光催化原理(经典)_PPT课件
合集下载
光催化原理PPT课件
![光催化原理PPT课件](https://img.taocdn.com/s3/m/aef80a03daef5ef7ba0d3c9e.png)
此时吸附在纳米颗 粒表面的溶解氧俘 获电子形成超氧负 离子,而空穴将吸附 在催化剂表面的氢 氧根离子和水氧化 成氢氧自由基。
12
第三步
超氧负离子和氢 氧自由基具有很 强的氧化性,能将 绝大多数的有机 物氧化至最终产 物CO2和H2O,甚 至对一些无机物 也能彻底分解。
化学与药学院.
二氧化钛的光催化原理
半导体的光吸收阈值与带隙的关系:
K=1240/Eg(eV)
因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。
11
化学与药学院.
光催化原理
第一步
当光子能量高于半 导体吸收阈值的光 照射半导体时,半导 体的价带电子发生 带间跃迁,即从价带 跃迁到导带,从而产 生光生电子(e-)和 空穴(h+)。
第二步
E=hC/λ 所以可以知道波长小于380nm的光可以激发锐钛型二氧化钛。
❖有研究表明接近7nm粒径时,锐钛矿要比金红石更为稳定,这也是很多纳 米光触媒采用锐钛型的原因。
16
化学与药学院.
光催化应用技术
❖ 光催化净化是基于光催化剂在紫外线照射下具有 的氧化还原能力而净化污染物。
❖ 光催化净化技术的特点:半导体光催化剂化学性质稳
光催化的基本知识
化学与药学院 马永超
1
.
主要内容
光催化剂的定义 光催化起源
光催化材料 光催化的原理 光催化的应用
2
.
催化剂是加速化学反应速率的化学物质, 其本身并不参与反应。
光催化剂就是在光子的激发下能够起到催化作用的 化学物质的统称。
3
化学与药学院.
光催化 剂
状态 液体催化剂 固体催化剂
4
反应体系的相态
普通的二氧化钛一般称为体相半导体,这是与纳米二氧化钛 相区别的。
12
第三步
超氧负离子和氢 氧自由基具有很 强的氧化性,能将 绝大多数的有机 物氧化至最终产 物CO2和H2O,甚 至对一些无机物 也能彻底分解。
化学与药学院.
二氧化钛的光催化原理
半导体的光吸收阈值与带隙的关系:
K=1240/Eg(eV)
因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。
11
化学与药学院.
光催化原理
第一步
当光子能量高于半 导体吸收阈值的光 照射半导体时,半导 体的价带电子发生 带间跃迁,即从价带 跃迁到导带,从而产 生光生电子(e-)和 空穴(h+)。
第二步
E=hC/λ 所以可以知道波长小于380nm的光可以激发锐钛型二氧化钛。
❖有研究表明接近7nm粒径时,锐钛矿要比金红石更为稳定,这也是很多纳 米光触媒采用锐钛型的原因。
16
化学与药学院.
光催化应用技术
❖ 光催化净化是基于光催化剂在紫外线照射下具有 的氧化还原能力而净化污染物。
❖ 光催化净化技术的特点:半导体光催化剂化学性质稳
光催化的基本知识
化学与药学院 马永超
1
.
主要内容
光催化剂的定义 光催化起源
光催化材料 光催化的原理 光催化的应用
2
.
催化剂是加速化学反应速率的化学物质, 其本身并不参与反应。
光催化剂就是在光子的激发下能够起到催化作用的 化学物质的统称。
3
化学与药学院.
光催化 剂
状态 液体催化剂 固体催化剂
4
反应体系的相态
普通的二氧化钛一般称为体相半导体,这是与纳米二氧化钛 相区别的。
4光催化及其应用PPT课件
![4光催化及其应用PPT课件](https://img.taocdn.com/s3/m/59de246fb14e852458fb57c2.png)
剂的表面活性提高,对与其相接触的物 质产生作用。
提高反应速度,即难以进行的反应 变得容易;
本身不分解,可反复使用。
固 体 光 催 化 剂
光催化的反应原理
当波長在400nm以下的紫外线照 射在超微粒TiO2時,在价电子帶 (valence band, VB)的电子(e-)被紫 外线的能量(3ev)所激发跃升到传 导帶(conduction band, CB),此时 在价电子帶便会产生帶正电的正 孔 (hole),而形成一组电子- 电洞 对。 二氧化钛则利用所产生的电洞的 氧化力及电子的还原力和表面接 触的H2O,O2发生作用,产生氧 化力极強之自由基‧ O-,‧ O2-, ‧O3-,‧ O及‧ OH-,而进行杀菌、 除臭、分解有机物等作用
• 水的光催化分解,意义明显,但对于可 见光,效率仍然偏低;
• N的a混2S合水,溶因液此可,认实为质是是H2光S和催N化aO分H解水H溶2S液制 取氢气。
• H2S的分解电位为0.298eV,大约只相当 于水的1/4。对催化剂而言,能带大于 0.298eV,可见光就可发挥作用。
Na2S水溶液的光化学反应
水分解光催化剂的改进
• 影响因素:生成电子-正孔的寿命;电荷分 离;氧化还原反应的过电压;反应活性点等;
• 改进方法:Pt助催化剂的使用;加入易氧化 的还原剂,光照射产生的正孔将还原剂氧化 (不可逆),光催化剂中的电子过剩,促进 氢气生成;或加入易还原的氧化剂(Ag+等 化合物);
Na2S水溶液光照射制取氢气
s- ZnS-Zn微 粒子的X-衍 射分析
X-Ray Diffractometer (XRD)
s- ZnS-Zn微粒子的SEM观察
Field Emission Scanning Electronic Microscope——FE-SEM
提高反应速度,即难以进行的反应 变得容易;
本身不分解,可反复使用。
固 体 光 催 化 剂
光催化的反应原理
当波長在400nm以下的紫外线照 射在超微粒TiO2時,在价电子帶 (valence band, VB)的电子(e-)被紫 外线的能量(3ev)所激发跃升到传 导帶(conduction band, CB),此时 在价电子帶便会产生帶正电的正 孔 (hole),而形成一组电子- 电洞 对。 二氧化钛则利用所产生的电洞的 氧化力及电子的还原力和表面接 触的H2O,O2发生作用,产生氧 化力极強之自由基‧ O-,‧ O2-, ‧O3-,‧ O及‧ OH-,而进行杀菌、 除臭、分解有机物等作用
• 水的光催化分解,意义明显,但对于可 见光,效率仍然偏低;
• N的a混2S合水,溶因液此可,认实为质是是H2光S和催N化aO分H解水H溶2S液制 取氢气。
• H2S的分解电位为0.298eV,大约只相当 于水的1/4。对催化剂而言,能带大于 0.298eV,可见光就可发挥作用。
Na2S水溶液的光化学反应
水分解光催化剂的改进
• 影响因素:生成电子-正孔的寿命;电荷分 离;氧化还原反应的过电压;反应活性点等;
• 改进方法:Pt助催化剂的使用;加入易氧化 的还原剂,光照射产生的正孔将还原剂氧化 (不可逆),光催化剂中的电子过剩,促进 氢气生成;或加入易还原的氧化剂(Ag+等 化合物);
Na2S水溶液光照射制取氢气
s- ZnS-Zn微 粒子的X-衍 射分析
X-Ray Diffractometer (XRD)
s- ZnS-Zn微粒子的SEM观察
Field Emission Scanning Electronic Microscope——FE-SEM
光催化剂的分类和机理总结[优质PPT]
![光催化剂的分类和机理总结[优质PPT]](https://img.taocdn.com/s3/m/30c9da0f1eb91a37f1115cea.png)
解决措施:改变半导体表面结构,阻止A在PSⅠ上与D在PSⅡ上的吸附,但无法 杜绝。
A/D电对:IO3− /I −、Fe3+ /Fe2+ , [Co(bpy)3 ]3+/2+ , [Co(phen)3]3+/2+ 、NO3−/NO2−
PS-A/D-PS体系
• 缺陷:
• 由于氧化还原电对的存在,该催化剂仅适用于液态的催化 反应,且不适合污染物的降解,因为污染物会影响电对的 氧化还原反应,所以该体系的催化剂局限于水的光催化分 解领域。
光催化剂的影响因素
• 1、光子能量要比催化剂的禁带宽度Eg高;(窄的禁带宽 度有利于太阳能的利用)
• 2、反应物的氧化还原电势应在导带电位与价带电位之间; (更负的导带电位和更正的价带电位有利于氧化还原反应)
光催化反应体系
• 1、加入电子给体和电子受体(牺牲剂) • 2、担载助催化剂 • 3、双光子系统(Z-Scheme)
PS-C-PS体系
• 无A/D电对,利用导体C作为电子传递媒介。
PSⅡ导带中的光生电子与 PSⅠ价带中的光生空穴结合 ※既阻止了两种半导体中光生 电子和空穴的再复合; ※又降低了电子的传递距离; ※也可避免A/D电对造成的逆 反应。
PS-C-PS体系
• 常见的催化剂: • TiO2-ห้องสมุดไป่ตู้u-CdS • TiO1.96C0.04-Au-Pt/CdS(由于TiO2对可见光的吸收能力弱,所以
• 常用的助催化剂有:Pt、NiO、Ru2O等; • 在水溶液粉末悬浮Pt/TiO2光催化体系中,Pt的作用就是助
催化剂。
助催化剂的作用
• 金属与半导体界面上形成了势垒,称为Schottky势垒,作 为电子陷阱,能有效阻止半导体上的电子与空穴的复合。
A/D电对:IO3− /I −、Fe3+ /Fe2+ , [Co(bpy)3 ]3+/2+ , [Co(phen)3]3+/2+ 、NO3−/NO2−
PS-A/D-PS体系
• 缺陷:
• 由于氧化还原电对的存在,该催化剂仅适用于液态的催化 反应,且不适合污染物的降解,因为污染物会影响电对的 氧化还原反应,所以该体系的催化剂局限于水的光催化分 解领域。
光催化剂的影响因素
• 1、光子能量要比催化剂的禁带宽度Eg高;(窄的禁带宽 度有利于太阳能的利用)
• 2、反应物的氧化还原电势应在导带电位与价带电位之间; (更负的导带电位和更正的价带电位有利于氧化还原反应)
光催化反应体系
• 1、加入电子给体和电子受体(牺牲剂) • 2、担载助催化剂 • 3、双光子系统(Z-Scheme)
PS-C-PS体系
• 无A/D电对,利用导体C作为电子传递媒介。
PSⅡ导带中的光生电子与 PSⅠ价带中的光生空穴结合 ※既阻止了两种半导体中光生 电子和空穴的再复合; ※又降低了电子的传递距离; ※也可避免A/D电对造成的逆 反应。
PS-C-PS体系
• 常见的催化剂: • TiO2-ห้องสมุดไป่ตู้u-CdS • TiO1.96C0.04-Au-Pt/CdS(由于TiO2对可见光的吸收能力弱,所以
• 常用的助催化剂有:Pt、NiO、Ru2O等; • 在水溶液粉末悬浮Pt/TiO2光催化体系中,Pt的作用就是助
催化剂。
助催化剂的作用
• 金属与半导体界面上形成了势垒,称为Schottky势垒,作 为电子陷阱,能有效阻止半导体上的电子与空穴的复合。
光催化ppt课件
![光催化ppt课件](https://img.taocdn.com/s3/m/2b6c31a0767f5acfa0c7cd6d.png)
16
❖ 半导体结构与绝缘体类似,所不同的是Eg较窄,电子从价带克 服禁带能垒跃迁至导带有两种途径。
❖ 一种可以通过热激发或光激发实现。 ❖ 另一种通过掺杂改变半导体材料的电子分布状况实现。
17
掺杂半导体
❖ 在半导体中含有少量杂质原子称为掺杂半导体。 ❖ 若掺杂原子的价电子除了成键外还有剩余,则为施主。多余的
----抗菌性: 杀灭大肠杆菌、金黄色葡萄球菌、肺炎克雷伯氏菌、绿脓 杆菌、病等。 ----空气净化: 分解空气中有机化合物及有毒物质:苯、甲醛、氨、 TVOC等。 ----除臭 :去除香烟臭、垃圾臭、生活臭等恶臭。 ----防霉防藻: 防止发霉、防止藻类的产生, 防止水垢的附着。 ----防污自洁:分解油污,自清洁。
❖ 随着研究深入,人们发现半导体光催化技术在去除污染物等方面 ,具有能耗低、氧化能力强、反应条件温和、操作简便,可减少 二次污染等突出特点,有广阔应用前景。
4
❖ 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行, 日本发表 许多关于光触媒的新观念,并提出应用于氮氧化物净化的研究成果。 此后,光触媒应用于抗菌、防污、空气净 化等领域的相关研究急剧增 加。
❖ 低压汞灯操作温度为常温,因此不需要冷却,灯的电能大部分转化为光能,
常用。
36
❖ 溶液pH值影响 其对半导体粒子在反应液中的颗粒物聚集度、表面电荷和有机物在半导体 表面的吸附等有较大影响。
37
❖ 反应温度 在实际反应中,光催化反应对温度的变化不敏感,因为光催化反应的表观 活化能很低,故反应速率对温度的依赖性不大。
22
24
(2)半导体在溶液中的氧化还原反应过程
h++H2O e -+O2 2HO2 • H2O2 + •O2-
❖ 半导体结构与绝缘体类似,所不同的是Eg较窄,电子从价带克 服禁带能垒跃迁至导带有两种途径。
❖ 一种可以通过热激发或光激发实现。 ❖ 另一种通过掺杂改变半导体材料的电子分布状况实现。
17
掺杂半导体
❖ 在半导体中含有少量杂质原子称为掺杂半导体。 ❖ 若掺杂原子的价电子除了成键外还有剩余,则为施主。多余的
----抗菌性: 杀灭大肠杆菌、金黄色葡萄球菌、肺炎克雷伯氏菌、绿脓 杆菌、病等。 ----空气净化: 分解空气中有机化合物及有毒物质:苯、甲醛、氨、 TVOC等。 ----除臭 :去除香烟臭、垃圾臭、生活臭等恶臭。 ----防霉防藻: 防止发霉、防止藻类的产生, 防止水垢的附着。 ----防污自洁:分解油污,自清洁。
❖ 随着研究深入,人们发现半导体光催化技术在去除污染物等方面 ,具有能耗低、氧化能力强、反应条件温和、操作简便,可减少 二次污染等突出特点,有广阔应用前景。
4
❖ 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行, 日本发表 许多关于光触媒的新观念,并提出应用于氮氧化物净化的研究成果。 此后,光触媒应用于抗菌、防污、空气净 化等领域的相关研究急剧增 加。
❖ 低压汞灯操作温度为常温,因此不需要冷却,灯的电能大部分转化为光能,
常用。
36
❖ 溶液pH值影响 其对半导体粒子在反应液中的颗粒物聚集度、表面电荷和有机物在半导体 表面的吸附等有较大影响。
37
❖ 反应温度 在实际反应中,光催化反应对温度的变化不敏感,因为光催化反应的表观 活化能很低,故反应速率对温度的依赖性不大。
22
24
(2)半导体在溶液中的氧化还原反应过程
h++H2O e -+O2 2HO2 • H2O2 + •O2-
光催化的一点总结PPT课件
![光催化的一点总结PPT课件](https://img.taocdn.com/s3/m/90841be13968011ca200918d.png)
亮点是通过xps谱计算得到了材料催化性能的依据18cu2otio2复合材料这里对cu2o的形貌进行了调控不同的形貌在与tio2复合形貌改变复合新的材料使cu2otio2具有更好的催化效果19运用光致发光谱来探究材料的电子空穴的分离效果发现八面体的cu2otio2分离效果最好根据上面降解mb得到的数据说明根据图c红色曲线得到cu2otio2效果最好2020135这篇文章是在棒状zno上复合cu2o颗粒来提高催化效果通过表面光伏法spvspv法研究cu2o与zno界面间光激电子的转移测量材料表面的瞬态电压的变化来表征电子空穴的分离效果做的对比试验是在不同ph值下生长得到这些znocu2o结构21znocu2o结构在不同ph值下沉积cu2o的性能不同ph11时电子空穴分离效率最好催化降解甲基紫精效果最好22通过这幅图可以看出单独的zno纳米棒吸收峰在360nm处复合cu2o后吸光区延伸到可见光区达到利用可见光的目的23a图中znocu2o材料在ph11时spv的频率在88hz时能达到最大值说明该复合材料拥有较大的spv值
这些掺杂可以实现可见光区域的催化,这是因为掺 杂离子会形成杂质能级,从而使TiO2的禁带变窄,那 么材料就可以应用到可见光区。
.
6
贵金属沉积,NaBH4的作用是还 原Ag前驱物。a,b是不同的活 性菌细胞
无论是沉积还是掺杂, 在催化活性上都表现 出的是增强的效果
阴离子S的掺杂
.
7
3.TiO2与其他半导体的复合:TiO2的带隙较宽,当其与 一个小带隙的半导体(带有更负的导带能级)复合,那
B. TiO2催化剂和非TiO2催化剂(包括金属氧化物、硫化物、铋
金属酸盐、基于石墨烯的材料 、碳氮催化材料和自然催化剂)
要做的改进包括贵金属沉积、非金属掺杂、染料敏化。
这些掺杂可以实现可见光区域的催化,这是因为掺 杂离子会形成杂质能级,从而使TiO2的禁带变窄,那 么材料就可以应用到可见光区。
.
6
贵金属沉积,NaBH4的作用是还 原Ag前驱物。a,b是不同的活 性菌细胞
无论是沉积还是掺杂, 在催化活性上都表现 出的是增强的效果
阴离子S的掺杂
.
7
3.TiO2与其他半导体的复合:TiO2的带隙较宽,当其与 一个小带隙的半导体(带有更负的导带能级)复合,那
B. TiO2催化剂和非TiO2催化剂(包括金属氧化物、硫化物、铋
金属酸盐、基于石墨烯的材料 、碳氮催化材料和自然催化剂)
要做的改进包括贵金属沉积、非金属掺杂、染料敏化。
第三章 光催化及材料ppt课件
![第三章 光催化及材料ppt课件](https://img.taocdn.com/s3/m/beae6f7983c4bb4cf7ecd14e.png)
深度捕获 10 ns (不可逆)
ecb- + h + ecb- + TiIVOH·+ hvb+ + TiIIIOH
表面电荷转移:
hv or TiIVOH TiIVOH
ps 100ns—s
10ns
etr- + Ox TiIVOH·+ + Red
TiIVOH + Ox ·TiIVOH + Red ·+
很慢 ms 100ns
• 制约光催化制氢实用化的主要原因是:
1) 光化学稳定的半导体(如:TiO2)的能隙太宽(以2.0 eV为宜)只吸收紫外光;
2) 光量子产率低(约4 %),最高不超过10 %; 3) 具有与太阳光谱较为匹配能隙的半导体材料(如:CdS等)存在光腐蚀及有
毒等问题,而p-型InP、GaInP2等虽具有理想的能隙,且一定程度上能抗 光腐蚀,但其能级与水的氧化还原能级不匹配。
沉积Ag后的TiO2光催化性能
光生电子在Ag岛上 富集,光生空穴向TiO2 晶粒表面迁移,这样行 成的微电池促进了光生 电子和空穴的分离,提 高了光催化效率。
.
• 掺杂金属或非金属离子。在半导体价带与导带间形成一个缺陷能量状 态,为光生电子提供了一个跳板,可以利用能量较低的可见光激发电子 ,由价带分两步传输到导带,从而减少光生电子-空穴复合。
TiO2中光生电子、空穴的不同衰减过程的特征弛豫时间
主要过程
特征时间尺度
电子、空穴的产生:
TiO2 + hv
hvb+ + ecb-
fs
载流子被捕获过程:
hvb+ + TiIVOH
ecb- + TiIVOH ecb- + TiIV
ecb- + h + ecb- + TiIVOH·+ hvb+ + TiIIIOH
表面电荷转移:
hv or TiIVOH TiIVOH
ps 100ns—s
10ns
etr- + Ox TiIVOH·+ + Red
TiIVOH + Ox ·TiIVOH + Red ·+
很慢 ms 100ns
• 制约光催化制氢实用化的主要原因是:
1) 光化学稳定的半导体(如:TiO2)的能隙太宽(以2.0 eV为宜)只吸收紫外光;
2) 光量子产率低(约4 %),最高不超过10 %; 3) 具有与太阳光谱较为匹配能隙的半导体材料(如:CdS等)存在光腐蚀及有
毒等问题,而p-型InP、GaInP2等虽具有理想的能隙,且一定程度上能抗 光腐蚀,但其能级与水的氧化还原能级不匹配。
沉积Ag后的TiO2光催化性能
光生电子在Ag岛上 富集,光生空穴向TiO2 晶粒表面迁移,这样行 成的微电池促进了光生 电子和空穴的分离,提 高了光催化效率。
.
• 掺杂金属或非金属离子。在半导体价带与导带间形成一个缺陷能量状 态,为光生电子提供了一个跳板,可以利用能量较低的可见光激发电子 ,由价带分两步传输到导带,从而减少光生电子-空穴复合。
TiO2中光生电子、空穴的不同衰减过程的特征弛豫时间
主要过程
特征时间尺度
电子、空穴的产生:
TiO2 + hv
hvb+ + ecb-
fs
载流子被捕获过程:
hvb+ + TiIVOH
ecb- + TiIVOH ecb- + TiIV
光催化ppt课件
![光催化ppt课件](https://img.taocdn.com/s3/m/ae4b324e50e2524de5187eef.png)
----抗菌性: 杀灭大肠杆菌、金黄色葡萄球菌、肺炎克雷 伯氏菌、绿脓杆菌、病毒等。 ----空气净化: 分解空气中有机化合物及有毒物质:苯、 甲醛、氨、TVOC等。 ----除臭 :去除香烟臭、垃圾臭、生活臭等恶臭。 ----防霉防藻: 防止发霉、防止藻类的产生, 防止水垢的附 着。 ----防污自洁:分解油污,自清洁。
16
❖ 半导体结构与绝缘体类似,所不同的是Eg较窄,电 子从价带克服禁带能垒跃迁至导带有两种途径。
❖ 一种可以通过热激发或光激发实现。 ❖ 另一种通过掺杂改变半导体材料的电子分布状况实
现。
17
掺杂半导体
❖ 在半导体中含有少量杂质原子称为掺杂半导体。 ❖ 若掺杂原子的价电子除了成键外还有剩余,则为施
高效光催化材料的设计、 制备与应用
1
内容
❖ 发展背景 ❖ 能带理论 ❖ 光催化理论 ❖ 光催化反应的影响因素 ❖ 光催化材料的结构与性能 ❖ 光催化剂的制备方法 ❖ 光催化剂的表征方法 ❖ 光催化材料的应用 ❖ 存在的问题与展望
2
背景、发展
❖ 1967年还是东京大学研究生的藤岛昭教授,在一次试验中对 放入水中的氧化钛单结晶进行了光线照射,结果发现水被分 解成了氧和氢。由于是借助光的力量促进氧化分解反应,因 此后来将这一现象中 的氧化钛称作光触媒。
❖ 随着研究深入,人们发现半导体光催化技术在去除污 染物等方面,具有能耗低、氧化能力强、反应条件温 和、操作简便,可减少二次污染等突出特点,有广阔 应用前景。
4
❖ 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行, 日本发表许多关于光触媒的新观念,并提出应用于氮氧 化物净化的研究成果。此后,光触媒应用于抗菌、防污、 空气净 化等领域的相关研究急剧增加。
16
❖ 半导体结构与绝缘体类似,所不同的是Eg较窄,电 子从价带克服禁带能垒跃迁至导带有两种途径。
❖ 一种可以通过热激发或光激发实现。 ❖ 另一种通过掺杂改变半导体材料的电子分布状况实
现。
17
掺杂半导体
❖ 在半导体中含有少量杂质原子称为掺杂半导体。 ❖ 若掺杂原子的价电子除了成键外还有剩余,则为施
高效光催化材料的设计、 制备与应用
1
内容
❖ 发展背景 ❖ 能带理论 ❖ 光催化理论 ❖ 光催化反应的影响因素 ❖ 光催化材料的结构与性能 ❖ 光催化剂的制备方法 ❖ 光催化剂的表征方法 ❖ 光催化材料的应用 ❖ 存在的问题与展望
2
背景、发展
❖ 1967年还是东京大学研究生的藤岛昭教授,在一次试验中对 放入水中的氧化钛单结晶进行了光线照射,结果发现水被分 解成了氧和氢。由于是借助光的力量促进氧化分解反应,因 此后来将这一现象中 的氧化钛称作光触媒。
❖ 随着研究深入,人们发现半导体光催化技术在去除污 染物等方面,具有能耗低、氧化能力强、反应条件温 和、操作简便,可减少二次污染等突出特点,有广阔 应用前景。
4
❖ 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行, 日本发表许多关于光触媒的新观念,并提出应用于氮氧 化物净化的研究成果。此后,光触媒应用于抗菌、防污、 空气净 化等领域的相关研究急剧增加。
光催化课件
![光催化课件](https://img.taocdn.com/s3/m/a2d96504a6c30c2259019ecf.png)
实际上,科学家在对光催化反应的反应过程进行深入 研究的基础上,发现在实际环境中的光催化反应不仅 是光致电子和光致空穴的氧化还原反应。并且会发生 其他反应,从而强化对污染物的氧化还原反应。主要 是在过程中生成氢氧自由基,氢氧自由基的氧化能力 是特别强的。
当以波长小于385nm的光照射TiO2表面时,价带电子能够被激
还是表面羟基自由基的另外一个来源,具体的反应式如下所示:
另外, Sclafani和Herraman通过对TiO2光电导率的测定,证实
了在光催化反应中· 2-的存在,因此一个可能的反应是: O
在上式中,产生了非常活泼的羟基自由基 (· OH),超氧离子
自由基(· 2-)以及· 2自由基,这些都是氧化性很强的活泼 O HO 自由基,能够将各种有机物直接氧化为CO2,H2O等无机小分 子。
光催化氧化技术基础 1)光的波长与能量
光催化氧化反应,是从光催化剂吸收光子开始的。 光化学反应需要具有一定能量的光子来诱发。一个光子 的能量可以表示为: E=hv=hc/λ 式中: h-普朗克常数,v-光的频率,c-光速 光的波长越长,其具有的能量就越少,依次从紫外 向红外递减。因此,紫外光的能量最高,红外光低,比 如不同的车辆,一个车速快,冲击力大,一个车速慢, 冲击力小。
二氧化钛的禁带宽度Eg为3.2eV, 那么,如果想使 那个二氧化钛来进行光催化反应,则要求照射到其分子 上的光子所具有的能量大于这个数值,对照上表,可以 看出,必须使得入射光子的波长小于等于387.5纳米。 思考:如果一个光子的能量不够,能不能2个或者更多 的光子共同照射一个固定位置,从而激发光致电子和 光致空穴?
因此,总结一下,对于某种光催化剂,用光 子能量大于禁带宽度Eg的光来照射可以产生光致 电子和光致空穴,他们在复合之前分别具有氧化 和还原能力。由于光是持续照射的,因此宏观上 总是在光催化剂表面上有固定数量的光致电子和 光致空穴存在,因此表面具有持久的氧化还原能 力。
光催化第二章PPT课件
![光催化第二章PPT课件](https://img.taocdn.com/s3/m/35796b9233687e21ae45a909.png)
TiO2的等电点pHZPC=5.8, 所以,pHZPC处的导带位置ECB=-0.1-0.059pH=-0.44
三、通过测定平带点位实验获取
• n型半导体:平带点位接近导带,可以认为就是导带位置; • p型半导体:平带点位接近价带,可以认为就是价带位置; • 如果已知带隙宽度就可以确定能带位置。
上述机理最重要的是阐明电荷迁移过程,光催化
本质上是氧化还原过程,目前较好的研究手段是光电 化学方法
电化学技术研究过程 电化学技术研究
电子迁移
注入能量
高灵敏和快捷
表征光催化动 力学特征
提高催化速 率
获得实时动 力学数据
估测带隙宽度、能级位置和电 荷迁移特别是界面电荷迁移
2.5.1 光电化学理论基础
本征半导体的载流子浓度低,电子和空穴数接近,Fermi能级位于带隙中间位置,表明电 子在价带出现的概率很高而在导带中出现的概率很低。通过杂质掺杂本征半导体、或者非计量 化合物半导体等,半导体都表现n型或P型半导体的特征。
2.3光学性质分析
• 2.3.1 固体紫外-可见漫反射光谱
半导体光催化材料具有其特性,因此有一些满足其特性的表征方法。作为光催化剂,其高效宽谱的光学
吸收性能是保证光催化活性的一个必要而非充分条件,因此分析固体光催化的官学吸收性能是必不可少
的。由于固体样品存在大量的散射,所不能直接测定样品的吸收。通常采用固体紫色-可见漫反射光谱
(1-4)
调节外电压,当施加正向偏压时,Vsc增大促进电子和空穴分离;当施加负向偏压,Vsc减小, 使得Vs为零时对应的外加电压值成为平带电压Vfb。
n型:Vfb=Ecs-μ; p型:Vfb=Evs+μ
(1-5)
n型半导体表面导带电位和平带电位差μ;p型半导体表面价带电位和平带电位差μ,μ是一个在
光电催化 PPT
![光电催化 PPT](https://img.taocdn.com/s3/m/cc88e9acba0d4a7302763ac7.png)
溶液的PH对光催化反应有较大影响,主要是因为 溶液的pH不同,改变了半导体光透电极与电解质 溶液界面的电荷性质,进而影响了半导体光透电
极对有机物的吸附。
外加偏电压的影响
外加电压达到一定值时,光生载流子已达到充分分 离,形成饱和光电流。 因此,在光电流接近饱和状态时,继续增大电压对 光催化反应速率提高幅度不大; 相反,随着电压的升高,光电流效率反而下降。
紫外线照射
电Байду номын сангаас 能量
导 e- e- e带 e- e- e-
e- e- ee- e- e-
禁 带
h+ h+ h+ h+
价 带
h+ h+ h+
吸附 还(原O2)
(·O2-)
氧化(污染物)
氧化为 (·OH) 吸附 (吸H附2(O污)染物)
羟基自由基(·0H),超氧离子自由基(·02-)及·0H2自由 基具有很强的氧化能力,很容易将各种污染物物直接 氧化为CO2,H2O等无机小分子。
以环己烷为目标污染物,采用活性碳/石墨和泡沫镍作 TiO2的载体,形成微孔电极,用高聚物固体电解质 Nafion分隔阴、阳两极,组成新型气相光电催化氧 化反应系统。利用外加电压的作用,有效地解决了 TiO2半导体光生电荷简单复合的问题。
与光催化相比的优势
➢ TiO2光电组合效应把导带电子的还原过程同价带空 穴的氧化过程从空间位置上分开(与半导体微粒相比 较)
➢ 明显地减少了电子和空穴的复合,结果大大增加了 半导体表面·OH的生成效率
➢ 防止了氧化中间产物在阴极上的再还原 ➢ 导带电子能被引到阴极还原水中的H+,因此不需要
向系统内鼓入作为电子俘获剂的O2
极对有机物的吸附。
外加偏电压的影响
外加电压达到一定值时,光生载流子已达到充分分 离,形成饱和光电流。 因此,在光电流接近饱和状态时,继续增大电压对 光催化反应速率提高幅度不大; 相反,随着电压的升高,光电流效率反而下降。
紫外线照射
电Байду номын сангаас 能量
导 e- e- e带 e- e- e-
e- e- ee- e- e-
禁 带
h+ h+ h+ h+
价 带
h+ h+ h+
吸附 还(原O2)
(·O2-)
氧化(污染物)
氧化为 (·OH) 吸附 (吸H附2(O污)染物)
羟基自由基(·0H),超氧离子自由基(·02-)及·0H2自由 基具有很强的氧化能力,很容易将各种污染物物直接 氧化为CO2,H2O等无机小分子。
以环己烷为目标污染物,采用活性碳/石墨和泡沫镍作 TiO2的载体,形成微孔电极,用高聚物固体电解质 Nafion分隔阴、阳两极,组成新型气相光电催化氧 化反应系统。利用外加电压的作用,有效地解决了 TiO2半导体光生电荷简单复合的问题。
与光催化相比的优势
➢ TiO2光电组合效应把导带电子的还原过程同价带空 穴的氧化过程从空间位置上分开(与半导体微粒相比 较)
➢ 明显地减少了电子和空穴的复合,结果大大增加了 半导体表面·OH的生成效率
➢ 防止了氧化中间产物在阴极上的再还原 ➢ 导带电子能被引到阴极还原水中的H+,因此不需要
向系统内鼓入作为电子俘获剂的O2
光催化原理PPT课件
![光催化原理PPT课件](https://img.taocdn.com/s3/m/aef80a03daef5ef7ba0d3c9e.png)
光催化的基本知识
化学与药学院 马永超
1
.
主要内容
光催化剂的定义 光催化起源
光催化材料 光催化的原理 光催化的应用
2
.
催化剂是加速化学反应速率的化学物质, 其本身并不参与反应。
光催化剂就是在光子的激发下能够起到催化作用的 化学物质的统称。
3
化学与药学院.
光催化 剂
状态 液体催化剂 固体催化剂
4
反应体系的相态
E=hC/λ 所以可以知道波长小于380nm的光可以激发锐钛型二氧化钛。
❖有研究表明接近7nm粒径时,锐钛矿要比金红石更为稳定,这也是很多纳 米光触媒采用锐钛型的原因。
16
化学与药学院.
光催化应用技术
❖ 光催化净化是基于光催化剂在紫外线照射下具有 的氧化还原能力而净化污染物。
❖ 光催化净化技术的特点:半导体光催化剂化学性质稳
金红石( rutile)
化学与药学院.
光催化原理
10
化学与药学院.
半导体光催化剂大多是n型半导体材料(当前以为TiO2使用最广泛)都具有区别于 金属或绝缘物质的特别的能带结构,即在价带(ValenceBand,VB)和导带 (ConductionBand,CB)之间存在一个禁带(ForbiddenBand,BandGap)。
均相催化剂(酸、 碱、可溶性过渡金 属化合物和过氧化 物) 多相催化剂
化学与药学院.
起源
光催化技术是在20世纪70年代诞生的基础纳米技术。我 们也可以用光触媒这个通俗词来称呼光催化剂。典型的 天然光催化剂就是我们常见的叶绿素,在植物的光合作 用中促进空气中的二氧化碳和水合成为氧气和碳水化合 物。总的来说纳米光触媒技术是一种纳米仿生技术,用 于环境净化,自清洁材料,先进新能源,癌症治疗,高 效率抗菌等多个前沿领域。
化学与药学院 马永超
1
.
主要内容
光催化剂的定义 光催化起源
光催化材料 光催化的原理 光催化的应用
2
.
催化剂是加速化学反应速率的化学物质, 其本身并不参与反应。
光催化剂就是在光子的激发下能够起到催化作用的 化学物质的统称。
3
化学与药学院.
光催化 剂
状态 液体催化剂 固体催化剂
4
反应体系的相态
E=hC/λ 所以可以知道波长小于380nm的光可以激发锐钛型二氧化钛。
❖有研究表明接近7nm粒径时,锐钛矿要比金红石更为稳定,这也是很多纳 米光触媒采用锐钛型的原因。
16
化学与药学院.
光催化应用技术
❖ 光催化净化是基于光催化剂在紫外线照射下具有 的氧化还原能力而净化污染物。
❖ 光催化净化技术的特点:半导体光催化剂化学性质稳
金红石( rutile)
化学与药学院.
光催化原理
10
化学与药学院.
半导体光催化剂大多是n型半导体材料(当前以为TiO2使用最广泛)都具有区别于 金属或绝缘物质的特别的能带结构,即在价带(ValenceBand,VB)和导带 (ConductionBand,CB)之间存在一个禁带(ForbiddenBand,BandGap)。
均相催化剂(酸、 碱、可溶性过渡金 属化合物和过氧化 物) 多相催化剂
化学与药学院.
起源
光催化技术是在20世纪70年代诞生的基础纳米技术。我 们也可以用光触媒这个通俗词来称呼光催化剂。典型的 天然光催化剂就是我们常见的叶绿素,在植物的光合作 用中促进空气中的二氧化碳和水合成为氧气和碳水化合 物。总的来说纳米光触媒技术是一种纳米仿生技术,用 于环境净化,自清洁材料,先进新能源,癌症治疗,高 效率抗菌等多个前沿领域。
光催化氧化课件ppt
![光催化氧化课件ppt](https://img.taocdn.com/s3/m/d55687f6b1717fd5360cba1aa8114431b80d8e51.png)
六、影响光催化氧化反应的因素
O2的影响。在光催化反应中,气相氧的浓度是一 个敏感因素。随着气相氧分压的逐渐增大,有机物 降解速率明显增加。
光强的影响。大量试验数据表明,光强对光催化 反应速率的影响并不十分显著,动力学级数介于 0.5~1.0之间。应该根据反应速率的快慢选择合适 的光强
盐效应。盐的影响在水处理过程中也不容忽视,有 些盐对反应起促进作用,而有些盐则起极大的阻碍 作用。ClO-2、ClO-3、BrO-3和S2O2-4能够捕捉 光生电子,降低e--h+的复合;Cl-、NO-2、 HCO-3和PO3-4将会与OH-竞争空穴,影响H O·的生成,显著降低光子效率。
溶胶-凝胶法在玻璃表面制备了均匀透明的纳米 TiO2薄膜,采用高压汞灯为光源,敞口固定床 反应器对水中染料亚甲基蓝进行了光催化氧化 实验。实验结果表明:随着涂膜次数的增加,薄 膜TiO2负载量增加,锐钛矿晶相粒径增大, TiO2薄膜对亚甲基蓝氧化降解具有较高的光催 化活性。
有机农药废水
用负载型TiO2/SiO2对有机磷农药2,2 二乙 烯基二甲基磷酸酯(DDVP)的光催化降解 取得较好的效果 。
二、光催化机理
光催化技术是利用半导体作为催化剂。 当用光照射半导体光催化剂时,如果光 子的能量高于半导体的禁带宽度,则半 导体的价带电子从价带跃迁到导带,产 生光生电子(e-)和光生空穴(h+)。
TiO2+hγ——e- + h+
光生空穴具有很强的氧化性,可夺取半导 体颗粒表面吸附的有机物或溶剂中的电子, 使原本不吸收光而无法被光子直接氧化的 物质,通过光催化剂被活化氧化。
量子效率 与其它水处理技术联用,获取最佳的处
理效果
CODcr质量浓度为650mg/L-1,有机磷 质量浓度为19.8mg/L-1的农药废水, 经375W中压汞灯照射4h, CODcr去除 率为90%,有机磷将完全转化为PO43-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人与自然的和谐 是发展的基础
然而, 人类正面临严峻的生存挑战!!!
▲ 能源危机 —— 化石能源煤、石油、天然气等在枯竭 ▲ 环境污染 —— 大气、水、土壤等严重污染
一、光催化简介高-性能学复科合发环展境背净景化材料及其应用的基础研究
环 境 污 染
能 源 紧 缺
路在何方 ??? 政府重视、人民关心、 科学家在探索!
*据ISI数据库检索,包括:ARTICLE, REVIEW, LETTER, NEWS ITEM, EDITORIAL MATERIAL, CORRECTION 等。
二、光催化基础高研性能究复进合展环-境净总化体材进料展及情其况应用的基础研究
● 中国光催化研究已进入国际前沿,2005年以来我国的光 催化研究论文数已经跃居世界第一。
光催化技术在众多领域具有广阔的应用前景:
国防军事
化学工业
生物制药
家用电器
光催化技术应用
印染行业
光能转化
建材行业
医疗卫生
一、光催化简介高-性能学复科合前环沿境净化材料及其应用的基础研究
● 光催化应用的重大科学与技术难题
技术难点
难题一 : 量子效率低 (~4%) 难题二 : 太阳光利用低 (~5%) 难题三 : 工程化关键技术
例 1 纳米固体超强酸型高效光催化剂(SO42-/TiO2)
● 解决的关键问题-TiO2光催化剂量子效率低
通过超强酸中心捕获光生电子和 纳米量子尺寸效应,有效抑制了 光生电子-空穴的重新复合,实 现了高效、稳定的光催化过程。
课程内容 高性能复合环境净化材料及其应用的基础研究
一 绪论 二 半导体光催化原理 三 光催化材料的制备与表征 四 光催化技术应用
一、绪论
(一)光催化简介 (二)光催化基础研究进展 (三)光催化应用研究进展 (四)光催化学科展望
一、光催化简介高-性能学复科合发环展境背净景化材料及其应用的基础研究
全面、和谐、可持续发展 是全球关注的主题
表面修饰 半导体复合 离子掺杂 固溶体形成 量子尺寸效应 水热合成 模板剂合成 微波溶剂热合成
……
能带调控 结构调控 组成调控
提高光催化性能
活性 活性稳定性 可见光诱导
二、光催化基础高研性能究复进合展环-境新净型化材光料催及化其剂应用的基础研究
设计制备的两大类、十二个系列的40多种新型光催化剂:
TiO2基新型光催化剂
In(OH)3 , InOOH , ZnIn2S4 , Sb2S3
● 分子筛光催化剂
Fe/HZSM-5, Ag/ZSM-5,Fe/Y,Ti/MCM-41
● Nafion膜负载的纳米光催化剂
CdS/Nanfion,ZnO/Nafion
二、光催化基础高研性能究复进合展环-境新净型化材光料催及化其剂应用的基础研究
β-Ga2O3,Zn2GeO4 ,Bi2WO6,PbBi2Nb2O9 , Bi2MoO6 , Sr2Sb2O7 , Zn2SnO4 , CaSnO3
● 固溶体型纳米晶可见光光催化剂
In(OH)ySz,ZnxCd1-xS ,M2+/ In(OH)ySz (Cu, Zn)
● 金属氢氧化物/硫化物纳米光催化剂
近年来国内外针对光催化领域的重大科学与技术问 题,开展了系统深入研究,在提高光催化过程效率、 实现可见光光催化过程和解决工程化关键技术问题 等方面有所突破,光催化技术应用领域不断拓展。
二、光催化基础高研性能究复进合展环-境总净体化材进料展及情其况应用的基础研究
● 国际光催化基础研究十分活跃,论文数量持续增加!
2008年发表论文的数量:中国 > 日本 > 美国 > 韩国…
二、光催化基础高研性能究复进合展环-境新净型化材光料催及化其剂应用的基础研究
1.光催化的核心是光催化剂,近年来新型光催化剂研究取得重要 进展。采用多种先进的方法和手段,设计并制备出一系列具有 高效、高稳定性和可见光诱导性能的新型光催化剂,大大拓展 了光催化剂的多元性和应用可选择性。
( 反应系统设计、催化剂负载、寿命…)
科学问题
核心:高效光催化剂及构-效关系 关键:提高光催化过程效率的途径 本质:光催化过程的作用机理
还原
-
3.2 eV
+
有机污染物
氧化
TiO2
从理论和应用上解决这些问题是国际光催化领域的研究前沿与热点
二、光催化基础高研性能究复进合展环-境总净体化材进料展及情其况应用的基础研究
● 纳米固体超强酸型光催化剂
SO42-/TiO2, SO42-/SiO2-TiO2, Pt- SO42-/ TiO2
● 窄带无机半导体敏化型可见光光催化剂
InVO4/TiO2,LaVO4/TiO2,PS/TiO2,PZT/TiO2
● 金属或金属离子掺杂型光催化剂
Pt/TiO2, M3+/TiO2 (M3+= Gd3+,La3+,Pr3+)
hv
→ H2O催化剂 H2 + ½ O2
还原
- 导带
hv
C6H6 + 7 ½ O2 → 6 CO2 + 3H2O 催化剂
价带 +
有机污染物 氧化
多相光催化过程本质上是光诱导的氧化-还原反应过程
高性能复合环境净化材料及其应用的基础研究
一、光催化简介高-性能应复用合领环域境净化材料及其应用的基础研究
● 非金属掺杂型光催化剂
TiO2-xNx/ZrO2 ,I7+-I-/TiO2 , ,
● 具有分级结构的TiO2中空纤维光催化剂 ● 具有类分子筛结构的TiO2光催化剂
非TiO2新型光催化剂
● 非金属聚合物可见光光催化剂
g-C3N4,mpg-C3N4,Fe/ g-C3N4
● 单一和多元金属氧化物纳米光催化剂
光催化合成
环境光催化
通过光催化反应分解各种 污染物和杀灭细菌与病毒
Organics
(甲醛、苯、PCB、二恶英、 染料、农药…)
CO2, H2O
有用化学品
Practical Applications
一、光催化简介高-性能学复科合基环础境与净原化材理料及其应用的基础研究
●光催化学科是催化化学、光电化学、半导体物理、材料科学 和环境科学等多学科交叉的新兴研究领域。
光催化技术: 最有前景的新技术之一
一、光催化简介高-性能学复科合发环展境背净景化材料及其应用的基础研究
● 光催化技术是近年来迅速发展起来的可以利用太阳能进行
环境净化和能源转化的新技术。
能源光催化
将低密度的太阳能转化为 高密度的化学能(氢能)
H2O
- 导带
H2, O2
价带 +
CO2, CH4
Fundamental Research