怎样找等量关系列方程
小学生如何寻找等量关系列方程
小学生如何寻找等量关系列方程等量关系是表示数量间的相等关系。
列方程解应用题时,思路的重点是找出等量关系,这样就比较容易列出方程了。
1、根据题目中的关键句找等量关系。
这种方法一般适用于和差关系、倍数关系的应用题,在题中常有这样的提示:“一共有”、“比……多(少)”、“是……的几倍”、“比……的几倍多(少)”等。
在解题时,可根据这些关键字词来找等量关系,按叙述的顺序列出方程。
◆例如:星期天,妈妈上街买了一些水果,妈妈买20个苹果,买苹果的个数是西瓜的3倍多1个,西瓜有多少个?这道题的关键句是:苹果的个数是西瓜的3倍多1个,从中可以找出等量关系:西瓜×3-1=苹果的个数。
设西瓜的个数为ⅹ,就可以列方程为:3X-1=20◆又如:小红在假日里折纸花71朵,是小军折叠的朵数的3倍还多2朵,小军折叠了多少朵?紧扣题中的关键句“是小军折的朵数的3倍还多2朵”,我们即可以来列出等量关系式:小军折叠的朵数×3+2=小红折叠的朵数。
设小军折叠的朵数为ⅹ,则有ⅹ×3+2=712、用公式、常见数量关系式作等量关系。
每份数×份数=总数结余=收入-支出已生产的量+还需生产量=生产总量单价×数量=总价工作效率×工作时间=工作总量或工作效率和×工作时间=工作总量速度×时间=路程或速度和×时间=路程等等◆例如:甲、乙两人加工520个零件,甲每小时加工5个,乙每小时加工8个,两人合做几小时完成?根据工程问题等量关系式:工作效率[和]×工作时间=工作总量设两人合做X小时完成,列方程:(5+8)X=520◆在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。
求梯形的高。
梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程:设梯形的高为X分米,(4+8)X÷2=303、根据生活的经验找出等量关系列方程◆例如:我有10块糖,吃了几块后,又买来4块,现在我有11块糖,我吃了几块?本题的等量关系:原来的糖数-吃的糖数+又买来的糖数=现在的糖数。
找等量关系式的四种方法
找等量关系式的四种方法在数学中,等量关系式是指具有相等关系的数学表达式,即两个或多个数学表达式之间的数值相等。
寻找等量关系式的四种方法如下:1.代换法:通过代换法可以求得等量关系式。
首先,我们将一个数或变量代入另一个数或变量的表达式中,然后求解出两者之间的数值关系。
这种方法常见于解方程问题,例如解一次方程、二次方程或其他高次方程。
例如,对于方程2x+3=11,我们可以通过代换法找到等量关系式。
首先,我们将x代入方程中,得到2*4+3=11,进而可以得到等量关系式2x+3=112.化简法:通过化简法可以找到等量关系式。
化简就是对一个数学表达式进行简化,将复杂的表达式转化为简单的形式。
通过将两个或多个数学表达式化简为同一形式,可以得到等量关系式。
例如,对于表达式2x+3x,我们可以进行化简得到5x。
因此,可以得到等量关系式2x+3x=5x。
3.分解法:通过分解法可以找到等量关系式。
分解就是将一个复杂的数学表达式分解为几个简单的数学表达式之和或乘积的形式。
通过将两个或多个数学表达式进行分解,可以得到等量关系式。
例如,对于表达式4x+5,我们可以将其分解为2x+2x+1+1+1,进而得到等量关系式4x+5=2x+2x+1+1+14.变换法:通过变换法可以找到等量关系式。
变换就是对一个数学表达式进行等式变形,得到等价但形式不同的数学表达式。
通过对数学表达式进行变换,可以得到等量关系式。
例如,对于表达式4x=2x+6,我们可以通过变换法得到等量关系式4x-2x=6总结起来,寻找等量关系式的方法有代换法、化简法、分解法和变换法。
每种方法都有其应用的场景,根据具体问题选择适应的方法可以更快有效地求得等量关系式。
找等量关系式的四种方法
找等量关系式的四种方法
等量关系式指的是具有相同数值的两个或多个数的关系。
以下是四种方法来找到等量关系式:
1.字母代换法:通过字母代换法,我们可以用一个字母或符号代替一个或多个未知数。
通过这种方式,我们可以将一个问题转化为一个或多个方程,从而找到等量关系式。
例如,假设一个数字与它本身加上12的和的两倍之差等于36,则可以设这个数字为x。
根据给定条件,我们可以列出等式2x-(x+12)=36、通过解这个方程,我们可以找到等量关系式x=24
2.图形法:图形法通过绘制图表或图形来找到等量关系式。
例如,如果给定一个线性方程y=2x+3,并要求找到使得y=7的x的值,我们可以绘制这个线性方程的图表。
通过在图表中找到y=7对应的x值,我们可以找到等量关系式x=2
3.实例法:实例法通过列举具体的实例来找到等量关系式。
例如,假设一辆汽车每小时以60公里的速度行驶,我们可以通过具体的实例来找到等量关系式。
如果汽车行驶了2小时,那么汽车行驶的总距离为60公里/小时×2小时=120公里。
通过这一实例,我们可以找到等量关系式总距离=60公里/小时×时间。
4.探究法:探究法通过不断的探究和推断来找到等量关系式。
例如,在解决几何问题时,我们可以根据已知条件和几何关系来推断出等量关系式。
通过不断地探究几何图形的特征和性质,我们可以找到等量关系式来解决问题。
需要注意的是,在寻找等量关系式时,我们还需要考虑问题的上下文和特定要求。
在确定等量关系式后,我们还需要进行验证和求解,以确保等量关系式的准确性和可行性。
列方程式解应用题时如何寻找等量关系
列方程式解应用题时如何寻找等量关系列方程解应用题是初中数学教学中的重点和难点,而列方程解应用题的关键是寻找等量关系。
如何寻找等量关系,下面列举几种方法:一.利用常见的基本数量关系式确定等量关系一些应用题,本身有很好的相等关系,如:行程问题:路程=速度某时间工程问题:工作量=工作效率某工作时间浓度配比问题:溶质重量=溶液重量某百分比浓度利息问题:利息=本金某利率销售问题:商品利润=商品售价-商品进价商品利润率=例1:(七年级教材上册84页第八题)一辆汽车已行驶了12000千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?分析:利用:路程=速度某时间,设某月后这辆汽车将行驶20800千米,则:12000+800某=20800评析:本题是行程问题,要求掌握基本关系式。
二.利用“三分法”确定等量关系“三分法”通常是指题目中有三个量,已知其中一个量,设定一个未知量(通常为题中所求未知数),然后用第三个量来寻找等量关系:例2:(七年级教材上册106页第四题)某中学学生自己动手整修操场,如果让七年级学生单独工作,需要7.5小时完成;如果让八年级学生单独工作,需要5小时完成。
如果让七、八年级学生一起工作一小时,再由八年级学生单独完成剩余部分,共需多少时间完成?分析:此题是工程问题。
题中共有三个量:工作时间、工作效率、工作总量。
若设共需要某小时完成(也可设八年级学生单独完成剩余部分需某小时),七年某100%等。
级、八年级学生的工作效率是已知的,则应以工作总量为等量关系,那么,列出的方程为:评析:此题解题方法适用于题中有三个量的问题:行程问题、工程问题、浓度配比问题、销售问题等。
对于不同问题中的三个量,一定要弄清已知量、未知量,然后根据题中数量关系列出方程。
三.利用题中的关键性语句确定等量关系有些问题,根据题中的关键性语句反应的数量关系就可以找出等量关系。
例3:(七年级教材下册98页第六题)顺风旅行社组织200人到花果岭和云水洞旅游,到花果岭的人数比到云水洞的人数的2倍少1,到两地旅游的人数各是多少?分析:题中关键性语句是“200人”、“到花果岭的人数比到云水洞的人数的2倍少1”。
列方程解决问题找等量关系常用的几种方法
列方程解决问题找等量关系常用的几种方法1、抓住题目中的关键句。
比如男生有63人,比女生人数的3倍还多3人。
女生有多少人?题目中的关键句是男生人数比女生人数的3倍多3人,抓住此关键句可以列出这样的等量关系式:女生人数×3+3=男生人数。
(当然还可以列出等量关系式:男生人数-女生人数×3=3等)。
2、运用常用的数量关系和计算公式。
如速度×时间=路程,底×高÷2=三角形的面积等等。
3、抓住不变量。
如正反比例解决问题中的比值或乘积一定。
又如四(1)男生人数是女生人数的5/6。
这学期转来1名女生,现在男生人数是女生的4/5。
四(1班)原来有多少名同学?这里男生人数是一个不变量,原来女生人数是男生的6/5,现在女生人数是男生的5/4。
现在女生人数-原来女生人数=1,也就是男生人数的5/4-男生人数的6/5=1,根据此等量关系就能列出方程,求出男生的人数,进而求出原来女生人数和原来全班人数。
4、根据题目叙述情节找等量关系。
如仓库上午运进货物123吨,下午又运进一批货物,现在仓库里一共有货物345吨。
下午运进货物多少吨?根据题目的叙述列出这样的等量关系式样:上午运进货物吨数+下午运进货物吨数=现又货物吨数。
5、画线段图找等量关系。
例如美术兴趣小组一共有男女生24人,其中女生人数是男生人数的2倍。
美术兴趣小组中男女生各有几人?先引导学生找出其中的1倍量(男生人数),再画出线段图(男生人数是1份,女生人数就是这样的2份,从图上可以看出:女生人数+女生人数×2=24。
据此可以列出方程。
再如,用分数解决实际问题,历来是学习的难点,学生不容易理解。
教师可以引导学生画出线段图,帮助学生理解,找准对应关系,进而列出等量关系式。
画线段图的关键仍是找准哪个量是单位“1”,其它量都是与单位“1”相比较而言的。
而理解单位“1”,重点要看清是哪个量的几分之几。
寻找等量关系的方法
在用方程解决实际问题时,找准等量关系是关键。
怎样找准等量关系呢?下面给同学们介绍如下方法:一、抓住题目中的关键词例1:食堂原有一批大米,吃了360千克,还剩130千克,食堂原有多少千克大米?分析:设食堂原有x 千克大米。
根据题目中的关键词“原有”“吃了”“还剩”可得等量关系:原有的大米千克数-吃了的大米千克数=还剩的大米千克数,由此可列出方程:x -360=130,x =490。
例2:小华有360元钱,比小红多60元,小红有多少元钱?分析:设小红有x 元钱。
根据题目中的关键句“小华有360元钱,比小红多60元”可得等量关系:小红的钱+60=小华的钱,由此可列出方程:x +60=360,x =300。
寻找等量系的方法◎刘小燕二、抓住相关的计算公式例3:已知一个三角形的底长12米,面积是54平方米,它的高是多少米?分析:设它的高是x米。
根据三角形的面积计算公式:三角形的面积=底×高÷2,列方程:12x÷2=54,x=9。
三、抓住四则运算的意义应用题中数量关系大多用和、差、倍等术语来表达。
在解题时可凭借这些术语,按事情发展的关系去找等量关系。
例4:一批粮食,先运走230吨,又运走63吨后,还剩127吨,这批粮食原来有多少吨?分析:设这批粮食原来有x吨。
题中的“还剩”就表示了运走两次后剩下的数量,根据事情发展的顺序可找到等量关系:原有的-先运走的-又运走的=剩下的,列方程为:x-230-63=127,x=420。
四、抓住常见的数量关系常见的数量关系有:单价×数量=总价;亩产量×亩数=总产量;工作效率×工作时间=工作总量等。
在掌握数量关系的基础上,根据题意找等量关系。
例5:每千克苹果12.5元,225元钱可以买多少千克苹果?分析:根据“单价×数量=总价”能很快找出等量关系。
设可以买x千克苹果,可列出方程:12.5x=225,x=18。
如何找等量关系列方程【优质】
如何找等量关系列方程★方程指的是“含有未知数的等式”。
☆列方程就是要根据题目的意思,设好相关的未知数之后,写出一个含有未知数的等式出来。
等量关系式定义: 数量之间的相等的关系式叫做等量关系式。
找等量关系式的原则: 一般来说,等量关系式能列成加法的,就不列成减法的,能列成乘法的就不列成除法的。
列方程:对应着等量关系式,把数量一个一个代进去列出方程,把未知数用“X”替代(一般情况可将问题设为未知数)。
则列方程解应用题的关键是——找出相等关系......,找出了相等的关系,方程也就可以列出来了.找等量关系常见方式有:一、抓住数学术语找等量关系一般和差关系或倍数关系,常用“一共有”、“比……多”、“比……少”、“是……的几倍”、“是……的几分之一”等术语表示.在解题时可抓住这些术语去找等量关系,按叙述顺序来列方程。
第一,找出题目中的键句;第二,按照关键句中,文字表述的顺序列出等量关系式。
例题:钢琴的黑键有36个,比白键少16个,白键有多少个?第一,找出关键句“比白键少16个”。
第二,按照关键句中文字描述的顺序“比白键少”,“少”就是“减”.等量关系式:白键的个数一16个=黑键的个数解:设白键有X个。
方程: X -16=36注意:少就用减,多就用加。
二、根据常见的数量关系找等量关系最常见的数量关系:1.速度×时间=路程(路程÷速度=时间路程÷时间=速度)2.单价×数量=总价(总价÷单价=数量总价÷数量=单价)★关于打折的问题:打几折=原价×百分之几十3.工作效率×工作时间=工作总量(工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率)4.增长后的量=原量(1+增长率) 降低后的量=原量(1-降低率)5.单价×数量=总价;6.速度×时间=路程;7.单产量×数量=总产量例题:王老师买笔记本一共付了78元,每本笔记本6.5元,王老师买了多少本笔记本?等量关系式:单价×数量=总价解:设老师买了X本笔记本。
初中方程找等量关系的口诀
初中方程找等量关系的口诀
1.抓住关键句,寻找等量关系:
●找到题目中的“等于”、“比…多”、“比…少”、“是…的几倍”、“一共”、
“相差”等关键词汇,这些往往暗示着等量关系的存在。
●例如:“小明和小红共收集了100个瓶子”,其中的“共”字就提示了等
量关系。
2.运用数量关系式建立等量关系:
●根据常见数学模型建立等式,如:工作总量=工作效率×工作时间、
路程=速度×时间、总价=单价×数量、总产量=单产量×面积等。
●如题目描述的是某个具体问题的情景时,可以利用这些公式来构建
等量关系。
3.根据图形或线段图找等量关系:
●对于几何问题,通过画出线段图、面积图等可视化工具,直观地展
示出各个部分之间的数量关系。
●比如在解梯形面积问题时,可以通过梯形面积公式(上底+下底)×
高÷2建立等量关系。
4.应用代数思想抽象化处理:
●把未知量用字母表示,并根据题意列出方程,通过运算求解。
●例如:“已知甲车速度为每小时38千米,两车相遇时,它们走过的
路程之和等于总路程237千米。
”可以设乙车速度为X,得到等量关
系式(38+X)×3=237。
总结起来就是:
•关键句里抓等式,
•数量关系建模快,
•几何图形显关系,
•未知字母列方程。
列方程找等量关系窍门
列方程找等量关系窍门常见的数量关系:工作效率×工作时间=工作总量;单价×数量=总价;速度×时间=路程,在解题时,可以根据这些数量关系去找等量关系.一、从关键句入手找等量关系。
关键句就是应用题充分反映数量关系的核心。
解题前~必须深入细致审题~从题中找到关键句~再把关键句用语言文字等式则表示出~从而列举方程~例如:某班存有女生38人~比男生的2倍多4人~男生存有多少人,把关键句“比男生人数的2倍多4人”替换成女生人数,男生人数×2,4或女生人数,4,男生人数×2~可分别得到方程2x+4=38~2x=38-4。
二、利用基本等量关系列方程学习列方程应用题之前~要熟记“速度×时间,路程~单价×数量,总价~工作效率×工作时间,工作量~总数量?总份数,平均数”等基本数量关系。
通过这些基本数量关系分析三者的关系而列出方程。
三、根据计算公式列方程:我们在几何初步知识的学习中掌握了一些计算公式~这些公式就是一种等量关系。
如:平行四边形面积、三角形面积、梯形面积、圆面积公式。
四、画线段图打听等量关系:一幅规范的线段图清晰直观地再现题目的数量关系~可以从中找出等量关系。
五、利用排序性质打听等量关系:在四则计算中~我们已经学习了运算定律性质~这些定律性质实质上体现了一种等量关系~根据它可以列出方程~如某数除以9商7余5~它除以10商6余几,根据“被除数,商×除数,余数”得方程:10×6+x=9×7+5六、根据几何图形特征找等量关系。
特定的几何形体都就是存有某些特征~根据这些特征能够寻得等量关系从而列举方程~例如:一个等腰三角形顶角存有40度~一个底角就是多少度,等腰三角形具有两底角相等的特征~从而得到等量关系:一个底角的度数×2,顶角的度数,度~可得方程:2x+40=。
七、从题目叙述的事理中找等量关系。
列方程解应用题找等量关系的方法
列方程解应用题找等量关系的方法一、引言列方程是数学中常用的一种解题方法,尤其在应用题中更是不可或缺。
本文将介绍如何通过找等量关系的方法列方程解应用题。
二、什么是等量关系等量关系指两个物体或者两个数量之间的比较,可以表示成一个等式。
例如,两个物品的价格比较,可以表示为P1/P2=K(K为常数),这就是一个等量关系。
三、找等量关系的方法在应用题中,我们需要根据题目给出的条件找到两个物体或者数量之间的等量关系。
具体方法如下:1. 读懂题目并确定未知量首先要仔细阅读题目,并确定未知量。
通常情况下,未知量会在问题中被明确指出。
2. 找到给定条件之间的联系然后要找到给定条件之间的联系,并将它们表示为一个等式。
这个过程需要根据具体情况灵活运用。
3. 根据问题要求列出方程最后根据问题要求列出方程,并解方程得到答案。
四、列方程解应用题举例下面通过一个实例来说明如何通过找等量关系的方法列方程解应用题。
例:甲乙两人分别从A、B两地同时出发,相向而行。
已知甲的速度是8km/h,乙的速度是6km/h。
当两人相遇后,甲还要行2小时才能到达B地。
求A、B两地之间的距离。
1. 确定未知量题目中未知量为A、B两地之间的距离。
2. 找到给定条件之间的联系根据题目可知:甲的速度是8km/h;乙的速度是6km/h;两人从A、B两地同时出发,相向而行;当两人相遇后,甲还要行2小时才能到达B地。
我们可以通过画图来更好地理解问题:![image.png](attachment:image.png)设A、B之间的距离为x km,则:甲走了x km后与乙相遇,此时乙已经走了(x/2)km;甲继续走剩下的(x/2)+2 km 到达B。
因此有以下等量关系:8t = 6(t + x/12) (t表示两人相遇时所用时间)x/2 + 2 = 8(t + 2) (t + 2表示甲到达B所用时间)3. 根据问题要求列出方程将上述等量关系化简得到方程组:4t - x/6 = 0x - 16t - 14 = 0解得:t = 14/5(h)x = 56(km)因此A、B两地之间的距离为56km。
五年级数学上册如何找等量关系式
五年级数学上册如何找等量关系式如何找等量关系式并列方程等量关系式是指数量之间相等的关系式。
我们可以按照以下原则来找等量关系式:如果能列成加法,就不列成减法;如果能列成乘法,就不列成除法。
列方程是对等量关系式的进一步运用,我们可以将数量一个一个代入等量关系式中,并用“X”替代未知数来列出方程。
下面是三种找等量关系式的方法:一、根据常见的数量关系确定等量关系。
常见的数量关系包括单价×数量=总价、速度×时间=路程、单价=速度/数量、工作效率×工作时间=工作总量、单产量×数量=总产量等等。
举个例子,如果某款式的服装零售价为36元1套,现有216元,我们可以列出以下等量关系式:单价×数量=总价36元/套×X=216元然后,我们可以解方程得出X的值,即可知道一共可以买多少套衣服。
二、根据公式确定等量关系。
公式是数学中常见的表达式,例如长×宽=长方形面积、(长+宽)×2=长方形的周长、边长×4=正方形的周长等等。
如果一个长方形的面积是20平方米,宽是4米,我们可以列出以下等量关系式:长×宽=面积X×4=20XXX得出X的值,即可知道长的长度。
三、根据题目中关键句确定等量关系。
在题目中,我们可以找到一些关键句,例如“比……多”、“比……少”、“是……的几倍”、“是……的几倍多几”、“是……的几倍少几”、“一共有”等等。
按照这些关键句的提示,我们可以列出等量关系式。
举个例子,如果题目中说男生人数比女生人数多6人,我们可以列出以下等量关系式:女生人数+6人=男生人数如果题目中说柳树棵数是桃树棵数的5倍多17,我们可以列出以下等量关系式:桃树棵数×5+17=柳树棵数如果题目中说长是宽的3倍,我们可以列出以下等量关系式:宽×3=长总之,找到等量关系式和列方程是解决数学问题的重要步骤。
1、一班和三班共有73人等量关系式:一班人数+三班人数=73人改写:一班和三班的学生总数是73人。
数学方程找等量关系式的几种方法
数学方程找等量关系式的几种方法找等量关系式的几种方法1、根据题目中的关键句找等量关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。
在列方程解应用题时,同学们可以根据关键句来找等量关系。
2、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
3、把公式作为等量关系。
在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
4、画出线段图找等量关系对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
比方:东乡农场计划耕6420公顷耕地,曾经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕几何公顷?根据题意画出线段图:780×5.3XX6420公顷从图中我们可以看出等量干系是:“已耕的公顷数+剩下的公顷数=6420”列出方程:设:平均每天要耕X公顷780×5+3X=6420想一想:根据上面的线段图还可以找出哪些等量关系。
1.牢记计算公式,根据公式来找等量关系。
这类方法一般适用于几何应用题,教师要让学生牢记周长公式、面积公式、体积公式等,然后按照公式来解决问题。
2.熟记数量关系,根据数量关系找等量关系。
这种方法一般适用于工程问题、路程问题、价格问题,教师在教学这三类问题时,不但要让学生理解,还应让学生记熟工作效率×工作时间=工作总量;速度×时间=路程;单价×件数=总价”等关系式。
如“汽车平均每小时行45千米,从甲地到乙地共225千米,汽车共需行多少小时?”就可以根据“速度×时间=路程”这一数量关系,列出方程45X=225.3.抓住关键字词,根据字词的提示找等量关系。
寻找等量关系的六种方法
王 秉
..... ....... .
._ J
1.千米 25
一 , 一 一 一~ - ・ ~ ~ 一 一
这道题 可根 据画 出的线段 图列方程 。设 张浩每小 时行X 米 , 千
根据 “ 张浩 05 时走过 的路 程 +王秉05 .小 .小时走 过 的路程 = 25 l .千
, - _ ~ 一 一 一 一 -_ 一 , ,
,
一
一 一
…
…
…
一
一
一
一
四、根据事情发展的顺序法 如:一辆公交车,在甲站上来 l人,又在乙站下去2 人,这时车上 4 0 有乘客6 人 ,原来车上有多少人?这道题可根据事情发展的顺序 “ 2 原
来车上的人数 + 在甲站上来的l人 一 4 在乙站下去的2人= 0 现在 车上的6 2 人 ”列 方程 。设原来车上有 ,列方程为 : +】 2 = 2 人 4— 0 6 。
~ ~
~ ~ ~
一
,
一
一
Ⅲ
一
一
一
.
、
根据不变量法
、
法.
:
一
● ● t一 一 一 一 一 一 一
小明看一本科幻小说 , 每天看3 页,8 O 天可以看完 ; 如果每
页, 几天可以看完?这道题可根据不变量 “ 每天看的页数 ×
完的天数= 这本书的总页数 ( 不变 ) ”列方程。设 天可以看 完, 列方程为: 0 =0 8 4× 3× 。
I . . . .. . . . .. . . . . . . . .. . . .. . . . . . . . .. . . . .. . . .一
'- I
列方程找等量关系的一些常用方法
列方程找等量关系的一些常用方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!在解决数学问题时,找到等量关系是非常关键的一步。
等量关系指的是两个量之间存在的相等关系,这种关系可以帮助我们建立方程,从而求解问题。
找等量关系式列方程市公开课获奖课件省名师示范课获奖课件
10×(9-x)+x-[10x+(9-x)] =9
90-10x+x-10x-9+x=9
81-18x=9
x=4 ……十位
9-4=5 ……个位
答:这个两位数原来是45。
怎样找等量关系式、列方程
• 等量关系式:数量之间旳相等旳关系式叫 做等量关系式。
• 找等量关系式旳原则:一般来说,等量关 系式能列成加法旳,就不列成减法旳;能 列成乘法旳就不列成除法旳。
• 列方程:相应着等量关系式,把数量一种 一种代进去列出方程,把未知数用“X”替 代(一般情况可将问题设为未知数)。
10X+6×6.5=59……………………….( × )
2、妈妈今年39岁,比女儿旳年龄旳3倍大3岁, 女儿今年Y岁。
39=3Y+3……………………………..( √ )
3、小亚看一本240页旳书,平均每天看33页,看了 X天还剩余42页没看。
33X=(240-42)÷X …………………( × )
考考你:你会找题中旳等量关系 列方程吗?请你写下来,看谁写旳多。
小亚用30元买了5支圆珠笔,找回旳钱 恰好能够买3本单价为5.5元旳笔记本, 圆珠笔旳单价为X元。
幼稚园老师买了某些糖分给X个小朋 友,若每人5粒则多17粒,若每人7粒, 则少11粒。
1、图书室有科技书320本,科技书比故事书旳2倍 少 16本,故事书有多少本?
分析:首先根据“科技书比故事书旳2倍少16本”看出故事书 旳本数是1份,所以设故事书为x本,再根据“科技书比故事 书旳2倍少16本”找出等量关系式是:故事课本数×2-16= 科技课本数,所以列方程为:2x-16=320。
(2)小巧买了14支铅笔,是小丁丁买旳铅笔旳 2倍,小丁丁买了X支。
怎样找等量关系的技巧
怎样找等量关系的技巧在数学中,等量关系是指两个或多个量具有相同的数值。
找到等量关系对于解决数学问题和建立数学模型非常重要。
下面介绍几种常用的技巧,帮助你找到等量关系。
1. 列方程法列方程法是一种常用的找等量关系的方法。
首先要确定问题中涉及到的量,然后根据问题中所给出的条件列出方程式,最后通过方程式求解得到等量关系。
例如,一个问题中涉及到两个量A和B,已知A是B的3倍,而它们的和是28,那么我们可以列出如下方程:A = 3BA +B = 28将第一个方程中的A用第二个方程中的B替换,得到:3B + B = 28解出B = 7,再代入第一个方程式得到A = 21,因此A和B之间就存在着等量关系。
2. 求比法求比法是通过求两个量的比值,来判断它们之间是否存在等量关系的方法。
如果两个量的比值始终保持不变,那么它们之间就存在等量关系。
例如,一个问题中涉及到两个长度量A和B,已知它们的比值是3:4,而它们的和是35,那么我们可以通过求解比值,来判断它们之间是否存在等量关系。
假设A的长度为3x,B的长度为4x,则3x + 4x = 35,解出x = 5。
因此A的长度为3x = 15,B的长度为4x = 20,它们之间的比值始终为3:4,因此它们之间存在着等量关系。
3. 比例法比例法是通过两个或多个等比例的量之间的比值,来判断它们之间是否存在等量关系的方法。
例如,一个问题中涉及到两个容积量A和B,它们的比值是5:3,而它们之间的差是6,那么我们可以通过比例法来判断它们之间是否存在等量关系。
假设A的容积为5x,B的容积为3x,则5x - 3x = 6,解出x = 3。
因此A的容积为5x = 15,B的容积为3x = 9,它们之间的比值始终为5:3,因此它们之间存在着等量关系。
4. 面积法面积法是通过两个或多个面积之间的比值,来判断它们之间是否存在等量关系的方法。
例如,一个问题中涉及到两个矩形的面积A和B,已知它们的长和宽的比值相同,那么我们可以通过面积法来判断它们之间是否存在等量关系。
七年级找等量关系列方程的技巧
七年级找等量关系列方程的技巧
七年级找等量关系列方程的技巧主要有以下几点:
1. 理解等量关系:等量关系是指两个或多个量之间相等的关系。
在列方程时,需要先理解题目中的等量关系,明确哪些量是相等的,哪些量是不等的。
2. 找出已知量和未知量:在列方程时,需要找出题目中的已知量和未知量。
已知量是题目中给出的具体数值,未知量是需要求解的未知数。
3. 建立等量关系式:根据题目中的等量关系,建立等量关系式。
等量关系式可以用文字或数学符号表示,要确保等式两边的量是相等的。
4. 移项和合并同类项:在列方程时,需要将等式两边的同类项进行移项和合并。
这样可以简化方程,使求解过程更加方便。
5. 求解方程:根据建立的等量关系式,求解方程得到未知量的值。
总之,找等量关系列方程需要理解等量关系、找出已知量和未知量、建立等量关系式、移项和合并同类项、求解方程等步骤。
同时,还需要注意题目中的陷阱和难点,避免出现错误。
列方程解应用题如何找等量关系
列方程解应用题的一般步骤是:(1)审(2)找(3)设(4)列(5)解(6)答,而最关键的是第二步找等量关系,只有找出等量关系才可列方程,下面我来谈谈怎样找相等关系和设未知数。
一、怎样找等量关系(一)、根据数量关系找相等关系。
好多应用题都有体现数量关系的语句,即“…比…多…”、“ …比…少…”、“…是…的几倍”、“ …和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。
例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?相等关系:女生人数-男生人数=80例2:合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人?相等关系:舞蹈队的人数×3+15=合唱队的人数例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?相等关系:调动后甲处人数=调动后乙处人数×2解:设调x人到甲处,则调(20-x)人到乙处,由题意得:27+x=2(19+20-x),解得 x=17所以 20-x=20-17=3(人)答:应调往甲处17人,乙处3人。
(二)、根据熟悉的公式找相等关系。
单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工作效率×工作时间=工作总量,售价=原价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。
例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。
求这件商品的成本价为多少元?相等关系:(成本价+100)×80%=售价例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?相等关系:正方形的周长=边长×4例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:1、一个长方形的面积是100平方厘米,它的 长是20厘米,宽是多少厘米?
数量关系:长×宽=长方形面积
2、一个长方形的长是0.7m,周长是2.4m。它 的宽是多少m?
数量关系:(长+宽) ×2=长方形周长
3.根据关键词语找等量关系。
在实际问题的叙述中经常会出现“一共” “比……多” “比……少” “几倍” 以及 “和、差、积、商” 等词语 我们可以抓住这些关键的词语来找等量关系。
练一练: (说出根据什么数量关系来列方程)
1.小英有中国邮票46套,比外国邮票的3倍多1套。 小英有外国邮票多少套?
2. 水果店运进菠萝250千克,比苹果重量的2倍 少10千克,运进苹果多少千克?
本内容仅供参考,如需使用,请根据自己实际情况更改后使用!
放映结束 感谢各位批评指导!
让我们共同进步
1.根据常见的数量关系找等量关系。 常见的数量关系有: 部分+部分=总和 速度×时间=路程 单价×数量=总价
工作效率×工作时间=工作总量 例:一辆汽车每小时行驶56千米,几小时
可行驶336千米?
数量关系:速度×时间=路程2.根据图形的计算公式源自等量关系。 常见的图形计算公式有:
(长+宽) ×2=长方形周长 边长×4=正方形周长
例: 学校开展植树活动,五年级植树80棵, 比四年级多植树26棵,四年级植树多少棵?
数量关系:四年级植树的棵数+26=五年级植树的棵数
4.根据事情发展的经过找等量关系。
实际问题都有个发展顺序,我们可以 根据事情发展的经过来找等量关系。
例1: 学校食堂原来有一堆煤,用去3.6吨后, 还剩4.8吨。这堆煤原来有多少吨? 数量关系:食堂原来的煤-用去的煤=还剩的煤 例1:水果店原来有苹果45千克,又运进一些 后,水果店现在有苹果103千克。水果店运 进苹果多少千克? 数量关系:原有的苹果+运进的苹果=现在的苹果