一种反激同步整流DC TO DC变换器设计

一种反激同步整流DC TO DC变换器设计
一种反激同步整流DC TO DC变换器设计

一种反激同步整流DC-DC变换器设计

作者:华南理工大学自动化学院任光深圳华为技术有限公司电源研发部李卫东深圳信息职业技术学

院电子2004年4月B版

摘要:对反激同步整流在低压小电流DC-DC变换器中的应用进行了研究,介绍了主电路工作原理,几种驱动方式及其优缺点,选择出适合于自驱动同步整流的反激电路拓扑,并通过样机试验,验证了该电路的实用性。

关键词:反激变换;同步整流;电路拓扑

引言

低压大电流DC-DC模块电源一直占模块电源市场需求的一半左右,对其相关技术的研究有着重要的应用价值。模块电源的高效率是各厂家产品的亮点,也是业界追逐的重要目标之一。同步整流可有效减少整流损耗,与适当的电路拓扑结合,可得到低成本的高效率变换器。本文针对36V-75V输入,3.3V/15A输出的二次电源模块,在分析同步整流技术的基础上,根据同步整流的特点,选择出适合于自驱动同步整流的反激电路拓扑,进行了详细的电路分析和试验。

反激同步整流

基本的反激电路结构如图1。

其工作原理:主MOSFET Q1导通时,进行电能储存,这时可把变压器看成一个电感,原边绕组电流Ip上升斜率由dIp/dt=Vs/Lp决定,磁芯不饱和,则Ip 线性增加;

磁芯内的磁感应强度将从Br增加到工作峰值Bm;Q1关断时,原边电流将降到零,副边整流管开通,感生电流将出现在副边;按功率恒定原则,副边安匝值与原边安匝值相等。

在稳态时,开关导通期间,变压器内磁通增量△Φ应等于反激期间内的磁通变化量,即:

△Φ=VsTon / Np=Vs'Toff / Ns

从此式可见,如果磁通增量相等的工作点稳定建立时,变压器原边绕组每匝的伏-秒值必然等于副边每匝绕组的伏-秒值。

反激变换器的拓扑实际就是一个BUCK-BOOST组合的变换器拓扑的应用,而且如果副边采用同步整流,电路总是工作于CCM的模式下,其电压增益

M=V o/Vs=K·D/(1-D)(K为原副边匝数比)

用PMOSFET和MOSFET替代图1中的萧特基二极管,可以实现同步整流的4种电路结构如图2和图3

反激电路的开关电压波形见图4,是标准的矩形波,非常适合同步整流驱动。设计的关键点在于同步整流管的位置与驱动电路的结构配合、波形的整形限幅和死区控制。

图1 基本反激电路结构图

图2 由NMOSFET构成的反激同步整流电路结构

图3 由PMOSFET构成的反激同步整流电路结构

图4 CH1-整流管实验波形/ CH2-主开关实验波形

图5 一种实际的外驱电路

图6 增加驱动能力的外驱电路

图7 由NMOSFET构成的反激同步整流自驱动电路结构

图8 由PMOSFET构成的反激同步整流自驱动电路结构

图9 反激同步整流半自驱电路结构

图10、Vgs驱动波形,CH1同步整流管,CH2主开关管

图11、Vds波形,CH1同步整流管,CH2主开关管

图12 转换效率曲线

反激同步整流驱动电路选择

同步整流管的驱动方式有三种:第一种是外加驱动控制电路,优点是其驱动波形的质量高,调试方便。缺点是:电路复杂,成本高,在追求小型化和低成本的今天只有研究价值,基本没有应用价值。图5是简单的外驱电路,R1D1用于调整死区。该电路的驱动能力较小,在同步整流管的Ciss较小时,可以使用。图6是在图5的基础上增加副边推挽驱动电路的结构,可以驱动Ciss较大的MOSFET。在输出电压低于5 V时,需要增加驱动电路供电电源。

第二种是自驱动同步整流。优点是直接由变压器副边绕组驱动或在主变压器上加独立驱动绕组,电路简单、成本低和自适应驱动是主要优势,在商业化产品中广泛使用。缺点是电路调试的柔性较少,在宽输入低压范围时,有些波形需要附加限幅整形电路才能满足驱动要求。图7和图8是四种反激同步整流的电路结构。由于Vgs的正向驱

动都正比于输出电压,调节驱动绕组的匝数可以确定比例系数,且输出电压都是很稳定的,所以驱动电压也很稳定。比较麻烦的是负向电压可能会超标,需要在设计变压器变比时考虑驱动负压幅度。

第三种是半自驱。其驱动波形的上升或下降沿,一个是由主变压器提供的信号,另一个是独立的外驱动电路提供的信号。图9是针对自驱的负压问题,用单独的放电回路,提供同步整流管的关断信号,避开了自驱动负压放电的电压超标问题。

实验结果

根据图7电路,设计了一台15W样机,输入电压36-75V,输出5V/3A,体积50m m/25mm/8.5mm。开关频率300kHz,磁心选用国产FEY12.5,变压器匝比3:1,磁心中柱气隙0.2mm。

同步整流管选择的主要依据是:整流管导通电阻尽量小,电压和电流不超过整流管的电压和电流限值,这里选用Motorola公司的MTB75N05HD( Vds=50V,Rds=7mΩ)同步整流管的驱动波形如图10,为标准的矩形波。

实测的效率曲线如下,低压满载时在87%以上。与萧特基二极管整流的典型效率82%相比,模块损耗减少了30%。

结语

理论分析和样机验证,证明反激同步整流的的效率在低压输出条件下有明显的优势,模块本身的功耗比萧特基整流低30%,可以提高30%的模块功率密度,具有极大的推广和应用价值。■

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

确定准谐振反激式变换器主要设计参数的实用方法

确定准谐振反激式变换器主要设计参数的实用方法 准谐振反激式变换器(Flyback Converter)由于能够实现零电压开通,减少了开关损耗,降低了EMI噪声,因此越来越受到电源设计者的关注。但是由于它是工作在变频模式,因此导致诸多设计参数的不确定性。如何确定它的工作参数,成为设计这种变换器的关键,本文给出了一种较为实用的确定方法。 近年来,一些著名的国际芯片供应商陆续推出了准谐振反激式变换器的控制IC,例如安森美的NCP1207、IR公司的IRIS40XX系列、飞利浦的TEA162X系列以及意法半导体的L6565等。正如这些公司宣传的那样,在传统的反激式变换器当中加入准谐振技术,既可以实现开关管的零电压开通,从而提高了效率、减少了EMI噪声,同时又保留了反激式变换器所固有的成本低廉、结构简单、易于实现多路输出等优点。因此,准谐振反激式变换器在低功率场合具有广阔的应用前景。但是,由于这种变换器的工作频率会随着输入电压及负载的变化而变化,这就给设计工作(特别是变压器的设计)造成一些困难。本文将从工作频率入手,详细阐述如何确定准谐振反激式变换器的几个主要设计参数:最低工作频率、变压器初级电感量、折射电压、初级绕组的峰值电流等。 图1是准谐振反激式变换器的原理图。其中: L P为初级绕组电感量,L LEAK为初级绕组漏感量, R P是初级绕组的电阻,C P是谐振电容。 由图1可见,准谐振反激式变换器与传统的反激 式变换器的原理图基本一样,区别在于开关管的 导通时刻不一样。图2是工作在断续模式的传统 反激式变换器的开关管漏源极间电压V DS的波 形图。这里V IN是输入电压,V OR为次级到初级 图1:准谐振反激式变换器原理图。 的折射电压。 由图2可见,当副边绕组中的能量释放完毕之后(即变压器磁通完全复位),在开关管的漏极出现正弦波振荡电压,振荡频率由L P、C P决定,衰减因子由R P决定。对于传统的反激式变换器,其工作频率是固定的,因此开关管再次导通有可能出现在振荡电压的任何位置(包括峰顶和谷底)。可以设想,如果控制开关管每次都是在振荡电压的谷底导通,如图3所示,那么就可以实现零电压导通(或是低电压导通),这必将减少开关损耗,降低EMI噪声。实现这一点并不困难,只要增加磁通复位检测功能(通常是辅助绕组来实现),以便在检测到振荡电压达到最低点时打开开关管,就能达到目的。这实质上就是准谐振反激式变换器的工作原理,前文提到的几种IC均能实现这个功能。由此带来的问题是其工作频率是变化的,从而影响了其它设计参数的确定。 设计参数的确定 设计反激式变换器,通常需要确定以下参数: f S:变换器的工作频率; I PMAX:初级绕组的最大峰值电流;

移相全桥参数计算

1、 2、 介绍 在大功率服务器件中,为满足高效和绿色标准,一些供电设计师们发现使用移相全桥转换器更容易。这是| |因为移相全桥变换器可以在转换器原边获得零切换。这个应用程序的目的是设计报告审查的600W移相全桥变换器在电力系统中,利用TI的新UCC2895移相全桥控制器,并基于典型值。在生产设计需要修改的值最坏 情况的条件。希望这些信息将帮助其他电源设计者的努力设计一个有效的移相全桥变换器。 表1设计规范 描述最小值典型值最大值输入电压370V390V410V 输出电压11.4V12V12.6V 允许输出电压瞬变]600mV 加载步骤90% 输出电压600W 满负荷效率93% 电感器切换频率200kHz 3、功能示意图 4、功率预算 为满足效率的目标,一组功率预算需要设定。 ^BUOGET =^OUT X 1 =45,2W V H J 5、原边变压器计算T1 变压器匝比(al): VREF GNU UPD OUTA CQMP QUIT HI WTC UL L AB oyrr&1* DC LCD DUTE瞽 QELEF OUTF TT TMiNl S-VNC M mr GS15 RSUV WC1 □ cm ADELEF口 -jWTF I s srrec

估计场效应晶体管电压降(VRDSON ): V RDSON ~ 0*3 V 基于最小指定的输入电压时 70%的占空比选择变压器。 基于平均输入电压计算典型工作周期 (DTYP ) ("OUT 彳力整座N 0 66 (V|N - 2 兀 ) 输岀电感纹波电流设置为输岀电流的 20% 需要注意在选择变压器磁化电感的正确数值 (LMAG )。下列方程计算主变 压器 器运行在电流型控制。 如果LMA 太小,磁化电流会导致变换器运行在电压模式控制代替 peak-current 模式 这是因为磁化电流太大,它将作为PW 坡道淹没RS!的电流传感信号。 ^2.76mH 图2显示了 T1原边电流(IPRIMARY )和同步整流器Q 罰QF 电流对同步整流栅驱动电流的反应。注意 l (QE ) l (QF ) 也是T1的次级绕组电流。变量 D 是转换器占空比。 a1 = N P N s 3[二(¥N 和忡)x 口叱 =21 M OUT P OUT X °隈 V OUT = 10A 仃1)的最低磁化电感,确保变频

倍流同步整流在DCDC变换器中工作原理分析

倍流同步整流在DC/DC变换器中工作原理分析 在低压大电流变换器中倍流同步整流拓扑结构已经被广泛采用。就其工作原理进行了详细的分析说明,并给出了相应的实验和实验结果。 关键词:倍流整流;同步整流;直流/直流变换器;拓扑 0 引言 随着微处理器和数字信号处理器的不断发展,对芯片的供电电源的要求越来越高了。不论是功率密度、效率和动态响应等方面都有了新要求,特别是要求输出电压越来越低,电流却越来越大。输出电压会从过去的3.3V降低到1.1~1.8 V之间,甚至更低[1]。从电源的角度来看,微处理器和数字信号处理器等都是电源的负载,而且它们都是动态的负载,这就意味着负载电流会在瞬间变化很大,从过去的13A/μs到将来的30A/μs~50A/μs[2]。这就要求有能够输出电压低、电流大、动态响应好的变换器拓扑。而对称半桥加倍流同步整流结构的DC/DC变 换器是最能够满足上面的要求的[3]。 本文对这种拓扑结构的变换器的工作原理作出了详细的分析说明,实验结果 证明了它的合理性。 1 主电路拓扑结构 主电路拓扑如图1中所示。由图1可以看出,输入级的拓扑为半桥电路,而输出级是倍流整流加同步整流结构。由于要求电路输出低压大电流,则倍流同步 整流结构是最合适的,这是因为: 图1 主电路拓扑 1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小; 2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,最终得到了很小的输出电 流纹波;

3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了; 4)较少的大电流连接线(high current inter-connection),在倍流整流拓扑中,它的副边大电流连接线只有2路,而在中间抽头的拓扑中有3路; 5)动态响应很好。 它唯一的缺点就是需要两个输出滤波电感,在体积上相对要大些。但是,有一种叫集成磁(integrated magnetic)的方法,可以将它的两个输出滤波电感和变压器都集成到同一个磁芯内,这样可以大大地减小变换器的体积。 2 电路基本工作原理 电路在一个周期内可分为4个不同的工作模式,如图2所示,理想的波形图 如图3所示。 (a) 模式1[t0-t1] (b) 模式2[t1-t2]

反激变换器课程设计报告

电力电子课程实习报告 班级:电气10-3班 学号: 10053303 姓名:李乐

目录 一、课程设计的目的 二、课程设计的要求 三、课程设计的原理 四、课程设计的思路及参数计算 五、电路的布局与布线 六、调试过程遇到的问题与解决办法 七、课程设计总结

一、课程设计的目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的应用; (3)增强设计、制作和调试电力电子电路的能力。 二、课程设计的要求 本课程设计要求根据所提供的元器件设计并制作一个小功率的反击式开关电源。 电源输入电压:220V 电源输出电压电流:12V/1.5A 电路板:万用板手焊。 三、课程设计原理 1、引言 电力电子技术有三大应用领域:电力传动、电力系统和电源。在各种用电设备中,电源是核心部件之一,其性能影响着整台设备的性能。电源可以分为线性电源和开关电源两大类。 线性电源是把直流电压变换为低于输入的直流电压,其工作原理是在输入与输出之间串联一个可变电阻(功率晶体管),让功率晶体管工作在线性模式,用线性器件控制其“阻值”的大小,实现稳定的输出,电路简单,但效率低。通常用于低于10W的电路中。通常使用的7805、7815等就属于线性电源。 开关电源是让功率晶体管工作在导通和关断状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小),所以开关电源具有能耗小、效率高、稳压范围宽、体积小、重量轻等突出优点,在通讯设备、仪器仪表、数码影音、家用电器等电子产品中得到了广泛的应用。反激式功率变换器是开关电源中的一种,是一种应用非常广泛的开关电源。 2、基本反激变换器工作原理 基本反激变换器如图1所示。假设变压器和其他元件均为理想元器件,稳态工作下。

同步整流技术分享

江苏宏微科技股份有限公司 Power for the Better
同步整流技术及主要拓扑电路
宏微科技市场部
2015-9-16

Contents
? 同步整流电路概述 ? 典型电路及其特点 ? 损耗分析 ? 同步整流电路中常见问题 ? MOSFET选型设计参考
Power for the Better
1 CONFIDENTIAL





Contents
? 同步整流技术概述 ? 典型电路及其特点 ? 损耗分析 ? 同步整流电路中常见问题 ? MOSFET选型设计参考
Power for the Better
2 CONFIDENTIAL





同步整流技术概述
由于中低压MOSFET具有很小的导通电阻,在有电流通过时产生的电压降很 小,可以替代二极管作为整流器件,可以提高变换器的效率。
diode
MOSFET
MOSFET作整流器时,栅源极间电压必须与被整流电压的相位保持同步关系才 能完成整流功能,故称同步整流技术。 MOSFET是电压控制型开关器件,且没有反向阻断能力,必须在其栅-源之 间加上驱动电压来控制器漏-源极之间的导通和关断。这是同步整流设计的难 点和重点。 根据其控制方式,同步整流的驱动电路分为 ?自驱动方式; ? 独立控制电路他驱方式; ? 部分自驱+部分他驱方式结合;
Power for the Better
3 CONFIDENTIAL





德州仪器-具有同步整流功能的移相全桥控制器UCC28950使用说明

- + -V S UCC28950 https://www.360docs.net/doc/7b14524799.html, SLUSA16A–MARCH2010–REVISED JULY2010 Green Phase-Shifted Full-Bridge Controller With Synchronous Rectification Check for Samples:UCC28950 FEATURES APPLICATIONS ?Phase-Shifted Full-Bridge Converters ?Enhanced Wide Range Resonant Zero Voltage Switching(ZVS)Capability?Server,Telecom Power Supplies ?Industrial Power Systems ?Direct Synchronous Rectifier(SR)Control ?High-Density Power Architectures ?Light-Load Efficiency Management Including ?Solar Inverters,and Electric Vehicles –Burst Mode Operation –Discontinuous Conduction Mode(DCM),DESCRIPTION Dynamic SR On/Off Control with Programmable Threshold The UCC28950enhanced phase-shifted controller builds upon Texas Instrument’s industry standard –Programmable Adaptive Delay UCCx895phase-shifted controller family with ?Average or Peak Current Mode Control with enhancements that offer best in class efficiency in Programmable Slope Compensation and today’s high performance power systems.The Voltage Mode Control UCC28950implements advanced control of the full-bridge along with active control of the ?Closed Loop Soft Start and Enable Function synchronous rectifier output stage.?Programmable Switching Frequency up to1 MHz with Bi-Directional Synchronization The primary-side signals allow programmable delays to ensure ZVS operation over wide-load current and ?(+/-3%)Cycle-by-Cycle Current Limit input voltage range,while the load current naturally Protection with Hiccup Mode Support tunes the secondary-side synchronous rectifiers ?150-μA Start-Up Current switching delays,maximizing overall system ?V DD Under Voltage Lockout efficiency. ?Wide Temperature Range-40°C to125°C UCC28950Typical Application Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date.Copyright?2010,Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.

适配器的反激同步整流控制电路分析

适配器的反激同步整流控制电路分析随着消费类电子的发展,其外部供电电源(适配器)所消耗的电能占全球能耗的比例在急剧加大,成为不可忽视的耗能“大户”。以美国为例,每年适配器需要消耗电能3000亿度/年,占整个国家每年用电总量的11%。 在节能减排深入人心的当今,目前各国政府的法规中对外部电源的要求越来越严格。美国能源之星5.0,针对外部电源的平均效率也作出了更为苛刻的规范。 表1:输出电压Vout>6V时的电源效率。 表2:输出电压Vout<6V时的电源效率。 高功率密度,高集成度毫无疑问已经成为电子技术发展的方向,电源效率的提升不仅能减小电源的体积还能大大提高电源的可靠性。 适配器作为小功率的消费品,设计成本成为设计工程师首要考虑关键因素,Flyback 结构因为电路简单,已经成为设计150W以下适配器普遍采用的电路架构。 传统采用肖特基作为整流输出的设计中,因为肖特基的壁垒电压VF的存在,使得大电流输出的情况下,消耗在肖特基上的损耗很大,不仅造成电源效率低下,更因为温度过高降低了电源的可靠性。为了解决这问题,同步整流技术应运而生,同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流肖特基二极管以降低整流损耗的一项新技术。 深圳鹏源电子致力于为客户提供成本更优,效率更高的同步整流方案,为了满足客户高效高功率密度的设计需要。 准谐振(Quasi-resonance)因为谷底开通,能有效降低Flyback的开关损耗,提升效率,但需要注意的是QR临界电流模式,其导通损耗较连续电流模式(CCM)要大,所以在115Vac电压输入无PFC的情况下,QR的控制方式反而没有CCM的效率高。而且QR为变频控制,在低输入电压满载的情况下开关频率很低,这就需要更大的变压器,电源的体积受到了限制。因此,为提高效率,目前许多厂家都采用多模式控制方式,即在高压输入的情况下工作QR模式,在低压输入的情况下工作在CCM模式。众所周知,目前所有厂家的同步整流控制器都只能工作在断续或临界模式,而擎力科技所推出的同步整流控制IC采用

反激变压器绕制详解

反激式开关电源变压器的设计(小生我的办法,见笑) 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了 电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47 第二步,确实原边电流波形的参数. 原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊.这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值,二是有效值,三是其峰值,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值=输出功率/效率*VS,因为输出功率乘以效率就是输入功率,然后输入功率再除以

电流驱动同步整流反激变换器的研究

电流驱动同步整流反激变换器的研究 陈丹江,张仲超 (浙江大学,浙江杭州310027) 摘要:分析了工作在恒频DCM方式下的反激同步整流变换器。为了提高电路的效率,采用了一种能量反馈的电流型驱动电路来控制同步整流管。分析了该驱动电路的工作原理,并给出了设计公式。实验结果表明该方法提高了反激变换器效率的有效性。 关键词:反激;同步整流;能量反馈;电流驱动ResearchonaFlybackConverterUsing 1引言 随着数字处理电路(data processingcircuits)的工作电压的持续下降,保持电路的高效率受到了很大的技术挑战。这是由于在低压电源中,二极管的正向压降引起的损耗占了电路总损耗的50%以上。由于MOSFET同步整流管SR(synchronousrectifiers)的低导通电阻,在大量的电路中都用来代替效率低的肖特基二极管,特别是在低压电源中[1]。 反激是一种广泛应用于小功率的拓扑,由于只有一个磁性元件,而具有体积小,成本低的优点。但是,目前同步整流在正激电路中的应用比较多,而在反激电路中的应用却很少。这是由于正激电路比较适合大电流输出,能够更好地体现同步整流的优势;另外一个原因是可采用简单的自驱动,而反激电路原边开关和副边开关理论上会有共通。但是,如果考虑到实际电路中变压器的漏感,则这种情况是不会产生的,所以当输出电流不是很大时,采用反激电路还是值得考虑的。本文将对工作在DCM方式下的同步反激电路进行分析。 同步整流中最重要的一个问题是同步管的驱动设计。同步管的驱动大体上可以分为自驱动(self driv en)和他驱动(control driven),本文介绍了一种能量反馈的自驱动电路。 2同步整流在反激电路中的应用 带有同步整流的反激电路如图1所示。一般来说,电路可以工作在CCM或DCM方式,开关频率可以是恒频(CF),也可以是变频(VF)。下面主要对工作在恒频DCM方式的工作过程进行分析。主要波形如图2所示。在DCM方式下工作时,原边开关开通时储存在变压器励磁电感上的能量在开关关断时全部传送到副边。从图2可以看出,在原边开关开通之前,副边电流已经为零了。由于MOSFET具有双向导电特性,所以为了防止副边电流逆流,必须在其到达零点时(即t3)或很短的一小段时间里关断SR。因此,DCM方式下工作的反激电路必须要有一个零电流检测环节来控制电路。 在t3时刻SR关断以后,励磁电感Lm和电容Ceq=Csw+进行谐振,谐振阻抗为: Zm=(1) 直到t5时刻原边开关开通为止。同时,由于VDS的存在,原边开关开通时的开通损耗为:

应用同步整流技术实现双向DC/DC变换

应用同步整流技术实现双向DC/DC变换 [日期:2006-11-9] 来源:电源技术应用作者:浙江大学姜德来吕征宇[字体:大中小] 摘要:在Buck同步整流技术的基础上,充分利用其电路的特点,提出了双向直流变换器,并分析了其可行性。针对双向恒压和双向恒流两种控制方式,分析了各自的开关管驱动脉冲要求,并给出了相应控制脉冲的实现方法。通过实验加以验证。 关键词:双向;同步整流;恒压;恒流 0 引言 同步整流技术是近几年研究的热点,主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。采用一般的二极管续流,其导通电阻较大,应用在大电流场合时,损耗很大。用导通电阻非常小的MOS管代替二极管,可以解决损耗问题,但同时对驱动电路提出了更高的要求。 此外,对Buck电路应用同步整流技术,用MOS管代替二极管后,电路从拓扑上整合了Buck和Boost两种变换器,为实现双向DC/DC变换提供了可能。在需要单向升降压且能量可以双向流动的场合,很有应用价值,如应用于混合动力电动汽车时,辅以三相可控全桥电路,可以实现蓄电池的充放电。 l 工作原理 1 1 电路拓扑 双向同步整流电路拓扑如图1所示。当电路工作于正向Buck时,Sw作为主开关管,当Sw导通时,SⅡ关断,电感L储能;当Sw关断时,SR导通续流,电感L释能给输出负载供电。当电路工作于反向Boost升压电路时,SR作为主开关管,当SR导通时,Sw关断,电感L储能;当SR关断时,Sw导通续流,电感L释能给输出负载供电。

1.2 参数设计 设置电感L是为了抑制电流脉动,因此其设计依据是电流纹波要求。电容C1主要是为了在Boost电路Sw关断时,维持输出电压恒定,而电容C2主要是为了抑制Buck输出电压脉动,其设计依据是电压纹波要求,因此两个电容的参数设计并不一致。具体算式如下。 式中:Vg为Buck电路输入电压; Vo为Boost电路输入电压; D为Sw管的占空比: △Q为对应输出电压纹波的电荷增量; △Vo为Buck电路输出电压纹波要求; △Vg为Boost电路输出电压纹波要求; △lmin为Buck和Boost电路电流纹波要求的较小值; I为电感电流。 1.3双向恒流型控制 1)当电路工作在Buck模式时,被控制的是电感电流,目的是为了维持电感电流恒定。电路参数方程为

UCC28950移相全桥设计指南设计

UCC28950移相全桥设计指南 一,拓扑结构及工作原理 (1) 主电路拓扑 本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。电路拓扑如图3.6所示。 图3.6 全桥ZVZCS电路拓扑 当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。当关断1S时,电源对1C C通过变压器初级绕组放电。由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于充电,2 Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于k L,加速了2C的放电,为2S的零电压开通提供条件。当Cc放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变, S为零电流关断,3S为零电流开通。 所以4 (2) 主电路工作过程分析[7] 半个周期内将全桥变换器的工作状态分为8种模式。 ①模式1 图1模式1主电路简化图及等效电路图 ②模式2 图2模式2简化电路图 ③模式3

图3模式3简化电路图 ④模式4 图4模式4主电路简化图及等效电路图⑤模式5 图5模式5 主电路简化图及等效电路图⑥模式6 图6模式6主电路简化图及等效电路图⑦模式7

图7模式7主电路简化电路图 ⑧模式8 图8模式8主电路简化电路图 二,关键问题 1:滞后臂较难实现ZVS 原因:滞后臂谐振的时候,次级绕组短路被钳位,所以副边电感无法反射到原边参加谐振,导致谐振的能量只能由谐振电感提供,如果能量不够,就会出现无法将滞后臂管子并联的谐振电容电压谐振到0V. 解决方法: ①、增大励磁电流。但会增大器件与变压器损耗。 ②、增大谐振电感。但会造成副边占空比丢失更严重。 ③、增加辅助谐振网络。但会增加成本与体积。 2,副边占空比的丢失 原因:移相全桥的原边电流存在着一个剧烈的换流过程,此时原边电流不足以提供副边的负载电流,因此副边电感就会导通另一个二极管续流,即副边处于近似短路状态; Dloss与谐振电感量大小以及负载RL大小成正比,与输入电压大小成反比。 解决方法: ①、减少原副边的匝比。但会造成次级整流管的耐压增大的后果。

一种全桥同步整流器的设计及其应用

一种全桥同步整流器的设计及其应用 2012-10-24 22:01:37 来源:21IC 关键字:全桥同步整流器 由于现代高速超大规模集成电路的尺寸不断减小,同时又对功率要求的不断增加。因此必须提高供电电源的功率密度,在有限的散热空间里增加功率密度,就必须提高电源的工作效率。近年来,通过增加输出级同步整流、引入软开关技术等,使得开关电源的效率得到了大幅提高。如何进行一步提高其工作效率,笔者从输入级的一次整流入手进行了相应分析和研究。 1 原理与设计 1.1 桥式整流与桥式同步整流分析 一般开关电源中一次整流电路结构如图1所示。因为图中电源V1由电网提供,要采用高压二极管对其进行整流,所以D1,D2,D3,D4的压降约为1 V。当输出电流为I时,将在整个整流桥上产生P(VD)=1×2×I的功率损耗。 桥式同步整流电路结构如图2所示,图中M1、M2、M3、M4为n沟道增强型功率MOS 管,其中D1、D2、D3、D4为其寄生体二极管。图中左半部分为其驱动信号产生模块。 为进一步提高电源变换器的效率,降低一次整流部分的损耗是提高电源变换器工作效率的一种有效途径。采用P-MOSFET管来实现整流功能的整流电路称为同步整流电路,P-MOSFET管不像二极管那样能自动截止反向电流,需要用P-MOSFET管来实现同步整流,必须控制P-MOSFET管的导通和关断,而P-MOSFET管的导通和关断又取决于它的栅极驱

动信号。因此,在设计同步整流P-MOSFET管栅极驱动信号的大小和时序,要确保同步整流电路的正常工作。图3为相应开关管M1、M2、M3、M4控制信号S1、S2、S3、S4波形图。 为防止开关管发生直通的现象,在上下桥臂的波形切换之间加入了死区时间Tdeadtime。 因为工作频率在50 Hz,所以无需考虑其开关损耗。桥式同步整流电路中功率损耗主要发生在其导通的直流电阻RDS上,即P=(RDS×2)I2,图4给出了相应损耗功耗曲线。 设全桥整流时整流桥的损耗功率P(VD)=2×I。设全桥同步整流时开关管的损耗功率P(VT)=Ron×I2。与全桥整流相比全桥同步整流所节省的功率损耗P(D)=P(VD)-P(VT)=2×I-Ron×I2。根据函数的增减性,当I=1/Ron时,P(D)可取得最大值。 1.2 相应参数计算 此部分主要考虑将输入正弦波变为与之同步的方波,相应电路如图5所示。为防止整流开关管发生直通的现象,在上下桥臂波形切换之间加入了死区时间。引死区时间由过零比较电压时行设定,即电阻R1与电阻R2、R3与电阻R4的比值来确定。死区时间Tdeadtime 在整个周期中所占的时间为 其中,V1-1为同步交流信号的幅值;T为输入交流信号的周期。

反激式变压器的设计

反激式变压器的设计 反激式变压器的工作与正激式变压器不同。正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。这里的主要物理量是电压、时间、能量。 在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。磁心尺寸和磁心材料也要选好。这时,为了变压器能可靠工作,就需要有气隙。 刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。 (24) 把 Lpri移到左边,用Ton=Dmax/f 代到上式中,用已知的电源工作参数,通过式(25) 就可以算出一次最大电感 ——最大占空比(通常为50%或0.5)。 (25) 这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。 在开关管导通的每个周期中,存储在磁心的能量为: (26) 要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式: (27)

所有磁心工作在单象限的场合,都要加气隙。气隙的长度(cm)可以用下式近似(CGS制(美 国)): (28a) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为G(Wb/cm )。 在MKS系统(欧洲)中气隙的长度(m)为 (28b) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为T(Wb/m )。 这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。 磁心制造厂商为气隙长度提供了一个A L的参数。这参数是电感磁心绕上1000 匝后的数据(美 国)。根据设计好的电感值,绕线的匝数可以用式(29)计算确定。 (29) 式中 Lpri——一次电感量,单位为mH。 如果有些特殊的带有气隙的磁心材料没有提供A L。的值,可以使用式(30)。注意不要混淆CGS和MKS两种单位制(G和cm与T和m)。 (30)

移相全桥全参数计算

1、介绍 在大功率服务器件中,为满足高效和绿色标准,一些供电设计师们发现使用移相全桥转换器更容易。这是因为移相全桥变换器可以在转换器原边获得零切换。这个应用程序的目的是设计报告审查的600W移相全桥变换器在电力系统中,利用TI的新UCC28950移相全桥控制器,并基于典型值。在生产设计需要修改的值最坏情况的条件。希望这些信息将帮助其他电源设计者的努力设计一个有效的移相全桥变换器。 表 1 设计规 描述最小值典型值最大值 输入电压370V 390V 410V 输出电压11.4V 12V 12.6V 允许输出电压瞬变600mV 加载步骤90% 输出电压600W 满负荷效率93% 电感器切换频率200kHz 2、功能示意图

3、功率预算 为满足效率的目标,一组功率预算需要设定。 4、原边变压器计算T1 变压器匝比(a1): 估计场效应晶体管电压降(VRDSON): 基于最小指定的输入电压时70%的占空比选择变压器。 基于平均输入电压计算典型工作周期(DTYP) 输出电感纹波电流设置为输出电流的20%。 需要注意在选择变压器磁化电感的正确数值(LMAG)。下列方程计算主变压器(T1)的最低磁化电感,确保变频器运行在电流型控制。如果LMAG太小,磁化电流会导致变换器运行在电压模式控制代替peak-current模式。这是因为磁化电流太大,它将作为PWM坡道淹没RS上的电流传感信号。

图2显示了T1原边电流(IPRIMARY)和同步整流器QE和QF电流对同步整流栅驱动电流的反应。注意I(QE) I(QF)也是T1的次级绕组电流。变量D是转换器占空比。 计算T1次级均方根电流(ISRMS):

同步整流技术

同步整流技术
电源网第20届技术交流会
邹超洋
2012.11



?同步整流简介。
?同步整流的分类。
简 ?同步整流的驱动方式

?同步整流的 MOSFET

同步整流简介
z 高速超大规模集成电路的尺寸的不断减小,功耗的不断降低,要求 供电电压也越来越低,而输出电流则越来越大。 z 电源本身的高输出电流、低成本、高频化(500kHz~1MHz)高 功率密度、高可靠性、高效率的方向发展。 z 在低电压、大电流输出DC-DC变换器的整流管,其功耗占变换器 全部功耗的50~60%。 z用低导通电阻MOSFET代替常规肖特基整流/续流二极管,可以大大 降低整流部分的功耗,提高变换器的性能,实现电源的高效率,高功 率密度。

同步整流简介
diode
=
MOSFET 代替diode
MOSFET
D
相当于二极管的功能
G
?电流从S流向D ?V/I特性,工作于3rd 象限
S
z 用MOSFET来代替二极管在电路中的整流功能 z 相对于二极管的开关算好极小 z 整流的时序受到MOSFET的Vgs控制,可以根据系统的需要,
把整流的损耗做到最小

同步整流简介
? 例如:一个5V 30A输出的电源
Diode
Vf=0.45V Ploss=0.45*30=13.5W Ploss/Po=13.5/45=30%
Mosfet
Rdson=1.2m? Ploss=0.0012*302=1.08W Ploss/Po=1.08/45=2.4%
MBR8040(R)
SC010N04LS

同步整流实现反激变换器设计.

同步整流实现反激变换器设计 摘要:详细分析了同步整流反激变换器的工作原理和该驱动电路的工作原理,并在此基础上设计了100V~375VDC 输入,12V/4A 输出的同步整流反激变换器,工作于电流断续模式,控制芯片选用UC3842,对设计过程进行了详细论述。通过Saber 仿真验证了原理分析的正确性,证明该变换器具有较高的变换效率。 引言 反激变换器具有电路简单、输入输出电压隔离、成本低、空间要求少等优点,在小功率开关电源中得到了广泛的应用。但输出电流较大、输出电压较低时,传统的反激变换器,次级整流二极管通态损耗和反向恢复损耗大,效率较低。同步整流技术,采用通态电阻极低的专用功率MOSFET来取代整流二极管。把同步整流技术应用到反激变换器能够很好提高变换器的效率。 1 同步整流反激变换器原理 反激变换器次级的整流二极管用同步整流管SR 代替,构成同步整流反激变换器,基本拓扑如图1(a)所示。为实现反激变换器的同步整流,初级MOS 管Q 和次级同步整流管SR 必须按顺序工作,即两管的导通时间不能重叠。当初级MOS 管Q 导通时,SR 关断,变压器存储能量;当初级MOS 管Q 关断时,SR 导通,变压器将存储的能量传送到负载。驱动信号时序如图1(b)所示。在实际电路中,为了避免初级MOS 管Q 和次级同步整流管SR 同时导通,Q 的关断时刻和SR 导通时刻之间应有延迟;同样Q 的导通时刻和SR 的关断时刻之间也应该有延迟。 图1 同步整流反激变换器 2 同步整流管的驱动 SR 的驱动是同步整流电路的一个重要问题,需要合理选择。本文采用分立元件构成驱动电路,该驱动电路结构较简单、成本较低,适合宽输入电压范围的变换器,具体驱动电路如图2 所示。SR 的栅极驱动电压取自变换器输出电压,因此使用该驱动电路的同步整流变换器的输出电压需满足SR 栅极驱动电压要求。

反激式变换器(Flyback Converter)的工作原理

反激式变换器(Flyback Converter)的工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b).

当Q1导通,T1之初级线圈渐渐地会有初级电流流过,能量就会储存在其中.由于变压器初级与次级侧之线圈极性是相反的,因此二极管D1不会导通,输出功率则由Co来提供.此时变压器相当于一个串联电感Lp,初级线圈电流Ip可以表示为: Vdc=Lp*dip/dt 此时变压器磁芯之磁通密度会从剩磁Br增加到工作峰值Bw. 3.当Q1截止时, 其等效电路如图三(a)及在截止时次级电流波形,磁化曲线如图三(b).

当Q1截止时,变压器之安匝数(Ampere-Turns NI)不会改变,因为?B并没有相对的改变.当?B向负的方向改变时(即从Bw降低到Br),在变压器所有线圈之电压极性将会反转,并使D1导通,也就是说储存在变压器中的能量会经D1,传递到Co和负载上. 此时次级线圈两端电压为:Vs(t)=Vo+Vf (Vf为二极管D1的压降). 次级线圈电流: Lp=(Np/Ns)2*Ls (Ls为次级线圈电感量) 由于变压器能量没有完全转移,在下一次导通时,还有能量储存在变压器中,次级电流并没有降低到0值,因此称为连续电流模式或不完全能量传递模式(CCM). 三.CCM模式下反激变压器设计的步骤 1. 确定电源规格. 1. .输入电压范围Vin=85—265Vac; 2. .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; 3. .变压器的效率?=0.90

相关文档
最新文档