最新整理组合数学课后答案word版本
(完整word版)组合数学课后答案
习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。
证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
假设至少有两人谁都不认识,则认识的人数为0的至少有两人。
任取11个整数,求证其中至少有两个数的差是10的整数倍。
证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。
现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。
证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。
证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。
由鸽巢原理知,至少有2个坐标的情况相同。
又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。
因为奇数+奇数= 偶数;偶数+偶数=偶数。
因此只需找以上2个情况相同的点。
而已证明:存在至少2个坐标的情况相同。
证明成立。
一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。
一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。
那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。
证明:在任意选取的n+2个正整数中存在两个正整数,其差或和能被2n整除。
(书上例题2.1.3)证明:对于任意一个整数,它除以2n的余数显然只有2n种情况,即:0,1,2,…,2n-2,2n-1。
最新排列组合知识点总结+典型例题及答案解析资料
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。
(学习指导) 组合的综合应用Word版含解析
第2课时 组合的综合应用 学 习 目 标核 心 素 养 1.学会运用组合的概念,分析简单的实际问题.(重点) 2.能解决无限制条件的组合问题.(难点)通过组合解决实际问题,提升逻辑推理和数学运算的素养.组合数的两个性质45610(2)(C 98100+C 97100)÷A 3101. [思路点拨](1)利用组合数的公式及性质,逐一进行证明或计算.(2)中排列数公式和组合数公式的综合运用.[解] (1)C 34+C 35+C 36+…+C 310=C 44+C 34+C 35+…+C 310-C 44=C 45+C 35+C 36+…+C 310-1=…=C 411-1=329.(2)(C 98100+C 97100)÷A 3101=(C 2100+C 3100)÷A 3101=C 3101÷A 3101=16.组合数公式C =A m n A m m体现了组合数与相应排列数的关系,一般在计算具体的组合数时会用到.组合数公式C =n !(n -m )!m !的主要作用有: (1)计算m ,n 较大时的组合数;(2)对含有字母的组合数的式子进行变形和证明.,特别地,当m >n 2时计算C ,用性质C =C 转化,减少计算量.[跟进训练]1.解方程C 3n +618=C 4n -218.[解] 由原方程及组合数性质可知3n +6=4n -2或3n +6=18-(4n -2),解得n =8或n =2.而当n =8时,3n +6=30>18,不符合组合数的定义,故舍去.因此n=2.有限制条件的组合问题各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.[解](1)至少有一名队长含有两种情况:有一名队长和两名队长,故共有C12·C411+C22·C311=825种.或采用排除法有C513-C511=825种.(2)至多有两名女生含有三种情况:有两名女生、只有一名女生、没有女生,故共有C25·C38+C15·C48+C58=966种.(3)分两种情况:第一类:女队长当选,有C412种;第二类:女队长不当选,有C14·C37+C24·C27+C34·C17+C44种.故共有C412+C14·C37+C24·C27+C34·C17+C44=790种.在本例条件下,至多有1名队长被选上的方法有多少种?[解]分两类情况:第一类:没有队长被选上,从除去两名队长之外的11名学生中选取5人有C511=462种选法.第二类:一名队长被选上,分女队长被选上和男队长被选上,不同的选法有:C411+C411=660种选法.所以至多有1名队长被选上的方法有462+660=1 122种.1.特殊元素:若要选取的元素中有特殊元素,则要以有无特殊元素,特殊元素的多少作为分类依据.2.含有“至多”“至少”等限制语句:要分清限制语句中所包含的情况,可以此作为分类依据,或采用间接法求解.3.分类讨论思想:解题的过程中要善于利用分类讨论思想,将复杂问题分类表达,逐类求解.[跟进训练]2.某地区发生了特别重大铁路交通事故,某医院从10名医疗专家中抽调6名奔赴事故现场抢救伤员,其中这10名医疗专家中有4名是外科专家.问:(1)抽调的6名专家中恰有2名是外科专家的抽调方法有多少种?(2)至少有2名外科专家的抽调方法有多少种?(3)至多有2名外科专家的抽调方法有多少种?[解](1)分步:首先从4名外科专家中任选2名,有C24种选法,再从除外科专家的6人中选取4人,有C46种选法,所以共有C24·C46=90种抽调方法.(2)“至少”的含义是不低于,有两种解答方法,法一:(直接法):按选取的外科专家的人数分类:①选2名外科专家,共有C24·C46种选法;②选3名外科专家,共有C34·C36种选法;③选4名外科专家,共有C44·C26种选法;根据分类加法计数原理,共有C24·C46+C34·C36+C44·C26=185种抽调方法.法二:(间接法):不考虑是否有外科专家,共有C610种选法,考虑选取1名外科专家参加,有C14·C56种选法;没有外科专家参加,有C66种选法,所以共有:C610-C14·C56-C66=185种抽调方法.(3)“至多2名”包括“没有”、“有1名”、“有2名”三种情况,分类解答.①没有外科专家参加,有C66种选法;②有1名外科专家参加,有C14·C56种选法;③有2名外科专家参加,有C24·C46种选法.所以共有C66+C14·C56+C24·C46=115种抽调方法.分组(分配)问题1.把3个苹果平均分成三堆共有几种分法?为什么?[提示]共1种分法.因为三堆无差异.2.若把3个不同的苹果分给三个人,共有几种方法?[提示]共有A33=3×2×1=6种分法.【例3】6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人两本;(2)分为三份,每份两本;(3)分为三份,一份一本,一份两本,一份三本;(4)分给甲、乙、丙三人,一人一本,一人两本,一人三本;(5)分给甲、乙、丙三人,每人至少一本.[思路点拨](1)是平均分组问题,与顺序无关,相当于6本不同的书平均分给甲、乙、丙三人,可以理解为一个人一个人地来取,(2)是“均匀分组问题”,(3)是分组问题,分三步进行,(4)分组后再分配,(5)明确“至少一本”包括“2、2、2型”、“1、2、3型”、“1、1、4型”.[解](1)根据分步乘法计数原理得到:C26C24C22=90种.(2)分给甲、乙、丙三人,每人两本有C26C24C22种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x 种方法;第二步再将这三份分给甲、乙、丙三名同学有A 33种方法.根据分步乘法计数原理可得:C 26C 24C 22=x A 33,所以x =C 26C 24C 22A 33=15.因此分为三份,每份两本一共有15种方法. (3)这是“不均匀分组”问题,一共有C 16C 25C 33=60种方法.(4)在(3)的基础上再进行全排列,所以一共有C 16C 25C 33A 33=360种方法.(5)可以分为三类情况:①“2、2、2型”即(1)中的分配情况,有C 26C 24C 22=90种方法;②“1、2、3型”即(4)中的分配情况,有C 16C 25C 33A 33=360种方法;③“1、1、4型”,有C 46A 33=90种方法.所以一共有90+360+90=540种方法.分组问题属于“组合”问题,常见的分组问题有三种:(1)完全均匀分组,每组的元素个数均相等.(2)部分均匀分组,应注意不要重复,有n 组均匀,最后必须除以n !.(3)完全非均匀分组,这种分组不考虑重复现象.[跟进训练]3.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种(用数字作答).36[分两步完成:第一步,将4名大学生按2,1,1分成三组,其分法有C 24·C 12·C 11A 22种;第二步,将分好的三组分配到3个乡镇,其分法有A 33种.所以满足条件的分配方案有C 24·C 12·C 11A 22·A 33=36(种).] 1.恰当利用组合数的两个性质,可使问题简化.2.对于含有限制条件的组合问题,要合理分类、必要时可用间接法.3.对于分组问题应注意避免计数的重复或遗漏,对于分配问题解题的关键是要搞清楚事件是否与顺序有关.1.判断(正确的打“√”,错误的打“×”)(1)C 1m +C 2m =C 3m +1(m ≥2且m ∈N *).( )(2)从4名男生3名女生中任选2人,至少有1名女生的选法共有C 12C 16种.()(3)把4本书分成3堆,每堆至少一本共有C24种不同分法.()[答案](1)×(2)×(3)√2.某施工小组有男工7名,女工3名,现要选1名女工和2名男工去支援另一施工小组,不同的选法有()A.C310种B.A310种C.A13A27种D.C13C27种D[每个被选的人都无顺序差别,是组合问题.分两步完成:第一步,选女工,有C13种选法;第二步,选男工,有C27种选法.故共有C13C27种不同的选法.] 3.方程C x14=C2x-4的解为________.14,∴x=2x-4或x+2x-4=14,即x=4或x=6.] 4或6[由C x14=C2x-4144.高二(1)班共有35名同学,其中男生20名,女生15名,今从中选出3名同学参加活动.(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内,不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?[解](1)从余下的34名学生中选取2名,有C234=561(种).∴不同的取法有561种.(2)从34名可选学生中选取3名,有C334种.或者C335-C234=C334=5 984种.∴不同的取法有5 984种.(3)从20名男生中选取1名,从15名女生中选取2名,有C120C215=2 100种.∴不同的取法有2 100种.(4)选取2名女生有C120C215种,选取3名女生有C315种,共有选取方式N=C120C215+C315=2 100+455=2 555种.∴不同的取法有2 555种.(5)选取3名的总数有C335,因此选取方式共有N=C335-C315=6 545-455=6 090种.∴不同的取法有6 090种.。
高中数学(苏教版 选修2-3)文档第1章 1.3 第1课时 组合 组合数公式 Word版含答案
组合第课时组合组合数公式.理解组合的意义.(重点).掌握组合数的计算公式及其推导过程,并会用组合数公式求值.(重点、难点)[基础·初探]教材整理组合与组合数的概念阅读教材,完成下列问题..组合一般地,从个不同元素中取出(≤)个元素并成一组,叫做从个不同元素中取出个元素的一个组合..组合数从个不同元素中取出(≤)个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数,用符号表示.判断(正确的打“√”,错误的打“×”)()两个组合相同的充要条件是其中的元素完全相同.( )()从,,三个不同元素中任取两个元素组成一个组合,所有组合的个数为.( )()从甲、乙、丙名同学中选出名去参加某两个乡镇的社会调查,有多少种不同的选法是组合问题.( )()从甲、乙、丙名同学中选出名,有种不同的选法.( )()现有枚年抗战胜利周年纪念币送给人中的人留念,有多少种送法是排列问题.( )【解析】()√因为只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.()√由组合数的定义可知正确.()×因为选出名同学还要分到不同的两个乡镇,这是排列问题.()√因为从甲、乙、丙人中选两名有:甲乙,甲丙,乙丙,共个组合,即有种不同选法.()×因为将枚纪念币送与人并无顺序,故该问题是组合问题.【答案】()√()√()×()√()×教材整理组合数公式及性质阅读教材~,完成下列问题..组合数公式:===..组合数的性质:()=;()=+..甲、乙、丙三地之间有直达的火车,相互之间的距离均不相等,则车票票价的种数是种.【解析】甲、乙、丙三地之间的距离不等,故票价不同,同距离两地票价相同,故该问题为组合问题,不同票价的种数为==.【答案】.=,=.【解析】==,==.【答案】.方程=的解为. 【导学号:】【解析】由题意知(\\(=-,-≤,≤))或(\\(=-(-(,-≤,≤,))解得=或.【答案】或.从这四个数中任取两个相乘,可以得到不相等的积的个数为个.【解析】从四个数中任取两个数的取法为=.【答案】。
组合数学课后习题答案
第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 49→50 ) 2.(a) 5!8!(b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)!(c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 2⨯5⨯P(8,2)+3⨯4⨯P(8,2)6. (n+1)!-17. 用数学归纳法易证。
8. 41⨯319. 设 n=p 1n 1p 2n 2…p kn k , 则n 2的除数个数为 ( 2p 1+1) (2p 2+1) …(2p k+1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。
11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。
组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。
12.考虑,)1(,)1(101-=-=+=+=∑∑n nk k k n nnk kknx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk kn n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。
当第二组最大数为a k 时,第二组共有2k-1种不同的可能,第一组有2n-k -1种不同的可能。
故符合要求的不同分组共有12)2()12(21111+-=-----=∑n k n k n k n 种。
组合数学第四版答案
组合数学第四版答案【篇一:组合数学参考答案(卢开澄第四版)60页】>1.1 题从{1,2,……50}中找两个数{a,b},使其满足(1)|a-b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。
当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。
所以这样的序列有90对。
(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。
当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。
当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。
1.3题 m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。
解:(a) 可以考虑插空的方法。
n个女生先排成一排,形成n+1个空。
因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。
则男生不相邻的排列个数为ppnn?n?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。
组合数学课后习题答案
组合数学课后习题答案问题1求解以下组合数:(a)C(5, 2)(b)C(7, 3)(c)C(10, 5)解答:(a)C(5, 2) 表示从5个不同元素中选取2个的组合数。
根据组合数的定义,我们可以使用公式 C(n, k) = n! / (k! * (n-k)!) 来计算组合数。
计算 C(5, 2): C(5, 2) = 5! / (2! * (5-2)!) = 5! / (2! * 3!) = (5 * 4 * 3!) / (2! * 3!) = (5 * 4) / 2 = 10所以 C(5, 2) = 10。
(b)C(7, 3) 表示从7个不同元素中选取3个的组合数。
计算 C(7, 3): C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = (7 * 6 * 5 * 4!) / (3! * 4!) = (7 * 6 * 5) / 3 = 35 * 2 = 70所以 C(7, 3) = 70。
(c)C(10, 5) 表示从10个不同元素中选取5个的组合数。
计算 C(10, 5): C(10, 5) = 10! / (5! * (10-5)!) = 10! / (5! * 5!) = (10 * 9 * 8 * 7 * 6 * 5!) / (5! * 5!) = (10 * 9 * 8 * 7 * 6) / (5 * 4 * 3 * 2 * 1) = 252所以 C(10, 5) = 252。
问题2在一个集合 {a, b, c, d, e} 中,求解以下问题:(a)有多少种不同的3个元素的子集?(b)有多少种不同的4个元素的子集?(c)有多少种不同的空集合?(a)在一个集合 {a, b, c, d, e} 中选取3个元素的子集。
子集的元素个数为3,所以我们需要从5个元素中选取3个。
利用组合数的公式 C(n, k) = n! / (k! * (n-k)!),我们可以计算组合数。
最新组合数学习题答案(1-4章全)
第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。
满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。
满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。
1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。
(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。
将女生插入,有5!种方案。
故按乘法原理,有:7!×58C ×5!=33868800(种)方案。
(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。
组合数学第一章课后习题部分答案
n
1.6
i i ! 1.1! 1.1! n n! 1.1!
i 1
= 2.1! 2.2! 1.1! = 3.2! 3.2! 1.1! =(n+1)!-1 1.8 (10 , 20 ) = (2 5 ,2 5 ) = 2 5 (包括 1) 公因数共有 41·31=1271 个。 1.14 2!*3! =12 1.15 488895 1.16
C
k 2 n 1
按照以上字典序法、递增进位制数、递减进位制数法和邻位对换法四种算法,分别求出 83674521 之后第 1013 个排列。 中介数 7244221 7442221 1222447 1012120 1012 中介数 122021 122021 3005 3005 新中介数 7411320 7604320 1230454 1020125 新排序 85237614 87543126 47683215 32741865
已知 6 个球里有 3 个白球,那么最后一个球是白球的概率为 1/2
2 2 C2 60 −6C 10 −10C 6
1.24 (1)
2
= 675
60 个点中任取 2 点,除去 2 点共线的情况,对应一条矩形的对角线(正方形也是一类 特殊的矩形) ,除以 2 是因为矩形有两条对角线 (2)
2 2 2 3 2 2 C2 +C3 +C4 +C5 + 5C6 = 115
同理,也是求符合正方形约束的对角线条数 1 1 2 1.25 (1) 1 + C5 C10 + C10 = 96 3 3 (2) C15 − C5 = 445 1.26 2*200*800+200*200=360000 1.27 (1) 5! * 6! =86400 (2) 5! * 6! =86400 (3) 6*5*8! = 1209600 1.33 先将 r 个球放入 n 个盒子里,每个盒子里放 k 个球,然后将余下的(r-kn)个球放入 n 个
高中数学(人教A版)选择性必修三课后习题:组合、组合数(课后习题)【含答案及解析】
第六章计数原理6.2 排列与组合6.2.3 组合 6.2.4 组合数课后篇巩固提升必备知识基础练1.某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建“村村通”工程,共需建公路的条数为( )A.4B.8C.28D.64“村村通”公路的修建是组合问题,故共需要建C 82=28(条)公路.2.某中学从4名男生和3名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( ) A.140种 B .120种 C .35种 D .34种1男3女有C 41C 33=4(种);若选2男2女有C 42C 32=18(种);若选3男1女有C 43C 31=12(种).所以共有4+18+12=34(种)不同的选法.故选D .3.已知C n+17−C n 7=C n 8,则n 等于( )A.14B.12C.13D.15,得C n+17=C n+18,故7+8=n+1,解得n=14.4.某校有6名志愿者,在放假的第一天去北京世园会的中国馆服务,任务是组织游客参加“祝福祖国征集留言”“欢乐世园共绘展板”“传递祝福发放彩绳”三项活动,其中1人负责“征集留言”,2人负责“共绘展板”,3人负责“发放彩绳”,则不同的分配方案共有( ) A.30种 B.60种 C.120种 D.180种6人中选1人负责“征集留言”,从剩下的人中选2人负责“共绘展板”,最后剩下的3人负责“发放彩绳”,则不同的分配方案共有C 61C 52C 33=60(种).故选B.5.安排A,B,C,D,E,F 共6名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A 不安排照顾老人甲,义工B 不安排照顾老人乙,则安排方法共有( ) A.30种 B.40种 C.42种 D.48种名义工照顾三位老人,每两位义工照顾一位老人共有C 62C 42=90(种)安排方法,其中A 照顾老人甲的情况有C 51C 42=30(种), B 照顾老人乙的情况有C 51C 42=30(种),A 照顾老人甲,同时B 照顾老人乙的情况有C 41C 31=12(种).故符合题意的安排方法有90-30-30+12=42(种). 故选C.6.若已知集合P={1,2,3,4,5,6},则集合P 的子集中含有3个元素的子集数为 .,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C 63=20(个)子集.7.不等式C n 2-n<5的解集为 .C n 2-n<5,得n (n -1)2-n<5,∴n 2-3n-10<0.解得-2<n<5.由题设条件知n ≥2,且n ∈N *,∴n=2,3,4.故原不等式的解集为{2,3,4}.8.若对任意的x ∈A ,则1x ∈A ,就称A 是“具有伙伴关系”的集合.集合M=-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为 .-1;1;12,2;13,3,共4组.所以集合M 的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组.又因为集合中的元素是无序的,所以所求集合的个数为C 41+C 42+C 43+C 44=15.9.如图,某区有7条南北向街道,5条东西向街道.(1)图中有多少个矩形?(2)从A 点走向B 点最短的走法有多少种?在7条南北向街道中任选2条,5条南北向街道中任选2条,这样4条线可组成一个矩形,故可组成矩形有C 72·C 52=210(个).(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A 到B 最短的走法包括10段,其中6段方向相同,另4段方向也相同,每种走法,即从10段中选出6段,这6段是走东西方向的(剩下4段即走南北方向的),共有C 106=C 104=210(种)走法.关键能力提升练10.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( ) A.72种B.84种C.120种D.168种3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯形成的10个空中,所以关灯方案共有C103=120(种).11.(2021江苏江宁校级期中)计算组合数C129得到的值为()A.1 320B.66C.220D.240=220.,C129=C123=12×11×103×2×112.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.36所得空间直角坐标系中的点的坐标中不含1的有C21·A33=12(个);②所得空间直角坐标系中的点的坐标中含有1个1的有C21·A33+A33=18(个);③所得空间直角坐标系中的点的坐标中含有2个1的有C31=3(个).故共有符合条件的点的个数为12+18+3=33(个).故选A.13.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种,一周内两天连排的方法一共有6种:(1,2),(2,3),(3,4),(4,5),(5,6),(6,7).甲任选一种为C61,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A52种,按照分步乘法计数原理可知共有不同的安排方法C61·A52=120(种),故选C.14.(多选)有13名医生,其中女医生6人,现从中抽调5名医生组成医疗小组前往湖北疫区,若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为N,则下列等式能成为N的算式是()A.C135−C71C64B.C72C63+C73C62+C74C61+C75C.C135−C71C64−C65D.C72C113名医生,其中女医生6人,男医生7人.(方法一直接法)2男3女C72C63;3男2女C73C62;4男1女C74C61;5男C75,所以N=C72C63+C73C62+C74C61+C75.(方法二间接法)13名医生,任取5人,减去4、5名女医生的情况,即N=C135−C71C64−C65.故选BC.15.某同学有同样的画册2本、同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有种.,就所剩余的1本进行分类:第1类,剩余的是1本画册,此时满足题意的赠送方法有4种;第2类,剩余的是1本集邮册,此时满足题意的赠送方法有C 42=6(种).因此,满足题意的赠送方法共有4+6=10(种).16.C 88+C 98+C 108+C 118= .88+C 98+C 108+C 118=C 129=C 123=220.17.4个不同的小球放入编号为1,2,3,4的4个盒子中,则恰好有1个空盒子的放法有 种.,必有1个盒子内放入2个小球,从4个小球中取出2个小球,有C 42种取法,此时把它看作1个小球,与另2个小球共3个小球放入4个盒子中,有A 43种放法,所以满足题意的放法有C 42·A 43=144(种).18.(2021湖南模拟)甲、乙、丙、丁4名同学到A ,B ,C 三个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,且同学甲安排在A 小区,则共有 种不同的安排方案.:(1)A 小区安排2人(同学甲及另一名同学),则有C 31A 22=6(种)安排方案.(2)A 小区只安排同学甲1人,则有C 32A 22=6(种)安排方案,根据分类加法计数原理可得共有6+6=12(种)安排方案.19.(1)计算:C 85+C 10098C 77.(2)求证:C m+2n =C m n +2C m n -1+C m n -2.=C 83+C 1002×1=8×7×63×2×1+100×992×1=56+4 950=5 006.C n+1m =C n m +C n m -1可知,右边=(C m n +C m n -1)+(C m n -1+C m n -2)=C m+1n +C m+1n -1=C m+2n =左边.所以原等式成立.学科素养创新练20.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法? (1)甲得4本、乙得3本、丙得2本; (2)一人得4本、一人得3本、一人得2本; (3)甲、乙、丙各得3本.分三步完成:第1步,从9本不同的书中,任取4本分给甲,有C 94种方法; 第2步,从余下的5本书中,任取3本给乙,有C 53种方法; 第3步,把剩下的书给丙,有C 22种方法,所以甲得4本、乙得3本、丙得2本,共有C 94C 53C 22=1 260(种)不同的分法.(2)分两步完成:第1步,按4本、3本、2本分成三组有C 94C 53C 22种方法;第2步,将分成的三组书分给甲、乙、丙三个人,有A 33种方法,所以一人得4本、一人得3本、一人得2本,共有C 94C 53C 22A 33=7 560(种)不同的分法.(3)用与(1)相同的方法即可求解,可得甲、乙、丙各得3本,共有C 93C 63C 33=1 680(种)不同的分法.21.按照下列要求,分别求有多少种不同的方法? (1)5个不同的小球放入3个不同的盒子;(2)5个不同的小球放入3个不同的盒子,每个盒子至少一个小球; (3)5个相同的小球放入3个不同的盒子,每个盒子至少一个小球; (4)5个不同的小球放入3个不同的盒子,恰有1个空盒.个不同的小球放入3个不同的盒子,每个小球都有3种可能,利用分步乘法计数原理可得不同的方法有35=243(种).(2)5个不同的小球放入3个不同的盒子,每个盒子至少一个小球,先把5个小球分组,分法有2,2,1和3,1,1两种,再放入3个不同的盒子,故不同的方法共有C 52C 32C 11A 22+C 53A 33=150(种).(3)5个相同的小球放入3个不同的盒子,每个盒子至少一个小球,类似于在5个小球间的空隙中,放入2个隔板,把小球分为3组,故不同的方法共有C 42=6(种).(4)5个不同的小球放入3个不同的盒子,恰有一个空盒,先把5个小球分2组,分法有3,2,0和4,1,0两种,再放入3个不同的盒子,故不同的方法共有(C 53C 22+C 54)A 33=90(种).。
《组合数学》姜建国著(第二版)-课后习题答案完全版
n ai i1, 2,
证明: (1)可表示性。 令 M {(am 1 , am 2 , , a2 , a1 ) | 0 ai i, i 1, 2, , m 1} ,显然 M m ! ,
N {0,1, 2, , m ! 1} ,显然 N m ! ,
第 2页(共 92页)
组合数学(第二版)
但这样计算无疑是有重复的,例如恰好选 6 人坐前排,其余 8 人全 坐后排,那么上式中的 C (8, 4) P 8, 4 就有重复。 4.一位学者要在一周内安排 50 个小时的工作时间,而且每天至少工作 5 小时, 问共有多少种安排方案? 解:用 xi 表示第 i 天的工作时间, i 1, 2, , 7 ,则问题转化为求不定方程
P (8,5) P (8, 4) P (7,5) 28 449 792 000 (种)
(2)因前排至少需坐 6 人,最多坐 8 人,后排也是如此。 可分成三种情况分别讨论: ① 前排恰好坐 6 人,入座方式有 C (14, 6) P (8, 6) P (8,8) ; ② 前排恰好坐 7 人,入座方式有 C (14, 7) P (8, 7) P (8, 7) ; ③ 前排恰好坐 8 人,入座方式有 C (14,8) P (8,8) P (8, 6) ; 各类入座方式互相不同,由加法法则,总的入座方式总数为:
第 3页(共 92页)
组合数学(第二版)
3 1 根据乘法法则,这种选取方案有: C87 C5 种; C2
(3)7 个前锋从 B 中选取,从 A 中选取 2 名后卫,C 中 2 名当后卫, 根据乘法法则,这种选取方案有: C87 C52 种; (4)从 B 中选 6 个前锋,从 C 中选 1 个前锋,从 A 中选 4 个后卫,
组合数学答案
现有100件产品,其中有两件是次品. 如果从中任意抽出5件,抽出的产品中至多有一件次品的概率是多少
解:无次品:;
有一件次品:
因此,概率为(+)/
有七种小球,每个小球内有1~7个星星.一次活动中,主办方随机发放礼品盒,每个盒里放两个这样的小球,那么共有多少种这样的礼品盒
解:7个夫人先坐:7!/7
第一个丈夫不坐在他夫人旁边,则有5个地方可以坐;
第二个丈夫由于可以坐在第一个丈夫旁边,故有6个地方可以坐;
……………………
第7个丈夫有11分地方可以坐.
因此:5*6*7*8*9*10*11*7!/7=1197504000.
设S = {n1·a1, n2·a2,…,nk·ak},其中n1 = 1,n2 + n3 +…+ nk = n,证明S的圆排列的个数等于:
证明:r元子集共个,于是共有个最小数.下面我们求出这些最小数之和.
如果r元子集中的最小数为k,那么除k外的r-1个数只能从{k+1,k+2,…,n}中取,有种取法,即以k为最小数的r子集有个,因此这些最小数之和为.于是平均数为.
由和有
上面两式相减得:
因此=.
用二项式定理展开(4x - 3y)8.
--------------------------------------------------------------------------------
第一章 排列组合
在小于2000的数中,有多少个正整数含有数字2
解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10;
千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10;
组合数学第二章课后习题答案
对其3次积分得
=
对此积分式3次求导得
H=((( )))’’’
求解完毕
2.11题(顿绍坤)
a =(n+1) ,G= =1+4x+…(n+1) x +…,证明(1-3x+3x -x )G是一个多项式,并求母函数G。
解: G= = =
G = + + ①
G =xG+ +
G(1-x)=
x -2x-1=0解得:r =1+ r =1-
P(x)= +
A+B=0
-A(1- )-B(1+ )=1
得:A= , B=-
P(x)= ( - )=
P = [(1+ ) -(1- ) ]
P =0, P =1
2.15题(高亮)
解:
特征多项式K(x)= x -x+1
x -x+1=0解得:r = + i=cos +isin =e ,
求母函数的题要化简吗?
2.1题(陈兴)
求序列{ 0,1,8,27, }的母函数。
解:
由序列可得到
因为
设
设
由以上推理可知 =
所以可通过求得 得到序列的母函数:
2.2题(陈兴)
已知序列 ,求母函数
解:
=
因为
所以
所以 就是所求序列的母函数。
2.3题(陈兴)
已知母函数 ,求序列{ }。
解:
=
由 得
所以由两式相加得:对应序列{ }={11,39, }
所以G-1-x= (a a + a a ) x + (a a + a a + a a ) x +…
(完整word版)组合数学习题解答
第一章:1。
2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。
解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P (5,4)=120。
1.4。
10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式? 解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。
如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式.而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。
故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!— 2*9!.1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式? 解:这是一组圆排列问题,10个人围圆就坐共有10!10 种方式。
两人坐在一起的方式数为9!92⨯,故两人不坐在一起的方式数为:9!—2*8!。
1。
14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数? 解:(1)在1到9999中考虑,不是4位数的整数前面补足0, 例如235写成0235,则问题就变为求: x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有F (4,5)=⎪⎪⎭⎫⎝⎛-+=515456 (2)分为求:x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35 x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F(4,3)=20 x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10 x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4 x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1将它们相加即得,F (4,4)+F(4,3)+F (4,2)+F (4,1)+F (4,0)=70。
(完整word版)组合数学第四版卢开澄标准答案-第四章
习题四4。
1。
若群G的元素a均可表示为某一元素x的幂,即a= x m,则称这个群为循环群.若群的元素交换律成立,即a , b G满足a b = b a则称这个群为阿贝尔(Abel)群,试证明所有的循环群都是阿贝尔群。
[证].设循环群(G,)的生成元是x0ÎG。
于是,对任何元素a ,b G,m,nÎN,使得a= x0m , b= x0n,从而a b = x0m x0n= x0m +n (指数律)= x0n +m (数的加法交换律)= x0n x0m(指数律)= b a故运算满足交换律;即(G, )是交换群.4.2。
若x是群G的一个元素,存在一个最小的正整数m,使x m=e,则称m为x的阶,试证:C={e,x,x2, ,x m—1}是G的一个子群。
[证].(1)非空性C :因为eÎG;(2)包含性C G:因为xÎG,根据群G的封闭性,可知x2, ,x m—1,(x m=)eÎG,故C G;(3)封闭性 a , b C a b C: a , b C,k,lÎN (0k〈m,0l〈m),使a = x k,b = x l,从而a b = x k x l = x(k+l)mod m C(因为0 (k+l) mod m〈m) ;(4)有逆元 a C a —1C: a C,kÎN (0k<m),使a = x k, 从而a -1= x m—k C(因为0 m-k < m)。
综合(1) (2)(3) (4),可知(C, )是(G, )的一个子群.4.3。
若G是阶为n的有限群,则G的所有元素的阶都不超过n。
[证]。
对任一元素xÎG,设其阶为m,并令C={e,x,x2,,x m-1},则由习题4.2.可知(C, )是(G, )的一个子群,故具有包含性C G。
因此有m = |C|£|G|= n所以群G的所有元素的阶都不超过n。
组合数学讲义及课后答案 1章 排列组合
8 1 6 3 5 7 4 9 2
2 7 6 9 5 1 4 3 8
图1.1.1 3 阶幻方 奇数阶幻方的生成方法: 奇数阶幻方最经典的填法是罗伯法。填写的方法是: 把 1(或最小的数)放在第一行正中; 按以下规律排列剩下的
1/69Leabharlann 《组合数学》第一章
组合数学基础
(n× n-1)个数 (1)每一个数放在前一个数的右上一格; (2)如果这个数所要放的格已经超出了顶行那么就把它放在底 行,仍然要放在右一列; (3)如果这个数所要放的格已经超出了最右列那么就把它放在 最左列,仍然要放在上一行; (4)如果这个数所要放的格已经超出了顶行且超出了最右列, 那么就把它放在前一个数的下一行同一列的格内; (5)如果这个数所要放的格已经有数填入,那么就把它放在前 一个数的下一行同一列的格内。
算法分类: 第一类:数值算法。主要解决数值计算问题,如方程求根、
3/69
《组合数学》
第一章
组合数学基础
解方程组、求积分等,其数学基础是高等数学与线性代数。 第二类:组合算法,解决搜索、排序、组合优化等问题, 其数学基础就是组合数学。 按所研究问题的类型,组合数学所研究的内容可划分为: 组合计数理论 组合设计 组合矩阵论 组合优化 本课程重点:以组合计数理论为主,部分涉及其它内容。 (三) 研究方法
A(0,0) 图1.1.3 最短路径
(2)对应为(元素可重复的)排列问题:一条从 A 到 B 的 路线对应一个由 7 个 x,5 个 y 共 12 个元素构成的排列。 蓝色路径 <——> xyyxxyyxxxxy 反之,给定一个排列,按照 x、y 的含义,必对应一条从 A 到 B 的行走路线。例如,排列
一坐上行正中央,依次斜填切莫忘, 上边出格往下填,右边出格往左填, 右上有数往下填,右上出格往下填。 例:将 2,4,6,8,10,12,14,16,18 填入下列幻方:
2019-2020学年高二数学人教A版选修2-3文档:第1章 1.2.2 第2课时 组合的综合应用 Word版含答案
第2课时组合的综合应用1.学会运用组合的概念,分析简单的实际问题.(重点)2.能解决无限制条件的组合问题.(难点)[基础·初探]教材整理组合的实际应用阅读教材P23例6~P25,完成下列问题.1.组合与排列的异同点共同点:排列与组合都是从n个不同元素中取出m(m≤n)个元素.不同点:排列与元素的顺序有关,组合与元素的顺序无关.2.应用组合知识解决实际问题的四个步骤(1)判断:判断实际问题是否是组合问题.(2)方法:选择利用直接法还是间接法解题.(3)计算:利用组合数公式结合两个计数原理计算.(4)结论:根据计算结果写出方案个数.1.若5名代表分4张同样的参观券,每人最多分一张,且全部分完,那么分法一共有()A.A45种B.45种C.54种D.C45种【解析】由于4张同样的参观券分给5名代表,每人最多分一张,从5名代表中选4人满足分配要求,故有C45种.【答案】 D2.若7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种.(用数字作答)【解析】第一步,安排周六有C37种方法,第二步,安排周日有C34种方法,所以不同的安排方案共有C37C34=140种.【答案】1403.从0,1, 2,π2,3,2这六个数字中,任取两个数字作为直线y=x tanα+b的倾斜角和截距,可组成______条平行于x轴的直线.【解析】要使得直线与x轴平行,则倾斜角为0,截距在0以外的五个数字均可.故有C15=5条满足条件.【答案】 54.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有________种.【导学号:29472024】【解析】每个宿舍至少2名学生,故甲宿舍安排的人数可以为2人,3人,4人,5人,甲宿舍安排好后,乙宿舍随之确定,所以有C27+C37+C47+C57=112种分配方案.【答案】112[小组合作型]无限制条件的组合问题在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必需参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加.【精彩点拨】本题属于组合问题中的最基本的问题,可根据题意分别对不同问题中的“含”与“不含”作出正确分析和判断,弄清每步从哪里选,选出多少等问题.【自主解答】(1)从中任取5人是组合问题,共有C512=792种不同的选法.(2)甲、乙、丙三人必需参加,则只需要从另外9人中选2人,是组合问题,共有C29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.解答简单的组合问题的思考方法1.弄清要做的这件事是什么事.2.选出的元素是否与顺序有关,也就是看看是不是组合问题.3.结合两个计数原理,利用组合数公式求出结果.[再练一题]1.现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)选出2名男教师或2名女教师去外地学习的选法有多少种?【解】(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C210=10×92×1=45.(2)可把问题分两类:第1类,选出的2名是男教师有C26种方法;第2类,选出的2 名是女教师有C24种方法,即C26+C24=21(种).有限制条件的组合问题高二(1)班共有35名同学,其中男生20名,女生15名,今从中选出3名同学参加活动.(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内,不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【精彩点拨】可从整体上分析,进行合理分类,弄清关键词“恰有”“至少”“至多”等字眼.使用两个计数原理解决.【自主解答】(1)从余下的34名学生中选取2名,有C234=561(种).∴不同的取法有561种.(2)从34名可选学生中选取3名,有C34种.或者C35-C234=C34=5 984种.∴不同的取法有5 984种.(3)从20名男生中选取1名,从15名女生中选取2名,有C120C215=2 100种.∴不同的取法有2 100种.(4)选取2名女生有C120C215种,选取3名女生有C315种,共有选取方式N=C120C215+C315=2 100+455=2 555种.∴不同的取法有2 555种.(5)选取3名的总数有C35,因此选取方式共有N=C35-C315=6 545-455=6 090种.∴不同的取法有6 090种.常见的限制条件及解题方法1.特殊元素:若要选取的元素中有特殊元素,则要以有无特殊元素,特殊元素的多少作为分类依据.2.含有“至多”“至少”等限制语句:要分清限制语句中所包含的情况,可以此作为分类依据,或采用间接法求解.3.分类讨论思想:解题的过程中要善于利用分类讨论思想,将复杂问题分类表达,逐类求解.[再练一题]2.现有5名男司机,4名女司机,需选派5人运货到某市.(1)如果派3名男司机、2名女司机,共有多少种不同的选派方法?(2)至少有两名男司机,共有多少种不同的选派方法?【解】(1)从5名男司机中选派3名,有C35种方法,从4名女司机中选派2名,有C24种方法,根据分步乘法计数原理得所选派的方法总数为C35C24=C25C24=5×42×1·4×32×1=60种.(2)从9人中任选5人运货有C59种方法.其中1名男司机,4名女司机有C15C4=5种选法.所以至少有两名男司机的选派方法为C59-5=121种.组合在几何中的应用平面内有12个点,其中有4个点共线,此外再无任何3点共线.以这些点为顶点,可构成多少个不同的三角形?【精彩点拨】解答本题可以从共线的4个点中选取2个、1个、0个作为分类标准,也可以从反面考虑,任意三点的取法种数减去共线三点的取法种数.【自主解答】法一:以从共线的4个点中取点的多少作为分类标准.第1类:共线的4个点中有2个点为三角形的顶点,共有C24C18=48个不同的三角形;第2类:共线的4个点中有1个点为三角形的顶点,共有C14C28=112个不同的三角形;第3类:共线的4个点中没有点为三角形的顶点,共有C38=56个不同的三角形.由分类加法计数原理知,不同的三角形共有48+112+56=216(个).法二(间接法):从12个点中任意取3个点,有C312=220种取法,而在共线的4个点中任意取3个均不能构成三角形,即不能构成三角形的情况有C34=4种.故这12个点能构成三角形的个数为C312-C34=216个.1.解决几何图形中的组合问题,首先应注意运用处理组合问题的常规方法分析解决问题,其次要注意从不同类型的几何问题中抽象出组合问题,寻找一个组合的模型加以处理.2.图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用排除法.[再练一题]3.四面体的一个顶点为A,从其他顶点和各棱中点中取3个点,使它们与点A在同一平面上,有多少种不同的取法?【导学号:29472025】【解】如图所示,含顶点A的四面体的3个面上,除点A外每个面都有5个点,从中取出3点必与点A共面,共有3C35种取法,含顶点A的三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法.根据分类加法计数原理,不同的取法有3C35+3=33种.[探究共研型]排列、组合的综合应用探究1从集合{1,2,3,4}中任取两个不同元素相乘,有多少个不同的结果?完成的“这件事”指的是什么?【提示】共有C24=4×32=6(个)不同结果.完成的“这件事”是指从集合{1,2,3,4}中任取两个不同元素并相乘.探究2从集合{1,2,3,4}中任取两个不同元素相除,有多少不同结果?这是排列问题,还是组合问题?完成的“这件事”指的是什么?【提示】共有A24-2=10(个)不同结果;这个问题属于排列问题;完成的“这件事”是指从集合{1,2,3,4}中任取两个不同元素并相除.探究3完成“从集合{0,1,2,3,4}中任取三个不同元素组成一个是偶数的三位数”这件事需先分类,还是先分步?有多少个不同的结果?【提示】由于0不能排在百位,而个位必须是偶数.0是否排在个位影响百位与十位的排法,所以完成这件事需按0是否在个位分类进行.第一类:0在个位,则百位与十位共A24种排法;第二类:0不在个位且不在百位,则需先从2,4中任选一个排个位再从剩下非零数字中取一个排百位,最后从剩余数字中任取一个排十位,共C12C13C13=18(种)不同的结果,由分类加法计数原理,完成“这件事”共有A24+C12C13C13=30(种)不同的结果.有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文课代表;(3)某男生必须包括在内,但不担任数学课代表;(4)某女生一定要担任语文课代表,某男生必须担任课代表,但不担任数学课代表.【精彩点拨】(1)按选中女生的人数多少分类选取.(2)采用先选后排的方法.(3)先安排该男生,再选出其他人担任四科课代表.(4)先安排语文课代表的女生,再安排“某男生”课代表,最后选其他人担任余下三科的课代表.【自主解答】(1)先选后排,先选可以是2女3男,也可以是1女4男,共有C35C23+C45 C13种,后排有A5种,共(C35C23+C45C13)·A5=5 400种.(2)除去该女生后,先选后排,有C47·A4=840种.(3)先选后排,但先安排该男生,有C47·C14·A4=3 360种.(4)先从除去该男生、该女生的6人中选3人有C36种,再安排该男生有C13种,其余3人全排有A3种,共C36·C13·A3=360种.解决排列、组合综合问题要遵循两个原则1.按事情发生的过程进行分步.2.按元素的性质进行分类.解决时通常从以下三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.[再练一题]4.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为( ) A.360 B.520C.600 D.720【解析】分两类:第一类,甲、乙中只有一人参加,则有C12C35A4=2×10×24=480种选法.第二类,甲、乙都参加时,则有C25(A4-A2A3)=10×(24-12)=120种选法.所以共有480+120=600种选法.【答案】 C1.某研究性学习小组有4名男生和4名女生,一次问卷调查活动需要挑选3名同学参加,其中至少一名女生,则不同的选法种数为( )A.120 B.84C.52 D.48【解析】间接法:C38-C34=52种.【答案】 C2.编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有( )A.60种B.20种C.10种D.8种【解析】四盏熄灭的灯产生的5个空档中放入三盏亮灯,即C35=10.【答案】 C3.从一组学生中选出4名学生当代表的选法种数为A,从这组学生中选出2人担任正、副组长的选法种数为B,若BA=213,则这组学生共有________人.【解析】设有学生n人,则A2nC4n=213,解之得n=15.【答案】154.在直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有________个.【解析】在垂直于x轴的6条直线中任取2条,在垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225个.【答案】2255.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.【解】(1)一名女生,四名男生,故共有C15C48=350种选法.(2)将两队长作为一类,其他11人作为一类,故共有C2C311=165种选法.(3)至少有一名队长当选含有两类:有一名队长当选和两名队长都当选.故共有C12C411+C2C311=825种选法.或采用间接法:C513-C511=825种.(4)至多有两名女生含有三类:有两名女生,只有一名女生,没有女生.故共有C25C38+C15C48+C58=966种选法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业习题答案习题二2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。
证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
2.3证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。
证明:方法一:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。
由鸽巢原理知,至少有2个坐标的情况相同。
又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。
因为奇数+奇数= 偶数;偶数+偶数=偶数。
因此只需找以上2个情况相同的点。
而已证明:存在至少2个坐标的情况相同。
证明成立。
方法二:对于平面上的任意整数坐标的点而言,其坐标值对2取模后的可能取值只有4种情况,即:(0,0) ,(0,1) ,(1,0), (1,1),根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的,那么这两点的连线中点也必为整数。
2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。
2.9将一个矩形分成(m+1)行112mm+⎛⎫+⎪⎝⎭列的网格每个格子涂1种颜色,有m种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。
证明:(1)对每一列而言,有(m+1)行,m种颜色,有鸽巢原理,则必有两个单元格颜色相同。
(2)每列中两个单元格的不同位置组合有12m+⎛⎫⎪⎝⎭种,这样一列中两个同色单元格的位置组合共有12mm+⎛⎫⎪⎝⎭种情况(3)现在有112m m +⎛⎫+⎪⎝⎭列,根据鸽巢原理,必有两列相同。
证明结论成立。
2.11证明:从S={1,3,5,…,599}这300个奇数中任意选取101个数,在所选出的数中一定存在2个数,它们之间最多差4。
证明:将S 划分为{1,3,5},{7,9,11}……,{ 595,597,599}共100组,由鸽巢原理知任意选取101个数中必存在2个数来自同一组,即其差最多为4.2.12证明:从1~200中任意选取70个数,总有两个数的差是4,5或9。
设从1~200中任意选取的70个数构成一组,即 第一组: 1270,,,a a a K ;第二组: 12704,4,,4a a a +++K ; 第三组:12709,9,,9a a a +++K ;显然,这三组数均在1~209之间,且共有3*70=210个数,根据鸽巢原理一定有两个数相等,又因为任取的这70个数均不相同,所以这2个相等的数一定来自不同组,根据不同组的分布讨论如下:1) 如果这两个数分别来自第一组和第二组,则有4j i a a =+; 2) 如果这两个数分别来自第一组和第三组,则有9j i a a =+; 3) 如果这两个数分别来自第二组和第三组,则有5j i a a =+;得证。
习题三3.8 确定多重集{3,4,5}M a b c =⋅⋅⋅的11-排列数?11!11!11!277203!4!4!3!3!5!2!4!5!++=3.9 求方程123420x x x x +++=,满足12342,0,5,1x x x x ≥≥≥≥-的整数解的个数。
14416803+-⎛⎫= ⎪⎝⎭3.10 架上有20卷百科全书,从中选出4卷使得任意两本的卷号都不相邻的选法有多少种?解:n=20,r=4,1204117238044n r r -+-+⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.17 一局乒乓球比赛中,运动员甲以11:7战胜运动员乙,若在比赛过程中甲从来没有落后过,求有多少种可能的比分记录?解:根据题意,相当于求从点(0,0)到点(11,7)且从下方不穿过y=x 的非降路径数,即为:11711171(117)!(1171)-13260 10 12(111)!7!+-+-⎛⎫⎛⎫+-+== ⎪ ⎪+⎝⎭⎝⎭3.21 1)会议室中有2n +1个座位,现摆成3排,要求任意两排的座位都占大多数,求有多少种摆法? 解:(1)方法1:如果没有附加限制则相当于把2n+1个相同的小球放到3个不同的盒子里,有213123 3-1 2n n ++-+⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭种方案,而不符合题意的摆法是有一排至少有n+1个座位。
这相当于将n+1个座位先放到3排中的某一排,再将剩下的2n+1-(n+1)=n 个座位任意分到3排中,这样的摆法共有21(1)31233 2 2n n n +-++-+⎛⎫⎛⎫⨯=⨯ ⎪ ⎪⎝⎭⎝⎭种方案,所以符合题意的摆法有:23213 2 2 2n n n +++⎛⎫⎛⎫⎛⎫-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭方法2:设第一排座位有x 1个,第二排座位有x 2个,第三排座位有x 3个。
x 1+x 2+x 3=2n+1,且x 1+x 2≥(2n+1)/2,x 1+x 3≥(2n+1)/2,x 2+x 3≥(2n+1)/2,即x 1+x 2≥n+1,x 1+x 3≥n+1,x 2+x 3≥n+1,令y 1= x 1+x 2-n-1,y 2= x 1+x 3-n-1,y 3= x 2+x 3-n-1,可知y 1+y 2+y 3=2(2n+1)-3(n+1)=n-1且y i ≥0,1≤i ≤3。
显然,x 方程满足要求的解与y 方程非负整数解一一对应,有1311312n n -+-+⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭种。
方法3:要求每行非空如果没有附加限制则相当于把2n+1个相同的小球放到3个不同的盒子里,不允许为空,有2112 3-12n n +-⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭种方案,而不符合题意的摆法是有一排至少有n+1个座位。
这相当于将n 个座位先放到3排中的某一排,再将剩下的2n+1-n=n+1个座位任意分到3排中,每排不允许为空,这样的摆法共有21133 22n n n +--⎛⎫⎛⎫⨯=⨯ ⎪ ⎪⎝⎭⎝⎭种方案,所以符合题意的摆法有:21322 2n n n +⎛⎫⎛⎫⎛⎫-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)会议室中有2n 个座位,现摆成3排,要求任意两排的座位都占大多数,求有多少种摆法?解:(2)方法1:如果没有附加限制则相当于把2n 个相同的小球放到3个不同的盒子里,有23122 2 2n n +-+⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭种方案,而不符合题意的摆法是有一排至少有n 个座位。
这相当于将n 个座位先放到3排中的某一排,再将剩下的2n-n=n 个座位任意分到3排中,这样的摆法共有231233 2 2n n n -+-+⎛⎫⎛⎫⨯=⨯⎪ ⎪⎝⎭⎝⎭种方案。
需要注意的是,三排中如果任意两排都是n 个座位共有3种情况,这3种情况在23 2n +⎛⎫⨯ ⎪⎝⎭中被重复计算了2次,因此需要将重复减去的3次加上。
所以符合题意的摆法有:222133 2 2 2n n n ++-⎛⎫⎛⎫⎛⎫-⨯+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭方法2:设第一排座位有x 1个,第二排座位有x 2个,第三排座位有x 3个。
x 1+x 2+x 3=2n ,且x 1+x 2≥n +1,x 1+x 3≥n +1,x 2+x 3≥n +1,令y 1=x 1+x 2-n-1,y 2=x 1+x 3-n-1,y 3=x 2+x 3-n-1,可知y 1+y 2+y 3=2(2n)-3n-3=n-3且y i ≥0,1≤i ≤3。
显然,x 方程满足要求的解与y 方程非负整数解一一对应,有3311312n n -+--⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭种。
方法3:要求每行非空如果没有附加限制则相当于把2n 个相同的小球放到3个不同的盒子里,不允许为空,有21212 2n n --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭种方案,而不符合题意的摆法是有一排至少有n 个座位。
这相当于将n-1个座位先放到3排中的某一排,再将剩下的2n-(n-1)=n+1个座位任意分到3排中,每排不允许为空,这样的摆法共有2(1)13322n n n ---⎛⎫⎛⎫⨯=⨯ ⎪ ⎪⎝⎭⎝⎭种方案,所以符合题意的摆法有:2113 222n n n --⎛⎫⎛⎫⎛⎫-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.24 n (n ≥2)个不同的球分给甲、乙、丙3人,使得甲至少分得两个球,有多少种不同的分法? 解:123222nnnn n ii n n i --=⎛⎫--= ⎪⎝⎭∑ 3.25 24个相同的球分堆,使得每堆的球不少于5,有多少种不同的分堆方法?方法1:24524ii i k=⋅=∑55266224242243(1())(1())(1()())x x x x x x x ++++++++++L L L L 56241(1)(1)(1)x x x =---L 每堆去掉4个球,剩余球分堆的方法数51(244,)(20,1)(16,2)(12,3)(8,4)(4,5)18125026i B i i B B B B B =-=++++=++++=∑其中(12,3)(9,1)(9,2)(9,3)14(6,1)(6,2)(6,3)1413(3,1)(3,2)(3,3)141311112B B B B B B B B B B =++=++++=++++++=++++++=(8,4)(4,1)(4,2)(4,3)(4,4)12115B B B B B =+++=+++=习题四4.3 一项对于A,B,C 三个频道的收视调查表明,有20%的用户收看A ,16%的用户收看B ,14%的用户收看C ,8%的用户收看A 和B ,5%的用户收看A 和C ,4%的用户收看B 和C ,2%的用户都看。
求不收看A,B,C 任何频道的用户百分比?解:设性质P 1是收看A 频道的用户百分比;P 2是收看B 频道的用户百分比;P 3是收看C 频道的用户百分比;Ai={x|x ∈S ∧x 具有性质P i },i=1,2,3。
S 是受调查的所有用户的集合。
||1S =;123||20%,||16%,||14%A A A ===121323||8%,||5%,||4%A A A A A A ⋂=⋂=⋂= 123||2%A A A ⋂⋂=根据定理4.1.1,有123123121323123||||(||||||)(||||||)||1(20%16%14%)(8%5%4%)2%65%A A A S A A A A A A A A A A A A ⋂⋂=-+++⋂+⋂+⋂-⋂⋂=-+++++-=4.4 某杂志对100名大学新生的爱好进行调查,结果发现他们喜欢看球赛和电影、戏剧。