最新四年级数学-巧数图形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲巧数图形
数出某种图形的个数是一类有趣的图形问题。由于图形千变万化,
错综复杂,所以准确地数出其中包含的某种图形的个数,可以培养我们
认真,仔细,做事耐心有条理的好习惯。要想有条理、不重复、不遗漏地
数出所要图形的个数,最常用的方法就是分类数。
例1数出下图中共有多少条线段。
分析与解:1.我们可以按照线段的左端点的位置分为A,B,C三类。如下图所示,以A为左端点的线段有______条,以B为左端点的线段有________
条,以C为左端点的线段有_______条。所以共有_________=6(条)。
2. 我们也可以按照一条线段是由几条小线段构成的来分类。如下图所示,AB,BC,CD是最基本的小线段,由一条线段构成的线段有_______条,由两条
小线段构成的线段有_______条,由三条小线段构成的线段有________条。
所以,共有_____________=6(条)。
由例1看出,数图形的分类方法可以不同,关键是分类要科学,所分的类型
要包含所有的情况,并且相互不重叠,这样才能做到不重复、不遗漏。
例2 下列各图形中,三角形的个数各是多少?
分析与解:因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段
..................................................................最新精品资料推荐 (1)
的两个端点为顶点的三角形),
所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数。
为底边的三角形中各有多少个三角形。
由3个小块组成的三角形有________个;
由4个小块组成的三角形有_______个;
。按边的长度来分类计算三角形的个数。
注意,有一个尖朝下的三角形)
..................................................................最新精品资料推荐 (4)
解:按包含的小块分类计数(如何数一定数量的长方形小块有多少?有规则吗?) 包含1小块的有1个;包含2小块的有___个;
包含3小块的有4个;包含4小块的有____个;包含5小块的有2个;
包含6小块的有___个;包含8小块的有4个;包含9小块的有____个;
包含10小块的有____个;包含12小块的有4个;包含15小块的有___个。 所以共有1+4+4+7+2+6+4+3+2+4+2=______(个)。 练习 1.下列图形中各有多少条线段?
2.下列图形中各有多少个三角形?
3.下列图形中,各有多少个小于180°的角?
..................................................................最新精品资料推荐 (5)
4.下列图形中各有多少个三角形?
5.下列图形中各有多少个长方形?
6.下列图形中,包含“*”号的三角形或长方形各有多少?
7.下列图形中,不含“*”号的三角形或长方形各有几个?
第二章 误差和分析数据处理 1、 指出下列各种误差是系统误差还是偶然误差?如果是系统误差,请区别方法误差、仪器和试剂误差或操作误差,并给出它们的减免方法。 答:①砝码受腐蚀:
系统误差(仪器误差);更换砝码。
②天平的两臂不等长: 系统误差(仪器误差);校正仪器。 ③容量瓶与移液管未经校准:
..................................................................最新精品资料推荐 (6)
系统误差(仪器误差);校正仪器。
④在重量分析中,试样的非被测组分被共沉淀: 系统误差(方法误差);修正方法,严格沉淀条件。 ⑤试剂含被测组分:
系统误差(试剂误差);做空白实验。 ⑥试样在称量过程中吸潮:
系统误差;严格按操作规程操作;控制环境湿度。 ⑦化学计量点不在指示剂的变色范围内: 系统误差(方法误差);另选指示剂。
⑧读取滴定管读数时,最后一位数字估计不准: 偶然误差;严格按操作规程操作,增加测定次数。
⑨在分光光度法测定中,波长指示器所示波长与实际波长不符: 系统误差(仪器误差);校正仪器。
⑩在HPLC 测定中,待测组分峰与相邻杂质峰部分重叠 系统误差(方法误差);改进分析方法
11、两人测定同一标准试样,各得一组数据的偏差如下:
① 求两组数据的平均偏差和标准偏差;
② 为什么两组数据计算出的平均偏差相等,而标准偏差不等; ③ 哪组数据的精密度高? 解:①n
d d d d d 321n
++++=
0.241=d 0.242=d