格林函数以及拉普拉斯方程
数理方程第四章
1 在区域 K 内直到边界上,v 可任意求导。 r
v u 在第二格林公式 (u v v u)dV (u v )dS n n
2 2
1 中, 取 u 为调和函数, 而令 v , 并以 K r 代替第二格林公式中的 . 则我们有
lim u( x, y, z ) 0,
r
(r x 2 y 2 z 2 ).
以保证解的唯一性。
§4.2
高斯(Gauss)公式
格林公式
设 是以光滑曲面 为边界的有界区域,P(x,y,z), Q(x,y,z), R(x,y,z) 在闭域 上连续, 在 内 1 P , Q , R C C 有一阶连续偏导数,即
两式相减, 得
2 2
第二格林公式
v u ( u v v u)dV ( u v )dS n n
利用格林公式, 可以得到调和函数的一些性质:
1) 牛曼内问题有解的必要条件
设 u 是以 为边界的区域 内的调和函数, 在 上有一阶连续偏导数, 则在第二格林公式 中取 u 为上述调和函数, 取 v 1, 有
3)调和函数的积分表达式
所谓调和函数的积分表达式 , 是指用调和函数及 其在区域 边界 上的法向导数沿 的积分来表 达调和函数在区域 内任一点的值。 设 M 0 x0 , y0 , z0 是 内的点, 下面求调和函数在 该点的值。 构造辅助函数
1 v r
1
x x0 y y0 z z0
2u 2u 2u 2 2 0 2 x y z
它描述了稳恒状态下的物理现象。 拉普拉斯方程 u 0的连续解,也叫调和 函数。
拉普拉斯方程积分解
拉普拉斯方程积分解一、引言拉普拉斯方程是数学中的一个重要的偏微分方程,其在物理学、工程学、计算机科学等领域有广泛的应用。
由于拉普拉斯方程的解析解往往难以求得,因此寻找适当的数值方法求解成为了一项重要任务。
本文将介绍拉普拉斯方程的积分解法。
二、拉普拉斯方程1. 定义在二维平面上,设函数u(x,y)满足以下条件:∂²u/∂x² + ∂²u/∂y² = 0则称u(x,y)满足二维平面上的拉普拉斯方程。
2. 物理意义拉普拉斯方程在物理学中有广泛应用,如电势场、热传导等问题都可以用它来描述。
例如,在电势场问题中,电荷在空间中产生电场,而电场又可以表示为电势函数的梯度。
因此,求解电势函数就是求解梯度场问题,而梯度场问题就可以转化为求解拉普拉斯方程。
三、积分解法1. 基本思想积分解法是一种常见的数值方法,其基本思想是将求解的问题转化为积分问题,然后通过数值积分的方法来求解。
对于拉普拉斯方程,我们可以将其转化为一个积分形式,然后通过数值积分的方法来求解。
2. 积分形式设u(x,y)是二维平面上的拉普拉斯方程的解,则有:u(x,y) = 1/2π ∫∫ D G(x,y;x',y')f(x',y') dxdy其中G(x,y;x',y')是二维平面上的格林函数,D是包含所有点的区域,f(x',y')是边界条件。
3. 格林函数格林函数是一个非常重要的概念,在偏微分方程中有广泛应用。
对于拉普拉斯方程而言,格林函数G(x,y;x',y')可以表示为:G(x,y;x',y') = -1/2π ln(r)其中r = ((x-x')² + (y-y')²)¹/²。
4. 数值积分在实际计算中,我们需要对积分式进行数值积分。
常见的数值积分方法包括梯形法、辛普森法等。
格林函数法
第四章格林函数法拉普拉斯方程边值问题的求解方法调和函数: 1 拉普拉斯(Laplace )方程的基本解§4.1 格林(Green )公式及其应用具有二阶连续偏导数的调和方程的连续解;或满足Laplace 方程的函数。
三维Laplace 方程的基本解:22200011(,,)()()()MM u x y z r x x y y z z ==-+-+-特点:除 点外,任一点满足Laplace 方程。
0000(,,)M x y z 同学们自己验证。
二维Laplace 方程的基本解:220011(,)lnln()()MM u x y r x x y y ==-+-特点:除 点外,任一点满足Laplace 方程。
000(,)M x y 同学们自己验证。
问题:基本解是否为整个区域内的解?2 Green 公式(1)奥-高公式(高斯公式):设 是有界区域, 是其边界曲面且足够光滑, 在 上连续,在 内有连续偏导数,则ΩΓΩ+Γ(,,),(,,),(,,)P x y z Q x y z R x y z Ω()(cos cos cos )P Q R d P Q R dS x y z αβγΩΓ∂∂∂++Ω=++∂∂∂⎰⎰⎰⎰⎰推导:令 其中 是 的外法线方向。
{cos ,cos ,cos }n αβγ=Γ(2)第一Green 公式:设 是有界区域, 是其边界曲面且足够光滑, 及其一阶偏导数在 上连续,在 内有二阶连续偏导数,则ΩΓΩ+Γ(,,),(,,)u x y z v x y z Ω()v u v u v u vu vd u dS d n x x y y z z ΩΓΩ∂∂∂∂∂∂∂∆Ω=-++Ω∂∂∂∂∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰,,v v vP u Q u R ux y z∂∂∂===∂∂∂代入高斯公式,并注意方向导数公式即可得。
(2)第二Green 公式:设 是有界区域, 是其边界曲面且足够光滑, 及其一阶偏导数在 上连续,在 内有二阶连续偏导数,则ΩΓΩ+Γ(,,),(,,)u x y z v x y z Ω(()v uu v v ud u v dS n n ΩΓ∂∂∆-∆Ω=-∂∂⎰⎰⎰⎰⎰推导:由第一Green 公式,有()v u v u v u v u vd u dS d n x x y y z z ΩΓΩ∂∂∂∂∂∂∂∆Ω=-++Ω∂∂∂∂∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰()u u v u v u v v ud v dS d n x x y y z z ΩΓΩ∂∂∂∂∂∂∂∆Ω=-++Ω∂∂∂∂∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰两式相减即可得。
数理方程:第10讲格林函数法
的解如果存在, 必可以表示为
uM0
f
u
v
1
n 4
1 n rM0M
dS
u
n
4
1 rM 0M
v dS
令 GM , M0 4
1 v, 则
rM0M
uM 0
u
GdS n
GM , M 0 称为拉普拉斯方程的格林函数.
如果能找到格林函数中的 v , 并且它在
上有一阶连续偏导数,
则狄利克雷问题 2u 0, u
u | f
格林公式中取 u 为上述调和函数, v 1 , 则
有解的必un要dS条件0.为所函以数紐曼满f内足问题(
u n
|)有f
fdS 0
事实上, 这也是紐曼内问题有解的充分条件.
2) 拉普拉斯方程解的唯一性问题
设 u1 , u2 是定解问题的两个解,则它们的
差 v u1 u2 必是原问题满足零边界条件的
(u2v v2u)dV
(u
v n
v
u n
)dS
可得
v u
(u
n
v
n
)dS
0
与
u
M
0
1
4
u
M
n
1 rM0M
1 rM0M
u M
n
dS
相加得
u M0
u
v
n
1
4
1 n rM0M
1
4
rM
0M
v
u n
dS
如果能找到调和函数 那么上式意味着
v
,
使得
v
|
4
1
rM0M
,
uM0
拉普拉斯方程积分解
拉普拉斯方程积分解什么是拉普拉斯方程拉普拉斯方程(Laplace’s equation)是一个重要的偏微分方程,常常用于描述电势、温度、流体流动等物理过程。
它的一般形式如下:∇^2ϕ = 0,其中,∇^2表示拉普拉斯算符,ϕ表示待求函数。
拉普拉斯方程的积分解方法拉普拉斯方程的求解方法有很多种,其中一种重要的方法是积分解法。
积分解法基于格林函数的概念,通过求解拉普拉斯方程的格林函数,然后进行积分运算,得到方程的解。
格林函数的定义和性质格林函数是偏微分方程求解中的重要概念,它表示在某个位置施加一个单位源,得到的响应。
对于拉普拉斯方程,其格林函数可以表示为:G(x, x’) = -1/(4π|r - r’|),其中,G(x, x’)表示格林函数,x和x’分别表示两个位置点的坐标,r和r’表示两个位置点的距离。
格林函数的一个重要性质是齐次性,即满足齐次边界条件。
这意味着当待求函数满足齐次边界条件时,拉普拉斯方程的解可以表示为格林函数与边界条件的乘积的积分:ϕ(x) = ∫ G(x, x’)f(x’)dV’,其中,ϕ(x)表示待求函数,f(x’)表示边界条件,dV’表示体积元素。
求解过程要利用积分解法求解拉普拉斯方程,首先需要确定边界条件和格林函数。
对于某个具体的物理问题,边界条件是问题的一部分,可以通过实际情况或给定条件确定。
格林函数的选择要与边界条件相适应,通常需要进行一些数学推导和分析。
确定好边界条件和格林函数后,就可以开始求解了。
求解的过程主要包括以下几个步骤:1.将待求函数表示为格林函数与边界条件的乘积的积分形式。
2.利用格林函数的性质进行积分运算,得到待求函数的表达式。
3.针对具体的边界条件和格林函数形式,进行数值计算或解析求解,得到问题的解。
案例分析下面通过一个简单的例子来说明拉普拉斯方程积分解的具体步骤。
考虑一个二维平面上的拉普拉斯方程问题,边界条件为ϕ(x, y) = g(x, y),其中g(x, y)为已知函数。
拉普拉斯方程和格林函数法
以上两个边值问题都是 区域内部求拉普拉斯方程的解. 这样的问题称为内问题.
江西理工大学理学院
6.2 格林公式 设 是以足够光滑的曲面 为边界的有界区域,
P ( x , y , z ), Q( x , y , z ), R( x , y , z ) 在 上连续的,在
内具有一阶连续偏导数的任意函数, 则成立如下
第一边值问题也称为狄利克莱(Dirichlet)问题, 拉普拉斯方程的连续解称为调和函数.所以,狄氏问题 也可以换一种说法:在区域 内找一个调和函数, 它在边界 上的值为已知.
ቤተ መጻሕፍቲ ባይዱ
江西理工大学理学院
(2)第二边值问题 在某光滑的闭曲面 上给出 连续函数 f
,要求寻找这样一个函数 u( x , y , z ) 它在 中是调和函数,在 上连续,在 u 上任一点处法向导数 存在,并且等于已知函数 f n u f 在该点的值: n 第二边值值问题也称牛曼(Neumann)问题.
内是调和的,M是 0
内任一点, K a 表示以 M为中心,以 0
1 u( M 0 ) udS . 2 4 a Ka
a
为半径,
且完全落在区域 内部的球面,则成立下列平均值公式
证明 将调和函数的积分表达式应用于球面 K a
且有
1 1 1 1 1 , 2, r a n r r r a
江西理工大学理学院
(1)第一边值问题 在空间 ( x , y , z ) 中某一区域 的边界 上给定了连续函数 f ,要求这样一个函数 u( x , y , z ) ,它在闭域 (或记作 )上连续,在
内存在二阶偏导数且满足拉普拉斯方程,在
电势与格林函数静电问题中的拉普拉斯方程与格林函数解法
电势与格林函数静电问题中的拉普拉斯方程与格林函数解法导言:在静电学中,研究电势和格林函数是解决电场分布的重要方法。
本文将讨论电势与格林函数在静电问题中的应用,重点介绍拉普拉斯方程以及格林函数解法。
一、拉普拉斯方程简介拉普拉斯方程是描述电势在无电荷区域中分布的基本方程。
对于一个二维情况下的电势分布问题,拉普拉斯方程可以写作:∇²ψ = 0其中,∇²表示拉普拉斯算子,ψ表示电势。
二、格林函数的概念与意义格林函数是求解拉普拉斯方程问题的关键工具。
格林函数是指满足以下条件的函数G(x,x'):∇²G(x,x') = -1 / ε₀ * δ(x-x')其中,ε₀是真空介电常数,δ(x-x')表示Dirac函数。
格林函数在某一点的值表示在该点放置单位点电荷时在空间中的分布情况。
三、格林函数的求解方法格林函数的求解可以通过使用边值问题的方法,具体步骤如下:1. 确定给定区域的边界条件以及相应的边界值。
2. 根据边界条件和拉普拉斯方程建立复杂变量的边界值问题。
3. 利用复变函数的解析性质求解得到问题的解析解。
4. 根据格林第一定理以及叠加原理,得到最终的格林函数解。
四、拉普拉斯方程与格林函数解法实例在一个有限区域中,假设存在一个带电导体表面,题目要求求解该区域内的电势分布。
根据已知条件,可以将问题建模为一个边值问题,通过求解格林函数来得到电势分布。
结论:在静电学问题中,电势与格林函数是求解电场分布的重要方法。
通过拉普拉斯方程与格林函数的解法,可以得到电势的具体分布情况。
在实际问题中,我们可以根据具体的边界条件和几何形状,使用适当的数值方法或解析方法求解,从而获得准确的电势分布结果。
参考文献:[1] Griffiths D J. Introduction to Electrodynamics[M]. Pearson Education Limited, 2017.[2] Lewin W. Mathematical Methods in Classical Mechanics[M]. Springer Science & Business Media, 2012.。
拉普拉斯方程
拉普拉斯方程拉普拉斯方程(Laplace equation)拉普拉斯方程表示液面曲率与液体压力之间的关系的公式。
一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相重合的圆半径称为该曲线的曲率半径R1。
通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用 R1与R2可表示出液体表面的弯曲情况。
若液面是弯曲的,液体内部的压力p1与液体外的压力p2就会不同,在液面两边就会产生压力差?P= P1- P2,其数值与液面曲率大小有关,可表示为:在数理方程中,拉普拉斯方程为:?u=d^2u/dx^2+d^2u/dy^2=0,其中?为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。
三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量 x 、 y 、 z 二阶可微的实函数φ :上面的方程常常简写作:或其中div表示矢量场的散度(结果是一个标量场),grad表示标量场的梯度(结果是一个矢量场),或者简写作:其中Δ称为拉普拉斯算子 .拉普拉斯方程的解称为调和函数。
如果等号右边是一个给定的函数 f ( x , y , z ),即:则该方程称为泊松方程。
拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。
偏微分算子或Δ(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是 Laplace operator 或简称作 Laplacian 。
拉普拉斯方程的狄利克雷问题可归结为求解在区域 D 内定义的函数φ,使得在 D 的边界上等于某给定的函数。
为方便叙述,以下采用拉普拉斯算子应用的其中一个例子——热传导问题作为背景进行介绍:固定区域边界上的温度(是边界上各点位置坐标的函数),直到区域内部热传导使温度分布达到稳定,这个温度分布场就是相应的狄利克雷问题的解。
拉普拉斯方程的诺伊曼边界条件不直接给出区域 D 边界处的温度函数φ本身,而是φ沿 D 的边界法向的导数。
拉普拉斯方程的格林函数法
则 u(M 0)u (M ) n(4整r 1 M 理M 课0 件v)d S
19
2v0,in
令G(M,M0)41rM1M0 v, 其中调和函数v满足v4r1MM0
则 u(M0)u(M)G ndS.
称 G ( M ,M 0 ) 为 三 维 L a p l a c e 方 程 狄 氏 问 题 的 格 林 函 数 。 这 种 由 格 林 函 数 或 其 导 数 的 积 分 来 表 示 解 的 方 法 称 为 格 林 函 数 法 。
的 值 来 表 示 。
2) 若 M0为 外 或 边 界 上 的 点 , 类 似 推 导 有
u(M)nrM 1M0
1 rMM0
u ndS 24uu(0 (M , M00 M )), , 0在 M M 00在 在 外 上 内
整理课件
13
3 ) 若 u C 2 ( ) C 1 ( ) , 且 2 u = F , 我 们 可 以 得 到 类 似 公 式
取 v1,则 可 得 牛 曼 问 题 u n=f有 解 的 必 要 条 件 是 fdS0
整理课件
14
(3)平均值公式
定 理 : 设 函 数 u(M )在 区 域 内 调 和 的 , M 0(x0,y0,z0)为 其 中 任 一 点 ,
Ka表 示 以 M 0(x0,y0,z0)为 中 心 , 以 a为 半 径 且 完 全 落 在 内 部 的 球 面 ,
整理课件
15
(4)Laplace方程解的唯一性问题
定 理 : 狄 氏 问 题 在 C 2 ( )C 1 ( ) 内 解 唯 一 , 牛 曼 问 题 除 相 差 一 个
常 数 外 解 也 是 唯 一 确 定 的 。
证明:
设 u1,u2为 上 述 两 类 问 题 的 解 , 则 它 们 的 差 vu1u2必 是 原 问 题 的 满 足 零 边 界 条 件 的 解 , 即 对 于
关于拉普拉斯算子和格林函数的数学理论和应用
关于拉普拉斯算子和格林函数的数学理论和应用拉普拉斯算子和格林函数是数学中的两个重要概念,被广泛应用于数学、物理、工程等领域。
本文将介绍拉普拉斯算子和格林函数的基本概念、性质和应用。
一、拉普拉斯算子拉普拉斯算子是向量算子,用于描述向量场的散度。
在三维空间中,拉普拉斯算子的表达式为:$$\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$其中,$\phi$ 为标量函数。
在二维平面和一维线性空间中,拉普拉斯算子的表达式分别为:$$\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}$$$$\Delta \phi = \frac{\partial^2 \phi}{\partial x^2}$$拉普拉斯算子的性质很重要,其中最重要的性质是齐次性。
齐次性指的是,对于任意的标量函数 $\phi$,有如下等式成立:$$\Delta (af) = a \Delta f, \quad a \in \mathbb{R}$$也就是说,拉普拉斯算子可以与标量函数的加法和数乘交换顺序。
这个性质非常有用,因为它使得拉普拉斯算子可以应用于线性微分方程的解析和求和问题等。
二、格林函数格林函数是一种特殊的函数,用于求解偏微分方程的边界值问题。
偏微分方程的边界值问题是指,在某个空间区域内,给定方程的解在该区域边界上的特定值,解决方程在整个区域内的解。
例如,要求在一个矩形区域中求解波动方程的解。
格林函数的概念最早由数学家 George Green 提出,后来由格林本人描述,并被称为“格林函数”。
格林函数的实质是一个函数,它表示在某个点上的函数值,是由在其他所有点上的函数值共同决定的。
拉普拉斯方程的格林函数法
然出现感应电荷, 内任意一点的电位,就是点电荷的
电位 1 和感应电荷的电位 内4的rM电0M位.
v
的叠加,
Green函数=
➢将 上的感应电荷用一个等价的点电荷代替,使得这
个“虚”的电荷和真实的点电荷一起,在 内给出和原
来的问题同样的解
M0
M1
4.4 两种特殊区域的格林函数 及狄氏问题的解
4.4 两种特殊区域的格林函数及狄氏问题的解
r
2
2
同理可得 因此
1 r
u n
dS
1
u n
dS
4
u n
u
n
1 r
1 r
u n
dS
4
u
4
u n
0
4.2 格 林 公 式
令 0, 则
lim 0 u uM0
于是
lim
0
4
u n
0
u
M
0
1
4
u M
n
1 rM0M
1 rM0M
u M
n dS
4.2 格 林 公 式
4.3 格林函数
要想确定格林函数, 需要找一个调和函数 v , 它满
1
足: 易,
但v 对| 于4一 r些M0特M .殊对的于区一域般, 的如区半域空,间确,定球v域并等不, 容格
林函数可以通过初等方法得到. 我们通常使用“电
象法”求解。
4.3 格林函数
Green函数的物理意义
➢在接地的闭曲面中放上点电荷之后,在 面内侧必
边界条件:
1) 第一边值问题
u 0 ()
u | f .
狄利克雷(Direchlet)问题 2)第二边值问题
数学物理方程课件第四章拉普拉斯方程的格林函数法
r M 0 M
M 1
1
4 xx02 y y02 zz02
解:
1
4 xx02 y y02 zz02
u(M 0)G (M n,M 0)f(M )dS G(M z,M0)|z0 f(x,y)dS
数学物理方程与特殊函数
第4章格林函数法
1
1
G ( M , M 0 ) 4 x x 0 2 y y 0 2 z z 0 2 4 x x 0 2 y y 0 2 z z 0 2
调和函数的积分表达式
k
拉 普l1r拉n 斯1
1 方x程2的基y本2 解z
ln 1
2
r
x2 y2
三维 二维
1 1 1 u
u (M 0)4 S(u n(r)r n)d S
调和函数在区域内任一点的值可以通过积分表达式用这个
函数在区域边界上的值和边界上的法向导数来表示。
2 牛曼内问题有解的必要条件
V (u 2 v v 2 u )d V S (u n v v u n )d S
一 拉普拉斯方程边值问
题 的 1提 第法一边值问题(狄氏问题)
第四章
拉普 u f
2 第二边值问题(牛曼问题)
拉斯方程的格 u f 林函数法 n
3 内问题与外问题
4 调和函数:具有二阶偏导数并且满足拉普拉斯方程 的连续函数。
二 格林公式及其结论
V (u 2 v )d V S u n vd S V u v d V 格V 林(u 公 2 式v 的v 结 2 论u ):d V S (u n v v u n )d S
半空间的格林函数
1 1 1
G(M,M0)4rM
r M 0 M
M 1
M0q d
第四章 格林函数法 (2)
可得 与
∂v ∂u (u∇ v − v∇ u )dV = ∫∫ (u − v )dS ∂n ∂n Γ ∂v ∂u ∫∫ (u ∂n − v ∂n )dS = 0 Γ
2 2
1 u (M 0 ) = − 4π
∂ 1 u (M ) ∫∫ ∂n rM 0 M Γ
1 ∂u (M ) dS − rM M ∂n 0
能不能直接提供狄利克雷问题和牛曼问 题的解 ?
∂u 为得到狄利克雷问题的解, 为得到狄利克雷问题的解, 必须消去 ∂n |Γ ,
这需要引入格林函数的概念. 这需要引入格林函数的概念.
设 u, v 为 Ω 内的调和函数并且在 Ω + Γ 上 有一阶连续偏导数, 有一阶连续偏导数,利用第二格林公式
∫∫∫
∂u ∂u 所以牛曼内问题( 有 ∫∫ dS = 0. 所以牛曼内问题( |Γ = f ) ∂n ∂n Γ
∫∫ fdS = 0
Γ
事实上, 这也是牛曼内问题有解的充分条件. 事实上 这也是牛曼内问题有解的充分条件
2) 拉普拉斯方程解的唯一性问题 是定解问题的两个解, 设 u1 ,u 2 是定解问题的两个解,则它们的 差 v = u1 − u2 必是原问题满足零边界条件的 解。对于狄利克雷问题, 对于狄利克雷问题,
Γ + Γε
∫∫
1 ∂ r 1 ∂u u − dS ∂n r ∂n
∂ (1/ r ) 1 ∂ (1/ r ) 1 =− = 2 = 2 ∂n ∂r r ε ∂ (1/ r ) 1 1 因此 ∫∫ u dS = 2 ∫∫ udS = 2 u ⋅ 4πε 2 = 4π u ∂r ε Γε ε Γε 1 ∂u 1 ∂u ∂u 同理可得 ∫∫ r ∂n dS = ε ∫∫ ∂n dS = 4πε ∂n Γε Γε
数学物理方程学习指导书第6章拉普拉斯方程的格林函数法
第6章 拉普拉斯方程的格林函数法在第4、5两章,我们较系统地介绍了求解数学物理方程的三种常用方法——分离变量法、行波法与积分变换法.本章我们来介绍拉普拉斯方程的格林函数法.先讨论此方程解的一些重要性质,再建立格林函数的概念,然后通过格林函数建立拉普拉斯方程第一边值问题解的积分表达式.6.1 拉普拉斯方程边值问题的提法在第3章,我们已从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出了三维拉普拉斯方程22222220.u u uu x y z∂∂∂∇≡++=∂∂∂作为描述稳定和平衡等物理现象的拉普拉斯方程,它不能提初始条件.至于边界条件,如第一章所述有三种类型,应用得较多的是如下两种边值问题.(1)第一边值问题 在空间(,,)x y z 中某一区域Ω的边界Γ上给定了连续函数f ,要求这样一个函数(,,)u x y z ,它在闭域Ω+Γ (或记作Ω)上连续,在Ω内存在二阶偏导数且满足拉普拉斯方程,在Γ上与已知函数f 相重合,即.u f Γ= (6.1)第一边值问题也称为狄利克莱(Dirichlet)问题,或简称狄氏问题.4.3中所讨论过的问题就是圆域内的狄氏问题.拉普拉斯方程的连续解称为调和函数.所以,狄氏问题也可以换一种说法:在区域Ω内找一个调和函数,它在边界Γ上的值为已知.(2)第二边值问题 在某光滑的闭曲面Γ上给出连续函数f ,要求寻找这样一个函数(,,)u x y z ,它在Γ内部的区域Ω中是调和函数,在Ω+Γ上连续,在Γ上任一点处法向导数un∂∂存在,并且等于已知函数f 在该点的值: .uf n Γ∂=∂ (6.2) 这里n 是Γ的外法向矢量.第二边值值问题也称牛曼(Neumann )问题.以上两个边值问题都是在边界Γ上给定某些边界条件,在区域内部求拉普拉斯方程的解.这样的问题称为内问题.在应用中我们还会遇到狄氏问题和牛曼问题的另一种提法.例如,当确定某物体外部的稳恒温度场时,就归结为在区域Ω的外部求调和函数u ,使满足边界条件,u f Γ=这里Γ是Ω的边界,f 表示物体表面的温度分布,象这样的定解解问题称为拉普拉斯方程的外问题.由于拉普拉斯方程的外问题是在无穷区域上给出的,定解问题的解是否应加以一定的限制?基于在电学上总是假定在无穷远处的电位为零,所以在外问题中常常要求附加一个条件*)lim (,,)0(r u x y z r →∞==(6.3)(3)狄氏外问题 在空间(,,)x y z 的某一闭曲面Γ上给定连续函数f ,要找出这样一个函数(,,)u x y z ,它在Γ的外部区域'Ω内调和,在'Ω+Γ上连续,当点(,,)x y z 趋于无穷远时,(,,)u x y z 满足条件(6.3),并且它在边界Γ上取所给的函数值.u f Γ= (6.4)(4)牛曼外问题 在光滑的闭曲面Γ上给定连续函数f ,要找出这样一个函数(,,)u x y z ,它的闭曲面Γ的外面部区域'Ω内调和,在'Ω+Γ上连续,在无穷远处满足条件(6.3),而且它在Γ上任一点的法向导数'un ∂∂存在,并满足 ,'uf n Γ∂=∂ (6.5) 这里n '是边界曲面Γ的内法向矢量.下面我们重点讨论内问题,所用的方法也可以用于外问题.6.2 格林公式为了建立拉普拉斯方程解的积分表达式,需要先推导出格林公式,而格林公式则线面积分中奥-高公式的直接推论.设Ω是以足够光滑的曲面Γ为边界的有界区域,(,,),(,,),(,,)P x y z Q x y z R x y z 是在Ω+Γ上连续的,在Ω内具有一阶连续偏导数的任意函数,则成立如下的奥-高公式*)从数学角度讲,补充了这个条件就能保证外问题的解是唯一的,如果不具有这个条件,外问题的解可能不唯一.例如,在单位圆Γ外求调和函数,在边界上满足1=Γu.容易看出,及1),,(1≡z y x u22221),,(zy x z y x u ++=都在单位圆外满足拉普拉斯方程,并且在单位圆Γ上满足上述边界条件.P Q R d x y z Ω⎛⎫∂∂∂++Ω ⎪∂∂∂⎝⎭⎰⎰⎰ [cos(,)cos(,)cos(,)],P n x Q n y R n z dS Γ=++⎰⎰ (6.6)其中d Ω是体积元素,n 是Γ的外法向矢量,dS 是Γ上的面积元素.下面来推导公式(6.6)的两个推论.设函数(,,)u x y z 和(,,)v x y z 在Ω+Γ上具有一阶连续偏导数,在Ω内具有连续的二阶偏导数.在(6.6)中令,,,v v v P uQ u R u x y z∂∂∂===∂∂∂ 则有2()u v u v u v u v d d x x y y z z ΩΩ⎛⎫∂∂∂∂∂∂∇Ω+++Ω ⎪∂∂∂∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰ ,vudS nΓ∂=∂⎰⎰ 或2().vu v d u dS grad u grad v d n ΩΓΩ∂∇Ω=-⋅Ω∂⎰⎰⎰⎰⎰⎰⎰⎰ (6.7) (6.7)式称为第一格林(Green)公式.在公式(6.7)中交换,u v 位置,则得2().uv u d v dS grad u grad v d n ΩΓΩ∂∇Ω=-⋅Ω∂⎰⎰⎰⎰⎰⎰⎰⎰ (6.8) 将(6.7)与(6.8)式相减得到22().v u u v v u d u v dS n n ΩΓ∂∂⎛⎫∇-∇Ω=- ⎪∂∂⎝⎭⎰⎰⎰⎰⎰ (6.9) (6.9)式称为第二格林公式.利用格林公式我们可以推出调和函数的一些基本性质. (i)调和函数的积分表达式所谓调和函数的积分表达式,就是用调和函数及其在区域边界Γ上的法向导数沿Γ的积分来表达调和函数在Ω内任一点的值.设0000(,,)M x y z 是Ω内某一固定点,现在我们就来求调和函数在这点的值,为此,构造一个函数1v r == (6.10)函数1r除点0M 外处处满足拉普拉斯方程,这函数在研究三维拉普拉斯方程中起着重要的作用,通常称它为三维拉普拉斯方程的基本解.由于1v r=在Ω内有奇异点0M ,我们作一个以0M 为中心,以充分小的正数ε为半径的球面,εΓ在Ω内挖去,εΓ所包围的球域K ε得到区域K εΩ-(图6-1),在K εΩ-内1v r=是连续可微的.在公式(4.9)中取u 为调和函数,而图6-1取1v r=,并以K εΩ-代替该公式中的Ω,得 221111(),K u r u u d u dS r r n r n εεΩ-Γ+Γ⎡⎤⎛⎫∂ ⎪⎢⎥∂⎝⎭⎢⎥∇-∇Ω=-∂∂⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰ (6.11) 因为在K εΩ-内2210,0.u r∇=∇=而在球面εΓ上221111,r r n r r ε⎛⎫⎛⎫∂∂ ⎪ ⎪⎝⎭⎝⎭=-==∂∂ 因此22211144,r u dS udS u u n εεπεπεεΓΓ⎛⎫∂ ⎪⎝⎭==⋅=∂⎰⎰⎰⎰其中u 是函数u 在球面εΓ上的平均值.同理可得22211144,r u dS udS u u n εεπεπεεΓΓ⎛⎫∂ ⎪⎝⎭==⋅=∂⎰⎰⎰⎰ 此外u n ⎛⎫∂ ⎪∂⎝⎭是un ∂∂在球面εΓ上的平均值,将此两式代入(6.11)可得 11440.u u u dS u n r r n n εππεΓ⎛⎫⎛⎫∂∂∂⎛⎫-+-= ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎰⎰ 现在令0,ε→由于00lim ()u u M ε→=(因为(,,)u x y z 是连续函数),0lim 40u n επε→⎛⎫∂=⎪∂⎝⎭(因为(,,)u x y z 是一阶连续可微的,故un∂∂有界)则得 000111()()(),4MM MM u M u M u M dS n r r n πΓ⎡⎤⎛⎫∂∂⎢⎥=--⎪ ⎪∂∂⎢⎥⎝⎭⎣⎦⎰⎰ (6.12)此外为明确起见,我们将r =记成0MM r .(6.12)说明,对于在Ω+Γ上有连续一阶偏导数的调和函数u ,它在区域Ω内任一点0M 的值,可通过积分表达式(6.12)用这个函数在区域边界Γ上的值及其在Γ上的法向导数来表示*).(ii)牛曼内问题有解的必要条件设u 是在以Γ为边界的区域Ω内的调和函数,在Ω+Γ上有一阶连续偏导数,则在公式(6.9)中取u 为所给的调和函数,取1v =,就得到0udS nΓ∂=∂⎰⎰(6.13) 由(6.13)可得牛曼内问题u f nΓ⎛⎫∂=⎪∂⎝⎭有解的必要条件为函数f 满足*)上面的推导是假定点),,(0000z y x M 在区域Ω内,如果0M 在Ω外或0M 在边界Γ上,我们也可用同样方法推得另外两个式子,把它们合并在一起可得⎰⎰Γ⎪⎩⎪⎨⎧ΩΓΩ=⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂-。
格林函数法
本章讨论的主要是用格林函数法求拉普拉斯 方程边值问题
§4.1 格林公式及其应用
§4.1.1 球对称解
通过变换:⎧ x = r sinθ cosϕ
⎪⎪ ⎨
y
=
r
sin θ
sin ϕ
⎪⎪⎩z = r cosθ
(0 ≤ θ ≤ π ) (0 ≤ ϕ ≤ 2π )
可以将直角坐标系下的拉普拉斯方程:
u(M0 )
=
−∫∫ Γ
f (x,y,z)
∂G ∂n
dS
(4.20)
对于泊松方程的狄利克雷问题:
7
⎧⎪+u = F , 在 内 ⎨⎪⎩u Γ = f (x,y,z)
如果在 +上具有一阶连续偏导数的解,则此 解可表示为:
u(M 0 )
=
−∫∫ Γ
f
∂G ∂n
dS
−
∫∫∫ FGdΩ Ω
小结:狄利克雷问题:
3/2
于是球域内狄利克雷问题的解为
∫∫ ( ) u(M0) =
1 4π R
Γ
f (x,y,z)
R2 − r02 R2 + r02 − 2Rr0 cos γ
3/2 dS
(4.31)
14
在球坐标系中,上式可化为
∫ ∫ u(r0,θ0,ϕ0)
=
R 4π
2π 0
π f (R,θ,ϕ)
0
( ) R2 − r02
∫∫ u(M0)
=
1 4πa2
Γa
u(M)dS
(4.13)
性质3(极值原理)若函数u(x,y,z)在 内调和, 在 +上连续,且不为常数,则它的最大值、最
小值只能在边界上达到。
格林函数1
以下条件
lim u ( x , y , z ) 0
r
( r x2 y2 z2 )
( 4 .3 )
(3) 狄氏外问题
在空间 ( x, y, z ) 中某一区域 的边界 上,给定了连
续函数 f ,要求这样一个函数 u ( x, y, z ) ,它在 的外
部区域 内调和,在 上连续,当点 ( x, y, z )
1 2 u 1 u 1 2u (r ) 2 (sin ) 2 2 0 2 2 r r r r sin r sin
求方程的球对称解
u V (r ) (即与 和 无关的解) ,则有:
d 2 dV (r )0 dr dr
c1 其通解为:V ( r ) c2 , (r 0, c1 , c2 为任意常数)。 r 1 若取 c 1, c 0,则得到特解 V0 ( r ) ,称此解为三维Laplace 1 2 r
v u dS u v dV n
( 4 .7 )
第一 Green 公式
u 2 v d V u v dS u v dV
n
( 4 .7 )
为第一 Green 公式
交换
v 与 u 的位置,则有
v
2
u d V
P cos( n, x ) Q cos( n, y ) R cos( n, z ) d S
( 4 .6 )
d 其中,d V 是 中的体积元;n 是边界 上的外法向矢量; S 是 上的面积元。
下面来推导(4.6)式的两个推论。
设函数 u ( x, y, z ) 和 v ( x, y, z ) 在 上有一阶连续偏导数,在
拉普拉斯方程及其解法
拉普拉斯方程及其解法拉普拉斯方程是一个经典的偏微分方程,它的形式为:∇²u=0其中,u表示待求的函数,∇²表示Laplace算子,表示二阶偏导数的和。
拉普拉斯方程在各个领域中都有着重要的应用,如电场、热传导、流体力学等。
在数学上,对于二维或三维函数的拉普拉斯方程,其解法有许多种,其中最常用的为分离变量法与格林函数法。
一、分离变量法分离变量法在解决二维及三维拉普拉斯方程中具有广泛的适用性,它的基本思想是将多维问题化为一系列单变量问题的组合。
假设拉普拉斯方程的解可以表示为三维函数的乘积形式:u(x,y,z)=X(x)Y(y)Z(z)则将这个表达式代入拉普拉斯方程中,可以得到以下三个方程:X''(x)/X(x)+Y''(y)/Y(y)+Z''(z)/Z(z)=0由于每个方程都与坐标变量无关,因此可以将它们分别表示为常微分方程的形式:X''(x)/X(x)=λ1,Y''(y)/Y(y)=λ2,Z''(z)/Z(z)=λ3上述三个方程中的参数λ1、λ2、λ3为方程的本征值,它们的取值将直接影响到解的形式。
当λ1、λ2、λ3为常数时,可以将三个方程的通解写成以下形式:X(x)=Acos(α1x)+Bsin(α1x),Y(y)=Ccos(α2y)+Dsin(α2y),Z(z)=Ecos(α3z)+Fsin(α3z)其中,A、B、C、D、E、F为任意常数,α1、α2、α3为根据本征值计算出来的常数。
将上述三个方程的通解带入原式,经过简单分析、代数变换,可以得到二维或三维拉普拉斯方程的解。
二、格林函数法另一种常用的解法为格林函数法。
在一定条件下,基于格林函数的方法能够得到更加简单和结构精细的解,因此在应用中有着广泛的应用。
假设存在格林函数G(x,y),它有以下特性:①G(x,y)满足拉普拉斯方程,即∇²G(x,y)=δ(x-x0,y-y0)。
拉普拉斯方程的完整求解
拉普拉斯方程的完整求解拉普拉斯方程是数学中的一个重要方程,它在物理学、工程学和其他领域中有广泛的应用。
本文将以人类的视角,以自然流畅的语言描述拉普拉斯方程的完整求解过程。
拉普拉斯方程是一个偏微分方程,它描述了一个没有源或汇的稳定系统中的物理量分布。
该方程可以用于描述电势、流体静压力、热传导等现象。
拉普拉斯方程的一般形式如下:∇²u = 0其中,u是待求解的物理量,∇²是拉普拉斯算子,表示物理量的二阶空间导数之和。
为了求解拉普拉斯方程,我们需要给定一些边界条件。
边界条件可以是物理量在边界上的值,或物理量的法向导数在边界上的值。
根据边界条件的不同,我们可以采用不同的数学方法来求解拉普拉斯方程。
一种常见的求解方法是使用分离变量法。
通过假设物理量的解可以分解为边界条件所对应的一系列特定的函数形式,我们可以将拉普拉斯方程转化为一系列的常微分方程。
然后,通过求解这些常微分方程,我们可以得到物理量的解。
另一种常见的求解方法是使用格林函数法。
格林函数是拉普拉斯方程的一个特解,它对应于在一个点源处产生单位势函数的解。
通过将物理量表示为格林函数和边界条件的线性组合,我们可以得到拉普拉斯方程的解。
除了分离变量法和格林函数法,还有其他一些数值方法可以用来求解拉普拉斯方程。
例如有限差分法、有限元法等。
这些方法将拉普拉斯方程离散化为代数方程组,然后通过求解方程组得到物理量的数值解。
需要注意的是,拉普拉斯方程的求解过程可能会受到问题的几何形状、边界条件的复杂性以及数值方法的选择等因素的影响。
在实际应用中,我们需要根据具体情况选择合适的求解方法,并进行适当的数值计算。
总结起来,拉普拉斯方程是一个重要的偏微分方程,它在物理学、工程学和其他领域中有广泛的应用。
通过给定适当的边界条件,我们可以使用不同的数学方法来求解拉普拉斯方程。
分离变量法、格林函数法和数值方法是常用的求解方法。
在实际应用中,我们需要根据具体情况选择合适的方法,并进行适当的数值计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
格林函数
格林函数的概念及其物理意义
格林函数法是求解导热问题的又一种分析解法。
从物理上看,一个数学物理方程是表示一种特定的"场"和产生这种场的"源"之间的关系。
例如,热传导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等。
这样,当源被分解成很多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场,这种求解数学物理方程的方法就叫格林函数法.而点源产生的场就叫做格林函数。
物体中的温度分布随时间的变化是由于热源、边界的热作用以及初始温度分布作用的结果。
这些热作用都可以看做广义上的热源。
从时间的概念上说,热源可以使连续作用的,如果作用的时间足够短,则可以抽象为瞬时作用的热源。
同样的热源在空间上是有一定分布的,但如果热源作用的空间尺度足够小,也可以抽象为点热源、线热源和面热源。
在各种不同种类的热源中,瞬时点热源虽然仅是一种数学上的抽象,却有着重要的意义,因为在其他的各种热源都可以看作是许多瞬时热源的集合,即把空间中的热源看成是在空间中依次排列着的许多点热源,在特定的几何条件的导热系统中,在齐次边界条件和零初始条件下单位强度的瞬时点热源所产生的温度场称为热源函数,或称格(Green)函数。
对于二维和一维导热问题,也把由线热源和面热源引起的温度场称为相应的格林函数。
对于线性的导热问题,由各种复杂的热源引起的温度场可以由许多这样的瞬时热源引起的温度场叠加得到,数学上即成为某种几分。
这就是热源法,或称格林函数法,求解非稳态导热问题的基本思路。
采用格林函数法可以求解带有随时间变化的热源项且具有非齐次边界条件的导热微分方程,对于一维、二维和三维问题的解在形式上都可以表示的非常紧凑,而且解的物理意义比较清楚。
格林函数法可以来求解不同类型的偏微分方程,包括线性的椭圆形的偏微分方程(如带有热源项的稳态导热问题)以及双曲型偏微分方程(如力学中的震动问题)。
在此仅讨论用格林函数法求解非稳态导热问题。
用格林函数法求解的困难在于找到格林函数,而格林函数的形式取决于特定问题的具体条件,包括几何条件(即有限大、半无限大或无限大)、边界条件和坐标系的选取。
因此用格林函数法求解非稳态导热问题首先需要对特定定解条件的导热系统确定其格林函数。
本方法的第二个要点是确定有热源和非齐次边界条件的一般导热问题的温度分布与格林函数的关系。
本节从几个较简单的例子开始介绍格林函数法在解决稳态导热问题中的应用,再推广到更为一般的情况。
“瞬时”和“点”热源的概念在数学上都可用狄克拉δ分布函数,简称δ函数,来表示。
δ函数的定义为
空间变量的三维δ函数δ)'(r r -在直角坐标系中等同于三个坐标量的δ函数的乘积,即δ)'x x -(δ)'y y -(δ)'(z z -。
这样,τ´时刻作用在空间某一点r ´、强度在数量上等于ρc[J]的瞬时点热源可写作
或在直角坐标系中表示为
因此,作用在'x x =处的强度为ρc 的瞬时面热源应为ρc δ)'x x -(δ(τ—τ´)。
由这样的热源在齐次边界条件和零初始条件下引起的温度分布
称为格林函数。
其中自变量第一部分表示该温度分布是空间坐标r 和时间τ的函数,第二部分r ´和τ´表示瞬时点热源的位置和释放时间。
大平壁中的非稳态导热
首先从一个简单的一维稳态问题来介绍格林函数法的思路。
设一维平壁有初始温度分布F(x )和热源),(),(τρτx cg x q =,平壁的一个边界维持绝热,另一个边界受到热流)(f τ的作用。
该问题的数学描述为
)
'-()'-( v ττρδr r c δq =)'-()'-()'-()'-( z z δy y δx x δr r δ=)
',',(ττr r G
首先该导热系统的格林函数G,它满足以下的辅助问题:
τ´时刻以前平壁中没有热源的作用,温度分布应维持为0,而τ´时刻的瞬时热源的作用等同于τ´时刻的初始温度分布,则以上问题可转化为
一半空间阈中的格林函数法
拉普拉斯变换求解非稳态导热
拉普拉斯变换的基本概念 定义
=)s (F
ττd f st F )()s (0
⎰
∞
-=
为函数)(τf 的拉普拉斯变换,简称拉氏变换,记为:
)()]([s F f L =τ
)(τf 称为拉氏变换的原函数,)(s F 称为)(f τ的象函数。
式中s 可以是重复变量。
拉普拉斯变换存在的基础就是:
拉普拉斯变换的基本性质
由拉普拉斯变换法求解导热问题时,首先得到的是象函数,要通过反变换才能得到温度分布的表达式。
许多象函数的反变换可以从拉普拉斯变换中查得。
为了充分发挥已有变换表的作用,要注意应用拉普拉斯变换的有关定理。
由于象函数的多样性和复杂性,有时不可能从变换表中直接求得所需的反变换。
这时,就得自己进行反变换运算,部分分式法和回路积分法。
杜哈美尔定理
求解边界条件和热源项随时间变化的热传导问题与求解边界条件和热源项不随时间变化的同一热传导问题之间的关系,可以通过杜哈美尔定理把它们联系起来。
杜哈美尔定理的表述参见ppt。