轴向拉伸与压缩PPT课件

合集下载

轴向拉伸和压缩及连接件的强度计算PPT课件

轴向拉伸和压缩及连接件的强度计算PPT课件
特点
轴向拉伸和压缩时,杆件只承受 轴向力,不受其他外力作用,杆 件横截面保持为平面,无剪切和 扭转。
轴向拉伸和压缩的应用场景
01
02
03
机械制造
轴、螺栓、螺母等连接件 的设计和强度计算。
建筑行业
钢结构的稳定性分析和设 计,如钢梁、钢柱等。
石油化工
管道、压力容器等承受内 压的元件设计和安全评估。
轴向拉伸和压缩的基本原理
准确性。
材料性能研究
深入研究材料的力学性能,特别是 其非线性行为,为强度计算提供更 准确的基础数据。
设计优化与验证
结合实际应用案例,不断优化设计, 并通过实验验证来确保设计的有效 性。
05 轴向拉伸和压缩及连接件 的未来发展与展望
当前研究的热点与难点
材料性能的极限挑战
随着对高性能材料需求的增加,如何准确预测材料在轴向 拉伸和压缩下的行为以及连接件的强度成为当前研究的热 点。
但是,在实际应用中,由于材料的不 均匀性、表面粗糙度等因素的影响, 拉伸强度和压缩强度可能会有所差异 。
强度计算中的注意事项
01
材料的不均匀性
在计算强度时,需要考虑材料的不均匀性。即使是同一种材料,不同部
位的力学性能也可能存在差异。
02 03
温度的影响
温度对材料的力学性能有很大影响。在高温下,材料的屈服强度和抗拉 强度都会降低。因此,在高温环境下工作的零件,需要考虑温度对强度 的影响。
复杂应力状态
轴向拉伸和压缩及连接件在实际应用中可能面临复杂的应力状态, 如弯曲、剪切等,增加了强度计算的难度。
连接件设计
连接件的设计对整体结构的强度和稳定性至关重要,设计不当可能 导致失效或安全事故。
应用案例分析

《轴向拉伸和压缩》课件

《轴向拉伸和压缩》课件

课程目标
掌握轴向拉伸和压缩的基 本原理和分析方法
了解轴向拉伸和压缩在实 际工程中的应用

培养学生的实验技能和实 践能力,提高解决实际问 题的能力
Part
02
轴向拉伸和压缩的基本概念
拉伸和压缩的定义
拉伸
物体在力的作用下沿力的方向伸 展或拉长的过程。
压缩
物体在力的作用下沿力的方向缩 短或压扁的过程。
拉伸和压缩的力分析
力的方向分析
在轴向拉伸和压缩过程中,力的方向 沿着杆件轴线,与杆件轴线重合。
力的作用点分析
力的作用点选择在杆件上,通常选择 在杆件的两端,以便于分析杆件受力 情况。
拉伸和压缩的变形分析
变形量分析
在轴向拉伸和压缩过程中,杆件会发生伸长或缩短的变形,变形量可以用伸长量或缩短 量来表示。
拉伸和压缩的分类
按变形程度
弹性变形和塑性变形
按外力性质
静力拉伸和压缩、动力拉伸和压缩、冲击拉伸和压缩
拉伸和压缩的物理模型
直杆拉伸与压缩模型
忽略横截面变化的简单拉伸与压缩模型。
弹性杆件模型
考虑横截面变化的弹性变形模型。
弹性体模型
考虑物体内部应力和应变的弹性变形模型。
Part
03
轴向拉伸和压缩的力学分析
2
引伸计:测量试样在拉伸
或压缩过程中的应变。
3
计算机和数据采集系统:
记录和处理实验数据。
实验步骤
准备试样
01 选择所需材料,制备标准试样

安装试样
02 将试样放置在试验机的夹具中
,确保试样轴线与拉伸或压缩 方向一致。
设定实验参数
03 设定初始实验条件,如加载速

轴向拉伸与压缩PPT课件

轴向拉伸与压缩PPT课件

)
三. 圣维南(Saint-Venant)原理: 离开载荷作用处一定距离,应力分布与大小不受外载荷作
用方式的影响。 应力分布示意图:
(红色实线为变形前的线,红色虚线为红色实线变形后的形状。)
例1 直径为d =1 cm 杆受拉力P =10 kN的作用,试求最大切应力, 并求与横截面夹角30°的斜截面上的正应力和切应力。
1 kL2 2
2
§8–3 拉压杆的应力与圣维南原理
一、拉(压)杆横截面上的应力 1. 变形规律试验及平面假设:
变形前
ab cd
P 受载后




P
平面假设:原为平面的横截面在变形后仍为平面。 纵向纤维变形相同。
均匀材料、均匀变形,内力当然均匀分布。
2. 拉伸应力: P
s FN(x)
s FN (x)
3、轴力图—— FN (x) 的图象表示。
意 ①反映出轴力与截面位置变化关系,较直观;
义 ②确定出最大轴力的数值 FN
及其所在横截面的位置,
P
即确定危险截面位置,为
+
强度计算提供依据。
FN>0 FN<0
x
[例1] 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 P 的力,方向如图,试画出杆的轴力图。
FN4= P
轴力图如右图 FN
2P + –
3P
BC
PB FN3
PC C
PC FN4
5P
+
P
D PD D PD D PD
x
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。

材料力学--轴向拉伸和压缩

材料力学--轴向拉伸和压缩

2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图

§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比

§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。

《轴向拉伸与压缩》课件

《轴向拉伸与压缩》课件

轴向拉伸的应用范围
建筑工程
轴向拉伸在钢筋混凝土结构中的应用,增加结构的承载能力。
材料制备
轴向拉伸用于制备高强度材料、纤维材料、复合材料等。
模具设计
轴向拉伸在模具设计中的应用,增强产品的形状和结构。
轴向拉伸的原理与方法
1
应力-应变关系
介绍轴向拉伸应力和应变之间的关系。
2
材料性能分析
通过实验和测试,评估材料的拉伸性能和变形行为。念 轴向拉伸的应用范围 轴向拉伸的原理与方法 轴向压缩的概念 轴向压缩的应用范围 轴向压缩的原理与方法
背景介绍
轴向拉伸和压缩是一种重要的力学变形方式,在工程应用中起着至关重要的作用。本节将介绍轴向拉伸 和压缩的背景和意义。
轴向拉伸的概念
轴向拉伸是指在材料中施加一个沿着轴向方向的拉力,使材料沿轴向伸长的 力学变形方式。
3
工程应用案例
展示轴向拉伸在工程实践中的应用案例。
轴向压缩的概念
轴向压缩是指沿着轴向方向对材料施加的压缩力,使材料沿轴向缩短的力学 变形方式。
轴向压缩的应用范围
桥梁建设
砖瓦制造
汽车制造
轴向压缩在桥梁建设中的应用, 提升桥梁的稳定性和承载能力。
轴向压缩用于砖瓦制造过程中, 提高瓦片的密度和强度。
汽车制造中的轴向压缩应用, 改善车身结构和安全性能。
轴向压缩的原理与方法
1 应变率分析
2 压缩强度测试
分析材料在轴向压缩中 的变形速率和应变过程。
通过实验和测试,评估 材料在轴向压缩条件下 的强度和稳定性。
3 工程实践案例
展示轴向压缩在工程实 践中的应用案例和成果。

杆件拉伸和压缩强度计算ppt课件

杆件拉伸和压缩强度计算ppt课件
6
第二节 轴向拉伸和压缩的应力应变
一、应力的概念
图3-5 应力概念
7
第二节 轴向拉伸和压缩的应力应变
二、横截面上的应力
图3-6 正应力与切应力
8
第二节 轴向拉伸和压缩的应力应变
图3-7 拉杆横截面上的应力 0.tif
9
第二节 轴向拉伸和压缩的应力应变
图3-8 支架
例3-2 如图3-8a所示支架,其水平圆杆直径为30mm,矩形截面斜 杆的尺寸为60mm×100mm,tanα=3/4,F=24kN。
10
第二节 轴向拉伸和压缩的应力应变
试确定各杆的正应力。 解 由图3-8b所示的受力图,用平衡方程可得 三、拉伸或压缩时的变形
11
第二节 轴向拉伸和压缩的应力应变
3M9.tif 表2-1 几种常用材料的E和μ值
例3-3 阶梯形杆AC,在A、B两压缩的应力应变
图3-19 名义屈服极限
25
第三节 材料在拉伸和压缩时的力学性 能
3M20.tif
26
第三节 材料在拉伸和压缩时的力学性 能
3M21.tif
27
第三节 材料在拉伸和压缩时的力学性 能
图3-22 铸铁压缩时的σ-ε曲线
28
第四节 拉压杆的强度计算
一、极限应力许用应力安全系数 二、拉伸和压缩时的强度计算 (1)校核强度 若已知杆件的尺寸、所受载荷和材料的许用应力,即 可用强度条件验算杆件是否满足强度要求。 (2)设计截面 若已知杆件所承受的载荷及材料的许用应力,由强度 条件确定杆件所需要的截面面积,即A≥。 (3)确定许用载荷 若已知杆件横截面尺寸及材料的许用应力,由强 度条件确定杆件所能承受的最大轴力,即FNmax≤[σ]A。

轴向拉伸和压缩.ppt

轴向拉伸和压缩.ppt

第三节 强度计算
根据强度条件,可以解决的三类实际工程问题。
1、校核杆件强度 已知:Nmax,A,[σ]。验算构件是否满足强度条件 2、设计截面 已知:Nmax,[σ]。根据强度条件,求:A 3、确定最大载荷 已知:A,[σ]。根据强度条件,求: Nmax
第三节 强度计算
例题1 一直径d =14mm的圆杆,许用应力[σ]=170MPa,受轴向拉力 P =2.5kN作用,试校核此杆是否满足强度条件。
P 200
11
N11 A11
17.5103 0.2 0.2
4.375105 Pa
G1 1
1
N22 P G1 G2 27.5kN
22
N22 A22
27.5103 0.4 0.4
1.719105 Pa
2
G2
400 2
第二节 受轴向拉伸或压缩时横截面上的内力和应力
3、斜横向线仍保持为直线,—变形后横截面仍保 持为平面(平截面假设)。
第二节 受轴向拉伸或压缩时横截面上的内力和应力
横截面上的应力分布:
F
σ
1、正应力的概念:
内力在横截面上的分布集度
N
A
单位:
帕斯卡 Pa (=N/m2)
常用单位: MPa=106 Pa GPa=109 Pa
第二节 受轴向拉伸或压缩时横截面上的内力和应力
8kN N33
解:
X 0
N11 N 22
60 18 6
0
N33 8 18 6 0
N11 6kN
N22
12kN
N33 4kN
第二节 受轴向拉伸或压缩时横截面上的内力和应力
3、轴力图
反映轴力与截面位置关系的图线

材料力学PPT第二章

材料力学PPT第二章

Q235钢的主要强度指标:s = 240 MPa,
b = 390 MPa
低碳钢拉伸试件图片
试件拉伸破坏断口图片
结合压缩曲线得到结论:颈缩过程,材 料的力学性质发生变化
塑性指标
1.延伸率
l1 l 100%
l
2.断面收缩率


A A1 A
100%
l1----试件拉断后的长度
A1----试件拉断后断口处的最小 横截面面积
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
A
FN1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
F
y
FN 2 45° B x
F
a
c
b
d
F FN dA
bd
A
dA A
A
FN
A
A 1
45°
C
2
FN1
y
FN 2 45° B
F
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
≥5%—塑性材料 <5%—脆性材料 σ
Q235钢: 20% ~ 30% ≈60%
冷作硬化
O
应力-应变(σ-ε)图

注意:
(1) 低碳钢的s,b都还是以相应的抗力除以试

《材料力学拉压》PPT课件

《材料力学拉压》PPT课件
F
各点线应变相同 F
F
根据静力平衡条件: F NdF A dAA

FN
A
FN
A
正负号规定:拉应力为正,压应力为负.
FN 的适用条件:
A
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合.
2、只适用于离杆件受力区域稍远处的横截面.
4、 实验验证
拉伸与压缩/横截面上的内力和应力
卸载
卸载定律:在卸载
过程中,应力与应
变满足线性关系.
p e
应变关系
e p
拉伸与压缩/材料的力学性能
低碳钢Q235拉伸时的力学行为
断裂 冷作<应变>硬化现象:
应力超过屈服极限后
卸 载 与
卸载,再次加载,材 料的比例极限提高,

再加载
而塑性降低的现象.


拉伸与压缩/材料的力学性能
名义屈服应力
p0.
n
(n>1) 引入安全系数的原因:
1、作用在构件上的外力常常估计不准确;构件的外形及所受 外力较复杂,计算时需进行简化,因此工作应力均有一定 程度的近似性;
2、材料均匀连续、各向同性假设与实际构件的出入,且小试样 还不能真实地反映所用材料的性质等.
构件拉压时的强度条件
maxFNAmax[]
拉伸与压缩/拉〔压〕时的强度计算
1.5m B
A 1
FN1
B
FN 2
F
2m
F
2
C
FFN2 cos 0 FN1 FN2 sin 0
解得
FN1
3 4
F(拉) ,
FN2
5 4
F(压)

2材料力学轴向拉压.ppt课件

2材料力学轴向拉压.ppt课件
斜FA 布p纵α上切截=。截应c±面面力o4A5上FA上成so的截对p面全A dFA应Ac力mmm oia 可nxp9s i分0AAn 4α45解—A —59 ——为d0 c2 正横 斜Ao20 截截应s面面p力面面9 和积A 积0 4 4切550 应2F2力
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx

x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。

材料力学课件_轴向拉伸和压缩

材料力学课件_轴向拉伸和压缩

用 截 面 法 求 出 各 段 轴 力
4
N4
P4
③根据轴力图的作法即可画出轴力图
N
单位:KN
x
0
选一个坐标系,用其横坐标 表示横截面的位置,纵坐标 表示相应截面上的轴力。 拉力绘在x轴的上侧, 压力绘在x轴的下侧。
思考题
在画轴力图之前,能否使用理论力学中学过 的力的平移原理将力平移后再作轴力图?
max
应力正负号规定
N max A
规定拉应力为正,压应力为负(同轴力相同) 。
2、公式(2-1)的应用范围:
①外力的合力作用必须与杆件轴线重合
②不适用于集中力作用点附近的区域
③当杆件的横截面沿轴线方向变化缓
慢,而且外力作用线与杆件轴线重 合时,也可近似地应用该公式。
如左图
N x x A x
1 2 3
4
0 R 10KN
② 用截面法求AB段轴力,保留1-1截面左部
X 0
N1 R 0
N1 10NK
同理可求出BC、CD、DE段内的轴力分别为:
N 2 R P1 50KN 拉力 N 4 20KN 拉力
N 3 P3 P4 5KN 压力
x轴
X 0 N F 0 N F
结论
因F力的作用线与杆件的轴线重合,故,由 杆件处于平衡状态可知,内力合力的作用线也必 然与杆件的轴线相重合。
(2)定义:上述内力的合力N就称为轴力 (其作用线因与杆件的轴线重合而得名)。
2.轴力正负号规定:
①规定引起杆件拉伸时的轴力为正,即拉力为正;
F
}F
F/2 F/2
F/2 F/2
} F
F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械基础—轴向拉伸与压缩
可编辑
案例导入
如图所示为气动连杆夹具,在C端压紧工件。你能否 利用前面所学的知识:
(1)对各构件进行受力分析,并判断哪个构件属于二力 杆;
(2) 保证工件在满足夹紧需求的同时,各构件具有足 够的承载能力。
2
可编辑
第4单元 轴向拉伸与压缩
1
概述
2 轴向拉伸与压缩的概念
3 轴力和横截面上的应力
(2)轴力的正负号:截面一侧的合外力方向背离轴 截面时,轴力为正,反之为负。
25
可编辑
4.3 轴力 横截面上的应力
4.3.2 拉(压)杆横截面上的应力 1.应力的概念:应力表示内力在截面上的密集度。 截面上的应力可以分解: (1)垂直于截面的应力σ称为正应力; (2)平行于截面的应力τ称为切应力。
16
可编辑
4.3 轴力和横截面上的应力
4.3.1 拉(压)杆的内力与截面法 1.内力的概念:在外力的作用下,构件的内部将产生
相互作用的力,称为内力。
截面的内力
17
可编辑
4.3 轴力和横截面上的应力
2.截面法 求构件内力的方法通常采用截面法,用截面法求内力可
归纳为四个字: (1)截:欲求某一横截面的内力,沿该截面将构件假想 地截成两部分。
4 轴向拉伸与压缩杆的变形
3
可编辑
学习目标
理解和掌握强度、刚度、稳定性
1 、内力、应力、应力集中等基本
概念
掌握轴力图的绘制及利用轴力
2 图分析杆件的危险截面。
理解塑性材料和脆性材料的极限应
3
力与许用应力、安全系数之间的关系
4
可编辑
学习目标
3
掌握轴向拉伸与压缩时的变形 计算
4
熟练应用轴向拉伸(压缩)的 强度条件进行强度的三类计算
20
可编辑
4.3 轴力和横截面上的应力
(2)轴力符号规定 当轴力的方向与截面外法线n、n′的方向一致时,杆件
受拉,规定轴力为正;反之杆件受压,轴力为负,通常未 知轴力均按正向假设。轴力的单位为牛顿(N)或千牛 (kN)。
21
可编辑
4.3 轴力和横截面上的应力
(3) 轴力图 表示轴力沿杆轴线方向变化的图形称为轴力图。 常取横坐标x表示横截面的位置,纵坐标值表示横截面 上轴力的大小,正的轴力(拉力)画在x轴的上方,负的 轴力(压力)画在x轴的下方。
8
可编辑
4.1 概述
4.1.2 弹性体及其基本假设 1、研究对象:弹性体 2、基本假设: (1)均匀连续性假设; (2)各向同性假设; (3)弹性小变形
1)弹性变形 ; 2)塑性变形;
3)弹性小变形
9
可编辑
4.1 概述
4.1.3 杆件变形的基本形式 1.构件的基本形式:根据几何形状不同构件可简化分
8
综合案例分析
9
课堂练习
7
可编辑
4.1 概述
4.1.1 构件的承载能力 材料力学的任务:就是研究构件承载能力。 构件的承载能力包括以下三个方面: (1)强度:是指在承载作用下,构件抵抗破坏的能力。 (2)刚度:是指在承载作用下,构件抵抗变形的能力。 (3)稳定性:是指受压的细长或薄壁构件能够维持原有直 线平衡状态的能力。
了解低碳钢和铸铁的力学性能
5
指标及其物理意义
5
可编辑
学习重点和难点
截面法、轴力与轴力图
1 拉(压)杆横截面上的应力
拉(压)杆的变形计算
2 材料在拉(压)变形时的力学
性能
3 拉(压)杆的强度计算
6
可编辑
第4单元 轴向拉伸与压缩
5 拉伸和压缩时材料的力学性能
6 轴向拉伸与压缩杆的强度计算
7
应力集中的概念
26
可编辑
4.3 轴力 横截面上的应力
在国际单位制中,应力的单位是牛/米2(N/m2),又 称帕斯卡,简称帕(Pa)。在实际应用中这个单位太小, 通常使用兆帕(MPa ) N/mm2或吉帕(GPa )。它们的 换算关系为:
1 N/m2 =1Pa 1MPa=106 Pa 1GPa=109 Pa
27
可编辑
22
可编辑
4.3 轴力和横截面上的应力
案例4-1 如图4-10a所示的等截面直杆,受轴向力 F1=15kN, F2=10kN的作用。求出杆件1-1、2-2截面的轴 力,并画出轴力图。
23
可编辑
4.3 轴力和横截面上的应力
24
可编辑
4.3 轴力和横截面上的应力
快速作图法 (1)截面的轴力大小:
FN(FN′)=截面一侧所有外力的代数和
4.3 轴力 横截面上的应力
2.拉(压)杆横截面上的应力 (1)平面假设:假设在变形过程中,变性前为平面的横 截面,变性后仍为平面,仅仅沿轴线方向平移一段距离。
28
可编辑
4.3 轴力 横截面上的应力
(2)横截面的应力分布 杆件承受轴向拉(压)时,轴力在横截面上是均匀分 布的,且方向垂直于横截面。
作用线与杆的轴线重合。 (2)变形特点:杆件沿轴线方向伸长(或压缩)。
轴向拉伸与压缩变形的计算简图
14
可编辑
4.2 轴向拉伸与压缩的概念
☆ 想一想 练一练 试判断下列图中所示构件哪些属于轴向拉伸或轴向压
缩变形?
15
可编辑
4.2 轴向拉伸与压缩的概念
☆ 想一想 练一练
试分析所示图的气动连杆夹具中,哪些构件的变形为 轴向拉伸或轴向压缩?
类为杆、板、壳和块。
杆的几何特征是:纵向(长度方向)尺寸远远大于横向(垂直 于长度方向)尺寸。
垂直于杆长的截面称为横截面,各横截面形心的连线称为轴线。 轴线是直线的杆称为直杆;各截面相同的直杆称为等截面直杆(简称 等直杆)
10
可编辑
4.1 概述
2.杆件变形的基本变形形式
轴向拉伸与压缩变形
11
剪切与挤压变形
18
可编辑
4.3 轴力和横截面上的应力
(2)取:取其中任意部分为研究对象,而弃去另一部分。 (3)代:用作用于截面上的内力,代替弃去部分对留下 部分的作用力。 (4)平:建立留下部分的平衡条件,由外力确定未知的 内力。
19
可编辑
4.3 轴力和横截面上的应力
3.轴力与轴力图 (1)轴力的概念:作用线与杆的轴线重合,通过截面的 形心并垂直于杆的横截面的内力,称为轴力,常用符号FN 表示。
可编辑
4.1 概述
杆件的基本变形形式
扭转变形12弯源自变形可编辑4.2 轴向拉伸与压缩的概念
1.工程案例分析
自卸式汽车
凸轮机构
结论:杆件所受的外力或其合力与杆轴线重合,并沿轴 线方向将发生伸长或缩短变形。沿着轴向拉伸或轴向压缩变 形的杆,简称为拉(压)杆。
13
可编辑
4.2 轴向拉伸与压缩的概念
2.拉(压)杆的受力及变形特点 (1)受力特点:作用于直杆两端的两个外力等值、反向,
相关文档
最新文档