAs中,如果成份偏离正常化学比,也会出 现间隙原子和空位。如果Ga成份偏多会造成Ga间隙原子和 As空位;As成份偏多会造成As间隙原子和Ga空位。

半导体器件物理教案课件

半导体器件物理教案课件

半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。

半导体器件物理_2孟庆巨 ppt课件

半导体器件物理_2孟庆巨  ppt课件

单晶
有周期性
非晶
无周期性
PPT课件
多晶
每个小区域有周期性
6
3、晶体的结构
1)晶体和晶格:由于构成晶体的粒子的不同性质,使 得其空间的周期性排列也不相同;为了研究晶体的结 构,将构成晶体的粒子抽象为一个点,这样得到的空 间点阵成为晶格。
2)晶体结构与原子结合的形式有关
晶体结合的基本形式:共价结合、离子结合、金属结 合、范德瓦耳斯结合
半导体的基本特性
温度效应-----负温度系数 掺杂效应-----杂质敏感性 光电效应-----光电导 电场、磁场效应
4 PPT课件
常见的半导体材料
5 PPT课件
2、固体的结构
固体从其结构来讲有规则和不规则,如玻璃的结 构则是不规则的,而硅单晶的结构是规则的:
– 按照构成固体的粒子在空间的排列情况,可以将固体分为:
当导体处于热力学温度0K时,导体中没有自 由电子。当温度升高或受到光的照射时,价电 子能量增高,有的价电子可以挣脱原子核的束 缚,而参与导电,成为自由电子。
这一现象称为本征激发,也称热激发。
自由电子产生的同时,在其原来的共价键中 就出现了一个空位,原子的电中性被破坏,呈现 出正电性,其正电量与电子的负电量相等,人们 常称呈现正电性的这个空位为空穴。
• 绝缘体的带隙很大
24 PPT课件
三、半导体中的载流子
半导体中的载流子:能够导电的自由粒子
• 电子:带负电的导电载流子,是价电子脱离原子束 缚后形成的自由电子,对应于导带中占据的电子。
• 空穴:带正电的导电载流子,是价电子脱离原子束 缚后形成的电子空位,对应于价带中的电子空位。
25 PPT课件
(1)电子空穴对
硅原子有:

《半导体物理学》课件

《半导体物理学》课件
重要性
半导体物理学是现代电子科技和信息 科技的基础,对微电子、光电子、电 力电子等领域的发展具有至关重要的 作用。
半导体物理学的发展历程
19世纪末期
半导体概念的形成,科学家开始认识到 某些物质具有导电性介于金属和绝缘体
之间。
20世纪中叶
晶体管的商业化应用,集成电路的发 明,推动了电子科技和信息科技的发
半导体中的热电效应
总结词
解释热电效应的原理及其在半导体中的应用。
详细描述
当半导体受到温度梯度作用时,会在两端产生电压差 ,这一现象被称为热电效应。热电效应的原理在于不 同温度下,半导体内部载流子的分布不同,导致出现 电势差。热电效应在温差发电等领域有应用价值,可 以通过优化半导体的材料和结构来提高热电转换效率 。
分析器件在长时间使用或恶劣环 境下的性能退化,以提高其可靠 性。
THANKS
THANK YOU FOR YOUR WATCHING
06
半导体材料与工艺
半导体材料的分类和特性
元素半导体
如硅、锗等,具有稳定的化学性质和良好的半导 体特性。
化合物半导体
如砷化镓、磷化铟等,具有较高的电子迁移率和 光学性能。
宽禁带半导体
如金刚石、氮化镓等,具有高热导率和禁带宽度 大等特点。
半导体材料的制备和加工
气相沉积
通过化学气相沉积或物理气相沉积方法制备 薄膜。
05
半导体器件的工作原理
二极管的工作原理
总结词
二极管是半导体器件中最简单的一种 ,其工作原理基于PN结的单向导电性 。
详细描述
二极管由一个P型半导体和一个N型半 导体结合而成,在交界处形成PN结。 当正向电压施加时,电子从N区流向P 区,空穴从P区流向N区,形成电流; 当反向电压施加时,电流极小或无电流 。

半导体器件物理课件-pn结2

半导体器件物理课件-pn结2

内建电势差:由于内建电场,空间电荷区两侧存在电势差, 这个电势差叫做内建电势差(用 y 0 表示)。
势垒区:N区电子进入P区需要克服势垒,P区空穴进入N区
也需要克服势垒。于是空间电荷区又叫做势垒区。
PN结
PN结
2.1热平衡PN结
4.空间电荷区内建电势差(N型一边和P型一边中性区之间的电位差)
方法一:(中性区电中性条件)
PN结
引言
3.采用硅平面工艺制备PN结的主要工艺过程
光刻胶
N Si
N+
SiO 2
N Si
N+
N+
(a)抛光处理后的型硅晶片
紫外光
(b)采用干法或湿法氧化 工艺的晶片氧化层制作
(c)光刻胶层匀胶及坚膜
掩模板
光刻胶
光刻胶 SiO2
SiO2
N Si N+
SiO 2
N Si
N
+
n Si
N+
2
x pN d
0 x xn
0
xn x Na N d
P侧Poisson方程:
d 2y qN a 2 dx k 0
xp x 0
- Na
a ( )

x
b ( )
空间电荷的电中性: Na xp Nd xn 空间电荷层宽度: W x p xn 对于单边突变结:
y
m
x
y0
c ( )
Na Nd
xn x p
0
W xp xn xn
单边突变结电荷分布、电场分布、电势分布
PN结
2.1热平衡PN结
qN d d 2y 对N侧Poisson方程 做一次积分: 2 dx k 0 qN dy d ( x xn ) dx k 0 dy 0 x xn , 边界条件: dx x dy 应用 得: m 1 dx xn qN x m d n k 0

半导体物理分章答案第二章

半导体物理分章答案第二章
EC 0.04eV
ED
③Au一:Au0 + e →Au一
EC 0.04eV
ED
Eg
EV
EA 0.15eV
Eg EV
④Au二:Au一 + e →Au二
0.20eV EA2 EA1 0.15eV EC Eg EV
⑤Au三:Au二 + e →Au三
EA3 EA2 EA1 0.15eV EC Eg EV
0.04eV
例如:GaAs中掺Si(IV族)
Si
Si
Ga As
施主
受主
§2.3 缺陷能级
Imperfection Level
1、点缺陷
常见点缺陷
• 空位
• 间隙原子 • 反结构缺陷
哈尔滨工业大学微电子科学与技术系
(1)Si中的点缺陷
以空位、间隙和复合体为主。 • A、空位 V0 + e → V-(受主) V0 - e → V+(施主)
• NA>ND时:p 型半导体 因EA在ED之下,ED上的束缚电子首先填充EA上的空 位,即施主与受主先相互“抵消”,剩余的束缚空穴再电 离到价带上。
有效受主浓度: NA*=NA-ND
• NA≌ND时:杂质高度补偿
高度补偿:若施主杂质浓度与受主杂质尝试相差不大或二 者相等,则不能提供电子或空穴,这种情况称 为杂质的高度补偿。 本征激发的导带电子
m* q 4 p
(4)
(mn*和mp*分别为电导有效质量) 估算结果与实际测量值有 误差,但数量级相同。 这种估算有优点,也有缺 点。 • Ge:△ED~0.0064eV • Si: △ED~0.025eV
6、杂质补偿
半导体中同时存在施主杂质和受主杂质时,受主杂质 会接受施主杂质的电子,导致两者提供载流子的能力相互 抵消,这种作用称为杂质补偿。 在制造半导体器件的过程中,通过采用杂质补偿的方 法来改变半导体某个区域的导电类型或电阻率。

半导体物理学PPT课件

半导体物理学PPT课件
EA EV
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受 主和施主杂质,它们在禁带中引入了能 级;受主能级比价带顶高 EA,施主能级 比导带底低 ED,均为浅能级,这两种 杂质称为浅能级杂质。
杂质处于两种状态:中性态和离化态。 当处于离化态时,施主杂质向导带提供 电子成为正电中心;受主杂质向价带提 供空穴成为负电中心。
解:(a)
r 1 (1 24
3a)
3a 8
(b)
8 4r3
3 a3

3
16
0.34
间隙式杂质、替位式杂质
杂质原子位于晶格原子间的间隙位置, 该杂质称为间隙式杂质。
间隙式杂质原子一般比较小,如Si、Ge、 GaAs材料中的离子锂(0.068nm)。
杂质原子取代晶格原子而位于晶格点处, 该杂质称为替位式杂质。
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性 五.非平衡载流子 六.pn结 七.金属和半导体的接触 八.半导体表面与MIS结构
半导体的纯度和结构
纯度
极高,杂质<1013cm-3
结构
晶体结构
单胞
对于任何给定的晶体,可以用来形成其晶体结构的 最小单元
半导体中净杂质浓度称为有效杂质 浓度(有效施主浓度;有效受主浓 度)
杂质的高度补偿( NA ND )

肖特基缺陷
只存在空位而无间隙原子 间隙原子和空位这两种点缺陷受温度影响较
大,为热缺陷,它们不断产生和复合,直至 达到动态平衡,总是同时存在的。 空位表现为受主作用;间隙原子表现为施主 作用
E(0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有效施主浓度: ND*=ND-NA
整理ppt
21
• NA>ND时:p 型半导体
因EA在ED之下,ED上的束缚电子首先填充EA上的空 位,即施主与受主先相互“抵消”,剩余的束缚空穴再电
离到价带上。
有效受主浓度:
NA*=NA-ND
整理ppt
22
• NA≌ND时:杂质高度补偿
高度补偿:若施主杂质浓度与受主杂质尝试相差不大或二 者相等,则不能提供电子或空穴,这种情况称 为杂质的高度补偿。 本征激发的导带电子
导带电子
整理ppt
电离施主
5
在Si单晶中,V族施主替位杂质的两种荷电状态的价键
(a) 电离态
(b) 中性施主态
整理ppt
6
(2)施主电离
• 施主能级
施主未电离时,在饱和共价键外还有一个电子被施 主杂质所束缚,该束缚态所对应的能级称为施主能级。
•掺入施主的半导体以电子导电为主,被称为n 型半导体
特征:
(4)杂质能级
杂质引起的电子能级称为杂质能级。通常位于 禁带之中的杂质能级对半导体性能有显著影响。
杂质 能级
EC Eg
EV
整理ppt
4
2、施主能级
(1)施主杂质
杂质电离后能够施放电子而产生自由电子并形成正电 中心(正离子)。这种杂质称为施主杂质。 以硅为例:在硅单晶中掺入磷(P)等V族元素。
硅原 子
• 掺入受主杂质的半导体以空穴导电为主被称为p 型半导体
特征:
EC
①受主杂质电离,价带中出现
受主提供的导电空穴;
②空穴浓度大于电子浓度,
即p>n。
EV
整理ppt
12
• 受主电离能
△EA = EA - EV EC
受主
能级
Eg
△EA = EA - EV
EA EV
• Si、Ge中Ⅲ族杂质的电离能
杂质
硼B 铝Al 镓Ga 铟In
802r2h2
m*p m0
E0
2 r
(4)
(mn*和mp*分别为电导有效质量)
估算结果与实际测量值有 误差,但数量级相同。
• Ge:△ED~0.0064eV
这种估算有优点,也有缺
• Si: △ED~0.025eV
点。
整理ppt
19
6、杂质补偿
半导体中同时存在施主杂质和受主杂质时,受主杂质 会接受施主杂质的电子,导致两者提供载流子的能力相互 抵消,这种作用称为杂质补偿。
沈整阳理pp工t 业大学电子科学与技术系 2
1、杂质与杂质能级
(1)杂质
半导体中存在的与本体元素不同的其它元素。 (2)杂质来源
• 无意掺入
• 有意掺入 (3)杂质在半导体中的分布状况
• 替位式杂质 • 间隙式杂质
杂质出现在 半导体中时,产 生的附加势场使 严格的周期性势 场遭到破坏。
整理ppt
3
整理ppt
(2)
17
(2)用类氢原子模型估算浅能级杂质的电离能 浅能级杂质 = 杂质离子 + 束缚电子(或空穴)
整理ppt
18
正、负电荷所处介质的介电常数为: 0r
电势能:
U(r)
q2
4 0r r
施主电离能:
ED8m 02n *qr24h2
mn *E0
m0
2 r
(3)
受主电离能:
EA
m*pq4
(1)氢原子 2 m 0 24q 2 0 r](r )E n (r )
(1 )
解得电子能量:
En
m0q4
802h2n2
n = 1, 2, 3, ……
氢原子基态能量:
E1
m0q4
8 02h2
氢原子自由态能量:
E 0
故基态电子的电离能:
E0EE18m 0 02 qh42
在制造半导体器件的过程中,通过采用杂质补偿的方 法来改变半导体某个区域的导电类型或电阻率。
高度补偿: 若施主杂质浓度与受主杂质浓度相差很小或二 者相等,
则不能提供电子或空穴,此时半导体 的导电能力与本征半 导体相当,这种情况称为杂质的高度补偿。
整理ppt
20
• ND>NA时:n 型半导体
因EA在ED之下,ED上的束缚电子首先填充EA上的空 位,即施主与受主先相互“抵消”,剩余的束缚电子再电 离到导带上。
①施主杂质电离,导带中出现
EC
施主提供的导电电子;
②电子浓度大于空穴浓度,
即n>p。
EV
整理ppt
7
• 施主电离能
• Si、Ge中V族杂质的电离能
△ED = EC - ED
△ED = EC - ED
EC ED
施主
Eg
能级
EV
杂质
磷P 砷As 锑Sb
晶 硅 Si
0.044 0.049 0.039
体 锗 Ge
晶 硅 Si 0.045 0.057 0.065 0.160
体 锗 Ge 0.01 0.01 0.011 0.011
整理ppt
13
• 受主电离过程示意图
受主杂质电离的结果: 价带中的空穴数增加了, 这就是掺受主杂质的意 义所在。
整理ppt
14
4、浅能级杂质
(1)浅能级杂质的特点
一般是替位式杂质 施主电离能△ED远小于禁带宽度△Eg,通常为V 族元素。 受主电离能△EA远小于禁带宽度△Eg。通常为III 族元素。
§2. 半导体中杂质和缺陷能级
• 杂质、缺陷破坏了晶体原有的周期性势场, 引入新的能级。通常在禁带中分布的能级就是 这样产生的。 • 禁带中的能级对半导体的性能有显著影响, 影响的程度由能级的密度和位置决定。
沈整阳理pp工t 业大学电子科学与技术系 1
§2.1 硅、锗晶体中的杂质能级
学习重点:
• 浅能级杂质、深能级杂质 • 杂质补偿
整理ppt
15
(2)浅能级杂质的作用 • 改变半导体的电阻率; • 决定半导体的导电类型。
(3)控制杂质浓度的方法 • 在单晶生长过程中掺入杂质 • 在高温下通过杂质扩散的工艺掺入杂质 • 离子注入杂质 • 在薄膜外延工艺过程中掺入杂质 • 用合金工艺将杂质掺入半导体中
整理ppt
16
5、浅能级杂质电离能的简单计算
以硅为例:在硅单晶中掺入硼(B)等III族元素。
硅原 子
电离受主
整理ppt
价带空穴
10
在Si单晶中,III族受主替位杂质的两种荷电状态的价键
(a) 电离态
(b) 中性受主态
整理ppt
11
(2)受主电离 • 受主能级
受主杂质电离后所接受的电子被束缚在原来的空状 态上,该束缚态所对应的能级称为受主能级。
0.0126 0.0127 0.0096
整理ppt
8
• 施主电离过程示意图
施主杂质电离的结果:
导带中的电子数增加了, 这就是掺施主杂质的意义 所在。
整理ppt
9
3、受主能级
(1)受主杂质
束缚在杂质能级上的空穴被激发到价带EV,成为价带 空穴,该杂质电离后成为负电中心(负离子)。这种杂质 称为受主杂质。或定义为:能够向半导体提供空穴并形成 负电中心的杂质。
相关文档
最新文档