储氢材料综述
储氢材料的研究进展
储氢材料的研究进展一、本文概述随着全球能源结构的转型和可持续发展目标的日益紧迫,氢能作为一种清洁、高效的能源形式,正受到越来越多的关注。
而储氢材料作为氢能利用的关键环节,其性能的提升和技术的突破对于氢能的大规模应用具有决定性的影响。
本文旨在全面综述储氢材料的研究进展,通过对不同类型储氢材料的性能特点、应用领域以及发展趋势进行深入探讨,以期为氢能领域的科研人员和技术人员提供有益的参考和启示。
本文将首先介绍储氢材料的研究背景和重要意义,然后从物理储氢材料、化学储氢材料和复合储氢材料三个方面,分别阐述各类储氢材料的最新研究成果和进展。
在此基础上,本文将重点分析储氢材料的性能评价指标,如储氢密度、吸放氢动力学、循环稳定性等,并探讨影响这些性能指标的关键因素。
本文将展望储氢材料的发展趋势和未来研究方向,以期为推动氢能领域的技术创新和产业发展贡献一份力量。
二、储氢材料的分类储氢材料,作为能量储存和转换的重要媒介,在氢能源的应用中扮演着关键角色。
根据其储氢机制和材料特性,储氢材料大致可分为物理吸附储氢材料、化学氢化物储氢材料、金属有机骨架储氢材料以及纳米储氢材料等几大类。
物理吸附储氢材料:这类材料主要通过物理吸附作用储存氢气,如活性炭、碳纳米管、石墨烯等。
这些材料具有高的比表面积和良好的吸附性能,能够有效地吸附并储存氢气。
然而,其储氢密度相对较低,且受温度和压力影响较大。
化学氢化物储氢材料:这类材料通过化学反应将氢气转化为氢化物来储存氢,如金属氢化物(如NaAlHMgH2等)和氨硼烷等。
这类材料具有较高的储氢密度,但储氢和释氢过程通常需要较高的温度和压力,且可能伴随有副反应的发生。
金属有机骨架储氢材料:金属有机骨架(MOFs)是一种新型的多孔材料,具有高的比表面积和孔体积,以及可调的孔径和化学性质。
MOFs材料通过物理吸附或化学吸附的方式储存氢气,具有较高的储氢密度和良好的可逆性。
纳米储氢材料:纳米储氢材料主要包括纳米金属颗粒、纳米碳材料等。
储氢材料
20世纪70年代以后,由于对氢能源的研究和开发日趋重要,首先要解决氢气的安全贮存和运输问题,储氢材料范围日益扩展至过渡金属的合金。如镧镍金属间化合物就具有可逆吸收和释放氢气的性质:
编辑本段化学每克镧镍合金能贮存0.157升氢气,略为加热,就可以使氢气重新释放出来。LaNi5是镍基合金,铁基合储氢材料 储氢材料
____
编辑本段纳米材料储氢存在的问题世界范围内所测储氢量相差太大:0.01(wt ) %-67 (wt ) %,如何准确测定
储氢机理如何
四,结束语-氢能离我们还有多远
氢能作为最清洁的可再生能源,近10多年来发达国家高度重视,中国近年来也投入巨资进行相关技术开发研究
氢能汽车在发达国家已示范运行,中国也正在筹划引进
2.13TiFeH0.10 + 1/2H2 → 2.13TiFeH1.04
2.20TiFeH1.04 + 1/2H2 → 2.20TiFeH1.95
镁系
典型代表:Mg2Ni,美Brookhaven国家实验室首先报道
储氢容量高
资源丰富
价格低廉
放氢温度高(250-300℃ )
放氢动力学性能较差
抗杂质气体中毒能力差
实际使用时需对合金进行表面改性处理
PCT curves of TiFe alloy
TiFe(40 ℃)
TiFe alloy
Characteristics:
two hydride phases;
phase (TiFeH1.04) & phase (TiFeH1.95 )
3.2 配位氢化物
3.3 纳米材料
材料的储氢材料和氢能储存
材料的储氢材料和氢能储存随着全球对可再生能源和清洁能源的追求,氢能作为一种高能量密度、零排放的能源被广泛关注。
然而,氢气的储存一直是一个挑战。
在储存氢气的过程中,储氢材料起到关键的作用。
本文将介绍一些常见的储氢材料,以及它们在氢能储存中的应用。
1. 金属储氢材料金属储氢材料是目前应用最为广泛的一类储氢材料。
它们通常是将氢气吸附或反应嵌入到金属晶格中,从而实现氢气的储存。
1.1 金属合金金属合金是指由两种或更多种金属元素组成的材料。
例如,钛镍合金和镁铝合金都是常见的金属储氢材料。
这些合金具有较高的储氢容量和较好的循环稳定性,在氢能储存领域具有广泛的应用前景。
1.2 金属有机框架材料金属有机框架材料(MOF)是由金属离子或金属簇与有机配体组成的晶体材料。
它们具有高度可调性和多孔结构,可以通过改变金属元素和有机配体的组合来调节其储氢性能。
MOF在氢能储存中表现出很高的储氢容量和循环稳定性。
2. 炭材料炭材料是一类由碳元素组成的材料,具有良好的储氢性能。
它们通常具有高比表面积和孔隙结构,可以将氢气吸附到其表面或孔隙中。
例如,活性炭和多孔碳纤维都是常见的炭材料,它们在氢能储存方面具有潜在的应用前景。
3. 化合物材料化合物材料是指由金属元素和非金属元素组成的化合物。
它们通常具有较高的储氢容量和较好的热稳定性。
例如,氨合物是一种常见的化合物储氢材料,可以通过吸附氢气并在一定温度下释放氢气。
4. 氢化物材料氢化物材料是指由金属元素和氢元素组成的化合物。
它们具有很高的储氢密度和较好的储氢性能。
例如,碱金属氢化物和过渡金属氢化物都是常见的氢化物储氢材料。
总结起来,储氢材料的选择与氢能储存的效率和可行性密切相关。
金属储氢材料、炭材料、化合物材料和氢化物材料都是常见的储氢材料,它们在氢能储存领域具有广泛的应用前景。
随着科学技术的不断进步,相信在不久的将来,氢能储存技术将为人类实现可持续发展作出更大的贡献。
注意:此文章仅供参考,具体内容应根据题目要求自行撰写。
稀土储氢材料
稀土储氢材料
稀土储氢材料是一类具有很高储氢容量和较低吸放氢温度的储氢材料。
稀土元素由于其特殊的电子结构和原子尺寸,使得其化合物具有较高的储氢能力,因此成为了储氢材料研究的热点之一。
首先,稀土储氢材料的储氢机制主要包括物理吸附和化学吸附两种方式。
在物理吸附中,氢气以分子形式吸附在材料表面,而在化学吸附中,氢气会与稀土元素发生化学反应,形成化合物储存在材料中。
这两种方式相互作用,共同提高了稀土储氢材料的储氢能力。
其次,稀土储氢材料的储氢性能受到多种因素的影响。
首先是晶体结构,稀土储氢材料的晶体结构对其储氢性能有着重要影响,合适的晶体结构可以提高材料的储氢能力。
其次是表面积和孔隙结构,较大的表面积和合适的孔隙结构有利于提高储氢材料的吸氢速率和储氢容量。
此外,稀土元素的种类和含量、材料的热稳定性等因素也会对储氢性能产生影响。
最后,稀土储氢材料在氢能领域具有广泛的应用前景。
随着氢能技术的发展,稀土储氢材料将成为氢能储存和传输的重要材料。
此外,稀土储氢材料还可以应用于氢燃料电池、氢化物储氢系统等领域,为氢能产业的发展提供重要支撑。
总之,稀土储氢材料具有很高的储氢能力和广阔的应用前景,对于推动氢能技术的发展具有重要意义。
随着材料科学和氢能技术的不断进步,相信稀土储氢材料将会在未来发挥更加重要的作用。
储氢材料综述范文
储氢材料综述范文储氢材料是指能够吸收、储存并释放氢气的材料。
在氢能源领域的发展中,储氢是一个至关重要的环节,因为氢气的体积密度很大,必须以高效的方式储存,以方便在需要时使用。
本文将对当前常用的储氢材料进行综述,并探讨它们的优缺点。
1.吸附剂吸附剂是一种通过吸附氢气将其储存的材料。
常见的吸附剂有多孔碳材料、金属有机骨架(MOFs)和石墨烯等。
吸附剂具有吸附容量大、反应速度快等特点,但其储氢能力受到温度和压力的影响较大。
此外,吸附剂在吸附和释放氢气时存在能量损失,影响了系统能量效率。
2.氢化物氢化物是一种将氢气与金属元素结合形成化合物的材料,例如金属氢化物和金属嵌/插入化合物。
氢化物储氢的优势在于储氢密度高,但其缺点是吸附和释放氢气的反应速度较慢,且需要较高的温度和压力条件。
此外,氢化物的循环稳定性也是一个需要解决的问题。
3.化学氢储存(化学吸附)化学氢储存是指将氢气吸附到化学反应中产生产物中的材料。
常见的化学吸附剂有氨基硼烷和有机液体。
化学氢储存的优点是储氢密度高,且在环境条件下能够进行吸附和释放反应。
然而,该方法的主要挑战是吸附和释放反应的速率以及循环稳定性的问题。
4.内聚力储氢内聚力储氢是指将氢气以化学键的形式储存在材料中,例如氢化镁和氢化锂等。
这种储氢方式具有很高的储氢密度,同时释放氢气时产生的化学能也可以被利用。
然而,内聚力储氢的挑战在于原料的成本高,以及吸附和释放氢气的动力学限制。
总体而言,不同类型的储氢材料各有优劣势。
目前,研究人员正在努力开发新型储氢材料,以提高储氢容量、降低操作条件、提高储氢效率等。
此外,也有一些复合储氢材料正在研究中,通过结合多种储氢机制来提高整体储氢性能。
综上所述,储氢材料是氢能源领域不可或缺的一部分。
吸附剂、氢化物、化学吸附和内聚力储氢等不同类型的储氢材料各有优劣势,需要根据具体应用场景选择合适的储氢材料。
随着技术的不断进步,相信将会出现更加高效、便捷的储氢技术,进一步推动氢能源的发展。
储氢材料简介精选课件 (一)
储氢材料简介精选课件 (一)
储氢材料是一种用于储存氢气的材料,是未来氢能源发展的重要组成部分。
因为氢气是一种很容易燃烧的气体,而且能量密度高,因此储氢材料的研发和应用对于氢能源的发展具有重要意义。
本文将为大家介绍一些储氢材料的基本信息和特点。
一、金属储氢材料
金属储氢材料是最早被研究和应用的储氢材料之一。
金属储氢材料的优点是氢气吸附能力强,氢气释放速率高,储氢量大。
但其缺点也是显而易见的,金属储氢材料本身质量较大,不便于携带和使用。
二、碳基储氢材料
碳基储氢材料是一种储氢材料,其基本原理是将氢气吸附在碳材料表面上。
其优点是储氢量大,可重复使用,成本低廉,但其缺点也非常明显,碳基储氢材料的反应速率较低,吸氢量和释氢量不稳定。
三、氮杂环化合物储氢材料
相比于其他储氢材料,氮杂环化合物储氢材料的储氢量更高。
其优点是储氢量大,对氢气的吸附和释放速度快,但其缺点也很明显,需要高温和高压环境才能实现氧化物的还原或者还原氧化物。
四、化学储氢材料
化学储氢材料是利用化学反应将氢气储存在其内部的储氢材料。
其优点是原料易得,储氢周期长,但其缺点也非常明显,从化学反应的角
度来看,储氢和释氢的过程较为复杂,容易发生不可逆反应,因此化学储氢材料在实际应用中存在一定的难度。
总之,储氢材料的研究和应用是未来氢能源发展的重要组成部分。
通过对现有储氢材料的研究和开发,实现氢能源的可持续发展。
储氢材料详细资料大全
储氢材料详细资料大全储氢材料(hydrogen storage material)一类能可逆地吸收和释放氢气的材料。
最早发现的是金属钯,1体积钯能溶解几百体积的氢气,但钯很贵,缺少实用价值。
基本介绍•中文名:储氢材料•外文名:hydrogen storage material•时间:20世纪70年代以后•不同储氢方式:气态、固态、液态•常见材料:合金、有机液体以及纳米储氢材料•要求:安全、成本低、容量大、使用方便储氢材料简介,储氢方式,气态储氢,液态储氢,固态储氢,存在问题,常见储氢材料,储氢材料简介储氢材料(hydrogen storage material)随着工业的发展和人们物质生活水平的提高,能源的需求也与日俱增。
由于近几十年来使用的能源主要来自化石燃料(如煤、石油和天然气等),而其使用不可避免地污染环境,再加上其储量有限,所以寻找可再生的绿色能源迫在眉睫。
氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。
氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入“氢能经济(hydrogen economy)”时代。
氢能利用需要解决以下 3 个问题:氢的制取、储运和套用 ,而氢能的储运则是氢能套用的关键。
氢在通常条件下以气态形式存在, 且易燃、易爆、易扩散,使得人们在实际套用中要优先考虑氢储存和运输中的安全、高效和无泄漏损失,这就给储存和运输带来很大的困难。
储氢方式气态储氢气态存储是对氢气加压,减小体积,以气体形式储存于特定容器中,根据压力大小的不同,气态储存又可分为低压储存和高压储存。
氢气可以像天然气一样用低压储存,使用巨大的水密封储槽。
该 ... 适合大规模储存气体时使用。
由于氢的密度太低,套用不多。
气态高压储存是最普通和最直接的储存方式,通过高压阀的调节就可以直接将氢气释放出来。
普通高压气态储氢是一种套用广泛、简便易行的储氢方式 ,而且成本低, 充放气速度快 , 且在常温下就可进行。
稀土储氢材料
稀土储氢材料
稀土储氢材料是一类具有很高储氢容量和较低吸放氢温度的材料,是储氢材料
中的重要分支之一。
稀土元素是指镧系元素和镝、铽、钆等元素,它们具有丰富的电子结构和独特的化学性质,因此在储氢材料中具有重要的应用前景。
稀土储氢材料的研究和开发对于解决能源危机和环境污染问题具有重要意义。
稀土储氢材料具有以下特点:
首先,稀土元素具有较高的储氢容量。
稀土元素的原子结构决定了它们具有较
高的储氢能力,因此可以作为储氢材料的主要成分之一。
通过合金化、纳米化等方法,可以进一步提高稀土储氢材料的储氢容量,提高其在储氢领域的应用性能。
其次,稀土储氢材料具有较低的吸放氢温度。
由于稀土元素的特殊电子结构和
晶体结构,使得稀土储氢材料在吸放氢过程中具有较低的吸放氢温度,这对于储氢材料的实际应用具有重要意义。
较低的吸放氢温度可以降低储氢系统的能耗,提高储氢系统的效率,从而推动储氢技术的发展。
最后,稀土储氢材料具有良好的循环稳定性。
稀土元素与氢气的化学反应是可
逆的,因此稀土储氢材料具有良好的循环稳定性,可以反复进行吸放氢循环,不易发生氢化物的结构破坏和性能衰减,这对于储氢材料的长期稳定运行具有重要意义。
总的来说,稀土储氢材料具有较高的储氢容量、较低的吸放氢温度和良好的循
环稳定性,是储氢材料领域的研究热点之一。
未来,随着人们对清洁能源和可再生能源的需求不断增加,稀土储氢材料的研究和开发将会迎来更广阔的发展空间。
通过不断深入的研究和创新,稀土储氢材料有望成为未来储氢技术的重要支撑,为人类社会的可持续发展做出更大的贡献。
储氢材料综述
储氢材料综述能源和资源是人类赖以生存和发展的源泉。
随着社会经济的发展,全球能源供应日趋紧缺,环境污染的日益加剧,已有的能源和资源正在已越来越快的速度消耗。
面对化石燃料能源枯竭的严重挑战,近年来世界各国纷纷把科技力量和资金转向新能源的开发。
在新的能源领域中,氢作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,日益受到人们的关注。
2010年,美国能源部提出的实用化储氢系统的指标为:储氢质量百分数为6.5%,体积容量为62kg/m3,车用储氢系统的储氢能力大于31kg/m3,我国也高度重视储氢技术的发展,在“863”高新技术发展规划和“973”计划中,储氢材料是重点的研究项目。
氢能的利用需要解决三个问题:氢能的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。
因为正常情况下氢气以气态形式存在、密度最小、易燃、易爆、易扩散,这给储运和运输带来很大困难。
当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储运和运输问题。
储氢和输氢技术要求能量密度大(包含质量储氢密度)、能耗小、安全性高。
本文综述了所采用的和正在研究的储氢材料与技术,包括金属储氢材料、金属有机框架材料、碳质材料、有机液体储氢材料、络合物及氨基和亚氨基储氢材料等储氢材料的研究现状及趋势。
(一)金属储氢材料金属合金储氢材料具有安全可靠、储氢能耗低、储存容量高、制备技术和工艺相对成熟等特点。
此外,金属储氢材料还有将氢气纯化、压缩的功能。
下图为一些金属储氢材料储氢性能的对照:稀土储氢合金中的典型代表是LaNi5。
该合金为CaCu5型六方结构,它的有点为活化容易,平台压力适中且平坦,吸/放氢平衡压差小,动力性能优良,不易中毒。
此外,该合金还具有吸/放氢纯度高的特点(99.9%以上)。
LaNi5合金的缺点为抗氧化、抗粉化性能较差,且由于含有稀土元素La,价格偏高。
Willems J J等人通过采用Mm取代部分元素La,不仅使其抗粉化、抗氧化性能得到改善,而且降低了稀土合金的成本,但同时带来了氢分解压升高的问题。
储氢材料综述
不同脱氢反应路径焓变示意图[3]
小结
I.
金属(合金)储氢存在着储氢量低等问题,常用改变 元素化学计量比、元素替代等方法改善其性能。
络合氢化物储氢量高,但是放氢困难,常用掺杂等方 法改善其性能。
II.
参考文献
[1]胡子龙. 贮氢材料[M]. 北京:化学工业出版社, 2002. [2]Liu Y,Chu L,Zhou H,Gao M,Wang Q.A novel catalyst precursor K2YiF6 with remarkable synergetic effects of K,Ti and F together on reversible hydrogen storage of NaAlH4[J]mun,2011,47:1740-1742. [3]Vajo J J,Olson G L.Hydrogen storage in destabilized chemical systems[J].Scripta Mater,2007,56:829-834. [4]李永涛.配位氢化物的储氢特性研究[D].复旦大学,2011.
概念:碱金属和碱土金属与氢化合形成配位氢化 物。 优点:质量储氢密度高 缺点:(1)放氢动力学和可逆吸放氢性能差。 (2)配位氢化物放氢一般多步进行,每步放氢条 件不一样,因此,实际储氢量和理论值有较大差 别。
常见的有:铝氢化物 硼氢化物 氮氢化物
铝氢化物
典型代表:LiAlH4
第三步反应温度在400℃以上,明显不适合车载使用。 因此以前两步为主,放氢量约7.9wt%
碳纳米材料 碳纳米材料包括碳纳米纤维、碳纳米管和石墨烯等。 碳纳米纤维吸氢量可达5wt%~10wt%。 碳纳米管分为单壁碳纳米管和多壁碳纳米管,纯单 壁碳纳米管的常温储氢容量高达5wt%~10wt%。缺点是成 本过高。
金属材料之储氢材料
储氢材料通过物理吸附或化学反 应的方式储存氢气,具有高容量 、高纯度、低成本等优点。
储氢材料的分类
根据储氢原理,储氢材料可分为 物理吸附储氢和化学反应储氢两
类。
物理吸附储氢材料主要利用材料 表面的物理吸附作用储存氢气, 具有较高的储存密度和安全性。
化学反应储氢材料通过化学反应 将氢气储存于材料的化学键中, 具有较高的储存容量和较低的成
02 金属储氢材料的特性
金属储氢原理
金属与氢气发生反应,通过物理吸附或化学键合的方式将氢气储存于金属材料中。
金属储氢过程中,氢气与金属原子之间相互作用,形成稳定的金属氢化物。
金属储氢的原理主要基于金属的化学性质和晶体结构,不同的金属具有不同的储氢 能力和特性。
金属储氢材料的优点
01
02
03
高储氢密度
燃油效率和环保性能。
汽车热能回收
03
金属储氢材料可以吸收和释放大量的热能,可用于汽车热能回
收和利用。
感谢您的观看
THANKS
降低成本和提高安全性
成本
金属储氢材料的成本较高,限制了其 大规模应用。通过降低材料成本、优 化制备工艺和提高回收利用率,可以 降低金属储氢材料的成本。
安全性
金属储氢材料在充放氢过程中存在一 定的安全隐患。因此,提高金属储氢 材料的安全性是当前面临的重要挑战。 通过改进材料结构和控制反应条件, 可以降低安全风险。
材料复合化
金属间化合物
多层复合材料
通过控制金属元素的配比和合成条件, 制备具有优异性能的金属间化合物储 氢材料。
将不同种类的金属储氢材料进行多层 复合,利用各层材料的优点实现优异 的综合性能。
纳米复合材料
将金属储氢材料与纳米尺度的其他材 料(如碳纳米管、陶瓷颗粒等)进行 复合,以提高材料的储氢性能和机械 强度。
储氢材料有哪些
储氢材料有哪些
储氢材料是指能够吸附、吸收或储存氢气的材料。
随着氢能源的发展,储氢材
料的研究和开发变得越来越重要。
目前,主要的储氢材料包括金属氢化物、碳基材料、化合物材料等。
这些材料在储氢过程中具有不同的特性和应用。
金属氢化物是一类重要的储氢材料,它们可以通过吸附氢气来实现储氢。
金属
氢化物的储氢能力主要取决于金属和氢原子之间的化学键强度。
常见的金属氢化物包括镁、钛、锆等金属的氢化物。
这些材料在储氢过程中能够释放出大量的能量,因此被广泛应用于氢能源领域。
碳基材料也是重要的储氢材料之一。
碳材料具有较大的比表面积和丰富的微孔
结构,能够有效地吸附氢气。
常见的碳基储氢材料包括活性炭、碳纳米管、石墨烯等。
这些材料具有良好的化学稳定性和储氢性能,因此被广泛应用于氢能源的储氢系统中。
除了金属氢化物和碳基材料,化合物材料也是重要的储氢材料之一。
化合物材
料通常由金属、非金属元素组成,具有较高的储氢容量和储氢速率。
常见的化合物储氢材料包括金属有机框架材料、过渡金属硼化物、氨硼烷等。
这些材料在储氢过程中能够实现高密度的氢储存,因此被广泛应用于氢能源的储氢系统和储氢车辆中。
总的来说,储氢材料的研究和开发对于推动氢能源的发展具有重要意义。
不同
类型的储氢材料具有不同的特性和应用,可以根据具体的需求选择合适的材料。
随着科技的不断进步,相信未来会有更多高效、安全、经济的储氢材料出现,为氢能源的发展注入新的动力。
储氢材料介绍
3
在以氢作为能源媒体的氢能体系中,
氢的贮存与运输是实际应用中的关键。
贮氢材料就是作为氢的贮存与运输媒 体而成为当前材料研究的一个热点项目。
4
贮氢材料(Hydrogen storage materials)是在通常条件下能可逆地大量
吸收和放出氢气的特种金属材料。
5
贮氢材料的作用相当于贮氢容器。
贮氢材料在室温和常压条件下能迅速
23
氢在各种金属中的溶解热H(kcal/mol)
24
可见IA-IVA族金属的氢的溶解热是负
(放热)的很大的值,称为吸收氢的元素;
VIA--VIII族金属显示出正(吸热)的值 或很小的负值,称为非吸收氢的元素; VA族金属刚好显示出两者中间的数值。
25
2、金属氢化物的能量贮存、转换
金属氢化物可以作为能量贮存、转换
的斜率可求
出 H,由直
平 衡 氢 压 /
线在lnp轴上
的截距可求
Mpa
出 S。
各种贮氢合金的平衡氢压与温度的关系 (Mm为混合稀土合金) 52
300K时,氢气的熵值为31cal/K.mol.H2,
与之相比,金属氢化物中氢的熵值较小,即
式:
mn MH n ( ) H 2 MH m 2
p3 p2
p1
C p1 B n2 n1 A 对应一个M原子的氢原子数/n
2 M (固) H 2 (气, p ) n
在下面的反应:
吸氢,放热
放氢,吸热
2 MH n (固) H n
完成之前,压力为一定值。
47
若相成分为n, 相成分为m,则在温
度T1时等压区域里的反应为:
mn MH n ( ) H 2 MH m 2
储氢材料
储氢材料的应用
一、载热系统 二、载电系统 三、设计制造成“氢库”储存氢 * 代替汽车、火车、飞机的油箱做动力源 *作为“油库”,随时供氢。 四、分离净化氢 *通过反复的吸、放氢可以得到高纯氢 五、氢化反应的催化剂、去除水中溶氧、制造氢 能电池
储氢材料的前景
最近美国特拉华大学的科学家制备了一种新的储氢材 料——碳化鸡毛纤维,该材料直径为6mm,比表面积可 达到100-450m2/g,孔体积为0.06-0.2cm3/g,孔径小于 1nm,成本是目前所有储氢材料中最廉价的,可接近能 源部的氢气系统成本标准。 相信在不久的将来储氢材料在汽车领域将走向实际应 用,并掀起一场全世界的环保革命。
金属有机骨架化合物
在不同的MOF化合物中,无机的金属基团一般都是四面体,不同的只是连接各四 面体的多元有机酸分子。用直线结构的二元酸(如对苯二甲酸)连接,可以得到 立方体形状的空穴;如果用平面三角结构的三元羧酸,就可以得到八面形状的空 穴(如图9)。不同连接体造成空穴的直径也不等。在较大的空穴中加入金属原子 或C60等物质填充(如图10),可以引入不同的作用力,这对于储氢可能会有帮助。 MOF之间的结构差异基本上由连接体决定,于是人们只通过替换有机酸分子就可 以随心所欲地生产出各种孔径的微孔材料,这对于优化微孔材料的储氢性能是一 个莫大的便利。
物理吸附材料
纳米碳材料 沸石 金属有机骨架化合物等。
储氢材料储氢原理
现以LaNi5(化学吸附材料)和金属有机骨架化合物 (物理吸附材料)为例。 许多金属及合金都有可逆吸收打量氢气的能力。氢气 与金属或合金反应形成氢化物的热力学可以用压力组成等温线来描述(LaNi5的数据)主体金属先以固 溶体形式溶解一些( α 相 )。当压力及金属中原子 氢的浓度增大时,局部氢原子相互作用变得显著,此 时就能观察到氢化物( β 相 )的成核与生长。两相 共存时,等温线出现一段平台期,其长度决定了在较 小压力变化下有多少H2能够被可逆地储存。在纯 β 相中,随浓度增加,H2的压力陡然上升。在更高的 H2压力下,会有另外的平台期和氢化物相形成。两 相共存区域终止于临界温度(TC),在此温度之上 相变没有平台期。
储氢材料概述范文
储氢材料概述范文储氢材料是指能够储存和释放氢气的物质。
随着氢能源的广泛应用,储氢材料的研究和开发已经成为一个热门领域。
本文将对目前常见的几种储氢材料进行概述,并探讨其优缺点及应用前景。
1.吸附储氢材料:吸附储氢材料是将氢气吸附在其表面上的材料。
常见的吸附储氢材料包括活性炭、金属有机框架(MOF)和多孔有机聚合物(POPs)。
吸附储氢材料的优点是具有较高的氢气储存密度和良好的可逆性,但其缺点是在吸附和释放过程中需要较高的温度和压力。
2.吸氢合金材料:吸氢合金材料是由金属和氢气形成化合物所构成的材料。
吸氢合金材料具有很高的氢气质量分数,能够在相对较低的温度和压力下吸附和释放氢气。
其中,铁、镁和钛等金属是常用的吸氢合金材料。
然而,吸氢合金材料的缺点是储氢量较低,且氢气的吸附和释放速度较慢。
3.化学储氢材料:化学储氢材料是通过在材料中形成化学键来储存氢气的。
常见的化学储氢材料包括金属氢化物、氮化物和储氢合金。
这些材料具有较高的储氢密度,但释放氢气时需要较高的温度和压力。
此外,化学储氢材料在储氢和释放过程中会有副产物生成的问题,需要进一步处理。
4.硼类材料:硼类材料包括硼氢化物和硼氮化物等。
这些材料具有很高的储氢密度,可以在相对较低的温度和压力下吸附和释放氢气。
硼类材料作为一种储氢材料具有潜在的应用前景,但其储氢和释放速率以及可逆性仍然需要进一步改进。
总结来说,吸附储氢材料、吸氢合金材料、化学储氢材料和硼类材料是目前常见的储氢材料。
各种储氢材料具有不同的特点和应用场景,在氢能源的开发和应用中有着重要的地位。
未来的研究还需要进一步提高储氢密度、降低储氢和释放的温度/压力要求,并解决副产物生成等问题,以实现储氢材料的可持续发展。
储氢材料简介范文
储氢材料简介范文引言:随着能源消耗的不断增加和环境污染的加剧,寻找一种高效、环保的能源储存技术变得越来越重要。
氢能作为一种清洁、可再生的能源,正在受到广泛的关注。
然而,氢气的储存一直是一个技术难题。
寻找一种合适的储氢材料是实现氢能利用的关键之一、本文将介绍几种常见的储氢材料,并对其特点和应用进行分析。
一、金属储氢材料金属储氢材料是最传统的一种储氢材料。
常见的金属储氢材料包括钛合金、镁合金、锆合金等。
这些材料具有储氢容量高、反应速率快等特点。
但是,金属储氢材料存在工艺复杂、储氢温度较高等问题,限制了其在实际应用中的推广。
二、吸附材料吸附材料是一种将氢气物理吸附在材料表面的方法。
常见的吸附材料包括活性炭、金属有机骨架、多孔有机聚合物等。
这些材料具有表面积大、容易制备等特点,但是吸附材料的储氢容量和吸附/释放速率较低,对性能的要求较高。
三、化学储氢材料化学储氢材料是将氢气以化学形式储存在材料中,并通过化学反应进行储氢和释放氢的过程。
常见的化学储氢材料包括氢化物、金属氢化物、有机液体等。
这些材料具有储氢容量高、储氢密度大等优点,但是存在反应速率慢、反应温度高等问题,对材料的选择和设计提出了挑战。
四、固态氢储存体系固态氢储存体系是一种结合了吸附和化学储氢方法的新型储氢技术。
其基本原理是将金属氢化物储氢剂与载体进行结合,通过吸附和化学反应双重方式来储存和释放氢气。
常见的固态氢储存体系包括氢化物储氢剂/多孔材料、氢化物储氢剂/焊接材料等。
这些储氢体系克服了传统储氢材料的缺点,具有储氢性能稳定、循环寿命长等优点。
结尾:综上所述,储氢材料是实现氢能利用的关键之一、金属储氢材料、吸附材料、化学储氢材料和固态氢储存体系都是常见的储氢材料。
每种材料都有其独特的优点和局限性。
未来的研究应该注重提高储氢容量、改善储氢速率、降低储氢温度等方面的性能。
随着技术的不断发展,相信储氢材料的性能将得到显著的改善,为氢能的广泛应用提供更加可靠的支持。
储氢材料的发展现状、应用与制备综述
储氢材料的发展现状、应用与制备摘要:能源危机和开发新能源一直是人类发展进程中相互依赖和相互促进的两个重要因素。
为了保护环境,开发新能源,可以利用太阳能、地热、风能及海水等。
其中,氢能是人类未来的理想能源,它是一种高能量密度、清洁的能源,是最有吸引力的能源形式之一,具有热值高、资源丰富、干净、无毒、无污染等特性。
而氢的贮存和运输一直是个技术难题,由于制造液氢的设备费用很高,液化时又要消耗大量的能量,氢气和空气混合还会有爆炸的危险,因此能否利用氢气作为能源的关键是能否解决氢气的贮存和运输技术。
本文简要讲述了储氢材料的发展现状、主要应用与制备技术。
关键词:储氢材料、性质、应用、发展、制备1引言当前,人类面临着能源危机,作为主要能源的石油、煤炭和天然气由于长期的过量开采已濒临枯竭。
为了开发新能源,人们利用太阳能、地热、风能及海水的温差等,试图将它们转化为二次能源。
氢由于其优异的特性受到高度重视,首先氢由储量丰富的水做原料,资源不受限制;第二氢燃烧的生成物是水,环境污染极少,不破坏自然循环;第三,氢由于很高的能量密度;此外,氢可以储存、输送,用途十分广泛。
本文主要简述了储氢材料的基本性质、发展现状以及制备工艺。
2储氢材料的基本性质储氢材料是一种能在晶体的空隙中大量贮存氢原子的合金材料,具有可逆吸放氢的性质。
大多数金属合金(M)在一定的温度和压力条件下,与氢生成金属氢化物(MHx):M+XH2→MHx+ΔH(生成热)。
2.1储氢材料应具备的基本条件作为储存能量的材料,储氢材料应具备以下条件:(1)易活化,氢的吸储量大;(2)用于储氢时,氢化物的生成热小;用于蓄热时生成热要尽量大;(3)在室温附近时,氢化物的离解压为203-304kPa,具有稳定的合适的平衡分解压;(4)氢的吸储或释放速度快,氢吸收和分解过程中的平衡压(滞后)小;(5)对不纯物如氧、氮、CO、CO2、水分等的耐中毒能力强;(6)当氢反复吸储和释放时,微粉化少,性能不会劣化;(7)金属氢化物的有效热导率大,储氢材料价廉;(8)吸收和释放氢的速度快,氢扩散速度大,可逆性好。
储氢材料
金属储氢材料可分为两大类,一类是合金氢化物材料,另一类是金属配位氢化物材料。某些金属或合金与氢反应后以金属氢化物形式吸氢,生成的金属氢化物加热后释放出氢,利用这一特性储氢,其储氢密度可达标准状态下氢气的1 000倍,与液氢相同甚至超过液氢[4]。迄今为止,趋于成熟和具备实用价值的金属氢化物储氢材料主要有稀土系、Laves相系、镁系和钛系四大系列。
四、结束语
金属储氢材料,不仅是优良的储氢材料,还是新型的功能材料,可用于电能、机械能、热能和化学能的转换和储存,具有广阔的应用前景。然而到目前为止,那些在室温下容易释放氢的金属氢化物,其可逆吸氢量不超过2%,无法满足实际需求。同时由于成本、原料来源和性能缺陷等诸多原因的制约,使得这些材料的实际应用受到限制。从可持续发展的战略角度出发,新型的金属储氢材料应满足这样一些要求:①原料来源广、成本低、制造工艺简单;②密度小、氢含量高、能量密度大;③可逆吸放氢速度快、效率高;④循环使用寿命高等。国际能源协会(IEA)规定未来新型储氢材料的标准为:在低于373 K下吸氢容量大于5%。要达到这一标准,科研工作者尚需协同努力,做好金属储氢材料的研究工作。
[5]蔡学章.Ti45Zr38Ni17非晶粉和准晶粉的高压贮氢[J].稀有金属快报,2003,22(11):18-19.
[6]陈异,蒋利军.Ti-Mn基Laves相贮氢合金的研究[J].稀有金属快报,2005,24(5):28-32.
[7]王志兴,李新海,陈启元,等.AB5型非化学计量贮氢合金电极过程动力学研究[J].中国稀土报,2008,21(6):647-651.
一、氢的存储标准与现状
衡量储氢材料性能的标准主要有两个:体积密度(kg/m3)和储氢质量分数。体积密度为系统单位体积内储存氢气的质量,储氢质量分数为系统储存氢气的质量与系统质量的值。另外,充放氢的可逆性、充放气速率及可循环使用寿命等也是衡量储氢材料性能的重要参数。
储氢材料调研报告
储氢材料调研报告
《储氢材料调研报告》
一、引言
随着全球资源问题日益凸显,氢能作为清洁能源备受瞩目。
储氢技术是氢能利用的重要环节,而储氢材料的发展则成为研究的热点。
本报告旨在对当前储氢材料的研究现状进行调研,为相关领域的科研人员和企业提供参考。
二、储氢材料概述
储氢材料是指能够吸附、吸收或储存氢气的材料。
它们可以通过物理吸附、化学吸附或固体溶解等方式储存氢气,并在需要时释放出来。
常见的储氢材料包括金属氢化物、碳纳米结构、金属有机框架、氢化物等。
三、储氢材料的研究现状
1. 金属氢化物
金属氢化物是最常见的储氢材料之一,可以通过调控合金组成和微观结构来提高其储氢性能。
目前,氧化镁基金属氢化物和LaNi5等金属氢化物的研究取得了一定的进展。
2. 碳纳米结构
碳纳米结构具有较大的比表面积和丰富的活性位点,是理想的储氢材料。
石墨烯、碳纳米管及其衍生物在储氢领域也受到了广泛关注。
3. 金属有机框架
金属有机框架是一类新型多孔材料,由金属离子和有机连接体组成,具有调控孔隙结构、化学稳定性和多种储氢机制的潜力。
四、展望与挑战
储氢材料的研究仍面临着诸多挑战,如储氢量、吸附/解吸温度、循环稳定性等问题亟待解决。
未来,通过材料设计、合成技术和储氢系统的完善,储氢材料有望取得更大的突破。
综上所述,储氢材料是实现氢能利用的关键环节,其研究现状及发展趋势将对氢能产业的发展产生深远影响。
我们期待通过这份调研报告,为相关领域的科研人员和企业提供有益参考,推动储氢材料的创新与应用。
储氢材料综述
储氢材料研究现状与发展趋势xxx摘要:氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。
储存技术是氢能利用的关键。
储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体。
本文综述了目前已采用或正在研究的储氢材料,如金属储氢(镁基储氢、Fe-Ti基储氢、金属配位氢化物、钒基固溶体型储氢)、碳基储氢、有机液体储氢等材料,比较了各种储氢材料的优缺点,并指出其发展趋势。
关键字:储氢材料,储氢性能,金属储氢,碳基储氢,有机液体储氢。
1.引言氢原料来源广泛、无污染且能量转换效率高,是解决未来清洁能源需求问题的首选新能源之一。
氢是宇宙中含量最丰富的元素之一。
氢气燃烧后只产生水和热,是一种理想的清洁能源。
氢能利用技术,如氢燃料电池和氢内燃机,可以提供稳定、高效、无污染的动力,在电动汽车等领域有着广泛的应用前景。
由于氢能技术在解决人类面临的能源与环境两大方面的重大作用,国内外对氢能技术都有大量资金投入,以加快氢能技术的研发和应用。
氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。
氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入氢能经济(hydrogeneconomy)时代。
氢能的利用需要解决三个问题:氢的制取、储运和应用,而氢能的储运则是氢能利用的瓶颈。
氢在正常情况下以气态形式存在、密度最小、且易燃、易爆、易扩散,这给储存和运输带来很大困难。
当氢作为一种燃料时,必须具有分散性和间歇性使用的特点,因此必须解决储存和运输问题。
储氢和输氢技术要求能量密度大(包含质量储氢密度和体积储氢密度)、能耗少、安全性高。
当氢作为车载燃料使用(如燃料电池动力汽车)时,应符合车载状况的要求。
对于车用氢气存储系统,国际能源署(IEA)提出的目标是质量储氢密度大于5wt%,体积储氢密度大于50kgH2/m3,并且放氢温度低于423K,循环寿命超过1000次;而美国能源部(DOE)提出的目标是到2010年质量储氢密度不低于6wt%,体积储氢密度大于45kgH2/m3;到2015年上述指标分别达9wt%和81kgH2/m3;到2010年车用储氢系统的实际储氢能力大于3.1kg(相当于小汽车行使500km所需的燃料)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、绪言
氢-二十一世纪 的绿色能源
储氢材料综述
2
1.1能源危机与环境问题
➢ 化石能源的有限性与人类需求的无限性-石油、 煤炭等主要能源将在未来数十年至数百年内枯竭!!!(科技
日报,2004年2月25日,第二版)
➢ 化石能源的使用正在给地球造成巨大的生态灾 难-温室效应、酸雨等严重威胁地球动植物的生存!!!
➢ 人类的出路何在?-新能源研究势在必行!!!
储氢材料综述
3
1.2 氢能开发,大势所趋
氢是自然界中最普遍的元素,资源无 穷无尽-不存在枯竭问题
氢的热值高,燃烧产物是水-零排放,无污染 ,
可循环利用
氢能的利用途径多-燃烧放热或电化学发电 氢的储运方式多-气体、液体、固体或化合物
储氢材料综述
4
开口多壁M储o循氢S材2环料纳综述伏米安管曲及线其循环伏安分析
26
纳米碳管电化学储氢
储氢材料综述
27
多壁纳米碳管电极循环充放电曲 线,经过100充放电后 保持最大
容量的70%
储氢材料综述
单壁纳米碳管循环充放电曲线,经过100充 放电后 保持最大容量的80%
28
碳纳米管电化学储氢小结
1. 纯化处理后多壁纳米碳管最大放电容量为 1157mAh/g,相当 于4.1%重量储氢容量。经过100充放电后,其仍保持最大容 量的70%。
➢ 储氢容量高 ➢ 再氢化难(LiAlH4在TiCl3、 TiCl4等催化下180℃ ,
8MPa氢压下获得5%的可逆储放氢容量)
储氢材料综述
21
金属配位氢化物的的主要性能
℃
储氢材料综述
22
3.3碳纳米管(CNTs)
1991年日本NEC公司Iijima教授发现CNTs
储氢材料综述
23
纳米碳管储氢-美学者Dillon1997首开先河
17
TiFe alloy
Characteristics:
❖ two hydride phases;
❖ phase (TiFeH1.04) & phase (TiFeH1.95 ) ❖ 2.13TiFeH0.10 + 1/2H2 → 2.13TiFeH1.04 ❖ 2.20TiFeH1.04 + 1/2H2 → 2.20TiFeH1.95
➢活化容易 ➢平衡压力适中且平坦,吸放氢平衡压差小 ➢抗杂质气体中毒性能好 ➢ 适合室温操作
❖ 经元素部分取代后的
MmNi3.55Co0.75Mn0.47Al0.3(Mm混合稀土,主要成分 La、Ce、Pr、Nd)广泛用于镍/氢电池
储氢材料综述
14
PCT curves of LaNi5 alloy
储氢材料综述
15
钛铁系
典型代表:TiFe,美Brookhaven国家实验室首 先发明
➢ 价格低 ➢ 室温下可逆储放氢 ➢ 易被氧化 ➢ 活化困难 ➢ 抗杂质气体中毒能力差
实际使用时需对合金进行表面改性处 理
储氢材料综述
16
PCT curves of TiFe alloy
TiFe(40 ℃)
储氢材料综述
2. 单壁纳米碳管最大放电容量为503mAh/g,相当于1.84%重量 储氢容量。经过100充放电后,其仍保持最大容量的80%。
气态储氢:
1) 能量密度低 2) 不太安全
液化储氢:
1) 能耗高 2) 对储罐绝热性能要求高
储氢材料综述
6
二、不同储氢方式的比较
固态储氢的优势:
1) 体积储氢容量高 2) 无需高压及隔热容器 3) 安全性好,无爆炸危险 4) 可得到高纯氢,提高氢的附加值
储氢材料综述
7
2.1 体积比较
储氢材料综述
储氢材料综述
18
镁系
典型代表:Mg2Ni,美Brookhaven国家实验室首 先报道
➢ 储氢容量高
➢ 资源丰富
➢ 价格低廉
jjkkl
➢放氢温度高(250-300℃ )
➢ 放氢动力学性能较差
改进方法:机械合金化-加TiFe和CaCu5球磨,或复合
储氢材料综述
19
钛/锆系
➢ 具有Laves相结构的金属间化合物
8
2.2 氢含量比较
0
LaNi H 56
TiFeH 1.9
Hydrogen storage capacity (wt%)
1
2
3
4
5
1.4wt%
per weight
1.8wt%
Mg NiH
2
4
3.6wt%
Carbon nanotube (RT,10MPa 氢压)
4.2wt%
0
1
2
3
4
5
储Hy氢d材ro料g综e述n storage capacity (wt%)
1.3 实现氢能经济的关键技术
➢ 廉价而又高效的制氢技术
➢ 安全高效的储氢技术-开发新型高效的储氢材料和安全
的储氢技术是当务之急
➢ 车用氢气存储系统目标:
IEA: 质量储氢容量>5%; 体积容量 >50kg(H2)/m3 DOE : >6.5%, > 62kg(H2)/m3
储氢材料综述
5
二、不同储氢方式的比较
➢ 原子间隙由四面体构成,间隙多,有利于氢原 子的吸附
➢ TiMn1.5H2.5 日本松下(1.8%) ➢ Ti0.90Zr0.1Mn1.4V0.2Cr0.4 ➢ 活性好
➢ 用于:氢汽车储氢、电池负极Ovinic
储氢材料综述
20
3.2配位氢化物储氢
➢ 碱金属(Li、Na、K)或碱土金属(Mg、Ca) 与第三主族元素(B、Al)形成
9
三、储氢材料技术现状
➢ 3.1 金属氢化物 ➢ 3.2 配位氢化物 ➢ 3.3 纳米材料
储氢材料综述
ቤተ መጻሕፍቲ ባይዱ
10
金属氢化物储氢特点
➢ 反应可逆
➢ ➢
氢 较以 高原 的子 储形 氢式体M储积+存密x,度/2H固2态AD储bess..氢M,H安x +全∆可H靠
储氢材料综述
11
Position for H occupied at HSM
单壁纳米碳管束TEM照片
储氢材料综述
多壁纳米碳管TEM照片
24
纳米碳管吸附储氢:
Hydrogen storage capacities of CNTs and LaNi5 for comparison
(data d储et氢e材rn料in综e述d by IMR,RT,10MPa)
25
纳米碳管电化学储氢
Hydrogen on Tetrahedral Sites
储氢材料综述
Hydrogen on Octahedral Sites
12
3.1 金属氢化物储氢
目前研制成功的: ➢ 稀土镧镍系 ➢ 钛铁系 ➢ 镁系 ➢ 钛/锆系
储氢材料综述
13
稀土镧镍系储氢合金
❖ 典型代表:LaNi5 ,荷兰Philips实验室首先研制 ❖ 特点: