九年级数学质量检测试题扫描版
2023-2024学年第一学期九年级期中质量监测数学试题及答案
注意事项:1、本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2、答案全部在答题卡上完成,答在本试卷上无效.2023-2024学年第一学期九年级期中质量监测试题(卷)数学3、考试结束后,只收回答题卡.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.下列方程是关于x 的一元二次方程的是A.B.02342=++xx 0122=--y x C.D.0122=++x ax ()024=-x x 2.如图,将含有30°角的三角尺ABC (∠BAC =30°),以点A 中心,顺时针方向旋转,使得点C ,A ,B ′在同一直线上,则旋转角的大小是A.30°B.60°C.120°D.150°3.方程的两个实数根是x x =2A.x 1=x 2=1B.x 1=1,x 2=-1C.x 1=0,x 2=1D.x 1=0,x 2=-14.将关于x 的方程配方成的形式,则的值是0862=+-x x ()p x =-23p A.1B.28C.17D.445.如果关于x 的一元二次方程有两个实数根,则k 的取值范围是032=+-k x x A.k≥B.k≤C.k>D.k<49494949C′B′CBA6.将二次函数的图象先向左平移2个单位,再向上平移1个单()2122---=x y 位,则所得到的二次函数的解析式是A.B.()1322---=x y ()1122-+-=x y C.D.()3122-+-=x y ()3322---=x y 7.冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的RNA 病毒,是自然界广泛存在的一大类病毒,冠状病毒可感染多种哺乳动物、鸟类和人.在某次冠状病毒感染中,有3只动物被感染,后来经过两轮感染后共有363只动物被感染.若每轮感染中平均一只动物会感染x 只动物,则下面所列方程正确的是A.3x(x+1)=363B.3+3x+3x ²=363C.3(1+x)²=363D.3+3(1+x)+3(1+x)²=3638.已知二次函数(c 为常数)的图象与x 轴的一个交点为(1,0),c x x y +-=42则关于x 的一元二次方程的两个实数根是042=+-c x x A.x 1=1,x 2=-1B.x 1=-1,x 2=2C.x 1=-1,x 2=0D.x 1=1,x 2=39.二次函数的图象上部分点的坐标(x,y)对应值列表如下:c bx ax y ++=2则关于该二次函数的图象与性质,下列说法正确的是A.开口方向向上B.当x>-2时,y 随x 增大而增大C.函数图象与x 轴没有交点D.函数有最小值是-210.在同一平面直角坐标系中,二次函数与一次函数的图bx ax y +=2a bx y +=象可能是x …-3-2-101…y…-3-2-3-6-11…第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共15分)11.如图,在⊙O 中,AC =BC ,半径OC 与AB 交于点D ,若AB =8cm,OB =5cm,则CD =▲cm.13.已知点A (4,y 1)和点B (-1,y 212.2022年2月4日—2月20日,北京冬奥会隆重开幕,北京成为世界上第一个既举办过夏季奥运会,又举办过冬季奥运会的国家.下面图片是在北京冬奥会会徽征集过程中,征集到的一副图片,整个图片由“京字组成的雪花图案”、“beijing2022”、“奥运五环”三部分组成.对于图片中的“雪花图案”,至少旋转▲°能与原雪花图案重合.)是二次函数(m 为常数)()m x y +-=21-215.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,若四边形EFGH 是矩形,且其周长是20,则四边形ABCD 的图象上两点,则y 1和y 2的大小关系是▲.14.2021年我国高速铁路总里程为2.9万公里,2023年我国高速铁路总里程达到3.8万公里,高速铁路已经覆盖了全国80%以上的大城市,形成以“八纵八横”主通道为骨架、区域连接线衔接、城际铁路补充的高速铁路网.若设2021年到2023年我国高速铁路总里程的平均年增长率为x,则依题意可列方程为▲.的面积的最大值是▲.HG FED CBA⌒⌒三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16.解方程(每小题5分,共10分)(1)()910-=+x x (2)()12832+=+x x x 17.(本小题5分)如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于点G .求证:EF =FG .18.(本小题8分)在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (5,4),B (1,3),C (3,1).点P (a,b)是△ABC 内的一点.(1)以点O 为中心,把△ABC 顺时针旋转90°,画出旋转后的△A 1B 1C 1,并写出A 1,B 1,C 1的坐标:A 1▲,B 1▲,C 1▲.注:点A 与A 1,B 与B 1,C 与C 1分别是对应点.(2)点P 的对应点P 1的坐标是▲;(3)若以点O 为中心,把△ABC 逆时针旋转则点P 的对应点P 2的坐标是▲,点P 1与点P 2关于▲对称.(填写“x 轴、y 轴或原点”)⌒⌒19.(本小题8分)阅读下列材料,并完成相应学习任务:一元二次方程在几何作图中的应用如图1,在矩形ABCD 中,AB =3,BC =4.求作一个矩形,使其周长和面积分别是矩形ABCD 的周长和面积的2倍.因为矩形ABCD 的周长是14,面积是12,所以所求作的矩形周长是28,面积是24.若设所求作的矩形一边的长为x,则与其相邻的一边长为14-x.所以,得x(14-x)=24.解得x 1=2,x 2=12.当x=2时,14-x=12;当x=12时,14-x=2.所以求作的矩形相邻两边长分别是2和12.如图2,在边AB 的延长线取点G ,使得AG =4AB .在AD 上取AE =AD .21以AG 和AE 为邻边作出矩形AGFE .则矩形AGFE 的周长和面积分别是矩形ABCD 的周长和面积的2倍.学习任务:(1)在作出矩形AGFE 的过程中,主要体现的数学思想是▲;(填出序号即可)A.转化思想B.数形结合思想C.分类讨论思想D.归纳思想(2)是否存在一个矩形,使其周长与面积分别是矩形ABCD 的周长和面积的?21若存在,请在图1中作出符合条件的矩形;若不存在,请说明理由.图1 图2GFEDCBA D CBA20.(本小题9分)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA =60米,在水面的跨度BC =80米,桥面距水面的垂直距离OE =7米,以桥面所在水平线为x 轴,OE 所在直线为y 轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?21.(本小题10分)下面是小明解决某数学问题的过程,请认真阅读并解决相应学习任务:数学问题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:“,”现已知商品的进价为每件40元,如何定价才能使每个星期的利润达到6080元,且顾客能够得到更大的实惠?解:设….根据题意,所列出方程:.()6080402300-20=⎪⎭⎫⎝⎛⨯+x x …根据小明所列方程,完成下列任务:(1)填空:数学问题中“”处短缺的条件是▲,小明所列方程中未知数x 的实际意义是▲.(2)请你重新设一个未知数,要求所设未知数与小明所列方程中未知数的意义不同,并结合所补充的条件,解决上面的数学问题.图1图222.(本小题12分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,点E 是边CD 上一点,将△ADE 以点A 为中心,顺时针旋转90°,得到△ABF ,连接EF .过点A 作AG ⊥EF ,垂足为G .试猜想FG 与GE 的数量关系,并证明.(1)独立思考:请你解决老师所提出的问题;(2)拓展探究:智慧小组在老师所提问题的基础上,连接DG ,他们认为DG 平分∠ADC .请你利用图2说明,智慧小组所提出的结论是否正确?请说明理由;(3)问题解决:在图2中,若AD +DE =28,则四边形AGED 的面积为▲.(直接写出答案即可)图1 图2AB CDEFGGFEDCBA23.(本小题13分)综合与探究已知抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 32-2-=x x y 轴交于点C ,点D 是y 轴右侧抛物线上一个动点.(1)求出点A ,B ,C 的坐标;(2)如图1,当点D 在第四象限时,求出△BCD 面积的最大值,并求出这时点D 坐标;(3)当∠DAB =∠ABC 时,求出点D的坐标.图1 备用图一、选择题:1—10:DDCAB BCDCC二、填空题:11.2;12.60°;13.y 1<y 2;14.2.9(1+x)²=3.8;15.50.三、解答题:16.解:(1)x 1=-1,x 22023~2024学年第一学期九年级期中质量监测试题数学参考答案=-9;…………………………………………………………5分(2)x 1=,x 2=4.…………………………………………………………………5分23-注:阅卷组自行制定评分细则17.证明:∵AB=AE,∴∠B=∠AEB.……………………………………………………………………1分∵四边形ABCD 是平行四边形,∴AD∥BC,……………………………………………………………………2分∴∠B=∠GAF,∠FAE=∠AEB,……………………………………………………………………3分∴∠GAF=∠FAE,…………………………………………………………………4分∴EF=FG.……………………………………………………………………5分18.解:(1)画图略,画图正确.………………………………………………2分A 1(4,-5),B 1(3,-1),C 1(1,-3).………………………………………5分(2)(b,-a).……………………………………………………………………6分(3)(-b,a),原点.………………………………………………………………8分19.解:(1)B;…………………………………………………………………2分(2)不存在.……………………………………………………………………3分理由如下:若存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的,21则所求的矩形周长为7,面积为6.………………………………………………4分设所求的矩形一边长为x,则与其相邻的另一边的长为-x.………………5分27所以,得x(-x)=6.……………………………………………………………6分27整理,得2x ²-7x+12=0.…………………………………………………………7分因为△=(-7)²-4×2×12=49-96<0.所以该方程无解.…………………………………………………………8分所以,不存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的……9分21⌒⌒20.解:(1)设桥拱所在抛物线的函数关系表达式为y=ax ²+bx.………………1分∵OA=60,∴A 点坐标为(60,0).∵BC=80,根据对称性可知,点C 坐标为(70,-7).…………………………2分把A(60,0),B(70,-7)代入y=ax ²+bx,得………3分⎩⎨⎧-=+=+77049000603600b a b a 解得………………………………………………………………4分⎪⎩⎪⎨⎧=-=531001b a ∴桥拱所在抛物线的函数关系表达式是.………………5分x x y 5310012+-=(2)∵x x y 5310012+-=……………………………………………………7分().93010012+--=x ∴该函数的顶点为(30,9).……………………………………………………8分∵9+7=16.∴桥拱最高点到水面的距离是16米.…………………………………………9分21.解:(1)每件商品的售价每降价2元,每个星期的销售量可增加40件;每件商品的售价降了x 元.………………………………………………………………2分(2)设每件商品的定价为x 元,根据题意可列方程…………………………3分.………………………………………6分()60804026030040=⎪⎭⎫ ⎝⎛⨯-+-x x 整理,得x ²-115x+3304=0.……………………………………………………7分解得x 1=59,x 2=56.……………………………………………………………8分为了让每位顾客得到更大的实惠,所以x=59舍去.…………………………9分答:每件商品的定价为56元,每个星期的利润能达到6080元,且顾客能够得到更大的实惠.…………………………………………………………………10分22.(1)FG=EG.………………………………………………………………1分证明:∵△ABF 是由△ADE 顺时针方向旋转90°得到的,∴△ABF≌△ADE,………………………………………………………………2分∴AF=AE. (3)分∵AG⊥EF,∴FG=EG.………………………………4分(2)连接CG.……………………………5分∵四边形ABCD 是正方形,∴AD=CD,∠FCE=90°.……………………6分由(1)可知,FG=EG,∴CG=EF.………………………………7分21∵∠EAF=90°,∴AG=EF.………………………………8分21∴AG=CG.∵DG=DG,∴△ADG≌△CDG,………………………………………………………………9分∴∠ADG=∠CDG,即DG 平分∠ADC.…………………………………………10分(3)196………………………………………………………………………12分23.解:(1)当y=0时,.032-2=-x x 解得x 1=-1,x 2=3.∴点A(-1,0),B(3,0).……………………………………………………2分当x=0时,y=-3,∴点C(0,-3)……………………………………………………………………3分(2)如图,过点D 作DE⊥x 轴,垂足为E,并且交直线BC 于点F.过点C 作CH⊥DE,垂足为H.……………………4分设BC 的解析式为y=kx+b.把点B(3,0),点C(0,-3)代入,得,⎩⎨⎧-==+33b b k 解得k=1,b=-3.∴直线BC 的解析式为y=x-3.……………………5分设点D(m,m ²-2m-3),则点F(m,m-3).则DF=m-3-(m ²-2m-3)=-m ²+3m.……………6分∵S △BCD =S △CDF +S △BDF =×DF×CH+×DF×BE=×DF(CH+BE)=21212121ACDEFG∴S △BCD =(-m ²+3m)×3=-m ²+m.………………………………7分212329=-(m-)²+.(0<m<3)…………………………………………8分2323827∵-<0,∴当m=时,S △BCD 有最大值,S △BCD 的最大值为.………9分2123827(3)∵点B(3,0),点C(0,-3).∴OB=OC.∵∠BOC=90°,∴∠OBC=∠OCB=45°.设点D(m,m ²-2m-3).如图,当点D 在x 轴下方时,过点D 作DP⊥OB,垂足为P.∵∠DAB=∠ABC=45°,∠APD=90°.∴∠PDA=∠PAD,∴PA=PD.∴m-(-1)=-(m ²-2m-3).……………………10分解得m=2或m=-1(舍去).当m=2时,m ²-2m-3=-3.∴点D 坐标为(2,-3).…………………………11分如图,当点D 在x 轴上方时,过点D 作DQ⊥OB,垂足为Q.∵∠DAB=∠ABC=45°,∠AQD=90°.∴∠QDA=∠QAD,∴QA=QD.∴m-(-1)=m ²-2m-3.…………………………………………………………12分解得m=4或m=-1(舍去).当m=4时,m ²-2m-3=5.∴点D 坐标为(4,5).∴当∠DAB=∠ABC 时,点D(2,-3)或(4,5) (13)分。
人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)
人教版2023-2024学年九年级上册期中数学质量检测试题一.选择题(共12小题,满分36分,每小题3分)1.已知关于x的方程(m+1)x2+2x﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣12.在平面直角坐标系中,点A(3,﹣4)与点B关于原点对称,则点B的位置()A.第一象限B.第二象限C.第三象限D.第四象限3.若n(n≠0)是关于x的方程x2+mx+n=0的根,则m+n的值为()A.0B.1C.﹣1D.﹣24.在下列方程中,满足两个实数根的和等于2的方程是()A.x2﹣2x+4=0B.x2+2x﹣4=0C.x2+2x+4=0D.x2﹣2x﹣4=0 5.一元二次方程x2+2020=0的根的情况是()A.有两个相等的实根B.有两个不等的实根C.只有一个实根D.无实数根6.如图,要为一幅长为29cm,宽为22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,相框边的宽度为xcm,则可列方程为()A.(29﹣2x)(22﹣2x)=×29×22B.(29﹣2x)(22﹣2x)=×29×22C.(29﹣x)(22﹣x)=×29×22D.(29﹣x)(22﹣x)=×29×227.二次函数y=x2+3x﹣2的图象是()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,则下列四个结论错误的是()A.a﹣b+c<0B.2a+b=0C.4a﹣2b+c=0D.am2+b(m+1)≥a9.已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a (x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是()A.5B.﹣1C.5或1D.﹣5或﹣1 10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外11.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某车的刹车距离s(m)与车速x(km/h)之间有下列关系:s=0.01x+0.01x2,在一个限速40km/h的弯道上的刹车距离不能超过()A.15.8m B.16.4m C.14.8m D.17.4m12.如图,将△ABD绕顶点B顺时针旋转40°得到△CBE,且点C刚好落在线段AD上,若∠CBD=32°,则∠E的度数是()A.32°B.34°C.36°D.38°二.填空题(共6小题,满分24分,每小题4分)13.已知方程(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,则a=.14.设m,n是方程x2﹣x﹣2=0的两根,则m2+n+mn=.15.要将函数y=ax2+bx+c的图象向右平移3个单位长度.再向上平移2个单位长度得到的二次函数为y=2x2﹣4x+3,那么a+b+c=.16.若函数y=x2﹣4x+b的图象与坐标轴只有两个交点,则b的值是.17.如图,在喷水池的中心A处竖直安装一根水管AB,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线的表达式为y=﹣(x﹣1)2+3(0≤x≤3),则选取点D为坐标原点时的抛物线表达式为,其中自变量的取值范围是,水管AB的长为m.18.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.三.解答题(共8小题,满分90分)19.解下列方程:(1)(2x+1)2=9;(2)x2﹣2x﹣1=0;(3)(x﹣3)2=4(3﹣x).20.已知关于x的一元二次方程mx2+nx﹣2=0.(1)当n=m﹣2时,证明方程有两个实数根;(2)若方程有两个不相等的实数根,写出一组满足条件的m,n的值,并求出此时方程的根.21.二次函数f(x)=ax2+bx+c的自变量x的取值与函数y的值列表如下:(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图象的顶点落在直线y=x上,并写出平移后二次函数的解析式.22.如图,抛物线与直线交于点A(﹣4,﹣1)和点B(﹣2,3),抛物线顶点为A,直线与y轴交于点C.(1)求抛物线和直线的解析式;(2)若y轴上存在点P使△PAB的面积为9,求点P的坐标.23.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.24.如图,在一个边长为32cm的正方形的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计),且折成的长方体盒子的表面积是864cm2,求剪去小正方形的边长.25.利用对称性可设计出美丽的图案,在边长为1的方格中,有如图所示的四边形(顶点都在格点上)(1)先作该四边形关于直线l成轴对称图形.(2)再作出你所作图形连同原四边形绕O点按顺时针方向旋转90°后的图形.(3)完成上述设计后,求整个图案的面积.26.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:由题意得:m+1≠0,解得:m≠﹣1,故选:D.2.解:点A的坐标是(3,﹣4),若点A与点B关于原点对称,则点B的坐标为(﹣3,4),位于第二象限.故选:B.3.解:把x=n代入方程x2+mx+n=0得n2+mn+n=0,∵n≠0,∴n+m+1=0,即m+n=﹣1.故选:C.4.解:A、Δ=b2﹣4ac=(﹣2)2﹣4×1×4=﹣12<0,方程没有实数根,所以A选项不符合题意;B、x1+x2=﹣2,所以B选项不符合题意;C、Δ=b2﹣4ac=4﹣4×4<0,方程没有实数根,所以C选项不符合题意;D、x1+x2=2,所以D故选:D.5.解:∵a=1,b=0,c=2020,∴Δ=b2﹣4ac=02﹣4×1×2020=﹣8080<0,∴一元二次方程x2+2020=0的根的情况是无实数根.故选:D.6.解:设相框边的宽度为xcm,则可列方程为:(29﹣2x)(22﹣2x)=×29×22.故选:B.7.解:∵y=x2+3x﹣2=(x+)2﹣,∴抛物线的开口向上,顶点坐标为(﹣,﹣),对称轴为直线x=﹣故选:B.8.解:由抛物线可得当x=﹣1时,y<0,故a﹣b+c<0,故结论A正确;抛物线可得对称轴为x=﹣=﹣1,故2a﹣b=0,故结论B错误.由抛物线经过原点,对称轴为直线x=﹣1可知,当x=﹣2时,y=0,故4a﹣2b+c=0,故结论C正确;当x=﹣1时,该函数取得最小值,则am2+bm+c≥a﹣b+c,即am2+b(m+1)≥a,故结论D正确;故选:B.9.解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,即m的值为5或1.故选:C.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1D选项正确,故选:C.11.解:将x=40代入s=0.01x+0.01x2得,s=0.01×40+0.01×402=16.4,即刹车距离不能超过16.4m.故选:B.12.解:∵将△ABD绕点B顺时针旋转40°得到△CBE,∴CB=AB,∠ABC=40°,∠D=∠E,∴∠A=∠ACB=(180°﹣40°)=70°,∵∠CBD=32°,∴∠ABD=∠ABC+∠CBD=40°+32°=72°,∴∠D=∠E=180°﹣∠A﹣∠ABD=180°﹣70°﹣72°=38°.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,∴a﹣3≠0且|a|﹣1=2,解得a=﹣3,故答案为:﹣3.14.解:∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,∴m2=m+2,∴m2+n+mn=m+2+n+mn=m+n+mn+2,∵m,n是方程x2﹣x﹣2=0的两根,∴m+n=1,mn=﹣2,∴m2+n+mn=1﹣2+2=1.故答案为:1.15.解:y=2x2﹣4x+3=2(x﹣1)2+1,把抛物线y=2(x﹣1)2+1向左平移3个单位长度,向下平移2个单位长度得到抛物线的解析式为y=2(x﹣1+3)2+1﹣2=2x2+8x+7,所以a=2,b=8,c=7,所以,a+b+c=17,故答案为17.16.解:令y=0,则x2﹣4x+b=0,当函数y=x2﹣4x+b的图象与坐标轴只有两个交点时有两种情况:①Δ=0,且函数图象不过原点∴△=(﹣4)2﹣4b=0解得:b=4;②Δ>0,且函数y=x2﹣4x+b的图象过原点,∴b=0故答案为:0或4.17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3,﹣3≤x≤0,2.25.18.解:由旋转性质得:∠C=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°,故答案为:82°.三.解答题(共8小题,满分90分)19.解:(1)(2x+1)2=9,开方得:2x+1=±3,解得:x1=1,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,开方得:x﹣1=,x1=1+,x2=1﹣;(3)(x﹣3)2=4(3﹣x),(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,x﹣3=0,x﹣3+4=0x1=3,x2=﹣1.20.(1)证明:当n=m﹣2时,Δ=n2﹣4×m×(﹣2)=(m﹣2)2﹣4×m×(﹣2)=m2﹣4m+4+8m=m2+4m+4=(m+2)2≥0,∴当n=m﹣2时,方程有两个实数根.(2)解:∵方程有两个不相等的实数根,∴Δ=n2﹣4×m×(﹣2)=n2+8m>0,∴符合题意.当m=n=1时,原方程为x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2.21.解:(1)把(﹣1,0),(0,3),(3,0)分别代入y=ax2+bx+c(a≠0)中,得.解得.则该二次函数的解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点的坐标为(1,4);(2)∵二次函数f(x)=ax2+bx+c的顶点坐标(1,4);∴二次函数图象向右平移3个单位后抛物线的顶点为(4,4)或向下平移3个单位后抛物线的顶点为(1,1)落在直线y =x 上,则此时抛物线的解析式为:y =﹣(x ﹣4)2+4或y =﹣(x ﹣1)2+1.22.解:(1)由抛物线的顶点A (﹣4,﹣1)设二次函数为y =a (x +4)2﹣1,将B (﹣2,3)代入得,3=a (﹣2+4)2﹣1,解得a =1,∴二次函数为y =(x +4)2﹣1(或y =x 2+8x +15),设一次函数的解析式为y =kx +b ,将A (﹣4,﹣1)和B (﹣2,3)代入得,解得,∴一次函数的解析式为y =2x +7;(2)由直线y =2x +7可知C (0,7),设P (0,n ),∴PC =|n ﹣7|,∴S △PAB =S △PAC ﹣S △BPC =(4﹣2)•|n ﹣7|=9,∴|n ﹣7|=9,∴n =﹣2或16,∴P (0,﹣2)或P (0,16).23.解:令y =0,则﹣(x ﹣3)2+=0,解得:x 1=8,x 2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.24.解:设剪去小正方形的边长为xcm ,则折成的长方体盒子的底面的长为(32﹣2x )cm ,宽为=(16﹣x )(cm ),由题意得:2x (16﹣x )+2(16﹣x )(32﹣2x )+2x (32﹣2x )=864,整理得:x 2+16x ﹣80=0,解得:x =4或x =﹣20(不符合题意,舍去),答:剪去小正方形的边长为4cm.25.解:(1)图形如图所示;(2)图形如图所示;(3)整个图案的面积=4××2×5=20.26.解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8×2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM=•4•t ﹣•t •t=﹣t 2+2t=﹣(t ﹣3)2+3,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0).。
九年级数学质量检测题
九年级数学质量检测题含答案一、选择题(每题4分,计40分)1、方程(x-1)2=4的根是( )A 、x 1=3,x 2=-3B x 1=3,x 2=-1C x 1=2,x 2=-3D x 1=3,x 2=-2 2、使x -3有意义的x 的取值范围是( )A 、x ≥3B 、 x >3C 、x <3D 、x ≤33、三角形两边长分别为3和6,第三边是方程x 2-6x+8=0的解,则这个三角形的周长是( )A 、11B 、13C 、11或13D 、11和13 4、下列图形中,是中心对称但不是轴对称图形的是( )A 、线段B 、平行四边形C 、等边三角形D 、梯形 5、点O 是△ABC 的外心,若∠A=400,则∠BOC 度数是( )A 、800B 、500 、C 、1100D 、不能确定 6、圆锥的母线长为5,底面半径为3,则它的全面积是( )A 、15πB 、30πC 、24πD 、9π7、在△ABC 中,AB=AC, ∠A 为锐角,CD 为AB 上的高,I 为△ABC 的内切圆圆心,则∠AIB 度数为( )A 、1200B 、1250C 、1350D 、1500 8、下列根式中是最简二次根式的是( )A 、8B 、21C 、3a ( a >0) D 、42a9、锐角三角形ABC 绕点A 顺时针旋转900后得△AB ’C ’,则△ABB ’形状是( )A 、等腰三角形B 、直角三角形C 、等边三角形D 、等腰直角三角形 10、已知过正方形ABCD 的顶点A 、B ,且与CD 边相切,若正方形的边长为2,则圆的半径为( )A 、34B 、45C 、25 D 、1二、填空题(每题5分,共4题,计20分)11、在平面直角坐标系中,P 1(2,3)关于原点O 的对称点为P 2,P 2关于y 周的对称点为P 3,则P 3坐标为12、已知m=3+22,n=3-22,则代数式m 2-mn+n 2的值为 13、写出一个二次项系数为1,两根均为正整数的一元二次方程 14、下列命题○1经过三点可以做圆,○2平分弦的直径垂直于弦,○3同弧所对的圆周角相等,○4相等的圆心角所对的弧相等,○5经过切点垂直于切线的直线必过圆心,其中假命题有 (填序号) 三、(本大题2小题,每题8分,计16分) 15、计算 27-331+(2+3)2-(33)-116、设x 1、x 2是方程x 2-5x+3=0的两个根,不解方程,求x 12+x 22的值。
2024-2025学年江苏省泰兴市济川中学数学九年级第一学期开学质量检测试题【含答案】
2024-2025学年江苏省泰兴市济川中学数学九年级第一学期开学质量检测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在平面直角坐标系中,点B 的坐标是(4,﹣1),点A 与点B 关于x 轴对称,则点A 的坐标是()A .(4,1)B .(﹣1,4)C .(﹣4,﹣1)D .(﹣1,﹣4)2、(4分)如图,在△ABC 中,∠ACB=90°,AC=8,AB=10,DE 垂直平分AC 交AB 于点E ,则DE 的长为()A .6B .5C .4D .33、(4分)如图,已知△ABC 是边长为3的等边三角形,点D 是边BC 上的一点,且BD =1,以AD 为边作等边△ADE ,过点E 作EF ∥BC ,交AC 于点F ,连接BF ,则下列结论中①△ABD ≌△BCF ;②四边形BDEF 是平行四边形;③S 四边形BDEF =2;④S △AEF .其中正确的有()A .1个B .2个C .3个D .4个4、(4分)不等式3(x-2)≥x+4的解集是()A .x≥5B .x≥3C .x≤5D .x≥-55、(4分)下列命题正确的是()A .有一个角是直角的四边形是矩形B .对角线互相垂直的平行四边形是菱形C .对角线相等且互相垂直的四边形是正方形D .平行四边形的对角线相等6、(4分)如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,下列哪个条件不能判定▱ABCD 是矩形的是()A .AC=BD B .OA=OB C .∠ABC=90°D .AB=AD 7、(4分)若腰三角形的周长是10cm ,则能反映这个等腰三角形的腰长y (单位:cm )与底边长x (单位:cm )之间的函数关系式的图象是()A .B .C .D .8、(4分)下列图形均是一些科技创新公司标志图,其中是中心对称图形的是()A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,某公司准备和一个体车主或一民营出租车公司中的一家签订月租车合同,设汽车每月行驶,个体车主收费为1y 元,民营出租车公司收费为2y 元,观察图像可知,当x _________km 时,选用个体车主较合算.10、(4分)命题“两直线平行,同位角相等”的逆命题是.11、(4分)已知a =b ﹣,则代数式222a ab b -+的值为_____.12、(4分)2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a+b )2的值为_____.13、(4分)如图,有一个由传感器A 控制的灯,要装在门上方离地面4.5m 的墙上,任何东西只要移至该灯5m 及5m 内,灯就会自动发光,小明身高1.5m ,他走到离墙_______的地方灯刚好发光.三、解答题(本大题共5个小题,共48分)14、(12分)如图,∠B =90°,AB =4,BC =3,CD =l 2,AD =13,点E 是AD 的中点,求CE 的长.15、(8分)如图,在▱ABCD 中,BC =2AB ,点E 、F 分别是BC 、AD 的中点,AE 、BF 交于点O ,连接EF ,OC .(1)求证:四边形ABEF 是菱形;(2)若AB =4,∠ABC =60°,求OC 的长.16、(8分)把下列各式分解因式:(1)x(x-y)2-2(y-x)2(2)(x 2+4)2-16x 217、(10分)如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE :EC =2:1,求线段EC ,CH 的长.18、(10分)如图,在矩形ABCD 中,AB =4,BC =5,AF 平分∠DAE ,EF ⊥AE ,求CF的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若函数y=()2x222(2)xx x⎧+≤⎨>⎩,则当函数值y=8时,自变量x的值等于_____.20、(4分)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为________21、(4分)将菱形ABCD以点E为中心,按顺时针方向分别旋转90︒,180︒,270︒后形成如图所示的图形,若120BCD∠=︒,2AB=,则图中阴影部分的面积为__.22、(4分)将50个数据分成5组,第1、2、3、4组的频数分别是2、8、10、15,则第5组的频率为_________23、(4分)如图,延长正方形ABCD的边AB到E,使BE AC=,则E∠=________度.二、解答题(本大题共3个小题,共30分)24、(8分)如图所示,四边形ABCD是平行四边形,已知DE平分∠ADC,交AB于点E,过点E作EF∥AD,交DC于F,求证:四边形AEFD是菱形.25、(10分)在四个互不相等的正整数中,最大的数是8,中位数是4,求这四个数(按从小到大的顺序排列)26、(12分)如图,点A ,B ,C ,D 依次在同一条直线上,点E ,F 分别在直线AD 的两侧,已知BE //CF ,∠A =∠D ,AE =DF .(1)求证:四边形BFCE 是平行四边形.(2)若AD =10,EC =3,∠EBD =60°,当四边形BFCE 是菱形时,求AB 的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号即可得出答案.【详解】∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1),故选A.【点睛】本题考查了关于x轴对称的点的坐标特征,正确把握横纵坐标的关系是解题关键.2、D【解析】试题分析:已知,在△ABC中,∠ACB=90°,AC=8,AB=10,根据勾股定理可得BC=6,又因DE垂直平分AC,∠ACB=90°,可得DE为△ABC的中位线,根据三角形的中位线定理可得DE=12BC=3,故答案选D.考点:勾股定理;三角形的中位线定理.3、C【解析】连接EC,作CH⊥EF于H.首先证明△BAD≌△CAE,再证明△EFC是等边三角形即可解决问题;【详解】连接EC,作CH⊥EF于H.∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=EC=1,∠ACE=∠ABD=60°,∵EF∥BC,∴∠EFC=∠ACB=60°,∴△EFC 是等边三角形,CH =2,∴EF =EC =BD ,∵EF ∥BD ,∴四边形BDEF 是平行四边形,故②正确,∵BD =CF =1,BA =BC ,∠ABD =∠BCF ,∴△ABD ≌△BCF ,故①正确,∵S 平行四边形BDEF =BD•CH =2,故③正确,∵△ABC 是边长为3的等边三角形,S △ABC =2343⨯=∴S △ABD 1344=⨯=∴S △AEF =23S △AEC =23•S △ABD =2故④错误,故选C .本题考查平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考选择题中的压轴题.4、A【解析】去括号、移项,合并同类项,系数化成1即可.【详解】3(x-2)≥x+42x≥10∴x≥5故选A.本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.5、B【解析】利用矩形的判定、菱形的判定及正方形的判定方法分别判断后即可确定正确的选项.【详解】解:A、有一个角是直角的平行四边形是矩形,故错误;B、对角线互相垂直的平行四边形是菱形,故正确;C、对角线互相垂直平分且相等的平行四边形是正方形,故错误;D、平行四边形的对角线互相平分但不一定相等,故错误.故选:B.本题考查命题与定理的知识,解题的关键是能够了解矩形的判定、菱形的判定及正方形的判定方法,难度不大.6、D【解析】根据平行四边形的性质,矩形的判定方法即可一一判断即可.【详解】解:∵四边形ABCD是平行四边形,∵AC=BD,∴ABCD是矩形,故A正确;∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵OA=OB,∴AC=BD,∴ABCD是矩形,故B正确;∵四边形ABCD是平行四边形,∵∠ABC=90°,∴ABCD是矩形,故C正确;∵四边形ABCD是平行四边形,∵AB=AD,∴ABCD是菱形,故D错误.故选:D.本题考查了矩形的判定,平行四边形的性质,熟练掌握矩形的判定定理是解题的关键.7、D【解析】根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之和大于第三边列式求出x的取值范围,即可得解.【详解】解:根据题意,x+2y=10,所以,152y x=-+,根据三角形的三边关系,x>y-y=0,x<y+y=2y,所以,x+x<10,解得x<5,所以,y与x的函数关系式为152y x=-+(0<x<5),纵观各选项,只有D选项符合.故选D.本题主要考查的是三角形的三边关系,等腰三角形的性质,求出y与x的函数关系式是解答本题的关键.8、A【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A 、是中心对称图形,故此选项正确;B 、不是中心对称图形,故此选项错误;C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项错误;故选A .此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.二、填空题(本大题共5个小题,每小题4分,共20分)9、1500>【解析】选用个体车较合算,即对于相同的x 的值,y 1对应的函数值较小,依据图象即可判断.【详解】解:根据图象可以得到当x >1500千米时,y 1<y 2,则选用个体车较合算.故答案为1500>此题为一次函数与不等式的简单应用,搞清楚交点意义和图象的相对位置是关键.10、同位角相等,两直线平行【解析】逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用11、1【解析】由已知等式得出a b -=-2222()a ab b a b -+=-计算可得答案.【详解】解:a b =-∴a b -=-∴(22222(=12)a ab b a b -+=--=故答案为:1.本题主要考查了完全平方的运算,其中熟练掌握完全平方公式是解题的关键.12、1【解析】根据大正方形的面积即可求得c 2,利用勾股定理可以得到a 2+b 2=c 2,然后求得直角三角形的面积即可求得ab 的值,根据(a +b )2=a 2+b 2+2ab =c 2+2ab 即可求解.【详解】∵大正方形的面积是13,∴c 2=13,∴a 2+b 2=c 2=13,∵直角三角形的面积是1314 =3,又∵直角三角形的面积是12ab =3,∴ab =6,∴(a +b )2=a 2+b 2+2ab =c 2+2ab =13+2×6=13+12=1.故答案为1.本题考查了勾股定理以及完全平方公式,正确表示出直角三角形的面积是解题的关键.13、4米【解析】过点C 作CE ⊥AB 于点E ,则人离墙的距离为CE ,在Rt △ACE 中,根据勾股定理列式计算即可得到答案.【详解】如图,传感器A 距地面的高度为AB=4.5米,人高CD=1.5米,过点C 作CE ⊥AB 于点E ,则人离墙的距离为CE ,由题意可知AE=AB-BE=4.5-1.5=3(米).当人离传感器A 的距离AC=5米时,灯发光.此时,在Rt △ACE 中,根据勾股定理可得,CE 2=AC 2-AE 2=52-32=42,∴CE=4米.即人走到离墙4米远时,灯刚好发光.本题考查了勾股定理的应用,解题的关键是熟练的掌握勾股定理的定义与运算.三、解答题(本大题共5个小题,共48分)14、6.1【解析】先由勾股定理求得AC 的长度,再根据勾股定理的逆定理判定△ADC 是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:在Rt △ABC 中,∠B =90°,∵AB =3,BC =4,∴=1,∵CD =12,AD =13,∵AC 2+CD 2=12+122=169,AD 2=169,∴AC 2+CD 2=AD 2,∴∠C =90°,∴△ACD 是直角三角形,∵点E 是AD 的中点,∴CE =12AD=12×13=6.1.故答案为6.1.本题考查的是勾股定理,勾股定理的逆定理及直角三角形的性质,能根据勾股定理的逆定理判断出△ADC 是直角三角形是解答此题的关键.15、(1)证明见解析;(2).【解析】(1)首先证明四边形ABEF 是平行四边形,然后根据邻边相等的平行四边形是菱形即可证(2)过点O 作OG ⊥BC 于点G .分别在Rt △OEG ,Rt △OCG 中,由含30度角的直角三角形的性质和勾股定理解答即可.【详解】(1)∵四边形ABCD 是平行四边形,∴BC ∥AD ,BC=AD .∵E ,F 分别是BC ,AD 的中点,∴BE 12=BC ,AF 12=AD ,∴BE=AF ,∴四边形ABEF 是平行四边形.∵BC=2AB ,∴AB=BE ,∴平行四边形ABEF 是菱形.(2)过点O 作OG ⊥BC 于点G ,如图所示,∵E 是BC 的中点,BC=2AB ,∴BE=CE=AB=1.∵四边形ABEF 是菱形,∠ABC=60°,∴BE=CE=AB=1,∠OBE=30°,∠BOE=90°,∴OE=2,∠OEB=60°,∴GE=1,OG ==∴GC=GE+CE=5,∴OC ===.本题考查平行四边形的性质、菱形的判定和性质、勾股定理、含30度角的直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题16、(1)(x-y)²(x-1);(1)(x+1)²(x-1)².【解析】(1)直接提取公因式(x-y)1,进而分解因式得出答案;(1)直接利用平方差公式分解因式,进而结合完全平方公式分解因式即可.【详解】(1)x(x-y)1-1(y-x)1=(x-y)1(x-1);(1)(x1+4)1-16x1=(x1+4-4x)(x1+4+4x)=(x-1)1(x+1)1.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.17、3,2.【解析】根据比例求出EC,设CH=x,表示出DH,根据折叠可得EH=DH,在Rt△ECH中,利用勾股定理列方程求解即可得到CH.【详解】解:∵BC=9,BE:EC=1:1,∴EC=3,设CH=x,则DH=9﹣x,由折叠可知EH=DH=9﹣x,在Rt△ECH中,∠C=90°,∴EC1+CH1=EH1.即31+x1=(9﹣x)1,解得x=2,∴CH=2.本题考查了翻折变换,正方形的性质,翻折前后对应边相等,对应角相等,此类题目,利用勾股定理列出方程是解题的关键.18、32CF =.【解析】证△AEF ≌△ADF ,推出AE =AD =5,EF =DF ,在△ABE 中,由勾股定理求出BE =3,求出CE =2,设CF =x ,则EF =DF =4﹣x ,在Rt △CFE 中,由勾股定理得出方程(4﹣x )2=x 2+22,求出x 即可.【详解】∵AF 平分∠DAE ,∴∠DAF =∠EAF ,∵四边形ABCD 是矩形,∴∠D =∠C =90°,AD =BC =5,AB =CD =4,∵EF ⊥AE ,∴∠AEF =∠D =90°,在△AEF 和△ADF 中,D AEF DAF EAF AF AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△ADF (AAS ),∴AE =AD =5,EF =DF ,在△ABE 中,∠B =90°,AE =5,AB =4,由勾股定理得:BE =3,∴CE =5﹣3=2,设CF =x ,则EF =DF =4﹣x ,在Rt △CFE 中,由勾股定理得:EF 2=CE 2+CF 2,∴(4﹣x )2=x 2+22,x =32,CF =32.本题考查了矩形的性质,全等三角形的性质和判定,角平分线性质,勾股定理等知识点,主要考查学生推理和计算能力,用了方程思想.一、填空题(本大题共5个小题,每小题4分,共20分)19、或4学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………【解析】【分析】把y =8,分别代入解析式,再解方程,要注意x 的取值范围.【详解】由已知可得x 2+2=8或2x=8,分别解得x 1=6(不符合题意舍去),x 2=-6,x 3=4故答案为6-或4【点睛】本题考核知识点:求函数值.解题关键点:注意x 的取值范围.20、1【解析】试题解析:由图可看出,A ,B 的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C ,D 的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A ,B ,C ,D 四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是1,即正方形A ,B ,C ,D 的面积的和为1.故答案为1.21、1243-【解析】由菱形性质可得AO ,BD 的长,根据DBE ABD DABE S S S ∆∆=-四边形.可求DABE S 四边形,则可求阴影部分面积.【详解】连接BD ,AC 交于点O ,BE ,DE四边形ABCD 是菱形,120BCD ∠=︒BO DO ∴=,AO CO =,AC BD ⊥,1602BCA BCD ∠=∠=︒,且2AB AD ==1AO CO ∴==,DO BO ===BD ∴=将菱形ABCD 以点O 为中心按顺时针方向分别旋转90︒,180︒,270︒后形成的图形90BED ∴∠=︒,BE DE =BE DE ∴==DBE ABD DABE S S S ∆∆=-四边形111322DABE S ∴=-⨯=-四边形(4312S ∴∴==-阴影部分故答案为:12-本题考查了:图形旋转的性质、菱形的性质、直角三角形的性质,掌握菱形性质是解题的关键.22、0.3【解析】根据所有数据的频数和为总数量,可用减法求解第五组的评数,用频数除以总数即可.【详解】解:∵第1、2、3、4组的频数分别是2、8、10、15,∴50-2-8-10-15=15∴15÷50=0.3故答案为0.3.此题主要考查了频率的求法,明确用频数除以总数求取频率是解题关键.23、22.5【解析】连接BD ,根据等边对等角及正方形的性质即可求得∠E 的度数.【详解】连接BD,如图所示:则BD=AC ∵BE=AC ∴BE=BD ∴∠E=12(180°-90°-45)°=22.5°.故答案是:22.5.考查到正方形对角线相等的性质.二、解答题(本大题共3个小题,共30分)24、详见解析.【解析】首先判定四边形AEFD 是平行四边形,然后证明DF =EF ,进而证明出四边形AEFD 是菱形.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∵EF ∥AD ,∴四边形AEFD 是平行四边形,∵DE 平分∠ADC ,∴∠1=∠2,∵EF ∥AD ,∴∠1=∠DEF ,∴∠2=∠DEF ,∴DF =EF ,∵四边形AEFD 是平行四边形,∴四边形AEFD 是菱形.本题主要考查菱形的判定定理,掌握邻边相等的平行四边形是菱形是解题的关键.25、这四个数为,,,1268或,,,1358或,,,2358.【解析】分析:根据中位数的定义得出第二个数和第三个数的和是8,再根据这四个数是不相等的正整数,得出这两个数是3、5或2、6,再根据这些数都是正整数得出第一个数是2或1,再把这四个数相加即可得出答案.详解:∵中位数是4,最大的数是8,∴第二个数和第三个数的和是8,∵这四个数是不相等的正整数,∴这两个数是3、5或2、6,∴这四个数是1,3,5,8或2,3,5,8或1,2,6,8,故答案为:1,2,6,8或1,3,5,8或2,3,5,8.点睛:此题考查了中位数,掌握中位数的概念是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.26、(1)证明见解析;(2)AB=7 2.【解析】(1)根据AAS证明△ABE≌△DCF,由全等三角形对应边相等得到BE=CF,根据一组对边平行且相等的四边形是平行四边形即可得到结论;(2)利用全等三角形的性质证明AB=CD即可得出结论.【详解】(1)∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD.∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=1.∵AD=10,AB=DC,∴AB12=(10﹣1)72=.本题考查了菱形的性质,全等三角形的判定和性质,平行四边形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
湖北省知名中小学教联体联盟2023-2024学年九年级上学期第二次质量检测数学试题(含解析)
....“清明时节雨纷纷这个事件是().必然事件.确定性事件.不可能事件A .....我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率.如图,的半径为1A .8.如图,正方形A .二、细心填一填(本大题共答题卡相应题号的横线上)O 3ABCD 555-11.一元二次方程12.在平面直角坐标系中,点y13.若二次函数三、专心解一解(本大题共题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)18.如图,在平面直角坐标系内,三个顶点的坐标分别为,,(正方形网格中,每个小正方形的边长都是1个单位长度).(1)若与关于原点成中心对称,则点的坐标为______;(2)以坐标原点为旋转中心,将逆时针旋转90°,得到,则点的坐标为______;(3)求出(2)中线段扫过的面积.19.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的条评价信息进行了统计,并绘制了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①求的值.②补全条形统计图.(2)若甲、乙两名消费者在该网店购买了同一商品,请你用画树状图(或列表)的方法,求两人中至少有一人给“好评”的概率.ABC ()1,2A -()4,1B -()3,3C -111A B C △ABC O 1A O ABC 222A B C △2A AC m m20.已知关于的一元二次方程有,两实数根.(1)若,求及的值;(2)是否存在实数,满足?若存在,求出实数的值;若不存在,请说明理由.21.如图,中,以为直径的交于点,是的切线,且,垂足为,延长交于点.(1)求证:;(2)若,,求的长.22.“端午节”吃粽子是中国传统习俗,在“端午节”来临前,某超市购进一种品牌粽子,每盒进价是40元,并规定每盒售价不得少于50元,日销售量不低于350盒,根据以往销售经验发现,当每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒,设每盒售价为x 元,日销售量为p 盒.(1)当时,__________;(2)当每盒售价定为多少元时,日销售利润W (元)最大?最大利润是多少?(3)小强说:“当日销售利润最大时,日销售额不是最大,”小红说:“当日销售利润不低于8000元时,每盒售价x 的范围为.”你认为他们的说法正确吗?若正确,请说明理由;若不正确,请直接写出正确的结论.23.如图,在和中,,,,将绕点逆时针旋转.x 26210x x m -+-=1x 2x 15=x 2x m m ()()212115x x m m --=-m ABC AB O BC D DE O DE AC ⊥E CA O F AB AC =4AE =8DE =AF 60x =p =6080x ≤≤ABC CDE AC BC =CD CE =90ACB DCE ∠=∠=︒CDE C(1)如图1所示,连结,,求证:,;(2)如图2所示,若,判断和的数量关系,并说明理由;(3)如图3所示,在中,,,,将转90°至,连接,求的长.24.如图,二次函数的图象与轴交于,两点,与(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点,使得出点坐标;若不存在,请说明理由;(3)点是对称轴l 上一点,当是直角三角形时,直接写出点AD BE CAD CBE ∠=∠AD BE ⊥AE AB =BD CD ACD 45ADC ∠=︒2CD =4=AD AC BC BD BD 2y x bx c =++x A B y P PAC ABC S S =△△P Q QAC △定义判断.【详解】解:A.当时是一元二次方程,故不符合题意;B.含有分式,不符合定义,故不符合题意;C.符合定义,故符合题意;D.含有两个未知数,不符合定义,故不符合题意;故选:C .【点睛】此题考查了一元二次方程的定义,熟记定义是解题的关键.2.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A .是轴对称图形,不是中心对称图形.故本选项不合题意;B .不是轴对称图形,也不是中心对称图形.故本选项不合题意;C .既是轴对称图形又是中心对称图形.故本选项符合题意;D .不是轴对称图形,也不是中心对称图形.故本选项不合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.D【分析】根据事件发生的可能性大小判断,即可得到答案.【详解】解:“清明时节雨纷纷”这个事件是随机事件,故选:D .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C【分析】本题考查一元二次方程的知识,解题的关键是以,为根的一元二次方程的形0a 1x 2x∴∵将沿翻折得到∴,∵,∴的最小值为故选:B .2BG BC CG =+ABE BE 10BF BA ==FG BG BF ≥-GF BG∴∴,又∵∴90OPB DPC +=︒∠∠OBP DPC =∠∠90BOP PDC ==∠∠(AAS BOP PDC △≌△()(3)解:∵,∴线段扫过的面积=扇形的面积【点睛】此题考查了坐标与图形,涉及了中心对称和旋转变换以及扇形面积的计算,关键是熟练掌握相关性质及基础知识.22215OA =+=OC =AC 2OCC ()()2290329059536036024ππππ⨯⨯=-=-(2)列表如下:结果好中差好(好,好)(中,好)(差,好),,,,,,;(2)解:过点作于,设,过圆心.,,,四边形为矩形,,在中,,即 ,.【点睛】本题考查了切线的性质,垂径定理,等腰三角形的判定与性质,平行线的判定,矩形的判定与性质及勾股定理应用,熟练掌握以上知识是解题的关键.22.(1)(2)当每盒售价定为65元时,日销售利润W (元)最大,最大利润是元.(3)他们的说法正确,理由见解析【分析】(1)根据每盒售价定为50元时,日销售量为500盒,每盒售价每提高1元,日销DE AC ⊥ OD AC ∴∥C ODB ∴∠=∠OD OB = B ODB ∴∠=∠B C ∴∠=∠AB AC ∴=O OH AF ⊥H AH x =OH 22AF AH x ∴==OD DE ⊥ DE AC ⊥90OHE ODE DEH ∴∠=∠=∠= ∴OHED 84DE OH HE OD x \====+,Rt OHA △222OH AH OA +=()22284x x +=+6x ∴=12AF ∴=4008750售量减少10盒,列式计算即可;(2)根据销售量乘以每盒的利润得到,根据二次函数的性质即可得到答案;(3)设日销售额为元,则,根据二次函数的性质即可判断当日销售利润最大时,日销售额不是最大,即可判断小强的说法;当时,由,解得,由抛物线开口向下,得到当时,,即可判断小红的说法.【详解】(1)解:当时,(盒),故答案为:(2)由题意得,,又∵,即,解得,∵,∴当时,W 最大,最大值为,∴当每盒售价定为65元时,日销售利润W (元)最大,最大利润是元.(3)他们的说法正确,理由如下:设日销售额为元,则,∵,∴当时,最大,最大值为,∴当时,最大,此时为,即小强的说法正确;当时,,解得,∵抛物线开口向下,∴当时,∵,∴当日销售利润不低于元时,每盒售价x 的范围为.()210709000W x =--+y ()2105025000y x =--+8000W =()2800010709000x =--+1260,80x x ==6080x ≤≤80009000W ≤≤60x =()500106050400p =--=400()()()40500105040W p x x x ⎡⎤=-=---⎣⎦()221014004000010709000x x x =-+-=--+350p ≥()5001050350x --≥65x ≤100-<65x =87508750y ()()225001050101000105025000y x x x x x =--=-+=--+⎡⎤⎣⎦100-<50x =y 2500065x =w w 87508000W =()2800010709000x =--+1260,80x x ==6080x ≤≤5065x ≤≤80006065x ≤≤,,在和中,90ACB DCE ∠=∠=︒ ACD BCE ∠∠∴=ACD BCE ACD ⎧⎪∠⎨⎪由(1)可知,,,,垂直平分,由旋转性质可得:∵,∴,∵,且∴,CAD CBE ∠=∠ARC BRD ∠=∠ 90ACR BKR ∴∠=∠=︒AD BE ∴⊥AB AE = AD ∴BE ACB ∠CH CD ⊥90DCH ∠=︒90ADC CHD ∠+∠=︒45CHD ∠=︒设的解析式为,将点解得:,∴直线的解析式为联立,解得:∴,BP y x d =-+1d =BP y x =-+2143y x y x x =-+⎧⎨=-+⎩()2,1P -设交直线于点,∵直线的解析式为∴,∴,∵,AC 2x =H AC y x =-+()2,1H ()2223122CH =+-=OC GH ∥∴当点Q 与点M 重合时,综上所述,当是直角三角形时,点.【点睛】本题主要考查了二次函数综合运用,一次函数与几何综合,勾股定理,待定系数法ACQ QAC △3172,2⎛⎫+ ⎪ ⎪⎝⎭。
福建省南安市2024-2025学年九年级数学第一学期开学质量检测试题【含答案】
福建省南安市2024-2025学年九年级数学第一学期开学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各组数中不能作为直角三角形三边长的是()A .7,9,12B .5,12,13C .1,D .3,4,52、(4分)小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC 、BD 的中点重叠并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是()A .对角线互相平分的四边形是平行四边形B .一组对边平行且相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .两组对边分别平行的四边形是平行四边形3、(4分)如图,CD 是Rt△ABC 斜边AB 上的高,将△BCD 沿CD 折叠,点B 恰好落在AB 的中点E 处,则∠A 等于()A .25°B .30°C .45°D .60°4、(4分)已知反比例函数y =的图象上有两点A (x 1,y 1),B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是()A .m <0B .m >0C .m <D .m >5、(4分)某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A .平均数B .中位数C .众数D .方差6、(4分)给出下列化简①()2=2=2=;12=,其中正确的是()A .①②③④B .①②③C .①②D .③④7、(4分)如图,E 是正方形ABCD 的边BC 的延长线上一点,若CE=CA ,AE 交CD 于F ,则∠FAC 的度数是()A .22.5°B .30°C .45°D .67.5°8、(4分)下列说法:①“掷一枚质地均匀的硬币,朝上一面可能是正面”;②“从一副普通扑克牌中任意抽取一张,点数一定是3”()A .只有①正确B .只有②正确C .①②都正确D .①②都错误二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,把边长为1的正方形ABCD 绕顶点A 逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于_____.10、(4分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.温度/℃22242629天数213111、(4分)如图,已知60XOY ∠=︒,点A 在边OX 上,2OA =.过点A 作AC OY ⊥于点C ,以AC 为一边在XOY ∠内作等边ABC ∆,点P 是ABC ∆围成的区域(包括各边)内的一点,过点P 作//PD OY 交OX 于点D ,作//PE OX 交OY 于点E .设OD a =,OE b =,则2+a b 最大值是_______.12、(4分)如图,菱形ABCD 的周长为20,对角线AC 与BC 相交于点O ,AC=8,则BD=________.13、(4分)在分式2x x +中,当x=___时分式没有意义.三、解答题(本大题共5个小题,共48分)14、(12分)已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.15、(8分)如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG .ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).16、(8分)为加快城市群的建设与发展,在A 、B 两城市间新建一条城际铁路,建成后,铁路运行里程由现在的210km 缩短至180km ,平均时速要比现行的平均时速快200km ,运行时间仅是现行时间的29,求建成后的城际铁路在A 、B 两地的运行时间?17、(10分)某学校八年级七班学生要去实验基地进行实践活动,估计乘车人数为10人到40人之间,现在欲租甲、乙两家旅行社的车辆,已知甲、乙两家旅行社的服务质量相同,且报价都是每人120元,经过协商,甲旅行社表示可给予每位学生七五折优惠;乙旅行社表示可先免去一位同学的车费,然后给予其他同学八折优惠.(1)若用x 表示乘车人数,请用x 表示选择甲、乙旅行社的费用y 甲与y 乙;(2)请你帮助学校选择哪一家旅行社费用合算?18、(10分)如图,AB 是⊙O 的直径,AC ⊥AB ,E 为⊙O 上的一点,AC =EC ,延长CE 交AB 的延长线于点D .(1)求证:CE 为⊙O 的切线;(2)若OF ⊥AE ,OF =1,∠OAF =30°,求图中阴影部分的面积.(结果保留π)B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在△ABC 中,BC=a .作BC 边的三等分点C 1,使得CC 1:BC 1=1:2,过点C 1作AC 的平行线交AB 于点A 1,过点A 1作BC 的平行线交AC 于点D 1,作BC 1边的三等分点C 2,使得C 1C 2:BC 2=1:2,过点C 2作AC 的平行线交AB 于点A 2,过点A 2作BC 的平行线交A 1C 1于点D 2;如此进行下去,则线段A n D n 的长度为______________.20、(4分)如图,在平行四边形ABCD 中,AB =4,BC =6,分别以A ,C 为圆心,以大于12A C 的长为半径作弧,两弧相交于MN 两点,作直线MN 交AD 于点E ,则△CDE 的周长是_____.21、(4分)若方程2410x x -+=的两根12,x x ,则122(1)x x x ++的值为__________.22、(4分)已知关于x 的方程2x+m =x ﹣3的根是正数,则m 的取值范围是_____.23、(4分)若代数式1x -有意义,则x 的取值范围为__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点,且∠DAE =∠BCF.(1)求证:AE =CF ;(2)求证:AE ∥CF.25、(10分)如图,反比例函数y=k x (k >0)的图象与一次函数y=34x 的图象交于A 、B 两点(点A 在第一象限).(1)当点A 的横坐标为4时.①求k 的值;②根据反比例函数的图象,直接写出当-4<x <1(x≠0)时,y 的取值范围;(2)点C 为y 轴正半轴上一点,∠ACB=90°,且△ACB 的面积为10,求k 的值.26、(12分)在平面直角坐标系中,点A ,B 分别是x 轴正半轴与y 轴正半轴上一点,OA =m ,OB =n ,以AB 为边在第一象限内作正方形ABCD .(1)若m =4,n =3,直接写出点C 与点D 的坐标;(2)点C 在直线y =kx (k >1且k 为常数)上运动.①如图1,若k =2,求直线OD 的解析式;②如图2,连接AC 、BD 交于点E ,连接OE ,若OE =OA ,求k 的值.一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据勾股定理逆定理即可求解.【详解】∵72+92≠122,所以A组不能作为直角三角形三边长故选A.此题主要考查勾股定理,解题的关键是熟知勾股定理的逆定理进行判断.2、A【解析】根据对角线互相平分的四边形是平行四边形即可得出结论.【详解】解:∵O是AC、BD的中点,∴OA=OC,OB=OD,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);故选:A.本题考查了平行四边形的判定定理;熟练掌握平行四边形的判定定理是解题的关键.3、B【解析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【详解】解:∵△ABC沿CD折叠B与E重合,∴BC=CE,∵E为AB中点,△ABC是直角三角形,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.4、C【解析】试题分析:根据反比例函数图象上点的坐标特征得到图象只能在一、三象限,故,则1-2m>0,∴m>.故选C.考点:反比例函数图象上点的坐标特征.5、B【解析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.6、C【解析】根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式==④原式2==,故④错误,故选C.本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.7、A【解析】解:∵四边形ABCD是正方形,∴∠ACB=45°,∴∠E+∠∠FAC=∠ACB=45°,∵CE=CA,∴∠E=∠FAC,∴∠FAC=12∠ACB=22.5°.故选A.8、A【解析】根据不可能事件,随机事件,必然事件发生的概率以及概率的意义找到正确选项即可.【详解】掷一枚质地均匀的硬币,朝上一面可能是正面,可能是反面,所以①正确;从一副普通扑克牌中任意抽取一张,点数不一定是3,所以②错误,故选A.本题考查了随机事件与确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件:(1)必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件.(2)不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(本大题共5个小题,每小题4分,共20分)9、3【解析】连接AW,如图所示:根据旋转的性质得:AD=AB′,∠DAB′=60°,在Rt △ADW 和Rt △AB′W 中,AB AD AW AW ='⎧⎨=⎩,∴Rt △ADW ≌Rt △AB′W (HL ),∴∠B′AW=∠DAW=1302DAB '︒∠=又AD=AB′=1,在RT △ADW 中,tan ∠DAW=WD AD ,即tan30°=WD 解得:WD=3∴126ADW AB W S S WD AD ∆'∆==⋅=,则公共部分的面积为:3ADW AB W S S ∆∆'+=,故答案为3.10、1.【解析】根据众数的定义来判断即可,众数:一组数据中出现次数最多的数据叫做众数.【详解】解:数据1出现了3次,次数最多,所以这组数据的众数是1.故答案为:1.众数的定义是本题的考点,属于基础题型,熟练掌握众数的定义是解题的关键.11、5【解析】过P 作PH ⊥OY 于点H ,构建含30°角的直角三角形,先证明四边形EODP 是平行四边形,得EP=OD=a ,在Rt △HEP 中,由∠EPH =30°,可得EH 的长,从而可得a +2b 与OH 的关系,确认OH 取最大值时点H 的位置,可得结论.【详解】解:过P 作PH ⊥OY 于点H ,∵PD ∥OY ,PE ∥OX ,∴四边形EODP 是平行四边形,∠HEP =∠XOY =60°,∴EP=OD=a ,∠EPH =30°,∴EH =12EP =12a ,∴a +2b =2(12a b +)=2(EH +EO )=2OH ,∴当P 在点B 处时,OH 的值最大,此时,OC =12OA =1,AC =BC ,CH =3222BC ==,∴OH =OC +CH =1+32=52,此时a +2b 的最大值=2×52=5.故答案为5.本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a +2b 的最大值就是确定OH 的最大值,即可解决问题.12、1【解析】分析:根据菱形的四条边都相等可得AB =5,根据菱形的两条对角线互相垂直且平分可得AC ⊥BD ,AO=12AC =4,BO =DO ,再利用勾股定理计算出BO 长,进而可得答案.详解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =12,AC =4,BO =DO ,AD =AB =DC =BC ,∵菱形ABCD 的周长为20,∴AB=5,∴BO =3,∴DO =3,∴DB =1,故答案为:1.点睛:此题主要考查了菱形的性质,关键是掌握菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.13、-1.【解析】根据分式无意义,分母等于0得,1+x=0,解得x=﹣1,故答案为﹣1.三、解答题(本大题共5个小题,共48分)14、见解析【解析】解:结论:四边形ABCD 是平行四边形证明:∵DF ∥BE∴∠AFD =∠CEB又∵AF =CE DF =BE ,∴△AFD ≌△CEB (SAS )∴AD =CB ∠DAF =∠BCE∴AD ∥CB ∴四边形ABCD 是平行四边形15、(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)233k k ++.【解析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】(1)证明:如图1中,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°,∵AE =CD ,∴△BAE ≌△ACD ,∴∠ABE =∠CAD .(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.理由:∵△ADG ,△ABC 都是等边三角形,∴AG =AD ,AB =AC ,∴∠GAD =∠BAC =60°,∴△GAB ≌△DAC ,∴BG =CD ,∠ABG =∠C ,∵CD =AE ,∠C =∠BAE ,∴BG =AE ,∠ABG =∠BAE ,∴BG ∥AE ,∴四边形AGBE 是平行四边形,ⅱ)如图2中,作AH ⊥BC 于H .∵BH =CH =1(1)2k +∴1111(1),(1)2222DH k k AH k =-+=-==+∴AD ==∴四边形BGAE 的周长=2k +△ABC 的周长=3(k +1),∴四边形AGBE 与△ABC 的周长比=233k k ++本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.16、23h.【解析】设城际铁路现行速度是xkm/h ,则建成后时速是(x+200)xkm/h ;现行路程是210km ,建成后路程是180km ,由时间=路程速度,运行时间=29现行时间,列方程即可求出x 的值,进而可得建成后的城际铁路在A 、B 两地的运行时间.【详解】设城际铁路现行速度是xkm/h ,则建成后时速是(x+200)xkm/h ;根据题意得:210x ×29=180200x +,解得:x=70,经检验:x=70是原方程的解,且符合题意,∴180200x +=18070200+=23(h )答:建成后的城际铁路在A 、B 两地的运行时间为23h.本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.17、(1)y 甲=0.75×120x=90x ,y 乙=0.8×120(x-1)=96x-96;(2)当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;当人数正好是16人时,选择甲、乙旅行社一样.【解析】(1)设共有x 人由题意得:甲旅行社的花费=120×人数×七五折;乙旅行社的花费=120×(人数-1)×八折;(2)分三种情况:①y 甲=y 乙时,②y 甲>y 乙时,③y 甲<y 乙时,分别列出方程或不等式进行计算即可.【详解】(1)设共有x 人,则y 甲=0.75×120x=90x ,y 乙=0.8×120(x-1)=96x-96;(2)由y 甲=y 乙得,90x=96x-96,解得:x=16,y 甲>y 乙得,90x >96x-96,解得:x <16,y 甲<y 乙得,90x <96x-96,解得:x >16,所以,当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;当人数正好是16人时,选择甲、乙旅行社一样.此题考查一元一次不等式和方程的应用,关键是正确理解题意,找出题目中不等关系,再列出不等式.18、(1)见解析;(2)43π【解析】(1)首先连接OE ,由AC ⊥AB ,,可得∠CAD =90°,又由AC=EC,OA=OE ,易证得∠CAE =∠CEA ,∠FAO =∠FEO ,即可证得CD 为⊙O 的切线;(2)根据题意可知∠OAF =30°,OF=1,可求得AE 的长,又由S 阴影=EAO S 扇形-EAO S ∆,即可求得答案.【详解】(1)证明:连接OE ∵AC=EC,OA=OE ∴∠CAE =∠CEA ,∠FAO =∠FEO ∵AC ⊥AB ,∴∠CAD =90°∴∠CAE +∠EAO =90°∴∠CEA +∠AEO =90°即∠CEA =90°∴OE ⊥CD ∴CE 为⊙O 的切线(2)解:∵∠OAF =30°,OF =1∴AO =2∴AF 即AE =∴112EAO S ∆=⨯=∵∠AOE =120°,AO =2∴1204==43603EAO S ππ⨯⨯扇形∴S 阴影=43π此题考查垂径定理及其推论,切线的判定与性质,扇形面积的计算,解题关键在于作辅助线.一、填空题(本大题共5个小题,每小题4分,共20分)19、1 23nna-【解析】根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=13a=11123a-,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=29a=21223a-,……∴线段A n D n=123nna-,故答案为:123nna-.本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.20、1【解析】利用垂直平分线的作法得MN 垂直平分AC ,则EA =EC ,利用等线段代换得到△CDE 的周长=AD +CD ,然后根据平行四边形的性质可确定周长的值.【详解】解:利用作图得MN 垂直平分AC ,∴EA =EC ,∴△CDE 的周长=CE+CD+ED =AE+ED+CD =AD+CD ,∵四边形ABCD 为平行四边形,∴AD =BC =6,CD =AB =4,∴△CDE 的周长=6+4=1.故答案为1.本题考查了作图−基本作图,也考查了平行四边形的性质.解题的关键是熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21、1【解析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=ca =1∴122(1)x x x ++=1122x x x x ++=1212x x x x ++=4+1=1,故答案为:1.此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a 的运用.22、m <﹣1【解析】根据关于x 的方程2x+m =x ﹣1的根是正数,可以求得m 的取值范围.【详解】解:由方程2x+m =x ﹣1,得x =﹣m ﹣1,∵关于x 的方程2x+m =x ﹣1的根是正数,∴﹣m ﹣1>0,解得,m <﹣1,故答案为:m <﹣1.本题考查解一元一次方程和一元一次不等式,解答本题的关键是明确题意,求出m 的取值范围.23、 0x ≥且1x ≠.【解析】根据二次根式和分式有意义的条件进行解答即可.【详解】解:∵代数式1x -有意义,∴x ≥0,x-1≠0,解得x ≥0且x ≠1.故答案为x ≥0且x ≠1.本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析(2)证明见解析【解析】试题分析:(1)根据平行四边形性质得出AB=DC,AD=BC,AB∥CD,AD∥BC,推出∠ABF=∠CDE,∠ADE=∠CBF,根据全等三角形的判定推出△DAE≌△BCF,即可得;(2)由△DAE ≌△BCF ,得出∠DEA =∠BFC ,从而得∠AEF =∠DFC ,继而得AE ∥CF.试题解析:(1)∵四边形ABCD 是平行四边形,∴AB =DC ,AD =BC ,AB ∥CD ,AD ∥BC ,∴∠ABF =∠CDE ,∠ADE =∠CBF ,在△DAE 和△B CF 中,DAE BCF AD BC ADE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DAE ≌△BCF (ASA ),∴AE =CF ;(2)∵△DAE ≌△BCF ,∴∠DEA =∠BFC ,∴∠AEF =∠DFC ,∴AE ∥CF.25、(1)①12,②y <-3或y >12;(2)1【解析】(1)①根据点A 的横坐标是4,可以求得点A 的纵坐标,从而可以求得k 的值;②根据反比例函数的性质,可以写出y 的取值范围;(2)根据点C 为y 轴正半轴上一点,∠ACB=90°,且△ACB 的面积为10,灵活变化,可以求得点A 的坐标,从而可以求得k 的值.【详解】解:(1)①将x=4代入y=34x 得,y=3,∴点A (4,3),∵反比例函数y=k x (k >0)的图象与一次函数y=34x 的图象交于A 点,∴3=k 4,∴k=12;②∵x=-4时,y=124-=-3,x=1时,y=121=12,∴由反比例函数的性质可知,当-4<x <1(x≠0)时,y 的取值范围是y <-3或y >12;(2)设点A 为(a ,3a 4),则OA==5a4,∵点C 为y 轴正半轴上一点,∠ACB=90°,且△ACB 的面积为10,∴OA=OB=OC=5a 4,∴S △ACB =15a 2a 24⨯⨯=10,解得,a=∴点A 为(,2),∴2,解得,k=1,即k 的值是1.本题考查一次函数与反比例函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26、(1)C (3,7),D (7,4);(2)①y =12x ;②43.【解析】(1)根据题意把m=4,n=3代入解答即可;(2)①利用待定系数法确定函数关系式即可;②根据B 、D 坐标表示出E 点坐标,由勾股定理可得到m 、n 之间的关系式,用m 表示出C 点坐标,根据函数关系式解答即可.【详解】解:(1)∵OA =m ,OB =n ,以AB 为边在第一象限内作正方形ABCD ,∴C (n ,m +n ),D (m +n ,m ),把m =4,n =3代入可得:C (3,7),D (7,4),(2)①设C (a ,2a ),由题意可得:2n am n a =⎧⎨+=⎩,解得:m =n =a ,∴D (2a ,a ),∴直线OD 的解析式为:y =12x ,②由B (0,n ),D (m +n ,m ),可得:E (2m n +,2m n +),OE =,∴(2m n +)2+(2m n +)2=8m 2,可得:(m +n )2=16m 2,∴m +n =4m ,n =3n ,∴C (3m ,4m ),∴直线OC 的解析式为:y =43x ,可得:k =43.故答案为(1)C (3,7),D (7,4);(2)①y =12x ;②43.此题是考查一次函数的综合题,关键是根据待定系数法确定函数关系式和勾股定理解答.。
2023-2024学年度第一学期第一次教学质量检测九年级数学试卷
2023-2024学年度第一学期第一次教学质量检测九年级数学试卷一.选择题(共8小题)1.下列方程中,是一元二次方程的是( )A.2x2=5x﹣1B.x+=2C.(x﹣3)(x+1)=x2﹣5D.3x﹣y=52.已知⊙O的半径为5cm,当线段OA=5cm时,则点A在( )A.⊙O内B.⊙O上C.⊙O外D.无法确定3.方程x(x﹣1)=0的根是( )A.x=0B.x=1C.x1=0,x2=1D.x1=1,x2=﹣1 4.若关于x的一元二次方程kx2﹣6x+9=0有实数根,则k的取值范围是( )A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠0 5.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD等于( )A.100°B.110°C.120°D.135°6.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为( )A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=327.如图,AB是⊙O的直径,AB=8,△BCD内接于⊙O,若∠BCD=60°,则圆心O到弦BD的距离是( )A.5B.3C.2 D.18.如图,B为线段AC的中点,过C点的直线l与线段AC成60°的角,在直线l上取一点P,使得∠APB=30°,则满足条件的点P的个数是( )A.1个B.2个C.3个D.4个二.填空题(共8小题)9.若a是方程x2﹣2x﹣5=0的一个根,则2a2﹣4a= .10.如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 .11.用配方法解一元二次方程x2﹣6x+5=0,将它化成(x+p)2=q的形式,则p+q的平方根为 .12.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA.若∠AOC=120°,则∠D的度数是 .13.某商场今年1月盈利3000万,3月盈利3630万,若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是 .14.如图,在⊙O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC,交⊙O 于点D,则CD长的最大值为 .15.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠A=55°,∠F=30°,则∠E= °.16.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作平行四边形PCED,当C,D点在圆周上运动时,线段PE长的最小值是 .三.解答题(共10小题)17.解方程(1)x2+4x=0 (2)x2+6x=518.4x(2x﹣1)2=36.解:(2x﹣1)2=9;2x﹣1=3……第一步;2x=4……第二步;x=2……第三步;(1)以上解方程的过程中从第 步开始出现错误,错误的原因是 .(2)请写出正确的解方程过程.19.已知k为实数,关于x的方程为x2﹣2(k+1)x+k2=0.(1)若方程有两个不相等的实数根,请求出k的范围;(2)请判断x=﹣1是否可为此方程的根,说明理由.20.如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB.求证:.21.如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.(1)请完成以下操作:①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D ;(填“上”、“内”、“外”)∠ADC的度数为 .23.如图所示的工件槽的两个底角均为90°.尺寸如图(单位:cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,请你根据图中的数据求出该球的半径.24.某商场以每件30元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于55元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数y=﹣2x+140的关系.(1)当每件售价35元时,每天的利润是多少元?(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)该商场销售这种商品每天是否能获得900元的利润?请说明理由.25.如图,AB为⊙O的直径,点C,D为直径AB同侧圆上的点,且点D为的中点,过点D作DE⊥AB于点E,延长DE,交⊙O于点F,AC与DF交于点G.(Ⅰ)如图①,若点C为的中点,求∠AGF的度数;(Ⅱ)如图②,若AC=12,AE=3,求⊙O的半径.26.代数推理:例题:求x2+8x+21的最小值解:x2+8x+21=x2+2x⋅4+42﹣42+21=(x+4)2+5无论x取何值,(x+4)2总是非负数,即(x+4)2≥0所以(x+4)2+5≥5所以:当x=﹣4时,x2+8x+21有最小值,最小值为5阅读材料:利用完全平方式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可以求出多项式x2+bx+c的最小值.根据上述材料,解答下列问题:(1)填空:x2﹣12x+ =(x﹣ )2;(2)将多项式x2+16x﹣1变形为(x+m)2+n的形式,并求出x2+16x﹣1的最小值;(3)若一个长方形的长和宽分别为(2a+3)和(3a+5),面积记为S1,另一个长方形的长和宽分别为5a和(a+3),面积记为S2,试比较S1和S2的大小,并说明理由.。
2024-2025学年上学期期中质量检测九年级数学试卷
2024~2025学年度第一学期期中质量检测九年级数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.在一元二次方程2x2+x-1=0中,二次项系数、一次项系数、常数项分别是(A)2,1,-1. (B)2,-1,1. (C)2,1,1. (D)2,-1,-1.2.下列APP图标中,是中心对称图形的是3.一元二次方程x2-2x-1=0的根的情况是(A)有两个相等的实数根. (B)有两个不相等的实数根.(C)只有一个实数根. (D)没有实数根.4.关于抛物线y=-2(x+5)2-4,下列说法正确的是(A)开口向上. (B)对称轴是直线x=-5. (C)函数有最小值-4.(D)可由抛物线y=-2x2向右平移5个单位再向下平移4个单位而得.5.如图,△ABC内接于⊙O,连OA,OB,若∠BOA-∠C=35°,则∠OAB的度数是(A)70°. (B)65°. (C)55°. (D)50°.6.如图,将△ABC绕点C逆时针旋转,点A的对应点为D,点B的对应点为E,若B恰好是线段CD与AE的交点,且∠DCE=34°,则∠A的度数是(A)34°. (B)39°. (C)42°. (D)45°.7.在平面直角坐标系中,点P坐标(3,-4),以P为圆心,4个单位长度为半径作圆,下列的是(A)原点O在⊙P内. (B)原点O在⊙P上.(C)⊙P与x轴相切,与y轴相交. (D)⊙P与y轴相切,与x轴相交.8.已知抛物线y =x 2-x+c 上有三个点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),若-2<x 1<-1, 0<x 2<1,1<x 3<2,则y 1,y 2,y 3的大小关系是(A )y 1<y 2<y 2. (B )y 2<y 1<y 3 (C )y 2<y 2<y 1 (D )y 2<y 3<y 1.9.如图,四边形ABCD 内接于⊙O ,AB =BC ,∠ABC =90°,⊙O 的直径为10,四边形ABCD 的周长为y ,BD 的长为x ,则y 关于x 的函数关系式是(A )y =√2x 2+10√2.(B )y =√2x +10√2.(C )y =√22x 2+10√2.(D )y =√22x +10√2. 10.在平面直角坐标系中,将函数y =x 2-2x+t 的图象记为C 1,将C ,绕原点旋转180°得到图象C 2,把C 1和C 2合起来的图形记为图形C.则当-1≤t ≤1时,直线y =x+1与图形C 的交点的个数是(A )2. (B )4. (C )2或3. (D )3或4.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.点A (2,-1)关于原点对称的点的坐标是____________________.12.某航空公司有若干个飞机场,每两个飞机场之间都开辟了一条航线,一共开辟了6条航线,这个航空公司共有__________________个飞机场.13.若关于x 的方程x 2+(k -2)x+1-k =0的两个实数根互为相反数,则k 的值是 _____________.14.中国传统数学重要的著作《九章算术》中记载了一个“圆材理壁”的问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?“用几何语言表达为:如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,EB =1寸,CD =10寸,则直径AB 长是__________________________寸.15.已知抛物线y =ax 2+bx+c (a ,b ,c 为常数,a <0)经过点(m ,0),m >0,且4a -2b+c =0,则下列四个结论:① c >0;② b -3a >0;③ 若方程ax 2+bx+c =b 有两个不相等的实数根x 1,x 2 (且x 1<x 2),则x 2<m;④ 若0<m <2,抛物线过点(0,1),且s =a+b+c ,则s <34.其中正确的结论是____________(填序号). 16.如图,已知△ABC ,△DEF 均为等腰直角三角形,∠BAC =∠DEF =90°,A 为DF 的中点,BF 的延长线交线段EC 于点G ,连接GD.若GD =10,GE =4,则GF =_____.三、解答题(共8小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本小题8分)解方程:x 2-x -5=0.18.(本小题8分)如图,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 从点C 开始沿边CA 运动,速度为1cm/s.与此同时,点E 从点B 开始沿边BC 运动,速度为2cm/s.当点E 到达点C 时,点D ,E 同时停止运动.连接AE ,DE ,设运动时间为ts ,△ADE 的面积为Scm 2.(1)用含t 的代数式表示:CD =______cm ,CE =______cm;(2)当CD 为何值时S =58S △ABC ?19.(本小题8分)二次函数y =ax 2+bx -3中的x ,y 的部分取值如下表:根据表中数据填空:(1)该函数图象的对称轴是_________;(2)该函数图象与x 轴的交点的坐标是_________;(3)当0<x <3时,y 的取值范围是__________;(4)不等式ax 2+bx -3>x -3的解集是__________.x *** - I 0 1 2 3 *** y … m -3 n -3 0 ***如图,已知直线MA交⊙O于A,B两点,BD为⊙O的直径,E为⊙O上一点,BE平分∠DBM,过点E作EF⊥AB于点F.小求证:EF为⊙O的切线;2.若已知⊙O的半径为5,且EF-BF=2,求AB的长.21.(本小题8分)如图是由小正方形组成的5×5的网格,小正方形的顶点称为格点,A,B,C,D,E五个点均为格点,F是线段CD与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,每个画图任务的画线不得超过三条.(1)在图(1)中,若点A和B关于点O中心对称,画点O;2)在图(1)中,若点F绕点E逆时针旋转90°后得到点G,画点G;(3)在图(2)中,在线段BC上画点M,使∠AMB=∠BAC;(4)在图(2)中,画满足条件的格点N,使∠ANC=2∠ABC.(2)(第21题)在2024年巴黎奥运会上,全红鲜凭借总分425.60分的成绩蝉联奥运会女子10米跳台的冠军,成为中国奥运史上最年轻的三金王.在进行跳水训练时,运动员身体(视作一点)在空中的运动路线可视作一条抛物线,如图所示,建立平面直角坐标系xOy.已知AB为3米,OB为10米,跳水曲线在离起跳点A水平距离为0.5米时达到距水面最大垂直高度k米.(1)当k=11.25时,①求这条抛物线的解析式;②求运动员落水点与点A的距离;(2)图中OE=4.5米,OF=5.5米,若跳水运动员在区域EF内(含点E,F)人水时才能达到训练要求,请直接写出k的取值范围.23.(本小题10分)如图,在△ABC中,AC=BC,∠ACB=120°,点P为△ABC内一点.(1)如图(1),CP=CQ,∠QCP=120°,连接BP,AQ,求证:BP=AQ;(2)如图(2),D为AB的中点,若PC=2,PA=5,∠CPD=150°,求线段PD的长;(3)如图(3),在(2)的条件下,若点M为平面内一点,PM=PC,连BM,将线段BM绕点B顺时针旋转120°至BN,连PN,请直接写出PN的最大值.(第23题)已知抛物线y=ax2+bx+3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图(1),Q为抛物线上第一象限内一点,若∠AQC=2∠BAQ,求点Q 的坐标;(3)如图(2),P为x轴上方一动点,直线PM,PN与抛物线均只有唯一公共点M,N, OH⊥MN于点H,且△PAB的面积是10,求线段OH长度的最大值.(1)(2)(第24题)。
湖北黄冈部分学校2024年九年级上学期第一次质检数学试卷+答案
2024年秋季九年级第一次测评数学试题(考试时间:120分钟 满分:120分)温馨提醒:1.答卷前,请将自己的姓名、班级、考号等信息准确填写在指定位置。
2.请保持卷面的整洁,书写工整、美观。
3.请认真审题,仔细答题,诚信应考,乐观自信,相信你一定会取得满意的成绩!一、选择题(共10小题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求) 1.下列方程是一元二次方程的是( )A .20ax bx c ++=B .20x = C .211x x+= D .()2211x x −+=2.若关于x 的方程()22310m x x +−+=是一元二次方程,则m 的取值范围是( ) A .0m ≠B .2m >−C .2m ≠−D .0m >3.关于x 的一元二次方程220x x m −+=的一个根为-1,则m 的值为( ) A .-3B .-1C .1D .24.若m 是一元二次方程2520x x −−=的一个实数根,则220195m m −+的值是( ) A .2016B .2017C .2018D .20195.若关于x 的一元二次方程2210kx x −=有实数根,则k 的取值范围是( ) A .1k ≥−且0k ≠ B .1k ≥− C .1k >−D .1k >−且0k ≠6.已知1x ,2x 是一元二次方程220x x −−=的两个根,则1211x x +的值是( ) A .1 B .12C .-1D .12−7.若关于x 的一元二次方程()21210m x x +−+=有两个不相等的实数根,则m 可取得的最大整数值为( ) A .-2B .-1C .0D .18.已知()12,A y −,()21,B y ,()32,C y 三点都在二次函数()221y x =−−的图象上,则1y ,2y ,3y 的大小关系为( ) A .123y y y <<B .132y y y <<C .213y y y <<D .312y y y <<9.如图,在一块矩形的劳动实践基地上有三条同宽的道路,横向有一条,纵向有两条,除道路外,剩下的是种植面积.已知该矩形基地的长为34米,宽为18米,种植面积为480平方米,则劳动基地中的道路宽为( )A .1米B .1.5米C .2米D .2.5米10.对称轴为直线1x =的抛物线2y ax bx c ++(a ,b ,c 为常数,且0a ≠)如图所示,小明同学得出了以下结论:①0abc >,②24b ac >,③420a b c ++>,④30a c +>,⑤()a b m am b +≤+(m 为任意实数),⑥当1x <−时,y 随x 的增大而减小.其中结论正确的个数为( )A .3B .4C .5D .6二、填空题(共5小题,每题3分,共15分) 11.抛物线()2234y x =−−+的顶点坐标是________.12.若a 为方程2360x x −−=的一个根,则代数式2395a a −+−的值为________.13.若关于x 的一元二次方程()22110a x x a ++−+=有一个根为0,则方程的另一个根为________. 14.某等腰三角形的一边长为5,另外两边长是关于x 的方程2120x x k −+=的两根,则k =________. 15.已知抛物线()20y ax bx c a ++>的对称轴为直线1x =,且经过点()12,y −,()23,y −,试比较1y 和2y 的大小:1y ________2y (填“>”、“<”或“=”).三、解答题(共9题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(6分)解方程.(1)247x x −=; (2)()32142x x x +=+.17.(7分)已知关于x 的一元二次方程()23210x k x k −+++=. (1)求证方程有两个不相等的实数根;(2)若方程的一个根为4x =,求k 的值,并求出此时方程的另一根. 18.(7分)已知关于x 的一元二次方程()22130mx m x m −+++=. (1)若该方程有两个不相等的实数根,求m 的取值范围.(2)若该方程的两个根分别为1x ,2x ,当3m =−时,求12x x −的值.19.(7分)如图,周长为36cm 的矩形,把长截去4cm 剩余的面积1S 刚好比把宽截去4cm 剩余的面积2S 多28cm ,求原矩形的面积.20.(7分)已知关于x 的方程()24240x k x k −+++=. (1)求证:无论k 为何值,方程总有实数根;(2)若方程的两个实数根为1x ,2x ,求代数式()()1222x x −−的值.21.(8分)如图,已知抛物线23y x mx =−++经过点()2,3M −.(1)求m 的值,并求出此抛物线的顶点坐标; (2)当30x −≤≤时,直接写出y 的取值范围.22.(10分)公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?23.(11分)关于x 的一元二次方程250x x k −+=有实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且关于x 的一元二次方程()2140m x x m −++−=与方程250x x k −+=有一个相同的根,求此时m 的值; (3)若方程250x x k −+=的两个实数根为1x ,2x ,且12113x x +=,求此时k 的值.24.(12分)如图,抛物线2y x bx c =−++经过()4,0A ,()1,0C −两点,与y 轴交于点B ,P 为第一象限抛物线上的动点,连接AB ,BC ,P A ,PC ,PC 与AB 相交于点Q .(1)求抛物线的解析式:(2)设APQ △的面积为1S ,BCQ △的面积为2S ,当125S S −=时,求点P 的坐标; (3)是否存在点P ,使45PAB CBO∠+∠=°,若存在,请求出点P 的坐标;若不存在,说明理由.2024年秋季九年级第一次测评数学参考答案1.B 2.C 3.A 4.B 5.A 6.D 7.A 8.B 9.C 10. C 11.()3,4. 12.-23. 13.-0.5. 14.35或36. 15.<.16.解:(1)247x x −=,∴24411x x −+=,∴()2211x −=,∴2x −解得:12x =+,22x =−. (3分)(2)()32142x x x +=+, ∴()()3212210x x x +−+=, ∴()()21320x x +−=, ∴210x +=或320x −=, 解得:123x =,212x =−. (6分)17.(1)证明:这里1a =,()3b =+,21c k =+, ∵()()()2223421251440k k k k k ∆=+−+=−+=−+≥>,∴方程有两个不相等的实数根; (3分)(2)解:把4x =代入方程得:()1643210k k −+++=,解得: 2.5k =,即方程为25.560x x −+=, (5分)设另一根为m ,根据题意得:46m =, 解得: 1.5m =.(7分)18.解:(1)由题意得0m ≠,该方程有两个不相等的实数根, ∴0>△,即()()22143440m m m m −+−+=− > , 解得1m <,则m 的取值范围为1m <且0m ≠;(3分)(2)当3m =−时,2340x x −+=,1243x x +=,120x x =,()()22212121241644039x x x x x x−=+−=−×=, ∴1243x x −=±. (7分)19.解:设矩形的长是x cm ,则宽是()18x −cm ,根据题意得:()()()4181848x x x x −−−−−=, (3分)整理得:880x =, 解得:10x =, (5分)则()18108cm −=,∴原矩形的面积为:()210880cm ×=, 答:原矩形的面积是280cm .(7分)20.(1)证明:()()24424k k ∆− =−++2816816k k k =++−− 2k =,∵20k ≥, ∴△≥0,∴该方程总有两个实数根;(3分)(2)解:∵该方程的两个实数根为1x ,2x , ∴124x x k +=+,1224x x k ⋅=+, ∴()()1222x x −−1212224x x x x =⋅−−+()121224x x x x =⋅−++()24244k k +−++24284k k =+−−+=0.(7分)21.解:(1)把()2,3M −代入23y x mx =−++得:4233m −−+=,解得2m =−,(2分)∴()222314y x x x =−−+=−++, (3分) ∴抛物线的顶点坐标为()1,4−; (4分)(2)∵()214y x =−++, ∴抛物线开口向下,有最大值4,(5分)∵当0x =时,3y =,当3x =−时,0y =, (7分) ∴当30x −≤≤时,y 的取值范围是04y ≤≤. (8分)22.解:(1)设该品牌头盔销售量的月增长率为x , 依题意,得:()21501216x +=,(3分)解得:10.220%x ==,2 2.2x =−(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%. (5分) (2)设该品牌头盔的实际售价为y 元,依题意,得:()()30600104010000y y = − −−,(8分)整理,得:213040000y y −+=, 解得:180y =(不合题意,舍去),250y =, 答:该品牌头盔的实际售价应定为50元.(10分)23.解:(1)因为关于x 的一元二次方程250x x k −+=有实数根, 所以()25410k ∆=−−××≥,解得254k ≤, 故k 的取值范围是:254k ≤. (3分)(2)由(1)知,符合条件的最大整数k 的值为6.将6x =代入250x x k −+=有得, 2560x x −+=,解得12x =,23x =.(5分)因为关于x 的一元二次方程()2140m x x m −++−=与方程250x x k −+=有一个相同的根, 所以当2x =时,()41240m m −++−=, 解得65m =; 当3x =时,()91340m m −++−=, 解得1m =, 因为10m −≠, 所以1m ≠, 所以m 的值为65. (7分)(3)因为方程250x x k −+=的两个实数根为1x ,2x , 所以125x x +=,12x x k =. 又因为12113x x +=, 所以12123x x x x +=, 则53k =, 解得53k =. (10分)因为52534≤, 所以k 的值为53. (11分)24.解:(1)∵抛物线2y x bx c =−++经过()4,0A ,()1,0C −两点,∴164010b c b c −++= −−+=.解得34b c = = .∴抛物线的解析式是234y x x =−++; (3分)(2)设(),P x y ,对于抛物线234y x x =−++.令0x =,则4y =,∴()0,4B .∵125S S −=, ∴125S S =+. ∴125AQC AQC S S S S +=++△△,即5APCABC S S =+△△. ∴11554522y ××=××+. ∴6y =.∴2346x x −++=. 解得11x =,22x =.∴点P 的坐标是()1,6或()2,6.(7分)(3)存在,使45PAB CBO ∠+∠=°,点P 的坐标是()3,4, (8分)理由:在x 轴的正半轴上取点()1,0E ,连接BE ,过点A 作AP BE 交抛物线于另一点P ,∵()1,0C −,()1,0E ,∴1OC OE ==,在BOC △和BOE △中,90OC OEBOC BOE OB OB =∠=∠=° =,∴()BOC BOE SAS ≌△△,∴CBO EBO ∠=, ∵APBE ,∴ABE PAB ∠=∠,∴PAB CBO ABE EBO ABO ∠+∠=∠+∠=∠, ∵4OA OB ==,90AOB ∠=°,∴45ABO ∠=°,∴45PAB CBO ∠+∠=°, (10分)设直线BE 的解析式为y kx d =+,把()0,4B ,()1,0E 代入40d k d = +=,解得:44k d =−= ,∴直线BE 的解析式为44y x =−+.∵APBE ,∴设直线AP 的解析式为4y x f =−+,将()4,0A 代入得016f =−+,解得:16f =,∴直线AP 的解析式为416y x =−+, 由234416x x x −++=−+, 解得:13x =,24x =(不符合题意,舍去), ∴()3,4P .(12分)。
2023-2024学年安徽省合肥市蜀山区合肥市九年级上学期月考数学质量检测模拟试题(含答案)
2023-2024学年安徽省合肥市蜀山区合肥市九年级上学期月考数学质量检测模拟试题一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.)1.抛物线的对称轴是()()221y x =+-A .直线B .直线C .直线D .直线2x =-1x =-2x =1y =2.已知,那么下列比例式中正确的是()()540x y y =≠A .B .C .D .54x y =45x y =54x y =45x y=3.平面直角坐标系中,点M ,N 在同一反比例函数图象上的是()A .,B .,()3,2M -()3,2N ()2,3M -()3,2N C .,D .,()2,3M ()3,2Q --()2,3M -()3,2Q --4.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点(),如果AB 的长度为8cm ,那么AP 的长度是()BP AP <A .B .C .D .()4cm-(4cm -(8cm -(12cm -5.将的图象向右平移2个单位,再向下平移3个单位,所得函数最大值为()241y x =-++()A .B .2C .D .32-3-6.已知在中,,,,下列阴影部分的三角形与原不ABC △78A ∠=︒4AB =6AC =ABC △相似的是()A .B .C .D .7.如图,在平行四边形ABCD 中,E 为边BC 上一点,AC 与DE 相交于点F ,若,2CE EB =面积为18,则的面积等于()AFD △EFC △A .8B .10C .12D .148.在平面直角坐标系中,若函数的图象与坐标轴共有三个交点,则下()222y k x kx k =--+列各数中可能的k 值为()A .B .0C .1D .21-9.如图,点E 在正方形ABCD 的对角线AC 上,于点F ,连接DE 并延长,交边BC EF AB ⊥于点M ,交边AB 的延长线于点G .若,,则()3AD =1FB =DG =A .BCD .1+10.如图,直线/的解析式为,它与x 轴和y 轴分别相交于A ,B 两点.平行于直线l 4y x =-+的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动.它与x 轴和y 轴分别相交于C ,D 两点,运动时间为t 秒(),以CD 为斜边作等腰直角三角形04t ≤≤CDE (E ,O 两点分别在CD 两侧).若和的重合部分的面积为S ,则S 与t 之间CDE △OAB △的函数关系的图象大致是()A .B .C .D .二、填空题(本大题共4个小题,每小题5分,共20分)11.若,则__________.0254x y z ==≠3x z y -=12.如图,,,,则__________.ABC CBD ∽△△4AB =6BD =BC =13.把一块含60°角的三角板ABC 按如图方式摆放在平面直角坐标系中,其中60°角的顶点B 在x 轴上,斜边AB 与x 轴的夹角,若,当点A ,C 同时落在一个反比例函数60ABO ∠=︒1BC =图象上时,__________.()0k y x x=>k =14,如图,中,,,点D 、E 分别是BC 、AC 的中点,ABC △2AB AC ==AB AC ⊥于点F .AF BE ⊥(1)__________.EF =(2)连接DF ,则__________.DF AF=三、解答题(本大题共2题,每小题8分,共16分)15.已知:在直角坐标平面内,三个顶点的坐标分别为、ABC △()0,3A 、(正方形网格中每个小正方形的边长是一个单位长度).()3,4B ()2,2C(1)以点B 为位似中心,在网格内画出,使与位似,且位似比为111A B C △111A B C △ABC △2:1,并写出点的坐标;1C(2)在网格内画出,使与.222A B C △222A B C △ABC △16.密闭容器内有一定质量的二氧化碳,当容器的体积V (单位:)变化时,气体的密度3m (单位:)随之变化.已知密度与体积V 成反比例函数关系,它的图象如图所示,ρ3kg /m ρ当时,.35m V =31.98kg /m ρ=(1)求密度关于体积V 的函数解析式;ρ(2)若,求二氧化碳密度的变化范围.39V ≤≤ρ四、解答题(本大题共2题,每小题8分,共16分)17.已知a ,b ,c 为的三边,,且,求的面ABC △438324a b c +++==12a b c ++=ABC △积.18.如图,已知中,AD ,BF 分别为BC ,AC 边上的高,过D 作AB 的垂线交AB 于ABC △E .交BF 于G ,交AC 延长线于H .求证:.2DE EG EH =⋅五、解答题(本大题共2题,每小题10分,共20分)19.已知二次函数.()()2110y k k x k =+++≠(1)求证:无论k 取任何实数,该函数图象与x 轴总有交点;(2)若图象与x 轴仅有一个交点,当时,求y 的取值范围.21x -≤≤20.如图,直线(k ,b 为常数)与双曲线(m 为常数)相交于,y kx b =+m y x=()2,A a 两点.()1,2B -(1)求直线的解析式;y kx b =+(2)在双曲线上任取两点和,若,试确定和的大小关m y x=()11,M x y ()22,N x y 12x x <1y 2y 系,并写出判断过程;(3)请直接写出关于x 的不等式的解集.m kx b x +≥六、(本大题共1题,共12分)21.杭州第19届亚运会吉祥物“江南忆”,分别取名“琮琮”“莲莲”“宸宸”,是一组承载深厚底蕴和充满时代活力的机器人,组合名“江南忆”出自白居易“江南忆,最忆是杭州”,融合杭州的历史人文、自然生态和创新基因。
深圳市龙岗区2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】
深圳市龙岗区2024-2025学年九年级数学第一学期开学教学质量检测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在矩形ABCD 中,点E 是AD 中点,且AE 2=,BE 的垂直平分线MN 恰好过点C ,则矩形的一边AB 的长度为()A .2B C D .42、(4分)下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .3、(4分)计算()69⨯-的结果等于()A .15-B .15C .54D .54-4、(4分)的整数部分为x ,小数部分为y y -的值是()A .3-BC .1D .35、(4分)计算(﹣2)的结果是()A .1B .0C .﹣1D .﹣76、(4分)如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A .19B .20C .21D .227、(4分)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2s ,方差如下表:选手甲乙丙丁方差(s 2)0.0200.0190.0210.022则这四人中发挥最稳定的是()A .甲B .乙C .丙D .丁8、(4分)某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积y 与总人口x 成正比例C .若该村人均耕地面积为2公顷,则总人口有100人D .当该村总人口为50人时,人均耕地面积为1公顷二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在平行四边形ABCD 中,已知∠A﹣∠B=60°,则∠C=_____.10、(4分)如图,正方形OABC 的边OA ,OC 在坐标轴上,矩形CDEF 的边CD 在CB上,且5CD=3CB ,边CF 在轴上,且CF=2OC-3,反比例函数y=k x (k>0)的图象经过点B,E ,则点E 的坐标是____11、(4分)写一个二次项系数为1的一元二次方程,使得两根分别是﹣2和1._____.12、(4分)如图,OC 平分∠AOB ,P 在OC 上,PD ⊥OA 于D ,PE ⊥OB 于E .若PD =3cm ,则PE =_____cm .13、(4分)一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在四边形ABCD 中,AB ∥CD ,AC 垂直平分BD ,交BD 于点F ,延长DC 到点E ,使得CE=DC ,连接BE.(1)求证:四边形ABCD 是菱形.(2)填空:①当∠ADC=°时,四边形ACEB 为菱形;②当∠ADC=90°,BE=4时,则DE=15、(8分)如图,已知:EG ∥AD ,∠1=∠G ,试说明AD 平分∠BAC .16、(8分)已知:如图,在△ABC 中,∠A=120°,AB=4,AC=2.求BC 边的长.17、(10分)如图,在Rt ACB 中,90C =∠,BE 平分ABC ∠,ED 垂直平分AB 于点D ,若9AC =,求AE 的长.18、(10分)如图1,E 为正方形ABCD 的边BC 上一点,F 为边BA 延长线上一点,且CE =AF .(1)求证:DE ⊥DF ;(2)如图2,若点G 为边AB 上一点,且∠BGE =2∠BFE ,△BGE 的周长为16,求四边形DEBF 的面积;(3)如图3,在(2)的条件下,DG 与EF 交于点H ,连接CH 且CH =5,求AG 的长.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在菱形ABCD 中,6AC =,8BD =,则菱形ABCD 的周长是_______.20、(4分)如图,已知一次函数y =ax +b 和y =kx 的图象相交于点P ,则根据图中信息可得二元一次方程组0y ax b kx y =+⎧⎨-=⎩的解是_____.21、(4分)如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.22、(4分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,AB 为半圆的直径,且抛物线的解析式为223y x x =--,则半圆圆心M 的坐标为______.23、(4分)如图,a ∥b ,∠1=110°,∠3=50°,则∠2的度数是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在ABC △中,AD BC ⊥,12AD =,16BD =,5CD =.()1求ABC △的周长;()2判断ABC △是否是直角三角形,并说明理由.25、(10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000酒店豪华间有多少间?旺季每间价格为多少元?26、(12分)分解因式(1)20a 3-30a 2(2)25(x+y)2-9(x-y)2参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C 【解析】连接CE ,根据线段中点的定义求出DE 、AD ,根据矩形的对边相等可得BC=AD ,根据线段垂直平分线上的点到两端点的距离相等可得CE=BC ,再利用勾股定理列式求出CD ,然后根据矩形的对边相等可得AB=CD .【详解】如图,连接CE ,∵点E 是AD 中点,∴DE=AE=2,AD=2AE=2×2=4,∴BC=AD=4,∵BE 的垂直平分线MN 恰好过点C ,∴CE=BC=4,在Rt △CDE 中,由勾股定理得,∴故选C .本题考查了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,难点在于作辅助线构造出直角三角形.2、C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,不是中心对称图形,故本选项错误;C 、是轴对称图形,也是中心对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误,故选C .本此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念.3、D 【解析】利用乘法法则计算即可求出值【详解】解:原式=-54,故选D .此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.4、C 【解析】因为12<<11-,即x =1,1y =-,所1)1y -=--=.5、C 【解析】分析:根据二次根式的乘法法则结合平方差公式进行计算即可.详解:原式=222)2341+-=-=-=-.故选C.点睛:熟记“二次根式的乘法法则和平方差公式”是正确解答本题的关键.6、D【解析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.7、B【解析】分析:根据方差的意义解答.详解:从方差看,乙的方差最小,发挥最稳定.故选B.点睛:考查方差的意义,方差越小,成绩越稳定.8、D【解析】人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,根据反比例函数的性质可推出A,D错误,再根据函数解析式求出自变量的值与函数值,有可判定C,B.【详解】如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,∴y随x的增大而减小,∴A,B错误,设y=kx(k>0,x>0),把x=50时,y=1代入得:k=50,∴y=50 x,把y=2代入上式得:x=25,把x=50代入上式得:y=1,∴D正确,故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、120【解析】根据平行四边形的性质可得到答案.【详解】∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.10、2715 204⎛⎫ ⎪⎝⎭,【解析】设正方形OABC的边0A=a,可知OA=OC=AB=CB=a,所以点B的坐标为(aa),推出反比例函数解析式的k=a2,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为(231aa-,3a-3),根据5CD=3CB,可求出点E的坐标【详解】由题意可设:正方形OABC的边OA=a ∴OA=OC=AB=CB∴点B的坐标为(a,a),即k=a2CF=2OC-3∴CF=2a-3∵OF=OC+CF=a+2a-3=3a-3∴点E的纵坐标为3a-3将3a-3代入反比例函数解析式y=2ax中,可得点E的横坐标为231aa-∵四边形CDEF为矩形,∴CD=EF=2 31 a a-2531a a -=3a,可求得:a=94将a=94,代入点E 的坐标为(231a a -,3a-3),可得:E 的坐标为2715204⎛⎫ ⎪⎝⎭,故答案为:2715204⎛⎫ ⎪⎝⎭,本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键11、(x+2)(x-1)=0【解析】根据因式分解法解一元二次方程的方法,可得方程为(x+2)(x-1)=0.12、3【解析】根据角平分线上的点到角的两边的距离相等求解即可.【详解】解:∵OC 平分∠AOB ,PD ⊥OA ,PE ⊥OB ,∴PE =PD =3cm .故答案为;3本题主要考查了角平分线的定义,角平分线上的点到角的两边的距离相等,熟记性质是解题的关键.13、1x <-【解析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)①60;②.【解析】(1)由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABCD 为平行四边形,再由“邻边相等的平行四边形是菱形”证得四边形ABCD 是菱形.(2)①由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABEC 为平行四边形,再由“邻边相等的平行四边形是菱形”证得四边形ABEC 是菱形,则CA=AD=DC ,此时三角形ADC 为等边三角形,∠ADC=60°;②当∠ADC=90°时,四边形ABCD 为正方形,三角形BCE 为等腰直角三角形,因为BE=4,所以由勾股定理得CE=,DE 2CE ==.【详解】解:(1)证明:∵AC 垂直平分BD ,∴AB=AD ,BF=DF ,∵AB ∥CD,∴∠ABD=∠CDB.∵∠AFB=∠CFD,∴△AFB ≌△CFD (ASA ),∴AB=CD.又∵AB ∥CD ,∴四边形ABCD 是平行四边形.∵AB=AD ,∴平行四边形ABCD 是菱形.(2)①∵由(1)得:四边形ABCD 是菱形,∴AB=CD,AB//CD,∵CE 是CD 的延长线,且CE=CD ,∴由“有一组对边平行且相等的四边形是平行四边形”证得四边形ABEC 为平行四边形∵假设四边形ACEB 为菱形,∴AC=CE ∵已知AD=DC ,∴AC=DC=AD,即三角形ADC 为等边三角形,∴060ADC ∠=②∵由(1)得:四边形ABCD 是菱形,且∠ADC=90°∴四边形ABCD 为正方形,三角形BCE 为直角三角形,∵CE=CD ,∴由勾股定理得CE=,DE 2CE ==.本题主要考察特殊四边形的性质,掌握特殊四边形的相关性质是解题的关键.15、见解析学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………【解析】先根据已知条件推出AD ∥EF ,再由平行线的性质得出∠1=∠2,∠3=∠G ,结合已知通过等量代换即可得到∠2=∠3,根据角平分线的定义可知AD 是∠BAC 的平分线.【详解】∵EG ∥AD ,∴∠1=∠2,∠3=∠G ,∵∠G=∠1,∴∠2=∠3.∴AD 平分∠BAC.此题考查平行线的性质,解题关键在于掌握其性质定义.16、27.【解析】过点C 作CD⊥BA,垂足为D.根据平角的定义可得∠DAC=60°,在Rt △ACD 中,根据三角函数可求AD,BD 的长;在Rt △BCD 中,根据勾股定理可求BC 的长.【详解】解:过点C 作CD BA ⊥,垂足为D ∵120A ∠=︒∴60DAC ∠=︒在Rt ACD ∆中cos 2cos601AD AC DAC =⋅∠=⨯︒=sin 2sin60CD AC DAC =⋅∠=⨯︒=∴415BD AB AD =+=+=在Rt BCD ∆中2BC ====本题考查解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.同时考查了勾股定理.17、AE 的长为6.【解析】根据角平分线的性质可得DE=CE ,根据垂直平分线可得AE=BE ,进而得到30A ABE CBE ∠=∠=∠=,设AE x =,则9DE CE x ==-,根据直角三角形30°角所对直角边为斜边的一半得到关于x 的方程,然后求解方程即可.【详解】解:设AE x =,则9CE x =-,BE 平分ABC ∠,CE CB ⊥,ED AB ⊥,9DE CE x ∴==-,又ED 垂直平分AB ,AE BE ∴=,A ABE CBE ∴∠=∠=∠,在Rt ACB 中,90A ABC ∠+∠=,30A ABE CBE ∴∠=∠=∠=,12DE AE ∴=,即192x x -=,解得6x =.即AE 的长为6.本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.18、(1)见解析;(2)64;(3)【解析】(1)证明,根据全等三角形的性质得到,根据垂直的定义证明;(2)根据三角形的外角的性质、等腰三角形的判定定理得到,根据三角形的周长公式求出,根据正方形的面积公式计算;(3)作交的延长线于点,证明,得到,,根据勾股定理列方程求出,计算即可.【详解】(1)证明:四边形是正方形,,,在和中,,,,,即,;(2)解:,,,,的周长为16,,,;(3)过点作交的延长线于点,,,垂直平分,,,,,即,在四边形中,,,,在和中,,,,在中,,,,,在中,设,则,由勾股定理得,解得:,.本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、20【解析】根据菱形的性质,得到AO=3,BO=4,AC ⊥BD ,由勾股定理求出AB ,即可求出周长.【详解】解:∵四边形ABCD 是菱形,∴116322AO AC ==⨯=,118422BO BD ==⨯=,AC ⊥BD ,∴△ABO 是直角三角形,由勾股定理,得AB ,∴菱形ABCD 的周长是:45=20⨯;故答案为:20.本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质进行求解.20、42x y =-⎧⎨=-⎩【解析】直接利用已知图形结合一次函数与二元一次方程组的关系得出答案.【详解】如图所示:根据图中信息可得二元一次方程组{0y ax b kx y +-==的解是:4{2x y --==.故答案为:4{2x y --==.此题主要考查了一次函数与二元一次方程组的关系,正确利用图形获取正确信息是解题关键.21、1【解析】根据平行四边形的性质,可得出AD ∥BC ,则∠AEB =∠CBE ,再由∠ABE =∠CBE ,则∠AEB =∠ABE ,则AE =AB ,从而求出DE .【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠CBE ,∵∠B 的平分线BE 交AD 于点E ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AE =AB ,∵AB =3,BC =5,∴DE =AD -AE =BC -AB =5-3=1.故答案为1.本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.22、(1,0).【解析】当y =0时,2230x x --=,解得:x 1=﹣1,x 2=3,故A (﹣1,0),B (3,0),则AB 的中点为:(1,0).故答案为(1,0).23、60【解析】根据平行线的性质:两直线平行内错角相等,可得∠BOD=50°,再根据对顶角相等可求出∠2.【详解】解:如图所示:∵直线a ∥b ,∠3=50°,∴∠BOD=50°,又∵∠1=∠BOD+∠2,∠2=∠1-∠BOD=110°-50°=60°.故本题答案为:60.平行线的性质及对顶角相等是本题的考点,熟练掌握平行线的性质是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)54;(2)ABC △不是直角三角形,理由见解析.【解析】(1)在Rt ABD △和Rt ACD 中,利用勾股定理分别求得AB 与AC 的长即可;(2)利用勾股定理的逆定理进行判断即可.【详解】解:()1AD BC ⊥,90ADB ADC ∴∠=∠=.在Rt ABD △和Rt ACD 中,根据勾股定理得222AB AD BD =+,222AC AD CD =+,又12AD =,16BD =,5CD =,20,13AB AC ∴==,ABC C AB AC BC AB AC BD DC ∴=++=+++201316554=+++=;()2ABC △不是直角三角形.理由:20,13,21AB AC BC ===,222AB AC BC ∴+≠,ABC ∴不是直角三角形.本题主要考查勾股定理及其逆定理,解此题的关键在于熟练掌握其知识点.25、该酒店豪华间有50间,旺季每间价格为800元.【解析】根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;【详解】设淡季每间的价格为x 元,酒店豪华间有y 间,()102400011400003x y x y ⎧⎪⎨⎛⎫ ⎪⎪⎝=⎭=+⎩-,解得,60050x y ==⎧⎨⎩,∴x+13x=600+13×600=800,答:该酒店豪华间有50间,旺季每间价格为800元;此题考查二元一次方程组的应用,解题关键在于理解题意列出方程组.26、(1)10a 2(2a ﹣3)(2)4(4x+y)(x+4y)【解析】分析:(1)利用提公因式法,找到并提取公因式10a 2即可;(2)利用平方差公式进行因式分解,然后整理化简即可.详解:(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y).点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).。
河北省衡水安平县联考2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】
河北省衡水安平县联考2024-2025学年九年级数学第一学期开学教学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在菱形ABCD 中,∠BAD =60°,AB =2,E 是DC 边上一个动点,F 是AB 边上一点,∠AEF =30°.设DE =x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图所示,则这条线段可能是图中的().A .线段ECB .线段AEC .线段EFD .线段BF2、(4分)如图,△ABC 的周长为17,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为点N ,∠ACB 的平分线垂直于AD ,垂足为点M ,若BC =6,则MN 的长度为()A .32B .2C .52D .33、(4分)下而给出四边形ABCD 中,,,A B C D ∠∠∠∠的度数之比,其中能判定四边形ABCD 为平行四边形的是().A .1:2:3:4B .1:2:2:3C .2:2:3:3D .2:3:2:34、(4分)若甲、乙两人同时从某地出发,沿着同一个方向行走到同一个目的地,其中甲一半的路程以a (km/h)的速度行走,另一半的路程以b (km/h)的速度行走;乙一半的时间以a (km/h)的速度行走,另一半的时间以b (km/h)的速度行走(a ≠b ),则先到达目的地的是()A .甲B .乙C .同时到达D .无法确定5、(4分)要使分式12x -有意义,则x 的取值应满足()A .x≠2B .x≠1C .x =2D .x =﹣16、(4分)平行四边形、矩形、菱形、正方形都具有的是()A .对角线互相平分B .对角线互相垂直C .对角线相等D .对角线互相垂直且相等7、(4分)将一次函数12y x =的图象向上平移2个单位,平移后,若0y >,则x 的取值范围是()A .4x >B .4x >-C .2x >D .2x >-8、(4分)如图,在已知的△ABC 中,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于两点EF ;②作直线EF 交BC 于点D 连接AD .若AD =AC ,∠C =40°,则∠BAC 的度数是()A .105°B .110°C .I15°D .120°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)不等式9﹣3x >0的非负整数解的和是_____.10、(4分)如图,P 是矩形ABCD 的边AD 上一个动点,矩形的两条边AB 、BC 的长分别为6和8,那么点P 到矩形的两条对角线AC 和BD 的距离之和是__.11、(4分)已知m 是关于x 的方程2230x x --=的一个根,则224m m -=______.12、(4分)如图,矩形ABCD 中,6AB =,8BC =,E 是AD 边上一点,连接CE ,将CDE ∆沿CE 翻折,点D 的对应点是F ,连接AF ,当AEF ∆是直角三角形时,则DE 的值是________13、(4分)如图,在菱形ABCD 中,AC=6cm ,BD=8cm ,则菱形ABCD 的高AE 为cm .三、解答题(本大题共5个小题,共48分)14、(12分)先化简,再求值:2221x x x x --+÷(1+21x -),其中x =1.15、(8分)如图,在R △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =4,CE =10,求CD 的长.16、(8分)如图①,四边形ABCD 是正方形,点E 是边BC 的中点,90AEF ∠=︒,且EF交正方形的外角平分线CF 于点F 请你认真阅读下面关于这个图形的探究片段,完成所提出的问题.(1)探究1:小强看到图①后,很快发现AE EF =这需要证明AE 和EF 所在的两个三角形全等,但△ABE 和△ECF 显然不全等(个直角三角形,一个钝角三角形)考虑到点E 是边BC 的中点,因此可以选取AB 的中点M (如图②),连接EM 后尝试着去证明AEM EFC ≌就行了.随即小强写出了如下的证明过程:证明:如图②,取AB 的中点M ,连接EM .∵90AEF ∠=︒∴90FEC AEB ∠+∠=︒又∵90EAM AEB ∠+∠=︒∴EAM FEC∠=∠∵点E 、M 分别为正方形的边BC 和AB 的中点,∴AM BM BE EC===∴BME 是等腰直角三角形,45BME ∠=︒∴135AME ∠=︒又∵CF 是正方形外角的平分线,∴45DCF ∠=︒,∴135ECF ∠=︒∴AME ECF ∠=∠∴()AEM EFC ASA ≌,∴.AE EF =(2)探究2:小强继续探索,如图③,若把条件“点E 是边BC 的中点”改为“点E 是边BC 上的任意一点”,其余条件不变,发现AE=EF 仍然成立小强进一步还想试试,如图④,若把条件“点E 是边BC 的中点”为“点E 是边BC 延长线上的一点”,其余条件仍不变,那么结论AE=EF仍然成立请你选择图③或图④中的一种情况写出证明过程给小强看.17、(10分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?18、(10分)如图,在菱形ABCD中,AC=8,BD=6,求△ABC的周长.一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知正方形纸片ABCD ,M ,N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠BPN=_____度.20、(4分)如图,AC 是菱形ABCD 的对角线,AC =8,AB =5,则菱形ABCD 的面积是_________.21、(4分)=_______.22、(4分)点P (m +2,2m +1)向右平移1个单位长度后,正好落在y 轴上,则m =_____.23、(4分)函数y=2x 与y=x-1的图象的交点坐标为(x 0,y 0),则0011x y -的值为_____________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在ABCD □中,BD AD ⊥,45A ∠=︒,点E ,F 分别是AB ,CD 上的点,且BE DF =,连接EF 交BD 于点O .(1)求证:BO DO =.(2)若EF AB ⊥,延长EF 交AD 的延长线于点G ,当1FG =时,求AD 的长.25、(10分)某中学举行春季长跑比赛活动,小明从起点学校西门出发,途经市博物馆后按原路返还,沿比赛路线跑回终点学校西门.设小明离开起点的路程s (千米)与跑步时间t (分钟)之间的函数关系如图所示,其中从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟根据图象提供的信息,解答下列问题:(1)求图中a 的值,并求出OA 所在直线方程;(2)组委会在距离起点2.1千米处设立一个拍摄点C ,小明从第一次过点C 到第二次经过点C 所用的时间为68分钟①求AB 所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?26、(12分)如图,已知点A (﹣2,0),点B (6,0),点C 在第一象限内,且△OBC 为等边三角形,直线BC 交y 轴于点D ,过点A 作直线AE ⊥BD 于点E ,交OC 于点E(1)求直线BD 的解析式;(2)求线段OF 的长;(3)求证:BF =OE .参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B 【解析】分析:求出当点E 与点D 重合时,即x=0时EC 、AE 、EF 、BF 的长可排除C 、D ;当点E 与点C 重合时,即x=2时,求出EC 、AE 的长可排除A ,可得答案.详解:当点E 与点D 重合时,即x=0时,EC=DC=2,AE=AD=2,∵∠A=60°,∠AEF=30°,∴∠AFD=90°,在Rt △ADF 中,∵AD=2,∴AF=12AD=1,EF=DF=ADcos ∠∴BF=AB-AF=1,结合图象可知C 、D 错误;当点E 与点C 重合时,即x=2时,如图,连接BD 交AC 于H ,此时EC=0,故A 错误;∵四边形ABCD 是菱形,∠BAD=60°,∴∠DAC=30°,∴AE=2AH=2ADcos ∠DAC=2×2×2B 正确.故选:B .点睛:本题主要考查动点问题的函数图象与菱形的性质、解直角三角形的应用,结合函数图象上特殊点的实际意义排除法求解是解此题的关键.2、C 【解析】证明BNA BNE ≅,得到BA BE =,即BAE △是等腰三角形,同理CAD 是等腰三角形,根据题意求出DE ,根据三角形中位线定理计算即可.【详解】BN 平分ABC ∠,BN AE ⊥,ABN EBN ∴∠=∠,ANB ENB ∠=∠,在BNA 和BNE 中,ABN EBN BN BNANB ENB ∠=∠⎧⎪=⎨⎪∠=∠⎩,BNA BNE ∴≅,BA BE ∴=,BAE ∴是等腰三角形,同理CAD 是等腰三角形,∴点N 是AE 中点,点M 是AD 中点(三线合一),MN ∴是ADE 的中位线,17611BE CD AB AC +=+=-=,1165DE BE CD BC ∴=+-=-=,1522MN DE ∴==.故选C .本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.3、D 【解析】由于平行四边形的两组对角分别相等,故只有D 能判定是平行四边形.其它三个选项不能满足两组对角相等,故不能判定.【详解】解:根据平行四边形的两组对角分别相等,可知D 正确.故选:D .本题考查了平行四边形的判定,运用了两组对角分别相等的四边形是平行四边形这一判定方法.4、B 【解析】设从A 地到B 地的路程为S ,甲走完全程所用时间为t 甲,乙走完全程所用时间为t 乙,根据题意,分别表示出甲、乙所用时间的代数式,然后再作比较即可。
九年级质检二 (数学)(含答案)131451
九年级质检二 (数学)试卷考试总分:130 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 16 小题 ,每题 5 分 ,共计80分 )1. 已知,″,,则( )A.B.C.D.2. 下列计算正确的是( )A.B.C..D.3. 若将一副三角尺按不同的位置摆放,则下列摆放方式中与不相等的是() A. B. C. D.4. 若多项式是关于的四次三项式,则的值是 A.B.C.或∠A =18'40∘∠B =17'3040∘∠C =40.18∘∠A >∠B >∠C∠B >∠A >∠C∠C >∠A >∠B∠A >∠C >∠B3a −2a =1−3÷(−a)=−a 2a 2a 2=a 3a 6(=a 3)2a 6∠a ∠β−(a −4)x+612x |a|x a ()−424−4D.5. 中国政府在年月日,向世界卫生组织捐款万美元,支持世卫组织开展抗击新冠肺炎疫情国际合作.万用科学记数法表示为,的值为 ( )A.B.C.D.6. 如图是由大小相同的小正方体搭成的几何体的俯视图,小正方形内的数字表示该位置上小正方体的数量,将数字“”的位置上最上方的一个小正方体向数字“”的位置上平移,关于平移前后几何体的三视图,下列说法正确的是( )A.主视图与左视图改变B.左视图与俯视图不变C.主视图与俯视图不变D.三种视图都不变7. 如图,在中,=,以点为圆心,以长为半径作弧交于点,再分别以点,为圆心,以大于的长为半径作弧,两弧交于点,作射线交于点,如果=,=,那么线段的长度是( ) A.B.C.D.8. 如图,在中,,是边的中点,下列结论中不正确的是 ( )4202037200020002×10n n 567832Rt ABC ∠BAC 90∘A AB BC D B D P AP BC E AB 3AC 4AE △ABC AB =AC D BCA.B.C.平分D.9. 若,则下列不等式变形正确的是( )A.B.C.D.10. 在平面直角坐标系中,点 ,将以原点为位似中心,相似比为,进行位似变换,则点的对应点的坐标是( )A. 或B.或C.或D. 或11. 化简 的结果是 ( )A.B.C.D.12. 如图,有一轮船在处测得南偏东方向上有一小岛,轮船沿正南方向航行至处,测得小岛在南偏东方向上,按原方向再航行海里至处,测得小岛在正东方向上,则,之间的距离是( )∠B =∠CAD ⊥BCAD ∠BACAB =2BDa >b a +5<b +5−<−a 3b 3−4a >−4b3a −2≤3b −2xOy A(−6,2),B(−4,4)△ABO O 2:1A A ′(−3,1)(−2,−2)(−3,1)(3,−1)(−12,4)(12,−4)(−12,4)(−8,−8)2−a −1a −1a +1a −1a −2a −1a −3a −11A 30∘PB P 45∘10C P A BA.海里B.海里C.海里D.海里13. 如图,是的中线,点是的中点,过点作交的延长线于点,连接,添加下列条件仍不能判断四边形是菱形的是 A.B.C.平分D.14. 某一周我市每天的最高温度(单位:)分别为,,,,,,则下列数据不正确的是 ( )A.众数是B.中位数是C.方差是D.平均数是15. 如图,在中, ,,,点是边的中点,过点的直线交边于点,当点,到直线的距离之和最大时,的长为( )A.B.C.D.10(10−10)(10−10)10AD △ABC O AC A AE//BC DO E CE AECD ()AB ⊥ACAB =ACAC ∠DAEA +A =B B 2C 2C 2C ∘745,35655555△ABC AC =6–√∠B =30∘∠C =45∘M BC M l AB N A B l MN 3+3–√43+3–√23–√3−3–√y =−+m216. 在同一直角坐标系中,二次函数与一次函数的图象可能是() A. B. C. D.二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )17. 计算:________.18. 如图,,,,分别是,,,的中点,且.下列结论:①;②四边形是矩形;③平分;④;⑤四边形是菱形.其中正确的是________.(填序号)19.如图所示,四边形是菱形,边在轴上,点,点,双曲线与直线交于点,点.则的面积为________.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )20. 瑞士著名数学家欧拉是世纪数学界最杰出的人物之一,我们现在可以见到很多以欧拉来命名的常数、公式、定理,在分式中,就有这样一个欧拉公式:若,,是两两不同的数,称为欧拉分式,请代入合适的值,并猜想:若,,是两两不同的数,则 _________.y =−+m x 2y =mx−1(m≠0)+=81−−√(−2)0E F G H BD BC AC AD AB =CD EG ⊥FH EFGH HF ∠EFG EG =(BC −AD)12EFGH ABCD BC x A(0,4)B(3,0)y =K xBD D E △CDE 18a bc P =++1(a −b)(a −c)1(b −a)(b −c)1(c −a)(c −b)(1)a bc P =证明你的猜想;若,,是两两不同的数,试求 的值. 21. 计算:(1);(2);(3);(4). 22. 现有四张不透明的、背面完全一样的剪纸画卡片,如图所示,王玲将这四张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片(不放回),再随机抽取一张卡片.王玲第次抽取的卡片上的剪纸画是“一帆风顺”的概率是________.请你用列表法或画树状图法,帮助王玲求出两次抽取的卡片上的剪纸画一张是“一帆风顺”,一张是“喜结良缘”的概率. 23. 如图,,是圆的切线,切圆于点,的周长为,.求:的长;的度数.24. 已知双曲线(为常数,且)与直线交于), )两点.求与的值;如图,直线交轴于点,交轴于点,若点为的中点,求的面积.25. 如图,抛物线=与轴分别交于点、(点在点的右侧),与轴交于点,连接,点(,-在抛物线上.(2)(3)a bc ++bc (a −b)(a −c)ac (b −a)(b −c)ab (c −a)(c −b)(−8)+10−2+(−1)(−0.9)+|4.4|−|−8.1|+(+5.6)(1)1(2)PA PB O CD O E △PCD 12∠APB =60∘(1)PA (2)∠COD y =k xk k ≠0y =x+b A(1,n B (m,m+1(1)k b (2)AB x C y D E CD △BOE y a −2ax+c x 2x A B B A y C BC a −3)(1)求的值;(2)已知点与关于原点对称,作射线交抛物线于点,若=,①求抛物线所对应的函数表达式;②过点作交抛物线的对称轴于点,以点为圆心,以的长为半径作,点为上的一个动点,求的最小值.26. 如图,,,点为平面内一点,连接,且,将线段绕点逆时针旋转得到线段,连接,,则的值为________.如图,,,点为平面内一点,连接,且,将线段绕点逆时针旋转得到线段,连接,.①求的值;②若,,当点,,在同一直线上时,直接写出线段的长.c D C O BD E BD DE B BF ⊥BC F C ⊙C T ⊙C TB+TF (1)1AB =AC ∠BAC =60∘D BD BD <AB BD D 60∘DE AD CE AD EC(2)2AB =AC ∠BAC =90∘D BD BD <AB BD D 90∘DE AD CE AD EC AB =2BD =1C D E AD参考答案与试题解析九年级质检二 (数学)试卷一、 选择题 (本题共计 16 小题 ,每题 5 分 ,共计80分 )1.【答案】A【考点】角的大小比较【解析】」都统一成度分秒的形式比较大小:,因为故.故选.【解答】此题暂无解答2.【答案】D【考点】单项式除以单项式同底数幂的乘法【解析】、整式减法,就是合并同类项,合并的时候只把系数相加减,字母和字母的指数都不变,所以此题错误,不符合题意;B 、单项式除以单项式,把系数和相同的字母分别相除,所以此题错误,不符合题意;C 、同底数幂的乘法,底数不变,指数相加,所以 ,此题错误,不符合题意;D 、幂的乘方,底数不变,指数相乘,所以此题正确,符合题意;【解答】解:、此题错误,不符合题意;B 、此题错误,不符合题意;C 、 ,此题错误,不符合题意;D 、此题正确,符合题意;故答案为:.3.【答案】C【考点】角的计算余角和补角∠C ==40.18∘40∘10′48′∠A =,∠B =40∘18′40∘1730′′ΔA >B >∠C A A 3a −2a =a +1,−3÷(−a)=3a ≠−a 2a 2a 2=+a 3a 5a 6=()a 32a 6A 3a −2a +1−3÷(−a)=3a ≠−a 2a 2a 2=a a 3a 5=()a 32a 6D【解析】本题考查角的计算、补角和余角.【解答】解:.,,故不符合题意;.,,故不符合题意;.,,故符合题意;.,,故不符合题意;故选.4.【答案】A【考点】多项式的概念的应用多项式的项与次数【解析】根据四次三项式的定义可知,该多项式的最高次数为,项数是,所以可确定的值.【解答】解:∵多项式是关于的四次三项式,∴,,∴.故选.5.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】A ∵∠α+∠β=,∠β=90∘45∘∴∠α=∠β=45∘AB ∵∠α+∠1=,∠β+∠1=90∘90∘∴∠α=∠βBC ∵∠β=,∠α+∠β≠45∘90∘∴∠α≠∠βCD ∵∠α+=,∠β+=45∘180∘45∘180∘∴∠α=∠βD C 43m −(a −4)x+612x |a|x |a |=4−(a −4)≠0a =−4A =20000000=2×7解:万,的值为.故选.6.【答案】C【考点】简单组合体的三视图作图-三视图【解析】直接利用俯视图上小立方体的个数进而可以判断三视图,再利用移动一个小立方体得出三视图的变化情况.【解答】解:平移前的三视图:平移后的三视图:由图可得,主视图与俯视图不变.故选.7.【答案】A【考点】经过一点作已知直线的垂线【解析】根据作图过程可得是的垂直平分线,根据勾股定理可得的长,再根据等面积法求出的长即可.【解答】解:根据作图过程可知:是的垂直平分线,的面积:…故选:.8.【答案】D ∵2000=20000000=2×107∴n 7C C 1P BD BC AE ∵∠EAC =,AB =3,AC =490∘BC ==5A +AB 2C 2−−−−−−−−−−√AP BD BE =DE,AE ⊥BD △ABC AB ⋅AC =BC ⋅AE 12125AE =12,AE =125A线段垂直平分线的性质【解析】根据等腰三角形三线合一的性质可得,平分,从而判断与正确;由等腰三角形等边对等角的性质可判断正确;根据已知条件不能判断正确.【解答】解:∵中,,是中点∴,,,即平分,故、、三项正确,不正确.故选.9.【答案】B【考点】不等式的性质【解析】根据不等式的性质逐项判定即可【解答】解:,在不等式的两边同时加上,不等式仍成立,即.故选项错误;,在不等式的两边同时除以,不等式仍成立,再同时乘,不等式符号改变,即.故选项正确;,在不等式的两边同时乘以,不等号方向改变,即.故选项错误;,在不等式的两边同时乘以,再减去,不等式仍成立,即,故选项错误.故选.10.【答案】B【考点】位似的有关计算【解析】根据已知得出位似图形对应坐标与位似图形比的关系进而得出答案.【解答】解:的一个顶点的坐标是,以原点为位似中心相似比为,将缩小得到它的位似图形,∴点的坐标是: ,,即或 .故选11.【答案】CAD ⊥BC AD ∠BAC A D B C △ABC AB =AC D BC AD ⊥BC ∠B =∠C ∠BAD =∠CAD AD ∠BAC A B C D D A a >b 5a +5>b +5A B a >b 3−1−<−a 3b 3B C a >b −4−4a <−4b C D a >b 323a −2>3b −2D B △ABO A (−6,2)O 1:2△ABO △A ′B ′O ′A ′(−×6,×2)1212(−×(−6),−×2)1212(−3,1)(3,−1)B.分式的加减运算【解析】【解答】解:.故选.12.【答案】C【考点】解直角三角形的应用-方向角问题【解析】此题暂无解析【解答】此题暂无解答13.【答案】B【考点】菱形的判定【解析】此题暂无解析【解答】解:,,∵点是的中点,,,,四边形是平行四边形,当,即,是的中线,,四边形是菱形,故,选项不符合题意;若平分,则,,∴四边形是菱形,故选项不符合题意;2−a +1a −1=2(a −1)−(a +1)a −1=a −3a −1C ∵AE//BC ∴∠OAE =∠OCD,∠OEA =∠ODC O AC ∴OA =OC ∴△OAE ≅△OCD(AAS)∴OD =OE ∴AECD A +A =B B 2C 2C 2AB ⊥AC ∵AD △ABC ∴AD =BC =CD 12∴AECD A D AC ∠DAE ∠DAC =∠EAC =∠DCA ∴AD =CD AECD C当添加时,不能判断四边形是菱形,故选项符合题意.故选.14.【答案】C【考点】众数中位数方差【解析】【解答】解:由题意得,,,,,,,,众数为,故选项不符合题意;中位数为,故选项不符合题意;,故选项不符合题意;,故选项符合题意.故选.15.【答案】A【考点】含30度角的直角三角形矩形的判定锐角三角函数的定义【解析】根据直角三角形中斜边最长、勾股定理和三角函数的定义来解答即可.【解答】解:如图,分别过点,作直线的垂线,垂足分别为点,,过点作交的延长线于点,则四边形为矩形,∴,∴,由直角三角形的性质可知,当点与点重合,的值最大,此时,,三点重合,且直线,如图,过点作于点,AB =AC AECD B B 34555675A 5B ==5x ¯¯7+4+5+3+5+6+57D =[(7−5+(4−5+(5−5+(3−5+(5−5+(6−5+(5−5]=S 217)2)2)2)2)2)2)2107C C A B l E F B BP ⊥AE AE P EFBP EP =BF AE +BF =AE +EP =AP P B AP E F N l ⊥AB A AQ ⊥BC Q∵,,∴,又∵,∴,∴,∴在直角中,.故选.16.【答案】C【考点】二次函数的图象一次函数图象与系数的关系一次函数的图象二次函数图象与系数的关系【解析】根据抛物线中,所以开口向下,排除答案;再根据直线中,与轴的负半轴相交,排除答案;当过一三象限时,,当过二四象限时,,排除.【解答】解:∵二次函数,∴开口向下,∴排除;∵一次函数,∴直线与轴的负半轴相交,排除;∵由图象直接得出,故选.二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )17.【答案】【考点】实数的运算算术平方根有理数的加法【解析】AC =6–√∠C =45∘AQ =QC =AC =2–√23–√∠B =30∘BQ ==3AQ tan30∘BC =BQ +CQ =3+3–√△BMN MN =BM =BC =12143+3–√4A a =−1<0B b =−1y D m>0m<0A y =−+m x 2B y =mx−1y D m>0C 10根据算术平方根和0指数幂的值来解答.【解答】解:原式.故答案为:.18.【答案】①③⑤【考点】菱形的判定三角形中位线定理【解析】此题暂无解析【解答】解:∵、、、分别是、、、的中点,∴,,,.∵,∴,∴四边形是菱形,∴①,正确;②四边形是矩形,错误;③平分,正确;④当,如图所示:,分别为,中点,∴连接,延长到上一点,∴,,∴,只有时才可以成立,而本题与很显然不平行,故本小题错误;⑤四边形是菱形,正确.综上所述,①③⑤共个正确.故答案为:①③⑤.19.【答案】【考点】反比例函数综合题【解析】解:由题意可知,,.过点作轴于点,=9+1=1010E F G H BD BC AC AD EF =CD 12FG =AB 12GH =CD 12HE =AB 12AB =CD EF =FG =GH =HE EFGH EG ⊥FH EFGH HF ∠EFG AD//BC E G BD AC CD EG CD N EN =BC 12GN =AD 12EG =(BC −AD)12AD//BC AD BC EFGH 335OA =4,OB =3∴AB ===5O +O A 2B 2−−−−−−−−−−√+4232−−−−−−√D DF ⊥x F∵四边形是菱形,,轴,∴是矩形,,∴点的坐标为,∵点在双曲线上,.设的解析式为,将和分别代入得:解得:联立方程得:解得:或∵点的坐标为,∴的坐标为,. 故答案为:.【解答】解:由题意可知,,.过点作轴于点,∵四边形是菱形,,轴,∴是矩形,,∴点的坐标为,∵点在双曲线上,.设的解析式为,将和分别代入得:解得:联立方程得:解得:或∵点的坐标为,ABCD ∴AD//BC,AB =BC =CD =AD =5∵DF ⊥x AOFD ∴OF =AD =5D (5,4)D y =K x ∴K =xy =5×4=20BD y =ax+b B(3,0)D(5,4){3a +b =0,5a +b =4,{a =2,b =−6,y =,20x y =2x−6,{=5,x 1=4,y 1{=−2,x 2=−10,y 2D (5,4)E (−2,−10)∴=+S ΔCDE S ΔCDB S ΔCBE =×5×4+×5×10=35121235OA =4,OB =3∴AB ===5O +O A 2B 2−−−−−−−−−−√+4232−−−−−−√D DF ⊥x F ABCD ∴AD//BC,AB =BC =CD =AD =5∵DF ⊥x AOFD ∴OF =AD =5D (5,4)D y =K x ∴K =xy =5×4=20BD y =ax+b B(3,0)D(5,4){3a +b =0,5a +b =4,{a =2,b =−6,y =,20x y =2x−6,{=5,x 1=4,y 1{=−2,x 2=−10,y 2D (5,4)∴的坐标为,.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )20.【答案】; .【考点】分式的化简求值定义新符号分式的混合运算【解析】先取,再代入式子计算,即可解答.根据分式加减混合运算的法则,先化为同分母分式,再加减,即可解答本题.。
2024年江苏省徐州市邳州市九年级数学中考第二次质量检测试题(含答案)
2024年九年级第二次质量检测数学试题注意事项1.本试卷共6页,满分为140分,考试时间为120分钟.2.答题前,请将姓名、考试号用0.5毫米黑色字迹的签字笔填写在本试卷及答题卡指定位置.3.答案全部涂、写在答题卡上,写在本卷上无效.考试结束后,只交答题卡.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项符合题意,请将正确选项前的字母代号填涂在答题卡相应位置)1.2024的倒数是( )A.B .C .2024D .2.下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.下列运算正确的是( )A .B .C .D .4.已知a ,b 两数在数轴上对应的点如图所示,下列结论错误的是()A .B .C .D .5.某校组织学生体育锻炼.小明记录了他一周参加锻炼的时间,并绘制了如图所示的统计图.下列数据正确的是()A .平均数为70B .众数为75C .中位数为70D .方差为06.将抛物线先向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的表达式是()A .B .C .D .1202412024-2024-2242a a a +=()222424aba b -=63222a a a ÷=()329a a =0ab +<0b a ->0ab >a b<()221y x =-+()22y x =-()212y x =-+()242y x =-+22y x =+7.在菱形ABCD 中,于点E ,于点F ,连结EF .若,则的度数为()A .55°B .57.5°C .60°D .62.5°8.如图,和是以点A为直角顶点的等腰直角三角形,且,分别作射线BD 、CE ,它们交于点M .以点A 为旋转中心,将按顺时针方向旋转,若AE 的长为2,则面积的最小值是()A .4B .8C .D 二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请将答案直接填写在答题卡相应位置)9.49的平方根是______.10.芯片内部有数以亿计的晶体管.某品牌手机自主研发了新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为______.11有意义,则实数x 的取值范围是______.12.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知,,,则的度数是______°.13.蜂巢是严格的六角柱形体,如图,可从中抽象出正六边形.按图中所示方法,用若干个全等的正六边形排成圆环状,则需要正六边形的个数是______.AE BC ⊥AF CD ⊥55B ∠=︒AEF ∠ABC △ADE △12AD AB =ADE △MBC △2AB CD ∥22E ∠=︒114DCE ∠=︒BAE ∠14.关于x 的方程有实数根,则k 的取值范围为______.15.若圆锥的底面半径为3,侧面展开图是一个圆心角为120°的扇形,则这个圆锥的母线长是______.16.如图,AD 是⊙O 的直径,弦BC 交AD 于点E ,连接AB ,AC ,若,则的度数是______°.17.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点D 在BC上,且,反比例函数的图象经过点D 及矩形OABC 的对称中心M ,顺次连接点D 、O 、M .若的面积为4,则k 的值为______.18.如图,在矩形ABCD 中,,,点E 、F 分别在边BC 、CD 上,,将沿EF 翻折得,连接,当______时,是以AE 为腰的等腰三角形.三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题10分)计算:(1);(2).20.(本题10分)(1)解方程:;(2)解不等式组:21.(本题7分)某数学社团以“舌尖上的徐州—我最喜爱的徐州小吃”为主题对所在学校的学生进行随机调查,并给出四种选择(每人只能从中选择且只能选择一种)“A :徐州把子肉”“B :徐州菜煎饼”“C :徐州胡230x x k -+=30BAD ∠=︒ACB ∠14CD CB =()0ky k x=>DOM △6AB =8AD =EF AE ⊥ECF △EC F '△AC 'BE =AEC '△()22024114-⎛⎫-++ ⎪⎝⎭2214411a a a a a ++⎛⎫+÷ ⎪++⎝⎭322112x x x=---()324;211.3x x x x ⎧--≥-⎪⎨+>-⎪⎩辣汤”“D :八股油条”.该社团将调查得到的数据整理后,绘制成以下两幅不完整的统计图:根据以上信息,解决下列问题:(1)样本容量为______;(2)请补全条形统计图;(3)扇形统计图中D 对应圆心角的度数为______;(4)若该校共有1300名学生,请估计喜欢“C :徐州胡辣汤”的学生大约有多少人.22.(本题7分)“二十四节气”是中国古代用来指导农事的历法,在国际气象界被誉为“中国的第五大发明”,位列联合国教科文组织人类非物质文化遗产代表作名录.小明和小亮对二十四节气非常感兴趣,他们准备了印有“A :立春”“B :夏至”“C :立秋”“D :冬至”四张节气图案的卡片,这些卡片除图案外无其他差别.两人将卡片背面朝上洗匀后,从中随机抽取一张.(1)小明从四张卡片中随机抽取一张卡片,抽到“A :立春”的概率是______;(2)小明先从四张卡片中随机抽取一张,小亮再从剩下的卡片中随机抽取一张,请用画树状图或列表的方法,求两人都没有抽到“C :立秋”的概率.23.(本题8分)中国古代数学家杨辉的《田亩比类乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”大意是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?24.(本题8分)如图,在⊙O 中,AB 是直径,点C 在⊙O 上.在AB 的延长线上取一点D ,连接CD ,使.(1)求证:直线CD 是⊙O 的切线;(2)若,,求AB 的长.25.(本题8分)在综合与实践活动中,要利用测角仪测量塔的高度.如图,塔AB 前有一座高为DE 的观景台,已知,,点E 、C 、A 在同一水平线上.某学习小组在观景台C 处测得塔顶部B 的仰角为45°,在观景台D 处测得塔顶部B 的仰角为27°,求塔AB 的高度(精确到1m ).BCD A ∠=∠AC CD =2BD =6m CD =30DCE ∠=︒(参考数据:,,,)26.(本题8分)如图,已知,请用无刻度的直尺和圆规作图(保留作图痕迹,不写作法).(1)在图1的BC 边上作点P ,使;(2)在图2的BC 边上作点P ,使.27.(本题10分)[阅读理解]如图1,在学习三角形的中位线时,我们发现三角形的三条中位线在三角形内部构成一个新的三角形,则其面积与原三角形面积的比是______.[探究思考]如图2,已知D 、E 、F 分别是三边的三等分点,且,依次连接DE 、EF 、FD ,则与的面积比是定值吗?如果是,请求出该数值;如果不是,请说明理由.[发现结论]如图3,已知D 、E、F 分别是三边的n 等分点,且,依次连接DE 、EF 、FD ,则与的面积比是______.28.(本题10分)如图,在平面直角坐标系中,二次函数的图象与x 轴分别交于点O 、A ,顶点为B ,连接OB 、AB .点D 在线段OA 上,作射线BD ,过点A 作射线BD ,垂足为点E ,以点A 为旋转中心把AE 按逆时针方向旋转60°到AF ,连接EF .(1)求点A 、B 的坐标;(2)随着点D 在线段OA 上运动.①连接OF ,的大小是否发生变化?请说明理由;sin 270.454︒≈cos 270.891︒≈tan 270.509︒≈ 1.414≈ 1.732≈ABCD BAP BPA ∠=∠PC PD AD +=ABC △13AD BE CF AB BC CA ===DEF △ABC △ABC △1AD BE CF AB BC CA n===DEF △ABC △2y x =+AE ⊥OFE ∠②延长FE 交OB 于点P ,线段PF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)连接DF ,当点F 在该抛物线的对称轴上时,的面积为______.2024年九年级第二次质量检测数学试题参考答案及评分标准一、选择题(每小题3分,共24分)题号12345678选项ACBBCDDA二、填空题(每小题3分,共30分)9. 10. 11. 12.92 13.6 14. 15.9 16.6017.18.或三、解答题(共86分)19.(1)原式(3分).(2)原式(9分).20.(1)方程两边同乘,得.解这个一元一次方程,得.检验:当时,,是原方程的解.(2)解不等式①,得.(7分)解不等式②,得.∴原不等式组的解集为.21.(1)50(2)见下图DEF △7±81.410-⨯5x ≥94k ≤16383741216=-+15=()()21212a a a a a ++=⋅++2aa =+()21x -()2213x x =-+13x =-13x =-210x -≠13x =-1x ≤4x <1x ≤(3)36°(4),即该校喜欢“C :徐州胡辣汤”的学生人数约为520人.22.(1).(2)(画树状图参照给分)共有12种等可能的结果,其中“两人都没有抽到C :立秋”的情况有6种.∴P (两人都没抽到立秋).23.解:设该矩形田地长为x 步.依题得:.解得,.宽为:.答:矩形田地长为36步,宽为24步.24.(1)如图,连接OC ,在⊙O 中,∵,∴.∵.∴.∵AB 是⊙O 的直径,∴,∴,∴,即,∴.∵点C 在⊙O 上,∴CD 是⊙O 的切线.(2)∵,∴.∵,∴.∴.∴.20130052050⨯=1461122==()12864x x -=136x =124x =-1224x -=OA OC =A ACO ∠=∠BCD A ∠=∠ACO BCD ∠=∠90ACB ∠=︒90ACO OCB ∠+∠=︒90BCD OCB ∠+∠=︒90OCD ∠=︒OC CD ⊥AC CD =A D ∠=∠ACO BCD ∠=∠ACO DCB ≌△△2AO BD ==24AB AO ==25.过点D 作,垂足为F .由题意得:,则在中,∵,∴.在中,∵,∴.设AB 为h ,在中,∵,∴.∴.∴,∴,,∴.在中,∵,∴∴,解得:;∴.答:塔AB 的高度约为11m .26.(1)(本题解法不唯一,其他解法参照给分)(2)(本题解法不唯一,其他解法参照给分)27.(1)1∶4.(2)与的面积比是定值.DF AB ⊥DE EC ⊥90DEC ∠=︒Rt DEC △sin DEDCE DC ∠=sin sin 3063DE DCE DC =∠⋅=︒⨯=Rt DEC △cos CEDCE DC∠=cos cos306CE DCE DC =∠⋅=︒⨯=Rt ABC △45ACB ∠=︒45ABC ∠=︒AC AB h ==()AE EC AC h =+=+DF EA h ==+3DE FA ==3BF AB AF h =-=-Rt BDF △tan BFBDF DF∠=()()tan tan 2730.5BF BDF DF h h =∠⋅=︒⨯-=()30.5h h ⋅-=+611h =+≈11m AB =DEF △ABC △如图,过点C 作,过点F 作,则,过点C 作,垂足为点G ,与交于点H .可得,,∴,∴,.,∴.同理得:.∴,∴,∴.(3).28.(1)当时,,解得,,则点A 的坐标为.对,配方得,则点B 的坐标为.(2)①的大小不发生变化.∵点B 的坐标为,∴,依抛物线的对称性可得.∴为正三角形.,同理得.∵,,∴,∴.∵,∴,∴.∵,且,∴为正三角形,∴.∴.②线段PF 的长度是否存在最大值,最大值为4.如图,过点B 作与FE 的延长线交于点Q .则,∵,,∴,∴,∴.∵,∴,∴,又∵,1lAB ∥2l AB ∥12l l ∥CG AB ⊥2l CHFCGA △△∽13CH CFCG CA ==23HG CG =23HG CG=1212332192ADFABCAB CG AD HGS S AB CG AB CG ⋅⋅===⋅⋅△△29ADF ABC S S =△△29BDE CEF ABC S S S ==△△△6293ADF BDE CEF ABC ABC S S S S S ++==△△△△△13DEF ABC S S =△△13DEF ABC S S =△△2233n n n -+0y =20x +=10x =24x =()4,02y x =+)22y x =-+(2,OEF ∠(2,4OB ==4AB OB ==ABO△60BAE BAO EAO EAO ∠=∠-∠=︒-∠60OAF EAO ∠=︒-∠AB AO =AE AF =()SAS ABE AOF ≌△△AFO AEB ∠=∠AE BD ⊥90AEB ∠=︒90AFO ∠=︒AE AF =60EAF ∠=︒AEF △60EFA ∠=︒906030OFE AFO EFA ∠=∠-∠=︒-︒=︒BQ FO ∥30Q EFO ∠=∠=︒90BEQ AEF ∠+∠=︒60AEF ∠=︒30BEQ ∠=︒Q BEQ ∠=∠BE BQ =ABE AOF ≌△△BE OF =BQ OF =BPQ OPF ∠=∠∴,∴,∴点P 为OB 中点.取OA 中点M ,连接PM ,MF ,则,∴PF 的最大值为4.(3).注:以上答案仅供参考,如有其他解法请参照给分.PBQ EOF ≌△△OP BP =1122422PF PM MF AB OA ≤+=+=+=4-。
九年级质量检测数学试卷(一)含答案
π°,tan30°PRQBAOD C B A 九年级质量检测数学试卷(一)(考试时间:120分钟 试卷满分:150分)一、选择题(本大题共10个小题,每小题3分,共30分)1.在下列实数中无理数有( )个.4,38,4,2.020020002……, A.2 B.3 C.4 D.5 2.明天数学课要学“勾股定理”,小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( )A. 1.25⨯510 B.1.25610⨯ C.1.25710⨯ D.0.125810⨯3.已知:如图,∠AOB 的两边OA 、OB 均为平面反光镜,∠AOB=035,一束平行于OB 的光线RQ 经OA 上的Q 点反射后,反射光线与OB 交于点P ,则∠QPB 的度数是( ) A. 060 B.070 C. 080 D.0854.2012年12月26日,京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制( )种车票.A. 6B. 12C. 15D.30 5.右图是一个由4个相同的正方体组成的立体图形,它的三视图是( )A B C D 6.下列事件中,是确定事件的是( )A.明天有暴雨B.抛掷一枚骰子,出现7点朝上C.小刚买彩票中奖D.菱形的对角线的长大于边长7.若实数a,b,c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )8.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB=CD=8,则OP 的长为( )4π4π2π2πNMDCBAA.3B.4C.23D.24 9.下列说法中:①若式子x -2有意义,则2≥x .②已知∠α=027,则∠α的余角是063③已知x=-1是方程052=+-bx x 的一个实数根,则b 的值为6. 第8题图 ④在反比例函数xk y 2-=中,若x >0时,y 随x 的增大而增大,则k 的取值范围是k <2.其中正确的命题有( ) A. 1个 B.2个 C.3个 D.4个10.矩形ABCD 的周长为4,以AB 为轴旋转一周得到一个几何体,则该几何体的侧面积有( )A.最小值B.最大值C.最小值D.最大值 二、填空题(共8道题,每小题3分,共24分) 11.20131的倒数的相反数是_____________. 12.分解因式x x x 9623+-=__________________. 13.若m 为实数,且m-m 1=3,则221mm +=___________. 14.如图,四边形ABCD 中,∠BAD=1200,∠B=∠D=900,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,则∠AMN+∠ANM 的度数是____________.15.已知一组数据 321,,x x x 的方差是3,将该数据每一个数都乘以2,所得新一组数据的方差是_______.16.如图,在平面直角坐标系中,△ABC 经过平移后点A 的对应点A ’,则平移后点B 的对应点B ’的坐标为( )第14题图 第16题图17.如图所示,⊙O 的半径为5,直径AB ⊥CD ,以B 为圆心,BC 长为半径作弧CED ,则图中阴影部分的面积为___________.18.如图,在第一个△AB 1A 中,B=200,B A AB 1=,在B A 1上取一点C ,延长1AA 到2A ,使得C A A A 121=; 在C A 上取一点D ,延长A A 到A ,使得D A A A =;…… ,按此法进行下去,第n 个三角形的以AE O D C B A A nA 4A 3A 2A 1E D C BA 类型B A 30024018012060为底角的度数为____________0.第17题图 第18题图 三、解答题(第19题10分,第20题12分,共22分)19.先化简,再求值: ⎪⎭⎫⎝⎛+---÷--24224222a a a a a a ,其中32+=a .20.“八月十五”是我国的传统佳节,民间历来有吃“月饼”的习俗.我市某食品加工厂为了解市民对去年销量较好的梅干月饼、豆沙月饼、冰糖月饼、蛋黄月饼(以下分别用A 、B 、C 、D 表示)这四种不同口味月饼的喜爱情况,在节前对某居民小区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整; (3)若居民区有8000人,请估计爱吃D 月饼的人数;第20题图(4)若有外形完全相同的A 、B 、C 、D 月饼各一个,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C 月饼的概率ON M G F E D C BA 四、解答题(第21题12分,第22题12分,共24分)21.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 中点,点E(4,n)在边AB 上,反比例函数)0(≠=k x k y 在第一象限内的图象经过D 、E ,且tan ∠BOA=21. (1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交与点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交与点H 、G ,求线段OG 的长.22.如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:732.13≈)第22题图五、解答题(满分12分)23.如图,AB 、BC 、CD 分别与⊙O 切于点E 、F 、G ,且AB ∥CD ,连结OB ,OC ,延长CO 交⊙O 于点M ,过M 作MN ∥OB 交CD 于N(1)求证:直线MN 是⊙O 的切线; (2)当OB=6cm ,OC=8cm 时,求⊙O 的半径及MN 的长.MEP A 第23题图六、解答题(满分12分)24.为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并规定用该公司经营的利润逐步偿还无息贷款。
2024-2025学年四川省成都七中育才学校数学九年级第一学期开学教学质量检测试题【含答案】
2024-2025学年四川省成都七中育才学校数学九年级第一学期开学教学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)将点P (2,1)沿x 轴方向向左平移3个单位,再沿y 轴方向向上平移2个单位,所得的点的坐标是()A .(1,1)B .(-1,3)C .(5,1)D .(5,3)2、(4分)如图,已知四边形ABCD 是平行四边形,下列结论中不正确...的是().A .当AB =BC 时,它是菱形B .当AC =BD 时,它是正方形C .当∠ABC =90º时,它是矩形D .当AC ⊥BD 时,它是菱形3、(4分)若化简1x --25x -,则x 的取值范围是()A .一切实数B .14x ≤≤C .1x ≤D .4x ≥4、(4分)用反证法证明:“ABC ∆中,若AB AC ≠.则B C ∠≠∠”时,第一步应假设()A .B C ∠≠∠B .B C ∠=∠C .A B ∠=∠D .A C∠=∠5、(4分)已知关于x 的一元二次方程230x x a ++=有一个根是2-,那么a 的值是()A .2-B .1-C .2D .106、(4分)如图,在ABC ∆中,8AB =,6BC =,10AC =,D 为边AC 上一动点,DE AB ⊥于点E ,DF BC ⊥于点F ,则EF 的最小值为()A .2.4B .3C .4.8D .57、(4分)用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设()A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角8、(4分)下列命题中是真命题的有()个.①当x =2时,分式242x x --的值为零②每一个命题都有逆命题③如果a >b ,那么ac >bc ④顺次连接任意四边形各边中点得到的四边形是平行四边形⑤一组对边平行,另一组对边相等的四边形是平行四边形.A .0B .1C .2D .3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若n 边形的每个内角都等于150°,则n =_____.10、(4分)在平面直角坐标系中,函数y kx b =+(0k ≠)与m y x =(0m ≠)的图象相交于点M (3,4),N (-4,-3),则不等式m kx b x +>的解集为__________.11、(4分)如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,使点D 恰好落在BC 边上的F 点处.已知折痕,且,那么该矩形的周长为______cm .12、(4分)如图,在平面直角坐标系xOy 中,点A 1,A 2,A 3,…分别在x 轴上,点B 1,B 2,B 3,…分别在直线y=x 上,△OA 1B 1,△B 1A 1A 2,△B 1B 2A 2,△B 2A 2A 3,△B 2B 3A 3…,都是等腰直角三角形,如果OA 1=1,则点A 2019的坐标为_____.13、(4分)若点和点都在一次函数的图象上,则___选择“>”、“<”、“=”填空).三、解答题(本大题共5个小题,共48分)14、(12分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数y (度)是镜片焦距x (厘米)(0x )的反比例函数,调查数据如下表:眼镜片度数y (度)40062580010001250…镜片焦距x (厘米)251612.5108…(1)求y 与x 的函数表达式;(2)若小明所戴近视眼镜镜片的度数为500度,求该镜片的焦距.15、(8分)甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表,甲10423乙32122请根据上述数据判断,在这5天中,哪台机床出次品的波动较小?并说明理由.16、(8分)在四个互不相等的正整数中,最大的数是8,中位数是4,求这四个数(按从小到大的顺序排列)17、(10分)如图,在矩形ABCD 中,AB =8,BC =6,点P 、点E 分别是边AB 、BC 上的动点,连结DP 、PE .将△ADP 与△BPE 分别沿DP 与PE 折叠,点A 与点B 分别落在点A ′,B ′处.(1)当点P 运动到边AB 的中点处时,点A′与点B′重合于点F 处,过点C 作CK ⊥EF 于K ,求CK 的长;(2)当点P 运动到某一时刻,若P ,A ',B '三点恰好在同一直线上,且A 'B '=4,试求此时AP 的长.18、(10分)已知:等腰三角形ABC 的一个角B α∠=,求其余两角A ∠与C ∠的度数.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)请观察一列分式:﹣235x x y y ,,﹣3479x x y y ,,…则第11个分式为_____.20、(4分)若1-,,则代数式(x-1)(y+1)的值等于_____.21、(4分)已知0=,则20172018a b +=__________.22、(4分)如图,在△ABC 中,AC =BC =9,∠C =120°,D 为AC 边上一点,且AD =6,E 是AB 边上一动点,连接DE ,将线段DE 绕点D 逆时针旋转30°得到DF ,若F 恰好在BC 边上,则AE 的长为_____.23、(4分)如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线1l ,2l ,过点()1,0作x 轴的垂线交1l 于点1A ,过1A 点作y 轴的垂线交2l 于点2A ,过点2A 作x 轴的垂线交1l 于点3A ,过点3A 作y 轴的垂线交2l 于点4A ,…,依次进行下去,则点9A 的坐标为______,点2019A 的坐标为______.二、解答题(本大题共3个小题,共30分)24、(8分)解方程:(1)2x 1+;(2)x 1x 1+--1=24x 1-.25、(10分)已知y 与2x -成正比例,且当3x =时,4y =,则当5x =时,求y 的值.26、(12分)已知,在平行四边形ABCD 中,E 为AD 上一点,且AB=AE ,连接BE 交AC 于点H ,过点A 作AF ⊥BC 于F ,交BE 于点G.(1)若∠D=50°,求∠EBC 的度数;(2)若AC ⊥CD,过点G 作GM ∥BC 交AC 于点M ,求证:AH=MC .一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据平移的方法:横坐标,右移加,左移减;纵坐标,上移加,下移减,即可得结论.【详解】解:将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(-1,3).故选:B.本题考查了坐标与图形变化-平移,解决本题的关键是,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)2、B【解析】分析:A、根据菱形的判定方法判断,B、根据正方形的判定方法判断,C、根据矩形的判定方法判断,D、根据菱形的判定方法判断.详解:A、菱形的判定定理,“一组邻边相等的平行四边形是菱形”,故A项正确;B、由正方形的判定定理,“对角线互相垂直且相等的平行四边形是正方形”可知,对角线仅相等的平行四边形是矩形,故B项错误;C、矩形的判定定理,“一个角是直角的平行四边形是矩形”,故C项正确;D、菱形的判定定理,“对角线互相垂直的平行四边形是菱形”,故D项正确。