发电厂电气部分设计

合集下载

发电厂电气一次部分设计-2300MW

发电厂电气一次部分设计-2300MW

发电厂电气一次局部设计-2×300MW引言本设计是对 2 某300MW 总装机容量为 6000MW 的凝汽式区域性火电厂进展电气一次局部及其厂用电高压局部的设计,它主要包括了四大局部,分别为电气主接线的选择、短路电流的计算、电气设备的选择、配电装置的选择。

其中具体描述了主接线的选择、短路电流的计算和电气设备的选择,从不同的短路状况进展分析和计算,对不同的短路参数来进展不同种类设备的选择,并对设计进展了理论分析。

设计电厂为大型凝气式火电厂,其容量为 2 某300=600MW,最大单机容量为 300MW,即具有大中型容量的规模、大中型机组的特点。

当电厂全部机组投入运行后,将占电力系统总容量600/6000≈10%,没有超过电力系统的检修备用容量为 8%~15%和事故备用容量为 10%的限额,说明该电厂在将来电力系统中不占主导作用和主导地位,主要供给地区用电。

发电厂运行方式及年利用小时数直接影响着主接线设计。

从年利用小时数看,该电厂年利用小时数为 6500h/a,远大于我国电力系统发电机组的平均最大负荷利用小时数 5000h/年;又为火电厂,所以该发电厂为带基荷的发电厂,在电力系统占比较重要的地位,因此,该厂主接线要求有较高的牢靠性;从负荷特点及电压等级可知,该电厂具有110KV 和220KV 两级电压负荷。

110KV 电压等级有 8 回架空线路,担当一级负荷,最大输送功率为 110MW,最大年利用小时数为 4000h/a,说明对其牢靠性有肯定要求;220KV 电压等级有 10 回架空线路,担当一级负荷,最大输送功率为500MW,最大年利用小时数为 4500h/a,其牢靠性要求较高,为保证检修出线断路器不致对该回路断电,拟承受带旁路母线接线形式。

2、电气主接线3、2.1、主接线方案的选择2.1.1方案拟定的依据第1 页共13 页对电气主接线的根本要求,概括的说应当包括牢靠性、敏捷性和经济性三方面。

电力工程设计手册 24 火力发电厂电气一次部分

电力工程设计手册 24 火力发电厂电气一次部分

电力工程设计手册 24 火力发电厂电气一次部分一、概述本手册《电力工程设计手册 24 火力发电厂电气一次部分》是一本详细介绍火力发电厂电气一次部分设计的综合性手册。

本手册旨在为电气设计师提供有关火力发电厂电气一次部分的设计原则、方法、规范和标准,以便他们能够更好地完成火力发电厂电气一次部分的设计工作。

二、设计原则1. 安全性:电气一次部分的设计必须遵循安全原则,确保电厂的安全运行。

2. 经济性:在满足安全性的前提下,应尽可能降低电气一次部分的设计成本。

3. 可靠性:应采用高质量的电气设备,确保电厂电气一次部分的稳定运行。

4. 可维护性:应设计易于维护和检修的电气系统,以降低维护成本。

三、设计内容1. 电源系统:包括电源的选择、电源系统的配置和电源系统的保护。

2. 配电系统:包括配电线路的选择、配电设备的配置和配电系统的保护。

3. 变压器:包括变压器类型、容量、台数的选择,以及变压器的安装位置和保护。

4. 高压开关设备:包括高压开关柜的类型、规格、配置,以及高压开关设备的保护和控制。

5. 低压开关设备:包括低压配电柜的类型、规格、配置,以及低压开关设备的控制和保护。

6. 电缆和母线:包括电缆的选择、敷设方式和母线的配置。

7. 防雷和接地:包括防雷系统的设计、接地系统的配置和接地电阻的测量。

四、设计方法1. 计算和校核:根据火力发电厂的需求和规范,进行电气一次部分的计算和校核,确保设计的合理性和可行性。

2. 图纸和说明:根据设计内容,绘制相应的图纸,并编写相应的设计说明,以确保其他专业人员能够理解设计意图。

3. 设备选型:根据设计要求,选择合适的电气设备,并进行成本效益分析,以确保选择的设备既满足设计要求,又具有经济性。

五、设计规范和标准1.《电力工程设计规范》:这是电气一次部分设计的基本规范,规定了电气一次部分的设计原则、方法、规范和标准。

2.《电气装置安装工程设计规范》:这是电气一次部分设计的具体规范,规定了电气一次部分的具体设计和安装要求。

发电厂电气部分设计

发电厂电气部分设计

摘要:本设计是对4×600MW总装机容量为2400MW的凝汽式火力发电厂进行电气一次部分及其厂用电高压部分的设计,它主要包括了五大部分,分别为:电气主接线的选择、厂用电设计、短路电流的计算、主要电气设备的选择、完成主接线图与设计说明书。

其中详细描述了短路电流的计算和电气设备的选择,从不同的短路情况进行分析和计算,对不同的短路参数来进行不同种类设备的选择,列出各设备选择结果表。

并对设计进行了理论分析。

最后的设计总图包括主接线,主要电气设备。

关键词:电气一次部分;电气主接线;短路计算;设备选择Abstract:This design is for 4 × 600MW total installed capacity of the electrical powe r plant and a part of the high-pressu-re part of the design of 2400MW of condensing st eam power plant.Itincludes five parts, namely: the calculation of the main electrical co nnection options, power design, short-circuit current, the main electrical equipment se lection, complete the main wiring diagrams and design specification. Which describes in detail the selection of the short circuit current computing and electrical equipment for analysis and calculations from different short circuit, short circuit to different para meters to choose different types of devices, each device listed in the selection result ta ble.Theoretical analysis anddesign.The final master plan includes a main wiring,main electrical equipment.Keywords:Electrical primary part;Electrical main wiring;Short circuit calculations;Equipment selection目录1 电气主接线 (1)1.1 系统与负荷资料分析 (1)1.2 主接线方案的选择 (3)1.3 各接线方式的比较 (7)1.3.1 双母线接线方式的特点: (7)1.3.2 双母带旁路接线方式的特点: (8)1.3.3 一台半断路器接线方式的特点: (8)1.4 主变压器的选择与计算 (10)1.4.1 单元接线的主变压器容量的确定原则 (10)1.4.2 主变压器型式的确定原则 (10)1.4.3 主变压器型式的选择 (11)1.4.4 联络变压器的选择 (12)1.5 厂用电的接线方式和选择 (13)1.5.1 厂用电设计要求: (13)1.5.2 厂用电的电压等级: (13)1.5.3 厂用变压器的选择 (14)1.5.4 厂用电系统中性点接地方式 (15)1.5.5 厂用电接线形式 (15)2 短路电流的计算 (17)2.1 短路计算的一般规则 (17)2.2 短路计算的一般规定和条件 (17)2.3 短路计算过程 (18)3 电气设备的选择 (27)3.1 电气设备选择的一般规则 (27)3.2 电气选择的条件 (27)3.2.1 断路器的种类和形式的选择 (29)3.2.2 隔离开关的种类和形式的选择 (31)3.2.2 互感器的种类和形式的选择 (31)3.2.3 避雷器的种类和形式的选择 (33)3.3 500kV设备选择 (33)3.3.1 500kV断路器的选择 (33)3.3.2 500kV隔离开关的选择 (35)3.3.3 500kV电流互感器的选择 (36)3.3.4 500kV电压互感器的选择 (36)3.3.5 500kV避雷器的选择 (36)3.4 220kV设备选择 (37)3.4.1 220kV断路器的选择 (37)3.4.2 220kV隔离开关的选择 (38)3.4.3 220kV电流互感器的选择 (39)3.4.4 220kV电压互感器的选择 (40)3.4.5 220kV避雷器的选择 (40)3.5 电气设备选择的结果表 (41)4 母线选择及校验 (43)4.1 母线材料及形状的选择 (43)4.2 500KV侧母线选择及校验 (44)4.3 220KV侧母线选择及校验 (45)5 配电装置 (47)5.1 配电装置选择的一般原则 (47)5.2 配电装置的选型和依据 (47)5.3 主接线中设备配置的一般原则 (48)5.3.1 隔离开关的配置 (48)5.3.2 电压互感器的配置 (48)5.3.3 电流互感器的配置 (49)参考文献 (50)致谢 (51)附录I (52)本次设计是在课程设计任务书的基础上,依靠本学期所学的<<电力系统基础>>专业理论知识进行的,翻阅及参考了多种资料,通过本设计树立工程观点,加强基本理论的理解和工程设计基本技能的训练,了解现代大型发电厂的电能生产过程及其特点,掌握发电厂电气主系统的设计方法,并在分析、计算和解决实际工程能力等方面得到训练,为今后从事电气设计、运行管理和科研工作,奠定必要的理论基础。

发电厂电气部分综合设计报告范文

发电厂电气部分综合设计报告范文

发电厂电气部分综合设计报告范文下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!发电厂电气部分综合设计报告摘要:本文旨在对发电厂电气部分的综合设计进行详尽的分析和阐述。

火力发电厂电气部分设计论文

火力发电厂电气部分设计论文

火力发电厂电气部分设计论文摘要:本文主要探讨火力发电厂电气部分的设计,包括电气主接线设计、发电机与变压器的连接形式选择、发电厂厂用电设计、主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择,以及短路电流计算和部分高压电气设备的选择与校验。

论文旨在通过优化设计,提高发电厂电气系统的可靠性和经济性。

一、引言火力发电厂是电力工业的重要组成部分,其运行效率直接影响到电力供应的安全与稳定。

在火力发电厂的总体设计中,电气部分的设计至关重要。

本文将重点讨论火力发电厂电气部分的设计方案和关键技术问题。

二、火力发电厂电气部分设计的主要内容1.电气主接线设计电气主接线是火力发电厂的重要组成部分,其主要功能是保障电能输送的稳定性和安全性。

在进行主接线设计时,应考虑以下因素:(1)可靠性:应能满足正常运行时的安全可靠供电,并能在事故情况下尽量减少停电时间;(2)灵活性:应能适应各种运行方式,并便于切换操作;(3)经济性:应考虑建设成本和运行维护费用;(4)扩展性:应考虑未来负荷增长的需要,方便进行扩建。

2.发电机与变压器的连接形式选择发电机与变压器的连接形式主要有直接连接和通过断路器连接两种。

直接连接适用于容量较小、电压较低的发电机组,此种方式下发电机与变压器直接相连,结构简单、维护方便。

对于大容量、高电压的发电机组,采用断路器连接更为合适,因为这种方式可以通过断路器实现发电机的快速启动和停机,提高系统的稳定性。

3.发电厂厂用电设计厂用电系统是火力发电厂的重要组成部分,其设计的合理与否直接影响到发电厂的运行效率。

在进行厂用电设计时,应考虑以下因素:(1)供电可靠性:应保证重要负荷的供电不中断或少中断;(2)用电安全性:应保证人身和设备的安全;(3)节能环保:应采取措施降低能耗和减少对环境的影响;(4)可扩展性:应考虑未来发展的需要,方便进行扩建。

4.主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择主变压器是火力发电厂的核心设备,其容量和台数的选择需根据发电厂的总体规划、用电负荷、运行方式等因素综合考虑。

发电厂电气课程设计任务书

发电厂电气课程设计任务书

发电厂电气课程设计任务书
一、课程设计目的和要求
1.目的发电厂电气部分课程设计是在学生学习《发电厂电气部分》后的一次综合训练,通过这次训练不仅使学生复习巩固了本课程及其它课程的有关内容,而且增强学生工程观念,培养他们的电气设计能力
2.要求
1)熟悉国家能源开发策略和有关的技术规程、规定,树立供电必须安全可靠、经济的观念;
2)掌握发电厂初步设计的基本方法和主要内容:
3)熟悉发电厂初步设计的基本计算;
4)学习工程设计说明书的撰写。

1.发电厂情况:
(1)类型:水电厂;水电厂机组容量与台数:4X50MW,发电机端电压,cos0.85:发电厂年利用小时数Tmax4000hMaX
(2)发电厂所在地最高温度40摄氏度,年平均温度20摄氏度,气象条件一般,所在地海拔高度1000m
2.电力系统负荷情况:
(1)发电厂电压负荷:最大10MW,最小8MW,cos0.85,
Tmax4000h.
(2)35KV电压负荷:最大200MW,最小100MW,cos0.8,
Tmax3800h.
(3)其余功率送入110KV系统,系统容量1000MVA。

归算到
110KV母线阻抗,其中S100MVA:自用电3%
(4)供电线路数目
1.发电机电压,架空线路6回,每回输送容量2MW,cOS0.85 架空线路6回,每回输送容量20MW,cOS0.85
架空线路2回,与系统连接。

三.设计成果
1.课程设计说明书一份。

2.发电厂电气主接线图一张。

3.课程设计计算书一份。

发电厂电气部分课程设计

发电厂电气部分课程设计

发电厂电气部分课程设计一、设计概述本课程设计旨在让学生了解发电厂的电气部分的基本原理和运行机制,为学生提供实践操作的机会,培养学生在电气工程领域的技能和能力。

通过本课程设计,学生将深入学习发电厂电气系统的设计、运行和故障排除。

二、设计目标1.理解发电厂的电气系统的组成和工作原理。

2.学习发电厂电气设备的选型、安装和调试。

3.掌握发电厂电气设备的运行维护和故障排除技巧。

4.能够进行发电厂电气系统的设计和改进。

三、设计内容本课程设计主要包括以下几个方面的内容:1. 发电厂电气系统的组成和工作原理•学习发电厂电气系统的组成和各部分设备的功能。

•了解发电厂电气系统的工作原理和工作过程。

•分析发电厂电气系统的运行特点和需求。

2. 发电厂电气设备的选型、安装和调试•学习发电厂电气设备的选型原则和方法。

•掌握发电厂电气设备的安装和调试技术。

•学习电气设备的运行参数调整和优化方法。

3. 发电厂电气设备的运行维护和故障排除•掌握发电厂电气设备的日常运行维护方法。

•学习电气设备的故障检修和故障排除技巧。

•了解电气设备的故障分析和预防措施。

4. 发电厂电气系统的设计和改进•学习发电厂电气系统的设计方法和原则。

•掌握电气系统的改进和升级技术。

•进行实际发电厂电气系统的设计和改进。

四、设计步骤1.学习发电厂电气系统的基本知识和原理。

2.进行发电厂电气设备的选型和配套计算。

3.编制电气系统的设计方案和施工图纸。

4.安装和调试电气设备。

5.进行电气系统的运行和维护。

6.掌握电气设备故障排除和分析方法。

7.对电气系统进行改进和优化。

五、设计要求1.设计文档需要使用Markdown文本格式进行编写。

2.文档字数不少于1200字。

3.图表和表格需要清晰明确,便于理解和演示。

4.设计步骤需要详细说明和解释,确保学生能够按照步骤进行实际操作。

六、评估方式根据学生对课程设计的实际操作和设计文档的质量,教师可以采用以下方式进行评估:1.实际操作评估:根据学生的实际操作表现和操作结果进行评估。

发电厂电气部分课程设计

发电厂电气部分课程设计

第一章概述 ___________________________________________________________11.1课程设计目的 ____________________________________________________________ 11.2设计原始资料 ____________________________________________________________ 11.3设计原则________________________________________________________________ 1 第二章方案设计________________________________________________________32.1原始资料分析 ____________________________________________________________ 32.2发电厂接线方案比较_______________________________________________________ 32.2.1 主接线方案拟定 ______________________________________________________ 32.2.2各方案比较___________________________________________________________ 62.3主变的选择______________________________________________________________ 82.3.1相数的选择___________________________________________________________ 82.3.2 绕组数量的选择 ______________________________________________________ 82.3.3连接方式的选择_______________________________________________________ 82.3.4普通型和自耦型选择___________________________________________________ 82.3.5调压方式的选择_______________________________________________________ 82.4各级电压中性点运行方式选择 _______________________________________________ 9 第三章短路电流的计算__________________________________________________ 103.1短路形成的原因 _________________________________________________________ 103.2短路的危害 _____________________________________________________________ 103.3短路的类型______________________________________________________________ 103.4短路电流计算的目的______________________________________________________ 103.5短路电流的计算方法以及短路点的选取 ______________________________________ 11 第四章厂用电设计 _____________________________________________________ 234.1厂用电负荷 _____________________________________________________________ 234.2厂用电电压等级________________________________________________________ 234.3厂用变压器的选择_______________________________________________________ 234.3.1相数的选择__________________________________________________________ 234.3.2绕组数量的选择______________________________________________________ 234.3.3联结组别的选择______________________________________________________ 234.3.4厂用变容量的计算____________________________________________________ 244.4厂用电源及接线方式______________________________________________________ 244.4.1 工作电源___________________________________________________________ 244.4.2 备用电源和启动电源__________________________________________________ 244.4.3 事故保安电源 _______________________________________________________ 244.5厂用电接线方式_________________________________________________________ 244.6厂用电短路计算_________________________________________________________ 254.7厂用电动机的自启动校验__________________________________________________ 304.7.1电动机的自启动的概念和必要性_________________________________________ 304.7.2电动机自启动时母线电压的校验_________________________________________ 31 第五章导体、电气设备选择及校验 _________________________________________ 325.1选择电气一次设备遵循的条件 ______________________________________________ 325.2导线的选择及校验________________________________________________________ 325.2.1发电机侧导体选择____________________________________________________ 325.2.2主变到系统导体选择__________________________________________________ 345.3断路器的选择与校验______________________________________________________ 365.3.1主变到系统侧断路器选择 ______________________________________________ 365.3.2发电机到母线汇流点的断路器选择_______________________________________ 375.3.3厂用变高压侧到母线汇流点的断路器的选择_______________________________ 385.3.4 厂用变压器低压侧到厂用母线的断路器选择_______________________________ 395.3.5厂用负荷到厂用母线断路器的选择_______________________________________ 405.4隔离开关的选择与校验____________________________________________________ 415.4.1主变到系统侧隔离开关选择 ____________________________________________ 425.4.2发电机到母线汇流点的隔离开关选择_____________________________________ 425.4.3厂用变高压侧到母线汇流点的隔离开关选择_______________________________ 435.4.4 厂用变压器低压侧到厂用母线隔离开关选择_______________________________ 445.4.5厂用负荷到厂用母线的隔离开关选择_____________________________________ 455.5互感器的选择与校验______________________________________________________ 465.5.1 电压互感器的选择 ___________________________________________________ 465.5.2电流互感器的选择与校验 ______________________________________________ 465.6绝缘子串和套管的选择____________________________________________________ 485.6.1 穿墙套管的选择 _____________________________________________________ 485.6.2 支柱绝缘子的选择 ___________________________________________________ 485.6.3 悬式绝缘子的选择 ___________________________________________________ 485.7熔断器的选择 ___________________________________________________________ 49 第六章发电厂配电装置设计 ______________________________________________ 496.1布置原则 _______________________________________________________________ 496.2布置型式 _______________________________________________________________ 506.3配电装置的选择和校验____________________________________________________ 51 第七章过压保护和接地__________________________________________________ 527.1电气设备绝缘配合原则____________________________________________________ 527.2过电压保护方式__________________________________________________________ 537.2.1过电压 _____________________________________________________________ 537.2.2 避雷针、避雷线、避雷针的选择________________________________________ 537.3接地系统 _______________________________________________________________ 54 第八章继保配置规划 ___________________________________________________ 558.1继电保护配置 ___________________________________________________________ 558.2电站综合自动化 _________________________________________________________ 558.3测量系统_______________________________________________________________ 578.4同期装置_______________________________________________________________ 578.5信号系统设置 ___________________________________________________________ 578.6直流系统设置 ___________________________________________________________ 58 第九章课程设计总结与心得体会 ___________________________________________ 59附录 _______________________________________________________________ 60 参考文献____________________________________________________________ 61摘要:电力系统是由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。

发电厂电气部分设计

发电厂电气部分设计

三、发电厂电缆线路设计
三、发电厂电缆线路设计
电缆线路是发电厂电能输送的重要通道,其设计应满足安全、可靠、经济和 环保的要求。在电缆线路的设计过程中,需要考虑以下几个方面:
三、发电厂电缆线路设计
1、电缆型号选择:电缆型号的选择应考虑电力系统的电压等级、电流容量、 敷设环境等因素,以确保电缆能够安全可靠地运行。
一、发电厂主接线设计
一、发电厂主接线设计
主接线是发电厂的重要组成部分,用于实现电能的生产、变换和输送。主接 线的设计应满足可靠性高、灵活性强、易于操作和维修、经济性好的要求。在主 接线的设计过程中,需要考虑以下几个方面:
一、发电厂主接线设计
1、可靠性:主接线的设计应确保电力系统的稳定运行,避免因设备故障导致 的大规模停电事故。为此,可以采用分段接线和桥型接线等方式,提高主接线的 可靠性。
一、发电厂主接线设计
4、经济性:主接线的设计应在满足可靠性和灵活性的前提下,尽量降低建设 成本和维护成本。例如,可以采用低损耗设备、优化线路布局等方式,降低能耗 和维护成本。
二、发电厂防雷设计
二、发电厂防雷设计
防雷设计是发电厂电气部分设计的关键环节之一,其目的是在雷击情况下保 护设备和建筑物不受损坏。发电厂的防雷设计应包括以下几个方面:
内容摘要
总之,本次演示通过详细阐述4200MW发电厂电气一次部分设计的原则、流程、 要求及成果,为我们成功地完成这一复杂而关键的设计工作提供了有力的支持。 通过这一设计工作,我们不仅提高了发电厂的效率和性能,还推动了电力行业的 技术进步和发展。
引言
引言
随着电力工业的不断发展,发电厂的规模不断扩大,设备日益复杂,对发电 厂的运营和管理提出了更高的要求。为了提高发电厂的运营效率和管理水平,电 气综合自动化系统的应用越来越受到。本次演示将对发电厂电气综合自动化系统 的发展和应用进行探讨。

发电厂电气部分课程设计

发电厂电气部分课程设计

1 设计原始题目1.1 具体题目某400MW发电机组采用全连式离相封闭母线。

发电机额定功率400MW,额定电压25kV,cos=0.85ϕ,额定电流10200A。

全连式离相封闭母线尺寸:导体外径为W 500Dφ=mm,导体厚度为W 12δ=mm,外壳外径为s 1000Dφ=mm,外壳内径为s 984dφ=mm,外壳厚度为s 8δ=mm,相间距离为a=1.4m。

封闭母线铝导体最热点温度为W 90t=°C,铝外壳最热点温度为s 70t=°C,周围环境温度为s 38t=°C。

当封闭母线额定电流取12500A,试计算该封闭母线的发热量和散热量,并做热平衡校验。

1.2 要完成的内容母线是电力系统内部的电力线路,它连接着各种电机和电器以传输电流和功率,并通过配电装置分配电能。

在发电厂和变电站中,母线大多采用硬铝或铝锰、铝镁合金做成。

无论正常情况下通过工作电流,或短路时通过短路电流,母线都要发热。

为使母线发热温度不超过最高允许温度,需要分析发热过程并进行计算。

2 分析要设计的课题内容2.1 计算的意义导体的发热计算是根据能量守恒原理,即导体产生的热量与耗散的热量应相等来进行计算的。

导体的发热来自导体电阻损耗的热量。

热量的耗散有对流、辐射和导热三种形式。

封闭母线的发热由母线导体发热和外壳发热两部分组成。

散热是以辐射和对流形式将热量从母线导体传至外壳(介质),再从外壳(介质)传到周围空气中去。

针对本题的全连式离相封闭母线,首先要校验导体的热平衡,然后校验外壳的热平衡,最后校验封闭母线的总发热量和总散热量,根据其比值确定发热与散热是否符合要求。

对封闭母线热平衡进行校验可以用于设备的选型,防止设备烧坏,为系统设计,新建站设备选型,运行方式制定,继电保护整定等环节提供依据。

若封闭母线的热平衡不能满足要求,则对设备和电站都会造成安全隐患,所以对母线热平衡进行校验是十分重要的。

2.2 热平衡校验2.2.1 导体的发热、散热与热平衡(1)导体的发热 ①集肤效应系数[][]3.75w w w w wfw 10.0016(75)10.0016(75)10.03 1.0510K D θδθδ⎧⎧⎫⎫----⎪⎪=+⨯=⎨⎬⎨⎬⎪⎪⎭⎭⎩⎩②90℃时单位长度导体电阻620w w wfw w w[10.004(20)]2.15510(/m)π()R K D ρθδδ-+-==⨯Ω-③当通过电流w 12500A I =时,导体发热损耗量 22wR s s w s 336.719(W/m)Q I R I R ===式中 w R —母线导体的电阻; wf K —导体集肤效应系数; w θ—导体最高运行温度; w D —圆管导体外径; w δ—圆管导体壁厚; 20ρ—导体电阻系数。

发电厂电气部分电气主接线及设计

发电厂电气部分电气主接线及设计

(2)降压变电站主接线常用接线形式
✓ 变电站主接线的高压侧: 1)应尽可能采用断路器数目少的接线,以节省投资,减 少占地面积;
2)随出线数的不同,可采用桥形、单母线、双母线及角 形等接线形式;
3)如果电压较高又是极为重要的枢纽变电站,宜采用带旁 路的双母线分段或一台半断路器接线。
✓ 变电站的低压侧: 常采用单母线分段或双母线接线。
用于本厂(站)用电的变压器,也称自用变。
二、主变压器容量和台数的确定
原则:尽量减少变压器台数,提高单台容量。
1、发电厂主变压器容量和台数的选择
(1)单元接线的主变压器
A、容量选择
应按发电机额定容量扣除本机组的厂用负荷后,留有10%的裕度选择
S N 1 .1 P N ( 1 G K P )/co Gs(M )VA
2)水力发电厂的升高电压侧的接线:
✓ 当出线数不多时,应优先考虑采用多角形接线等类型 的无汇流母线的接线;
✓ 当出线数较多时,可根据其重要程度采用单母线分段、 双母线或一台半断路器接线等。
某中型水电厂主接线
1)该电厂有4 台发电机 G1~G4,每两台机与一台 双绕组变压器接成扩大单 元接线;
2)110kV侧只有2回出线, 与两台主变压器接成4角 形接线。
e1
N1
d dt
e2
N2
d dt
i1
U1
i2 u1
只要一、二
u1
e1e2Biblioteka u 2ZL次绕组的匝数不 同,就能达到改
u2 变压的目的。
U2
第三节 主变压器的选择
一、有关的几个概念
1、主变压器
发电厂、变电站中向系统、用户输送功率的变压器。
2、联络变压器

600MW发电厂电气部分初步设计-毕业设计论文

600MW发电厂电气部分初步设计-毕业设计论文

600MW发电厂电气部分初步设计目录摘要............................................................................................................. 错误!未定义书签。

Aabstract........................................................................................................ 错误!未定义书签。

第一部分说明书 (1)第1章主变压器的选择 (1)1.1容量和台数的确定 (1)1.2型式和结构的选择 (1)1.2.1 相数 (1)1.2.2 绕组数与结构 (1)1.2.3 绕组接线组别 (2)1.2.4 调压方式 (2)1.2.5 冷却方法 (2)第2章电气主接线的设计 (3)2.1 主接线设计的要求和原则 (3)2.1.1 主接线设计的基本要求 (3)2.1.2 大机组超高压主接线可靠性的特殊要求 (3)2.1.3 主接线设计的原则 (3)2.2 原始资料分析 (4)2.3 主接线方案的拟定 (4)2.3.1 发电机-变压器单元接线 (4)2.3.2500KV电压母线接线 (4)2.4 主接线方案的比较 (7)2.5 主接线方案的确定 (7)第3章厂用电系统设计 (8)3.1厂用电接线的设计原则 (8)3.2 厂用电压等级的确定 (8)3.3厂用电源的引接方式 (8)3.3.1 厂用工作电源的引接 (8)3.3.2 备用/启动电源的引接 (8)3.4 厂用电接线形式 (9)3.5厂用高压变压器的选择 (9)3.5.1 额定电压的确定 (9)3.5.2 台数和型式的选择 (9)3.5.3 容量得选择 (10)3.5.4 电抗的选择 (10)3.6 厂用电系统接线 (11)3.6.1 高压厂用电接线 (11)3.6.2 低压厂用电接线 (11)第4章短路电流计算 (12)4.1短路电流计算的主要目的 (12)4.2一般规定 (12)4.2.1 计算的假定条件 (12)4.2.2 接线方式 (12)4.2.3 短路类型 (12)4.2.4 短路计算点 (13)4.2.5 短路电流计算方法 (13)4.3短路电流计算步骤 (13)4.4计算公式 (14)4.4.1 元件参数计算 (14)4.4.2 网络变换 (14)4.4.3 计算电抗 (16)4.4.4 短路点短路电流周期分量有效值的计算 (16)4.4.5 短路的冲击电流 (16)4.4.6 电流分布系数及转移电抗 (16)第5章电气设备和导体的选择 (18)5.1电气设备选择的一般原则 (18)5.1.1按正常工作条件选择 (18)5.1.2 按短路状态校验 (19)5.2500kV高压设备的选择 (19)5.2.1 高压断路器的选择 (19)5.2.2 隔离开关的选择 (20)5.2.3 电流互感器的选择 (21)5.2.4 电压互感器的选择 (21)5.2.5 并联电抗器的选择 (22)5.36KV高压开关柜的选择 (22)5.3.1 种类和型式的选择 (22)5.3.2 主开关的选择 (23)5.3.3 额定电压和额定电流的选择 (23)5.3.4 防护等级的选择 (23)5.3.5 开断和关合短路电流的选择 (23)5.3.6 短路热稳定和动稳定校验 (24)5.4裸导体的选择 (24)5.4.1500KV母线的选择 (24)5.4.2 封闭母线的选择 (24)5.4.3 电晕电压校验 (25)5.4.4 热稳定校验 (25)第6章500KV高压配电装置设计 (26)6.1配电装置的基本要求 (26)6.2配电装置设计的基本步骤 (26)6.3配电装置的型式选择 (26)6.4配电装置的安全净距 (26)6.5屋外配电装置的布置原则 (27)第7章继电保护和自动装置配置 (28)7.1继电保护配置 (28)7.1.1 发电机保护 (28)7.1.2 变压器保护 (29)7.1.3 并联电抗器保护 (30)7.1.4500kV线路保护 (31)7.1.5 母线和断路器失灵保护 (31)7.2自动装置配置 (32)第8章防雷保护设计 (33)8.2直击雷的防护 (33)8.2.1 直击雷防护措施 (33)8.2.2 避雷针装设的基本原则 (33)8.2.3 避雷针的保护范围 (33)8.3入浸雷的防护 (34)8.3.1 入浸雷防护措施 (34)8.3.2 避雷器的配置要求 (34)8.3.3 避雷器的配置原则 (34)8.3.4 避雷器参数选择 (35)8.4防雷接地 (35)第二部分计算书 (36)第9章变压器的选择计算 (36)9.1主变压器的选择 (36)9.2厂用高压变压器的选择 (36)第10章短路电流计算 (38)10.1短路电流计算接线图 (38)10.2参数计算 (38)10.3500kV母线短路(k1) (39)10.4发电机出口短路(k2) (40)10.5厂用高压工作变压器6kV一段短路(k3) (42)10.6备用/启动变压器6kV一段短路(k4) (44)10.7计算结果列表 (46)第11章电气设备和导体的选择计算 (47)11.1 500kV高压设备的选择 (47)11.1.1 高压断路器的选择 (47)11.1.2 高压隔离开关的选择 (47)11.1.3 电流互感器的选择 (48)11.1.4 电压互感器的选择 (48)11.1.5 并联电抗器的选择 (49)11.26kV高压开关柜的选择 (49)11.3裸导体的选择 (50)11.3.1500kV主母线的选择 (50)11.3.2 发电机出口主封闭母线选择 (52)11.3.3 共箱封闭母线选择 (52)第12章防雷保护设计 (54)12.1 避雷针的布置图 (54)12.2避雷针高度的确定 (54)总结 (56)致谢 (57)参考文献......................................................................................................... 错误!未定义书签。

发电厂电气部分课程设计结果总结

发电厂电气部分课程设计结果总结

发电厂电气部分课程设计结果总结一、设计概述本次发电厂电气部分课程设计的主要目标是让我们全面了解和掌握发电厂的电气系统设计。

通过本次设计,我们不仅要理解发电厂的电气主接线设计,还要掌握短路电流的计算、主要设备的选择与校验、以及配电装置的布置与优化。

二、设计实施过程1. 电气主接线设计:根据给定的条件,我们设计了发电厂的电气主接线。

在设计中,我们考虑了可靠性、灵活性、经济性以及扩建的可能性等因素。

2. 短路电流计算:利用标么值法,我们对系统进行了短路电流计算。

通过计算,我们确定了短路电流的大小和方向,为设备的选择和校验提供了依据。

3. 主要设备选择与校验:基于短路电流的计算结果,我们对断路器、隔离开关、变压器等主要设备进行了选择和校验。

确保所选设备能够承受短路电流的冲击,且符合技术规范要求。

4. 配电装置的布置与优化:为了提高运行效率和维护便利性,我们对配电装置进行了合理的布置与优化。

考虑到设备的布局、进出线的方式以及操作走廊等因素,进行了综合的规划设计。

三、结果分析1. 电气主接线:通过对比分析,我们发现所设计的电气主接线在可靠性、灵活性和经济性方面均达到了预期目标。

同时,考虑到未来扩建的可能性,主接线设计也预留了扩展的空间。

2. 短路电流计算:通过计算,我们得到了准确的短路电流值。

这为设备的选择和校验提供了重要的参考依据,确保所选设备能够承受短路电流的冲击。

3. 主要设备:基于短路电流的计算结果,我们对断路器、隔离开关、变压器等主要设备进行了选择和校验。

所选设备均符合技术规范要求,能够保证发电厂的安全稳定运行。

4. 配电装置:通过对配电装置的布置与优化,我们提高了运行效率和维护便利性。

设备布局合理,进出线方式得当,操作走廊宽敞,这些都为后续的运行和维护打下了坚实的基础。

四、总结与展望通过本次发电厂电气部分课程设计,我们不仅掌握了发电厂电气系统设计的核心知识,还培养了解决实际问题的能力。

在设计过程中,我们充分考虑了各种因素,力求做到最优化的设计。

发电厂电气部分主接线的设计原则和步骤

发电厂电气部分主接线的设计原则和步骤

二、电气主接线的设计程序
工程设计程序:
可行性研究 初步设计 技术设计 施工设计
课程设计:
相当于初步设计,部分可达到技术设计。
二、电气主接线的设计程序
课程设计步骤:
对原始资料分析 拟定主接线方案 短路电流的计算——为电气设备选择做准备 主要电气设备选择——第六章介绍 绘制电气主接线图——将最终确定的主接线,按工程
要求,绘制工程图 工程概算
二、电气主接线的设计程序
对原始资料分析:
① 本工程情况:发电厂类型,设计规划容量,单机容量 及台数,最大负荷利用小时数及可能的运行方式等。
② 电力系统情况:电力系统近期及远景发展规划(5~ 10年)发电厂或变电所在电力系统中的位置和作用; 本工程与电力系统连接方式等。
二、电气主接线的设计程序
经济比较方法:
静态比较法:
以设备、材料和人工等的经济价值固定不变作为前提,认为 经济价值与时间无关。
最常用的为抵偿年限法。
抵偿年限法: 若I1>I2,C1<C2,则抵偿年限为 T I1 I2 C2 C1 如果T小于5年,则采用投资大的第一方案; 如果T大于5年,则采用投资大的第二方案。
① 综合总投资计算 ② 年运行费计算 ③ 经济比较方法
二、电气主接线的设计程序
综合总投资计算:
综合总投资 I 主要包括变压器综合投资,开关设备、 配电装置综合投资以及不可预见的附加投资等。
I
I
0
,包括变压器、开关设备、 母线、配电装置及明显的增修桥梁、公路和拆迁
② 从技术上论证各方案的优、缺点,淘汰一些明显不合 理的方案,保留2~3个技术上相当、又能满足任务书 要求的方案;
③ 经济计算比较:对各方案的综合投资和年运行费进行 综合效益比较;

发电厂电气部分课程设计

发电厂电气部分课程设计

发电厂电气部分课程设计TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-目录摘要……………………………………………......................第1章设计任务…………………………….....................第2章电气主接线图………………………........................电气主接线的叙述……………………………..电气主接线方案的拟定.....................................电气主接线的评定..................................................第3章短路电流计算……………………….....................概述............................................................. .....系统电气设备电抗标要值的计算.................短路电流计算..................................................第4章电气设备选择……………………….....................电气设备选择的一般规则……………………….电气选择的技术条件…………………………….按正常情况选择电器……………………….......按短路情况校验……………………………........电气设备的选择………………………………….断路器的选择……………………………….隔离开关的选择…………………………….第5章设计体会及以后改进意见…………........................参考文献……………………………………….......................摘要由发电、变电、输电、和用电等环节组成的电能生产与消费系统,他的功能是将自然界的一次能源通过发电动力装置转化为电能,再经过输、变电系统及配电系统将电能供应到个负荷中心。

火力发电厂电气部分设计

火力发电厂电气部分设计

火力发电厂的电气部分设计是确保发电机组和电网之间正常运行的重要环节。

以下是火力发电厂电气部分设计的一般步骤和主要内容:1. 电气系统总体设计:根据发电厂的容量和类型,确定电气系统的总体结构和配置。

包括主变电所、辅助变电所、发电机组、配电系统、控制系统等。

同时,考虑到安全可靠和经济性,确定电气系统的传输和配电电压等级。

2. 发电机组连接:设计发电机组与电网的连接方式和参数。

包括发电机的额定功率、功率因数、电压等级、频率等。

同时,根据电网的要求和稳定性需求,确定发电机组的同步方式和功率控制方式。

3. 变电系统设计:根据总体设计,确定主变电所和辅助变电所的位置、容量和配置。

设计主变电所的主变压器、断路器、隔离开关等设备。

设计辅助变电所的配电变压器、母线、开关设备等。

同时,考虑到电气系统的稳定性和可靠性,设计变电系统的保护装置和自动化控制系统。

4. 配电系统设计:根据电气负荷需求,设计配电系统的布置和容量。

确定配电系统的主配电柜、分配电柜、馈线等设备。

设计配电系统的保护装置、断路器和开关设备。

同时,考虑到电气系统的可靠性和安全性,设计配电系统的接地和绝缘保护措施。

5. 控制系统设计:设计发电厂的自动化控制系统和监控系统。

包括发电机组的自动调节装置、保护装置、控制柜等。

设计电气系统的远程监控和数据采集系统。

同时,确保控制系统与其他系统的通信和互联功能。

6. 电气设备选型:根据设计要求和技术规范,选择合适的电气设备和元器件。

包括发电机、变压器、断路器、开关设备、电缆、电表等。

确保选用的设备符合国家标准和安全规定,能够满足电气系统的要求。

7. 电气系统计算和分析:进行电气系统的负荷计算、短路电流计算、电压降计算等。

通过计算和分析,评估电气系统的稳定性和运行性能,确定电气设备和保护装置的参数和配置。

8. 电气系统布线和安装:根据设计要求,进行电气系统的布线和安装。

包括电缆敷设、接线、连接和固定等。

确保电气系统的布线符合规范,具有良好的绝缘和接地性能。

火力发电厂初步设计文件内容深度规定电气部分

火力发电厂初步设计文件内容深度规定电气部分

火力发电厂初步设计文件内容深度规定电气部分1.总体电气设计方案:初步设计应包括电力系统的总体布置方案、电源供应与配电系统、电气设备的选择与布局等内容。

总体布置方案应合理布置主变电所、发电机组、辅助动力设备、电源配电装置等电力设备的位置和接线方式,并满足电力系统安全、稳定运行的要求。

2.发电机组的选择与布局:根据发电机组的容量需求和布置要求,选择适当的发电机组。

布局方案应考虑到机组之间的空间要求、维护检修通道、散热系统等因素,并确保机组的稳定运行和安全工作。

3.输电与配电系统设计:初步设计文件应包括主接线图、变电站布置图、配电装置布置图等。

主接线图应包括主变电所、发电机组、变电站之间的供电方式与接线方式。

变电站布置图应详细描述设备的布局和接线方式。

配电装置布置图应包括配电装置的布置、联络与控制装置等。

4.保护与控制系统设计:初步设计文件应描述火力发电厂的保护与控制系统,包括主保护方案、备用保护装置、自动控制装置等。

保护方案应满足火力发电厂的安全要求,并能及时地对异常情况进行保护。

控制装置应实现对发电机组、输电与配电网络的自动控制与监测。

5.接地系统设计:初步设计文件应规定火力发电厂的接地系统设计,包括接地网的布置方案、接地装置的选取与布局等。

接地系统的设计应满足电力系统的安全运行要求,保障工作人员和设备的安全。

6.照明系统设计:初步设计文件应描述火力发电厂的照明系统设计,包括主大厅、机组厂房、变电站、辅助设施等照明设备的选择与布局。

照明系统应满足火力发电厂的照明亮度要求,确保人员的安全使用。

7.控制与监测系统设计:初步设计文件应规定火力发电厂的控制与监测系统设计,包括火力发电厂的数据采集、数据传输、数据处理等系统。

控制与监测系统应确保火力发电厂的安全运行,并能提供准确的数据支持。

以上是针对火力发电厂初步设计文件电气部分的内容规定,为确保电力系统的安全、稳定运行提供了详细的设计指导。

通过合理的电气设计,可以确保火力发电厂的正常运行,提高发电效率,降低故障率,为社会提供稳定的电力供应。

发电厂电气部分课程设计

发电厂电气部分课程设计

发电厂电气部分课程设计1. 引言本文档是针对发电厂电气部分的课程设计,旨在帮助学生深入理解发电厂的电气系统运行原理和设计方法。

本设计主要包括发电厂电气系统的结构和原理、主要设备的选型和布置、电气系统的保护与控制等内容。

2. 发电厂电气系统结构与原理2.1 发电厂电气系统结构发电厂的电气系统由发电机、变压器、开关设备、电力电子设备和配电系统等组成。

本节将详细介绍电气系统中各个部分的结构和功能。

2.2 发电机结构与原理发电机是发电厂的核心设备,负责将机械能转化为电能。

本节将详细介绍发电机的结构、工作原理以及选取与设计。

2.3 变压器结构与原理变压器是发电厂电气系统中的重要设备,负责将发电机产生的电能进行变压、升压或降压。

本节将对变压器的结构和原理进行详细讲解。

2.4 开关设备与电力电子设备开关设备和电力电子设备在发电厂的电气系统中起着重要的作用,负责控制电能的传输和分配。

本节将介绍开关设备和电力电子设备的作用和应用。

3.1 发电机选型与布置发电机的选型与布置是发电厂电气系统设计中的重要环节。

本节将介绍如何选择适当的发电机类型和参数,并进行合理布置。

3.2 变压器选型与布置变压器的选型与布置是发电厂电气系统设计中的关键步骤。

本节将详细介绍变压器的选型原则和布置方法。

3.3 开关设备与电力电子设备的选择选择合适的开关设备和电力电子设备对于发电厂电气系统的正常运行至关重要。

本节将介绍如何选择适用的开关设备和电力电子设备。

4.1 电气系统保护电气系统的保护是保证发电厂电气设备安全运行的重要环节。

本节将介绍常见的电气系统保护设备和保护原理。

4.2 电气系统控制电气系统的控制是发电厂电气设备运行的核心环节。

本节将介绍电气系统的控制原理和常用控制策略。

5. 总结通过本课程设计,学生将能够深入了解发电厂电气系统的结构与原理,掌握发电机、变压器、开关设备和电力电子设备的选型与布置方法,以及电气系统的保护与控制技术。

这将为学生今后在发电厂电气工程领域的实际工作提供有力支持。

2X200MW火力发电厂电气部分课设

2X200MW火力发电厂电气部分课设

2X200MW火力发电厂电气部分课设1. 引言本文档旨在对2X200MW火力发电厂的电气部分进行课设分析和设计。

电气部分是火力发电厂的核心和基础设施之一,负责发电机组和电力系统的运行和控制。

课设将对电气系统的主要组成部分进行分析和设计。

2. 电气系统概述电气系统是火力发电厂的核心系统之一,包括发电机、变压器、开关设备、电力配电系统等。

其主要功能是将燃烧产生的热能转化为电能并输送到电网。

2.1 发电机组发电机组是电气系统的关键设备,负责将热能转化为电能。

2X200MW火力发电厂采用2台200MW的发电机组,每台发电机组包括发电机、励磁系统、调速系统等。

2.2 变压器变压器是电气系统的重要设备,负责将发电机产生的电能升压并传输到电网。

2X200MW火力发电厂的变压器包括发电机变压器、主变压器、励磁变压器等。

2.3 开关设备开关设备是电气系统的控制和保护装置,用于控制电能的流动和保护设备的安全运行。

2X200MW火力发电厂的开关设备包括主断路器、接地开关、隔离开关等。

2.4 电力配电系统电力配电系统负责将发电机产生的电能输送到各个用电区域,分为高压侧和低压侧。

2X200MW火力发电厂的电力配电系统包括高压开关设备、变电站、配电柜等。

3. 电气系统设计基于2X200MW火力发电厂的电气系统概述,本节将对电气系统的设计进行详细分析和说明。

3.1 发电机组设计发电机组的设计包括发电机的选型和布置、励磁系统的设计、调速系统的设计等。

发电机的选型应考虑功率、效率、稳定性等因素,布置应满足安全和运维要求。

3.2 变压器设计变压器的设计包括主变压器和发电机变压器的选型和布置。

主变压器应能够将发电机产生的中压电能升压到适合传输的高压电能,发电机变压器应将发电机产生的低电压电能升压到主电压。

3.3 开关设备设计开关设备的设计包括主断路器、接地开关、隔离开关等的选型和布置。

开关设备的选型应考虑电流容量、操作可靠性等因素,布置应满足电气系统的运行和检修要求。

发电厂电气部分课程设计报告

发电厂电气部分课程设计报告

2×25MW+2×50MW 火电厂主接线设计本次设计是火电厂主接线设计。

该水电站的总装机容量为 2 ×25MW+2 ×50MW =150 MW。

高压侧为 110Kv,四回出线与系统相连,发电机电压级有10 条电缆出线,其最大输送功率为 150MW,该电厂的厂用电率为 10%。

根据所给出的原始资料拟定两种电气主接线方案,然后对这两种方案发展可靠性、经济性和灵便性比拟后,保存一种较合理的方案,最后通过定量的技术经济比拟确定最终的电气主接线方案。

在对系统各种可能发生的短路故障分析计算的根抵上,进展了电气设备和导体的选择校验设计。

在对发电厂一次系统分析的根抵上,对发电厂的配电装置布置、防雷保护做了初步简单的设计。

此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,稳固和加深对本专业的理解,建立了工程设计的根本观念,提升了自身设计能力。

电气主接线,短路电流计算,设备选型,配电装置布置,防雷保护。

一、原始资料:某新建地方热电厂,发机电组 2 × 25MW+2 × 50MW ,cosΘ = 0.8 ,U=6.3KV,发电机电压级有10 条电缆出线,其最大综合负荷30MW,最小负荷 20MW,厂用电率 10%,高压侧为 110KV,有 4 条回路与电力系统相连,中压侧 35KV,最大综合负荷 20MW,最小负荷 15MW。

发电厂处于北方平原地带,防雷按当地平均雷暴日考虑,土壤为普通沙土。

系统容量 2000MW,电抗值 0.8 〔归算到 100KVA〕。

二、设计容:a) 设计发电厂的主接线〔两份选一〕,选择主变的型号;b) 选择短路点计算三相对称短路电流和不对称短路电流并汇总成表;c) 选择各电压等级的电气设备〔断路器、隔离开关、母线、支柱绝缘子、穿墙套管、电抗器、电流互感器、电压互感器〕并汇总成表;三、设计成果:设计说明计算书一份; 1 号图纸一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13
(1)工程情况,包括发电厂类型(凝汽式火电厂,热 电厂,或者堤坝式、引水式、混合式水电厂等), 设计规划容量(近期、远景),单机容量及台数, 最大负荷利用小时数及可能的运行方式等。 发电厂容量的确定与国家经济发展规划、电力负 荷增长速度、系统规模和电网结构以及备用容量 等因素有关。发电厂装机容量标志着发电厂的规 模和在电力系统中的地位和作用。在设计时,对 发展中的电力系统,可优先选用较为大型的机组。 但是,最大单机容量不宜大于系统总容量的10%, 以保证在该机检修或事故情况下系统的供电可靠 性。
1. 对原始资料分析 2. 主接线方案的拟定与选择 3. 短路电流计算和主要电器选择 4. 绘制电气主接线图 5. 编制工程概算
11
2. 主接线方案的拟定与选择
一、对原始资料分析 二、主接线方案的拟定与选择 三、主变压器容量的确定原则 四、主接线方案的经济比较
一、对原始资料分析
发电厂电气部分课程设计
1. 2. 3. 4. 5. 电气主接线设计原则和程序 主接线方案的拟定与选择 计算短路电流 选择电气设备 绘制电气主接线图
1. 电气主接线设计原则和程序
一、对电气主接线的基本要求 二、电气主接线设计的原则 三、电气主接线的设计程序
一、对电气主接线的基本要求
电气主接线的重要性
4
一、对电气主接线的基本要求
5
2. 灵活性 电气主接线应能适应各种运行状态,并能灵活地 进行运行方式的转换。灵活性包括以下几个方面: (1)操作的方便性。 (2)调度的方便性。 (3)扩建的方便性。
一、对电气主接线的基本要求
3. 经济性 在设计主接线时,主要矛盾往往发生在可靠性与 经济性之间。通常设计应在满足可靠性和灵活性 的前提下做到经济合理。经济性主要从以下几方 面考虑: (1)节省一次投资。 (2)地面积少。 (3)电能损耗少。
8
二、电气主接线设计的原则
9
在工程设计中,经上级主管部门批准的设计任务 书或委托书是必不可少的。 它将根据国家经济发展及电力负荷增长率的规划, 给出所设计电厂(变电站)的容量、机组台数、电 压等级、出线回路数、主要负荷要求、电力系统 参数和对电厂的具体要求,以及设计的内容和范 围。这些原始资料是设计的依据,必须进行详细 的分析和研究,从而可以初步拟定一些主接线方 案。
一、对原始资料分析
14
(1)工程情况,包括发电厂类型(凝汽式火电厂,热 电厂,或者堤坝式、引水式、混合式水电厂等), 设计规划容量(近期、远景),单机容量及台数, 最大负荷利用小时数及可能的运行方式等。 发电厂运行方式及利用小时数直接影响着主接线 设计。承担基荷为主的发电厂,设备利用率高, 一般年利用小时数在5000h以上;承担腰荷的发 电厂,设备利用小时数应在3000~ 5000h;承担 峰荷的发电厂,设备利用小时数在3000h以下。
电气主接线是发电厂和变电所电气部分的主体。 它表明了各种设备的数量及连接情况。 电气主接线决定了可能存在的运行方式,影响着 运行的可靠性和灵活性。 电气主接线决定了电气设备的选择,配电装置的 布置。 电气主接线决定了继电保护和控制的方式。
3
对电气主接线的基本要求,概括地说应包括可靠 性、灵活性和经济性三方面。
二、电气主接线设计的原则
国家方针政策、技术规范和标准是根据国家实际 状况,结合电力工业的技术特点而制定的准则, 设计时必须严格遵循。
10
三、电气主接线的设计程序
电气主接线的设计伴随着发电厂或变电站的整体 设计进行,即按照工程基本建设程序,历经可行 性研究阶段、初步设计阶段、技术设计阶段和施 工设计阶段等四个阶段。在各阶段中随要求、任 务的不同,其深度、广度也有所差异,但总的设 计思路、方法和步骤基本相同。
6
二、电气主接线设计的原则
7
电气主接线的设计是发电厂或变电站电气设计的 主体。它与电力系统、电厂动能参数、基本原始 资料以及电厂运行可靠性、经济性的要求等密切 相关,并对电气设备选择和布置、继电保护和控 制方式等都有较大的影响。因此,主接线设计, 必须结合电力系统和发电厂或变电站的具体情况, 全面分析有关影响因素,正确处理它们之间的关 系,经过技术、经济比较,合理地选择主接线方 案。
一、对电气主接线的基本要求
1. 可靠性 安全可靠是电力生产的首要任务,保证供电可靠 是电气主接线最基本的要求。 电气主接线的可靠性不是绝对的。同样形式的主 接线对某些发电厂和变电站来说是可靠的,而对 另外一些发电厂和变电站则不一定能满足可靠性 要求。所以,在分析电气主接线的可靠性时,要 考虑发电厂和变电站在系统中的地位和作用、用 户的负荷性质和类别、设备制造水平及运行经验 等诸多因素。
一、对原始资料分析
16
(2)电力系统情况,包括电力系统近期及远景发展规 划(5~10年),发电厂或变电站在电力系统中的位 置(地理位置和容量位置)和作用,本期工程和远 景与电力系统连接方式以及各级电压中性点接地 方式等。
一、对原始资料分析
15
(1)工程情况,包括发电厂类型(凝汽式火电厂,热 电厂,或者堤坝式、引水式、混合式水电厂等), 设计规划容量(近期、远景),单机容量及台数, 最大负荷利用小时数及可能的运行方式等。 对不同的发电厂其工作特性有所不同。对于核电 厂或单机容量300MW及以上的火电厂以及径流 式水电厂等应优先担任基荷,相应主接线应以供 电可靠为主选择接线形式。水电厂是电力系统中 最灵活的机动能源,启、停方便,多承担系统调 峰、调相任务,根据水能利用及库容的状态可酌 情担负基荷、腰荷和峰荷。因此,其主接线应以 供电调度灵活为主选择接线形式。
二、电气主接线设计的原则
电气主接线设计的基本原则是以设计任务书为依 据,以国家经济建设的方针、政策、技术规定、 标准为准绳,结合工程实际情况,在保证供电可 靠、调度灵活、满足各项技术要求的前提下,兼 顾运行、维护方便,尽可能地节省投资,就近取 材,力争设备元件和设计的先进性与可靠性,坚 持可靠、先进、适用、经济、美观的原则。
相关文档
最新文档