第1章半导体二极管及应用电路
第1章__半导体二极管及其应用习题解答
第1章半导体二极管及其基本电路自测题判断下列说法是否正确,用“√”和“?”表示判断结果填入空内1. 半导体中的空穴是带正电的离子。
(?)2. 温度升高后,本征半导体内自由电子和空穴数目都增多,且增量相等。
(√)3. 因为P型半导体的多子是空穴,所以它带正电。
(?)4. 在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。
(√)5. PN结的单向导电性只有在外加电压时才能体现出来。
(√)选择填空1. N型半导体中多数载流子是 A ;P型半导体中多数载流子是B。
A.自由电子 B.空穴2. N型半导体C;P型半导体C。
A.带正电 B.带负电 C.呈电中性3. 在掺杂半导体中,多子的浓度主要取决于B,而少子的浓度则受 A 的影响很大。
A.温度 B.掺杂浓度 C.掺杂工艺 D.晶体缺陷4. PN结中扩散电流方向是A;漂移电流方向是B。
A.从P区到N区 B.从N区到P区5. 当PN结未加外部电压时,扩散电流C飘移电流。
A.大于 B.小于 C.等于6. 当PN结外加正向电压时,扩散电流A漂移电流,耗尽层E;当PN结外加反向电压时,扩散电流B漂移电流,耗尽层D。
A.大于 B.小于 C.等于D.变宽 E.变窄 F.不变7. 二极管的正向电阻B,反向电阻A。
A.大 B.小8. 当温度升高时,二极管的正向电压B,反向电流A。
A.增大 B.减小 C.基本不变9. 稳压管的稳压区是其工作在C状态。
A.正向导通 B.反向截止 C.反向击穿有A、B、C三个二极管,测得它们的反向电流分别是2?A、0.5?A、5?A;在外加相同的正向电压时,电流分别为10mA、 30mA、15mA。
比较而言,哪个管子的性能最好【解】:二极管在外加相同的正向电压下电流越大,其正向电阻越小;反向电流越小,其单向导电性越好。
所以B管的性能最好。
题习题1试求图所示各电路的输出电压值U O,设二极管的性能理想。
5VVD+-3k ΩU OVD7V5V +-3k ΩU O5V1VVD +-3k ΩU O(a ) (b ) (c )10V5VVD3k Ω+._O U 2k Ω6V9VVD VD +-123k ΩU OVD VD 5V7V+-123k ΩU O(d ) (e ) (f )图【解】:二极管电路,通过比较二极管两个电极的电位高低判断二极管工作在导通还是截止状态。
《模拟电子技术》(第3版)课件与教案 第1章
第1章 半导体二极管及其应用试确定图(a )、(b )所示电路中二极管D 是处于正偏还是反偏状态,并计算A 、B 、C 、D 各点的电位。
设二极管的正向导通压降V D(on) =。
解:如图E1.1所示,断开二极管,利用电位计算的方法,计算二极管开始工作前的外加电压,将电路中的二极管用恒压降模型等效,有(a )V D1'=(12-0)V =12V >0.7V ,D 1正偏导通,)7.02.22.28.17.012(A +⨯+-=VV B =V A -V D(on))V =6. 215V(b )V D2'=(0-12)V =-12V <0.7V ,D 2反偏截止,有V C =12V ,V D =0V二极管电路如图所示,设二极管的正向导通压降V D(on) =,试确定各电路中二极管D 的工作状态,并计算电路的输出电压V O 。
解:如图E1.2所示,将电路中连接的二极管开路,计算二极管的端电压,有 (a )V D1'=[-9-(-12)]V =3V >0.7V ,D 1正偏导通V O1(b )V D2'=[-3-(-29)]V =1.5V >0.7V ,D 2正偏导通V O2图E1.2(c)V D3'=9V>0.7V,V D4'=[9-(-6)]V=15V>0.7V,V D4'>V D3',D4首先导通。
D4导通后,V D3''=(0.7-6)V=-5.3V<,D3反偏截止,V O3。
二极管电路如图所示,设二极管是理想的,输入信号v i=10sinωt V,试画出输出信号v O的波形。
图E1.3解:如图E1.3所示电路,二极管的工作状态取决于电路中的输入信号v i的变化。
(a)当v i<0时,D1反偏截止,v O1=0;当v i>0时,D1正偏导通,v O1=v i。
(b)当v i<0时,D2反偏截止,v O2=v i;当v i>0时,D2正偏导通,v O2=0。
(c)当v i<0时,D3正偏导通,v O3=v i;当v i>0时,D3反偏截止,v O3=0。
半导体二极管及其应用习题解答
半导体二极管及其应用习题解答Document number:NOCG-YUNOO-BUYTT-UU986-1986UT第1章半导体二极管及其基本电路教学内容与要求本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。
教学内容与教学要求如表所示。
要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。
主要掌握半导体二极管在电路中的应用。
表第1章教学内容与要求内容提要1.2.1半导体的基础知识1.本征半导体高度提纯、结构完整的半导体单晶体叫做本征半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
本征半导体中有两种载流子:自由电子和空穴。
自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。
本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。
但本征半导体中载流子的浓度很低,导电能力仍然很差,2.杂质半导体(1) N 型半导体 本征半导体中,掺入微量的五价元素构成N 型半导体,N 型半导体中的多子是自由电子,少子是空穴。
N 型半导体呈电中性。
(2) P 型半导体 本征半导体中,掺入微量的三价元素构成P 型半导体。
P 型半导体中的多子是空穴,少子是自由电子。
P 型半导体呈电中性。
在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。
而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。
1.2.2 PN 结及其特性1.PN 结的形成在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。
PN 结是构成其它半导体器件的基础。
2.PN 结的单向导电性PN 结具有单向导电性。
外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。
模电教材(PDF)
1.正向特性2.反向特性3.反向击穿特性4.温度对特性的影响1.2.3 半导体二极管的主要参数1.最大整流电流IF2.最大反向工作电压URM3.反向饱和电流IR4.二极管的直流电阻R5.最高工作频率fM1.2.4 半导体二极管的命名及分类1.半导体二极管的命名方法第2章半导体三极管及其放大电路本章重点内容�晶体三极管的放大原理、输入特性曲线、输出特性曲线�基本放大电路的工作原理及放大电路的三种基本偏置方式�利用估算法求静态工作点�微变等效电路及其分析方法�三种基本放大电路的性能、特点2.1 半导体三极管2.1.1 三极管的结构及分类1.三极管的内部结构及其在电路中的符号N PP2.输出特性曲线(1)放大区(2) 饱和区(3) 截止区2.1.4 三极管正常工作时的主要特点1.三极管工作于放大状态的条件及特点2.三极管工作于饱和状态的条件及特点3.三极管工作于截止状态时的条件及特点*2.1.5 特殊晶体管简介1.光电三极管2.1.6 三极管的主要参数1.电流放大系数2.反向饱和电流ICBO3.穿透电流ICEO4.集电极最大允许电流ICM5.集电极、发射极间的击穿电压UCEO。
6.集电极最大耗散功率PCM2.1.7 三极管的检测与代换1.国产三极管的命名方法简介2.三极管三个电极(管脚)的估测(aωωωωω2.4.2 放大电路的图解分析法1.用图解法确定静态工作点的步骤:(1)在i c 、u ce 平面坐标上作出晶体管的输出特性曲线。
(2)根据直流通路列出放大电路直流输出回路的电压方程式:U CE = V CC -I C ·R C(3)根据电压方程式,在输出特性曲线所在坐标平面上作直流负载线。
因为两点可决定一条直线,所以分别取(I C =0,U CE =V CC )和(U CE =0,I C =E C /R c )两点,这两点也就是横轴和纵轴的截距,连接两点,便得到直流负载线。
(4)根据直流通路中的输入回路方程求出I BQ 。
第一章 晶体二极管及应用电路
第一章晶体二极管及应用电路§1.1 知识点归纳一、半导体知识1.本征半导体·单质半导体材料是具有4价共价键晶体结构的硅(Si)和锗(Ge)(图1-2)。
前者是制造半导体IC的材料(三五价化合物砷化镓GaAs是微波毫米波半导体器件和IC的重要材料)。
·纯净(纯度>7N)且具有完整晶体结构的半导体称为本征半导体。
在一定的温度下,本征半导体内的最重要的物理现象是本征激发(又称热激发或产生)(图1-3)。
本征激发产生两种带电性质相反的载流子——自由电子和空穴对。
温度越高,本征激发越强。
+载流子。
空穴导电的本质是价电子依次填补本征晶格·空穴是半导体中的一种等效q+电荷的空位宏观定向运动(图1-4)。
中的空位,使局部显示q·在一定的温度下,自由电子与空穴在热运动中相遇,使一对自由电子和空穴消失的现象称为载流子复合。
复合是产生的相反过程,当产生等于复合时,称载流子处于平衡状态。
2.杂质半导体·在本征硅(或锗)中渗入微量5价(或3价)元素后形成N型(或P型)杂质半导体(N型:图1-5,P型:图1-6)。
·在很低的温度下,N型(P型)半导体中的杂质会全部电离,产生自由电子和杂质正离子对(空穴和杂质负离子对)。
·由于杂质电离,使N型半导体中的多子是自由电子,少子是空穴,而P型半导体中的多子是空穴,少子是自由电子。
·在常温下,多子>>少子(图1-7)。
多子浓度几乎等于杂质浓度,与温度无关;两少子浓度是温度的敏感函数。
·在相同掺杂和常温下,Si的少子浓度远小于Ge的少子浓度。
3.半导体中的两种电流在半导体中存在因电场作用产生的载流子漂移电流(这与金属导电一致);还存在因载流子浓度差而产生的扩散电流。
4.PN结·在具有完整晶格的P型和N型材料的物理界面附近,会形成一个特殊的薄层——PN 结(图1-8)。
山东理工大学模拟电子技术基础(C)期末复习总结
•第1章 半导体二极管及其应用电路
•1、半导体 •本征半导体
•温度
•杂质半导体 •N型 •P型
•+5 自由电子 •+3 空穴
•PN结:单向导电性 •多子扩散、少子漂移
•2.二极管
•P •D
•N
•单向导电性:正向导通,
•
反向截止。
•导通压降 •硅管 •0.6~0.8V •锗管 •0.1~0.3V
•(3)根据三极管各极电位,判断工作状态。
•NPN型si管 •UBE ≤0.5V ,
•截止 •PNP型相反
•UBE (≈0.7) > UCE , •饱和
•UBE (≈ 0.7) < UCE , •放大
•特性曲线
•IB(A) •80 •60 •40
•UCE1 V
•IC(mA )
•饱•4 和 区 •3
•+
•Re •RL •U-o
A u
(1 β)RL rbe (1 β)RL
1
Ri Rb // rbe (1 β)RL
Ro
rbe
RS//Rb 1 β
•(1)电压放大倍数小于1,约等于1;
•(2)输入电阻高;
•(3)输出电阻低;
•(4)输出与输入同相。
•7、共基极放大电路 •(电流跟随器)
•3、微变等效电路法 •ic ••+C
•i •B b
•+
•ib ••B•u+b
e•-
•uce •ub •rbe
e
•- •-
•E
•E
26(mV) rbe 300() (1 β) IEQ (mA)
•ic •C
•+
半导体二极管及其应用习题解答..
第1章半导体二极管及其基本电路1.1 教学内容与要求本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。
教学内容与教学要求如表1.1所示。
要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。
主要掌握半导体二极管在电路中的应用。
表1.1 第1章教学内容与要求1.2 内容提要1.2.1半导体的基础知识1.本征半导体高度提纯、结构完整的半导体单晶体叫做本征半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
本征半导体中有两种载流子:自由电子和空穴。
自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。
本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。
但本征半导体中载流子的浓度很低,导电能力仍然很差,2.杂质半导体(1) N型半导体本征半导体中,掺入微量的五价元素构成N型半导体,N型半导体中的多子是自由电子,少子是空穴。
N型半导体呈电中性。
(2) P型半导体本征半导体中,掺入微量的三价元素构成P型半导体。
P型半导体中的多子是空穴,少子是自由电子。
P型半导体呈电中性。
在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。
而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。
1.2.2 PN结及其特性1.PN结的形成在一块本征半导体上,通过一定的工艺使其一边形成N型半导体,另一边形成P型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。
PN 结是构成其它半导体器件的基础。
2.PN 结的单向导电性PN 结具有单向导电性。
外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。
3. PN 结的伏安特性PN 结的伏安特性: )1(TS -=U U eI I式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。
经典模拟电子技术基础知识总结习题(选择,填空,解答题)
第一章 半导体二极管及其应用电路 第六章 运放应用电路
第二章
半导体三极管及其放大电路
第七章
功率放大电路
第三章
场效应晶体管及其放大电路
第八章
波形发生和变换电路
第四章
集成运算放大器
第九章
直流稳压电源
第五章
负反馈放大电路
第十一章~第二十一章
应用篇
第一章 半导体二极管及其应用电路
一、填空: 绝缘体 之间的物 导体 和_______ 1.半导体是导电能力介于_______ 质。 掺杂 特性,制成杂质半导体;利 2.利用半导体的_______ 光敏 特性,制成光敏电阻,利用半 用半导体的_______ 热敏 特性,制成热敏电阻。 导体的_______ 导通 ,加反向电压时 3.PN结加正向电压时_______ 截止 ,这种特性称为PN结的 单向导电 _______ _______ 特性。
饱和 8.当三极管工作在____区时, UCE ≈0。发射极 正向 正向 ____偏置,集电极____偏置。 9.当NPN硅管处在放大状态时,在三个电极电位中, 集电 发射 以____极的电位最高,____极电位最低, 基 发射 ____极和____极电位差等于____。 0.7V 10.当 PNP锗管处在放大状态时,在三个电极电位中, 以____极的电位最高,____极电位最低, 发射 集电 UBE等于____。 -0.3V 三个电极的电位分别为 11.晶体三极管放大电路中 ,试判断三极管的 V ,V2 1.2V ,V3 1.5V 类型是 ____,材料是____。 1 4V 锗 PNP
T 10.单相桥式整流电容滤波电路,当满足 RLC (3~5) 2 时,负载电阻上的平均电压为_______。 A.1.1U2 B. 0.9U2 C. 1.2 U2 D. 0.45U2
第一章二极管及其基本电路
PN结方程
iD I S ( e
v D / nVT
1)
PN结的伏安特性 非线性
其中: IS ——反向饱和电流
VT ——温度的电压当量 常温下(T=300K) kT VT 0.026V 26 mV q n —发射系数 vD —PN结两端的外加电压
v D / nVT i I e 近似 正向: D S 估算 反向: i I D S
1 掺杂性:在纯净的半导体中掺入某些杂质,导电能力明显改变。
§1.1 半导体的基本知识
电子器件中,用的最多的半导体材料是硅和锗。
Ge
Si
+4
通过一定的工艺过程,可以将半导体制成晶体。
2
二、本征半导体 本征半导体 — 完全纯净、结构完整的半导体晶体。
半导体的共价键结构
§1.1 半导体的基本知识
+4
⑴PN结加正向电压:P区接正,N区接负
变薄
- - - - - + + + + +
+
I : 扩散电流 + + + + + - - - - - P区 N区
- - - - - + + + + +
-
IF
外电场 小 内电场被削弱,多子的扩散加 结 强,形成较大的扩散电流I。 VF
16
内电场
3.PN结的单向导电性
b.恒压降模型
当二极管导通后,认 为其管压降vD=VON。 常取vD硅=VON=0.7V vD锗=VON=0.2V
适用
只有当二极管的电流iD近似 等于或大于1mA时才正确。
恒压降模型
应用较广泛。
模拟电子技术第一章 半导体二极管及其电路练习题(含答案)
第一章半导体二极管及其电路【教学要求】本章主要介绍了半导体的基础知识及半导体器件的核心环节—PN结。
PN结具有单向导电特性、击穿特性和电容特性。
介绍了半导体二极管的物理结构、工作原理、特性曲线和主要参数。
理想情况下,二极管相当于开关闭合与断开。
介绍了二极管的简单应用电路,包括整流、限幅电路等。
同时还介绍了稳压二极管、发光二极管、光电二极管、变容二极管。
教学内容、要求和重点见如表1.1。
表1.1 教学内容、要求和重点【例题分析与解答】【例题1-1】二极管电路及其输入波形如图1-1所示,设U im>U R,,二极管为理想,试分析电路输出电压,并画出其波形。
解:求解这类电路的基本思路是确定二极管D在信号作用下所处的状态,即根据理想二极管单向导电的特性及具体构成的电路,可获得输出U o的波形。
本电路具体分析如下:当U i增大至U R时,二极管D导通,输出U o被U R嵌位,U o=U R,其他情况下,U o=U i。
这类电路又称为限幅电路。
图1-1【例题1-2】二极管双向限幅电路如图1-2 (a)所示,若输入电压U i=7sinωt (V),试分析并画出电路输出电压的波形。
(设二极管的U on为0.7V,忽略二极管内阻)。
图1-2解:用恒压降等效模型代替实际二极管,等效电路如图1-2(b)所示,当U i<-3.7V时,D2反偏截止,D1正偏导通,输出电压被钳制在-3.7V;当-3.7V<U i <3.7V时,D1、D2均反偏截止,此时R中无电流,所以U o=U i;当3.7V<U i时,D1反偏截止,D2正偏导通,输出电压被钳制在3.7V。
综合上述分析,可画出的波形如图1-20(c)所示,输出电压的幅度被限制在正负3.7V 之间。
【例题1-3】电路如图1-3(a),二极管为理想,当B点输入幅度为±3V、频率为1kH Z的方波,A点输入幅度为3V、频率为100kH Z的正弦波时,如图1-3(b),试画出Uo点波形。
二极管的应用电路
1.3 二极管的应用电路
一、整流电路 二、钳位电路 三、限幅电路 四、元器件保护电路
编辑ppt
第一章 半导体二极管
一、整流电路 所谓整流,就是将交流电变成脉动直流电。 单相半波整流 桥式全波整流
二、钳位电路 钳位电路是指能把一个周期信号转变为单向的
(只有正向或只有负向)或叠加在某一直流电平上, 而不改变它的波形的电路。
编辑ppt
编辑ppt
第一章 半导体二极管
正钳位电路
ui
uo
Um t1 t2 t3
O
t
t1 t2 t3
O
t
Um
输入波形
编辑ppt
输出波形
第一章 半导体二极管
三、限幅电路 当输入信号电压在一定范围内变化时, 输出电
压随输入电压相应变化;而当输入电压超出该范围 时, 输出电压保持不变, 这就是限幅电路。
上限幅 下限幅
上限幅电路
编辑ppt
下限幅电路
第一章 半导体二极管
ui
uo
Um
Um
O
t
O
t
Um
Um
ui
E=0V时
uo
Um
O
t
O
t
Um
ui Um
0<E<UmV时
Um
uo
Um
O
t
O
t
Um -Um<E<0V时
U 编辑ppt
m
第一章 半导体二极管
四、元器件保护电路 在电子电路中常用二极管来保护其他元器
件免受过高电压损害的电路。
模拟电子技术电子教案第一章半导体二极管及其电路分析教案
1.半导体二极管及其电路分析【重点】半导体特性、杂质半导体、PN结及其单向导电特性。
【难点】PN结形成及其单向导电特性。
1.1 半导体的基本知识1.1.1 半导体的基本知识(1)导电能力对温度的反应非常灵敏。
(2)导电能力受光照非常敏感。
(3)在纯净的半导体中掺入微量的杂质(指其他元素),它的导电能力会大大增强。
1.1.2 本征半导体纯净的半导体称为本征半导体,常用的本征半导体是硅和锗二晶体。
半导体有两种载流子,自由电子和空穴,如果从本征半导体引出两个电极并接上电源,此时带负电的自由电子指向电源正极作定向运动,形成电子电流,带正电的空穴将向电源负极作定向运动,形成空穴电流,而在外电路中的电流为电子电流和空穴电流之和。
1.1.3 杂质半导体1.N型半导体在硅晶体中掺入微量5价元素,如磷(或者砷、锑等),如图所示。
这种半导体导电主要靠电子,所以称为电子型半导体,简称N型半导本。
在N型半导体中,自由电子是多数载流子,而空穴2.P型半导体如果在硅晶体中,掺入少量的3价元素硼(铟、钾等),如图1-5所示。
这种半导体的导电主要靠空穴,因此称为空穴型半导体,有称P型半导体。
P型半导体的空穴是多数载流子,电子是少数载流子。
结论:N型半导体、P型半导体中的多子都是掺入杂质而造成的,尽管杂质含量很微,但它们对半导体的导电能力却有很大影响。
而它们的少数载流子是热运动产生的,尽管数量很少,但对温度非常敏感,对半导体的性能有很大影响。
1.1.4 PN结及其单向导电特性1.PN结的形成结论:在无外电场或其它因素激发时,PN结处于平衡状态,没有电流通过,空间电荷区是恒定的。
另外,在这个区域内,多子已扩散到对方并复合掉了,好像耗尽了一样,因此,空间电荷区又叫做耗尽层。
2.PN结单向导电性(1)正向特性当PN结外加正向电压(简称正偏),电源正极接P,负极接N,PN结处于导通状态,导电时电阻很小。
(2)反向特性当外加反向电压(简称反偏),电源正极接N,负极接P,PN结处于截止状态结论:PN结正偏时电路中有较大电流流过,呈现低电阻,PN结导通;PN结反偏时电路中电流很小,呈现高电阻,PN结截止,可见PN结具有单向导电性。
模拟电子技术教案-第1章 半导体二极管及其基本应用
模拟电子技术主编第1章半导体二极管及其基本应用1.1.1 半导体的基础知识本证半导体1.定义:纯净的单晶半导体称为本征半导体。
2.本征半导体的原子结构及共价键:共价键内的两个电子由相邻的原子各用一个价电子组成,称为束缚电子。
3.本征激发和两种载流子:——自由电子和空穴受温度的影响,束缚电子脱离共价键成为自由电子,在原来的位置留有一个空位,称此空位为空穴。
在本征半导体中,自由电子和空穴成对出现,数目相同。
复合现象:空穴出现以后,邻近的束缚电子可能获取足够的能量来填补这个空穴,而在这个束缚电子的位置又出现一个新的空位,另一个束缚电子又会填补这个新的空位,这样就形成束缚电子填补空穴的运动。
为了区别自由电子的运动,称此束缚电子填补空穴的运动为空穴运动。
4. 结论(1)半导体中存在两种载流子,一种是带负电的自由电子,另一种是带正电的空穴,它们都可以运载电荷形成电流。
(2)本征半导体中,自由电子和空穴相伴产生,数目相同。
(3)一定温度下,本征半导体中电子空穴对的产生与复合相对平衡,电子空穴对的数目相对稳定。
(4)温度升高,激发的电子空穴对数目增加,半导体的导电能力增强。
这是半导体和导体在导电机制的本质差异。
另一方面,空穴的出现是半导体导电区别导体导电的一个主要特征。
杂质半导体1.定义:为了提高半导体的导电能力可在本征半导体中掺入微量杂质元素,该半导体称为杂质半导体。
2.半导体分类在本征半导体中有意识加入微量的三价元素或五价元素等杂质原子,可使其导电性能显著改变。
根据掺入杂质的性质不同,杂质半导体分为两类:电子型(N 型)半导体和空穴型(P 型)半导体。
(1)N 型半导体在硅(或锗)半导体晶体中,掺入微量的五价元素,如磷(P)、砷(As)等,则构成N 型半导体。
五价的元素具有五个价电子,它们进入由硅(或锗)组成的半导体晶体中,五价的原子取代四价的硅(或锗)原子,在与相邻的硅(或锗)原子组成共价键时,因为多一个价电子不受共价键的束缚,很容易成为自由电子,于是半导体中自由电子的数目大量增加。
1章半导体二极管及应用
4.最高工作频率fM
保证二极管具有单向导电作用时允许的最高工作频率。fM主要决定于 PN结电容的大小,结电容越小,fM越大。点接触型二极管的最高工作 频率可达数百兆赫,而面接触型二极管(如整流二极管)最高工作频 率只有3kHz左右。
1.2.4 二极管的等效电路
能在一定条件下近似模拟二极管特性的线性电路称为 二极管的等效电路(或等效模型)。 i
VD IO + UI R 2k UO _ UI R 2k
UD(ON) =0 IO
+ UO _
UD(ON) =0.7V IO _ +
UI R 2k
+ UO _
( a)
( b)
(c)
图1-19
例1.2图
解:将二极管用理想模型和恒压降模型分别代入计算式中。 (1) 当UI = 2 V时,由图1-19(b)可得UO =2V,IO=UO/R=1mA 由图1-19(c)可得:UO =UI - UD(ON) =1.3V,IO=UO /R=0.65mA (2) 当UI =20 V时,由图1-19(b)可得UO=20V,IO= UI/R=10mA 由图1-19(c)可得:UO= UI - UD(ON) =19.3V,IO=UO/R=9.65mA
1.1.1 本征半导体
1. 本征半导体 2. 本征激发与复合 3. 本征浓度
4. 本征半导体的导电特性
1.1.1 本征半导体
1.本征半导体
纯净的、晶体结构、 排列整齐的半导体叫 做本征半导体。 将硅或锗材料提纯便 形成单晶体,它的原 子结构为共价键结构。
+4
共 价 键
+4
+4
价 电 子
+4
+4
半导体二极管及其应用电路
面接触型
硅平面型
阳极
阴极
金属支架
正极引线
负极引线
金锑合金
P型硅
铝合金小球
N型硅片
阳极引线
阴极引线
N型锗片
金属触丝
管壳
二氧化硅保护层
负极引线
阳极引线
N型硅
P型硅
二极管外形示意图
阳极
阴极
面接触型二极管特点:结面积大、结电容大,允许通过较大的电流,适用于低频整流。
硅平面型二极管特点:结面积大的可用于大功率整流;结面积小的,结电容大,适用于脉冲数字电路,作为开关管使用。
u
u<0时
整流电路
uo(io)
0
π
2π
3π
ωt
0
π
2π
3π
ωt
u
uo
io
D4
D1
D2
D3
u
+ -
uo
+
-
RL
io
0
π
2π
3π
ωt
iD
iD1 ,iD3
iD2 ,iD4
整流电路
uo(io)
0
П
2П
3П
ωt
uo
io
桥式全波整流输出电压uO的平均值UO为:
U为交流电源u的有效值
负载电阻RL中流过的电流iO的平均值IO为:
其中IDZ=(5~25)mA IL=UZ/RL=6/600=10mA
本节知识要点
1. 伏安特性方程:
A
D
C
B
iD
uD
o
UBR
一、二极管的伏安特性
2. 伏安特性曲线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 本征半导体
本征激发和复合是本征半导体中电子—空穴对的两 种矛盾运动形式。
在本征半导体中电子和空穴的浓度总是相等的。
若设为本征半导体热平衡状态时的电子浓度,为空穴浓 度,本征载流子的浓度可用下式表示:
ni (T ) pi (T ) AT 3/2EXP(EG / 2kT ) (1.1.1)
P型半导体 N型半导体:在4价硅或锗的晶体中掺入少量的5价杂 质元素,如磷、锑、砷等。如图1.4
P型半导体:在4价硅或锗的晶体中掺入少量的3价杂 质元素,如硼、镓、铟等。如图1.5
上一页 下一页
1.1.2 杂质半导体
+4 +4 +4 施主 原子
+4 +5 +4
自由 电子
+4 +4 +4
图1.4 N型半导体示意图
2.当环境温度升高一些时,半导体的导电能力就显著地增 加;当环境温度下降一些时,半导体的导电能力就显著地下 降,这种特性称为“热敏”特性。
3.当有光线照射在某些半导体时,这些半导体就像导体一样, 导电能力很强;当没有光线照射时,这些半导体就像绝缘体 一样不导电,这种特性称为“光敏”特性。
上一页 下一页
上一页 下一页
1.1.1 本征半导体
载流子是物体内运载电荷的粒子,决定于物体的导电能力。
在常温下本征半导体有两种载流子分别为{ 空穴 自由电子
自由电子与空穴具有相同的电量,而自由电子带单位的负 电荷,空穴的电荷符号则与自由电子的方向相反,并且空 穴是半导体中所特有的带单位正电荷的粒子。
本征激发的重要特征是自由电子和空穴两种载流子总是成 对产生。当自由电子-空穴产生的同时还出现另一个现象: 自由电子和空穴在运动过程中的随机相遇,使自由电子释 放原来获取的激发能量,从导带跌入价带,填充共价键中 的空穴,电子—空穴对消失,这种现象称为复合。
性质是由最外层的价电子数决定的,半导体的导电性质也与
价电子有关。
上一页 下一页
1.1.1 本征半导体
纯净的不含其他杂质的半导体称为本征半导体。
在T=0K和没有外界激发时,由于共价键中的价电 子被束缚着,所以在本征半导体中,没有可以自由运 动的带电粒子—载流子,这时它相当于绝缘体。
当温度升高或受到光的照射时,价电子能量增高, 有的价电子可以挣脱共价键的束缚,而参与导电,成 为自由电子。这一现象称为本征激发,也称热激发。
自由电子产生的同时,在其原来的共价键中就出现 了一个空位,原子的电中性被破坏,呈现出正电性, 其正电量与电子的负电量相等,人们常称呈现正电性 的这个空位为空穴。如图1.3所示:
上一页 下一页
1.1.1 本征半导体
+4
+4
+4
+4 空穴
+4
Байду номын сангаас+4
+4
自由
电子
+4
+4
图1.3 本征激发中的自由电子和空穴对
教学目标
• 了解半导体器件基础知识, • 掌握PN结的特性, • 掌握半导体二极管的结构、特性和主要
参数, • 理解半导体二极管电路的分析方法和主
要应用。
1.1 半导体的特性
由于半导体具有体积小、重量轻、使用寿命长、输入功 率小和转换功率高等特点,故而得到广泛应用。
我们知道自然界中的物质可分为 三类:
第一类、物质的电阻率小于10-3Ω·cm,具有良好的导电性, 如铜、铝、铁、银等,称为导体 。 第二类、物质的电阻率很大,一般在109Ω·cm以上,是不能 够导电的材料,如橡胶、塑料等,称为绝缘体。 第三类、物质的电阻率介于导体与绝缘体之间,通常在103~109Ω·cm范围内,例如硅、锗、砷化镓、锌化铟等 ,也 称为半导体。
②光照→ (或)↑→导电能力 ↑,由此特性可制作出半导体 的各类光电器件。
上一页 下一页
1.1.2 杂质半导体
本征半导体中虽然存在两种载流子,但是因为本征 载流子的浓度很低,所以导电能力很差。如果在本征半 导体中掺入某种特定的物质,成为杂质半导体后,半导 体的导电性能将发生质的变化。
N型半导体 根据掺杂的杂质不同可分为{
如果将一块半导体的一侧掺杂成为P型半导体,而另 一侧掺杂成为N型半导体,则在二者的交界处将形成一个 PN结。
上一页 下一页
1.1 半导体的特性
半导体与导体和绝缘体的差别不仅在于它的电阻率介于导 体和绝缘体之间,而是因为它具有不同于导体和绝缘体的独特 性质。这些独特的性质集中体现在它的电阻率可以因某些外界 因素的改变而明显地变化,具体表现在以下3个特性:
1.在纯净的半导体中适当地掺入一定种类的极微量的杂质, 半导体的导电性能就会成百万倍的增加,这是半导体最显著、 最突出的特性。
1.1 半导体的特性
半导体为什么会具有上述特性呢?主要是由其内部原 子结构决定的 。 以硅和锗为例,其原子结构模型如图1.1所示 :
+14
+32
(a) S i
(b) G e
图1.1 Si、Ge的原子结构模型
硅和锗的外层电子都是4个,所以硅和锗都是四价元 素。
外层电子受原子核的束缚力最小,称为价电子。物质的化学
+4 +4 +4 受主 原子
+4 +3 +4 空穴
+4 +4 +4
图1.5 P型半导体示意图
上一页 下一页
1.2 PN结的特性及应用
1.2.1 PN结的形成 1.2.2 PN结的单向导电特性 1.2.3 PN结的反向击穿特性 1.2.4 PN结的电容特性及应用
上一页 下一页
1.2.1 PN结的形成
上一页 下一页
1.1.1 本征半导体
在室温T=300 K时,由式(1.1.1)可推算出: Si : ni=pi≈1.5×1010/cm3, Ge : ni=pi≈2.4×1013/cm 。
式(1.1.1)表明:
①T↑→ (或 )↑→半导体导电能力↑,由此特性可制作半导 体热敏元器件;但 (或 ) 随T的变化会影响半导体器件的稳定 性,因而在电子电路的设计和集成电路的制造工艺中经常要 采用很多措施来克服或减少这种热敏效应。
其中:A为常数,与半导体材料有关, Si 的A=3.88×1016(cm-3K-2/3), Ge的 A=1.76×1016(cm-3K -2/3); 表明挣脱共价键所需要的能量,单位为eV(电子伏), Ge的=0.68eV,硅的=1.1eV; T为温度(K); k为玻耳兹曼常数 , k=1.38×10-23(JK-1); EXP是自然对数的底。