点到直线的距离教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点到直线的距离公式教学设计

一、教材分析

点到直线的距离是直线方程的一个应用,也是坐标法的继续。从知识体系上看,是在研究平面上两点之间距离的基础上来进一步研究点线距离,是对距离度量的完善;从知识结构上看,点到直线的距离是前面讨论两点间距离的深入、后续研究直线和圆的位置关系的准备。

继前面学习了两直线平行与垂直后,教材安排讲述了平面上两点间距离,学生已经基本掌握如何判断四边形形状(包括三角形),以及求四边形边长等方法;为求四边形面积,我们还需探讨点到直线的距离(因为要求四边形中顶点到对边的距离,也包括三角形)。

为此,本课主要研究以下两点:①平面上点到直线的距离公式及其应用;②两条平行线间的距离。

二、教学目标

1、知识与技能

①掌握点到直线的距离公式,能应用公式解决一些简单问题;

②通过公式的推导向学生渗透数形结合和化归等数学思想;

2、过程与方法

①问题导入的方式;

②分组合作、研究与交流;

③通过对数学公式的推导过程,体会数学中常用的数形结合和化归思想;

3、情感态度与价值观

①渗透数形结合和化归等思想,进行对立统一观点的教育,培养学生勇于探索、勇于创新的精神;

②通过数学活动感受数学与显示世界的联系,进一步认识辨证唯物主义的普遍联系观点。

三、教学重难点分析

1、教学重点

点到直线的距离公式及其应用

2、教学难点

点到直线距离公式的推导

四、教法构想

在编写过程中,教材将本课设计为一节活动课,通过上一节课的情景,提出问题,进而给出两种解决问题的方法,最后留下思考。因此,教学中可以首先明确条件,提出问题,然后让学生充分讨论,研究如何解决这个问题;将学生分成小组,采用讨论、交流和学生汇报等形式进行研究性学习。

五、教学过程设计

六、板书设计

七、教学过程设计说明

本课首先引用具体实例计算点到直线的距离,采用两种不同方法,而这两种方法凭学生已有的知识基础,在教师适时、适当的引导下学生能够通过自主探索而接受、掌握。第一种方法是综合利用直线方程、直线与直线垂直、两条直线的交点及平面上两点间距离等知识来解决的。从知识结构体系上讲,是已学知识的综合复习与应用;从能力上讲,是培养学生分析问题、解决问题的能力再现,符合认知发展规律。而第二种方法则是借助前面推导两点间距离公式的方法构造直角三角形,通过面积相等来计算点到直线的距离;从认知结构上看,承前启后,关键在于直角三角形的构造与等面积法的使用。为突破难点,教师逐步引导,对教学内容进行剪裁、重组和铺垫,构建出在探索结论过程中侧重于学生能力培养的一系列教学环节,进而为学生自主推导点到直线的距离公式作好铺垫和准备。接

着就是学生在引例的启发下自主探究推导出点到直线的距离公式。随后就是知识应用和巩固练习,在这其中,穿插了两个小插曲:第一,两平行线间距离公式的推导;第二,解析法在平面几何中的应用,进一步把学生的思维引向深入,有利于学生数学思维品质的养成。

总之,本课所设计的教学过程遵循“数学学习的本质是主体(学生)在头脑中构建和发展数学认知结构的过程,是主体的一种再创造行为”的理论,采取以“学生为主体,教师为主导”的启发式教学,“教师应尊重学生主体和主动的精神,开发学生的智能,使其形成健全的个性”,符合学生认知发展水平和心理发展规律的。

相关文档
最新文档