复变函数与积分变换(刘建亚)作业答案
复变函数与积分变量课后习题答4(全).doc
(1)% =解 (1)当刀f 8⑵I …殍(3卜=M / _ J|2”=cos 2n0 + i sin 2月们贫-► 8时,cos 2sin 2H0的极限都不存在,故z n=$土发散.故急捉+)发散.习题四1.下列序列是否有极限?如果有极限,求出其极限.+ 土 (2)% =吗气(3)礼=(号). n n \z ) 时,衫不存在极限,故%的极限不存在.0 (n — 8),故[血z n — 0. ir —8 令m 二厂普r 2n.=信)"无极限.2. 下列级数是否收敛?是否绝对收敛?⑴§(螺+ :);⑵名首;(3疙(l+i )". 解(1)因无上A 】n⑵»1彳=史吉收敛:故(2)绝对收敛.91-1 M • I Al n•(3) lini (l + i )rt= lim (再)%孕,*0,故发散.庶—8 ”一>8 3. 试证级数£ (2之尸当J I <号时绝对收敛.当危\(2z)n\= 2” •\(2z)n\ = (2r)n < 1. S(2r)rt收敛,故S(2z)n绝对收敛.M a 1 It « 1解⑴击4. 试确定下列慕级数的收敛半径. ⑴、狎(2)£(1 +』)心气(3)S解 (1) lim 勺为 | — lim "-— 1,故 R 二 1, n —^8| >1—8 Tl(2) lim V \C n \ = lim J (1 + —) = lim(l + —)n= e,l|f 8A Y \Tl f ”—8 fl故R =』・ e(3) lim I 1 = lim y~~“ = lim —= 0,Wf 8 I C n I 闻f 8 ( Tl + I / ! JI —8 ?1 + 1故 R = 8.5. 将下列各函数展开为z 的幕级数,并指出其收敛区域.⑴ 7~~~~j ; (2) 7 ----- K ---- (a 工 0,& 会 0);1 + z \z - a)\z - b)fl N〈3) ~ ; (4)ch z; (5)sir?z ; (6)6*-1. (1 + z )]1- (- z') 8 8、(-/)”=云(-I)”』,原点到所有奇点的距离最小值为1 ,故I Z | < 1.(2)1 .(a = b )4- a -Z-an oc=z -=an 0原式收敛区域:2.(a h b )1 ( 1a -b z - a原式)2 尊一=、(- 1)1 次”-2,力=1(4)ch ze[+e" ―2—z2n一2(:〃!二 n!S(2”)!,1 一cos2z< 8.-[1 V (2z)H • (- 1)”2 一 2 2 乙_ JL 小(一1)2 •一2:(2Q!(5)sin2in =0(2n)!< 8.E)=广•六(。
07000048-05级复变函数与积分变换(工科A卷)参考答案
课程编号:07000048北京理工大学2006—2007学年第二学期2005级复变函数与积分变换试题A 卷参考答案与评分标准一 (6) 求下列复数的值。
(1) ()i i - 解:原式(ln||2)2()22()i i ik i k iLn i e eek Z ππππ----===∈ …………3’(2) ()i Ln e解:原式ln ||arg()2(21) ()i i e i e k i k i k Z ππ=++=+∈ …………3’二 (10) (1) 求区域{:||1}z z i -<在映射2()w z i =-下的像,并作出其映射过程的图形。
解:该映射可分解为11, 2,w z i w w =-=而区域{:||1}z z i -<是以i 为心、1为半径的圆盘,经平移1w z i =-后得到在1w 平面的象为圆盘11{:||1}w w <,然后伸长2倍得到在w 平面的象为圆盘{:||2}w w <。
………2’(2) 判别函数222()()(2)f z x y x i xy y =--+-在复平面上哪些点处可导,哪些点处解析。
解:设222(,), (,)2u x y x y x v x y xy y =--=-,则21,2,2,22.u u v v x y y x y xyxy∂∂∂∂=-=-==-∂∂∂∂………1’若()f z 在z x iy =+处可导,则由Cauchy-Riemann 方程得1w 1=z -iw =2w 1,.u v u v xyyx∂∂∂∂==-∂∂∂∂ ………2’即2122, 22,x x y y y -=--=-得 1.2y =………3’故()f z 仅在直线12y =上可导,从而在复平面上处处不解析。
………5’三 (10) 设函数()(,)(,)f z u x y iv x y =+在区域D 内解析,其中(,), (,)u x y v x y 为二元实函数,并且2(,)(,)v x y u x y =,试证:()f z 在区域D 内是一个常数。
《复变函数与积分变换(刘建亚)》作业答案
15、求解下列方程: (2)
ez 1 0
z
解: e
1 ,于是
z Ln(1) ln1 i arg(1) 2k i=(2k 1) i, k Z
18、求 Ln(i) , Ln( 3 4i) 的值及主值.
i i arg(i) 2k i i 2k i ,所以其主值为 i ; 2 2 4 所以其主值 Ln(3 4i) ln 3 4i i arg(3 4i) 2k i ln 5 i( arctan ) 2k i , 3 4 为 ln 5 i( arctan ) . 3
9 9 isin i ; 6 6
11 11 3 1 i sin i. 6 6 2 2
习题 2: 3、下列函数在何处可导?何处解析?在可导点求出其导数. (2) (6)
f ( z ) x 2 iy ;
(4)
f ( z ) sin xchy i cos xshy
(2)
2
e
2Ln( 2)
e
2 ln 2 (2 k 1) 2 i
2
2
cos (2k 1)
2 isin (2k 1) 2
;
1i eiLn1 ei(2 k i) e2 k ;
i e
iБайду номын сангаас
iLni
e
i i 2 k i 2
f ( z)
az b 。 cz d
x 2 , v( x, y) y ,
解:(2) 因为 u ( x, y )
u x 2 x , u y 0 , vx 0 , v y 1 .
复变函数与积分变换习题答案
第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。
复变函数与积分变换习题解答
练 习 一1.求下列各复数的实部、虚部、模与幅角。
(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。
1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i +12 解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。
(1)i i2332++- 解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。
证:因,1321===z z z 所以321,,z z z 都在圆周32z z ++=0则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。
(完整版)复变函数与积分变换习题答案
lim f (z) lim Arg( a i y)
y 0y 0
lim f (z) lim Arg( a i y)
y 0y 0
显然函数在负实轴上不连续。
lim f (z) lim Arg (rei)
2sin
cos( )
2 2 2
isin(
2
i
2sin e2 2
2
(5)
z3
解:
i3
3i
re
cos3
isin3
(6)
e1 i
解:
ee
cos1 i sin1
(7)
1i
解:
1i
1i
i ei3 /4cos3
/ 4 isin3 /4
1i
1i
、计算下列数值
(1)
a ib
解:
ib
i ar ctgb2k
2 2 abe
cos2
L
L
cosn
1i i(e e
2
L
L
in i i2e ) (e e
L
in
L ein)
1 ei
(1
ine
)e
i(1 ein)
1
ie
(1
in i ie ) 1 e e
(1
in ie ) 1 e
2
1
ie
1 ei
2
2(1cos
)
cos
i i i(n 1) i(n 1) in in
1 e e 2 e e e e
22(1cos )
2sin
2
(8)
sin
复变函数与积分变换课后答案
1 ∴ Res e z 1 ,1 1 .
2. 利用各种方法计算 f(z)在有限孤立奇点处的留数.
3z 2 (1) f z 2 z z 2 3z 2 解: f z 2 的有限孤立奇点处有 z=0,z=-2.其中 z=0 为二级极点 z=-2 为一级极 z z 2
1 1 2 解: z 1 sin z 2 2 z 1 sin z z 1 1 1 1 1 z 2 2 z 1 3 5 5! z z 3! z 1 ∴ Res f z , 0 1 3!
为在 c 内 tanπz 有 zk k
sin πz 由于 Res f z , zk cos πz
1 π
1 ∴ tan πzdz 2 πi Res f z , zk 2πi 2n 4ni c π k (2)
3 i 10
6. 计算下列积分.
(1)
π
0
cos m d 5 4 cos 1 π cos m d 2 π 5 4 cos
因被积函数为 θ 的偶函数,所以 I 令 I1
1 π sin m d 则有 2 π 5 4 cos
1 π eim d 2 π 5 4 cos
z 0
所以由留数定理.
AB
f z dz
BE
f z dz
EF
f z dz
C
FA
f z dz 2πi ln a
而
BE
f z dz
R
C
e x Ri ln a dx x Ri 2
复变函数与积分变换(刘建亚版)4-3
练习 将函数
z f (z) = 在 z0 = 1 处展开 z +1
成Taylor级数,并指出该级数的收敛范围.
解
z 1 1 1 1 f (z) = = 1− = 1− , = 1− z+1 z +1 ( z − 1) + 2 2 1+ z −1 2 z−1 当 即 时, z−1 < 2 < 1, 2
展开式 .
解 Q (e z )( n )
z z=0
= ez
2
z=0
= 1 ( n = 0 ,1, 2, L)
3 n
z z z ∴e = 1+ z + + +L+ +L 2! 3! n! Q e z 在复平面上解析 ∴ 该级数的收敛半径 R = +∞ .
间接展开法
e −e Q sin z = 2i
zi
§4.3 泰勒(Taylor)级数
1. 解析函数的泰勒展开定理 2. 解析函数的幂级数展开法
1. 解析函数的泰勒(Taylor)展开定理
由§4.2幂级数的性质知:一个幂级数的和函数在 它的收敛圆内部是一个解析函数。 它的收敛圆内部是一个解析函数。 现在研究与此相反的问题: 现在研究与此相反的问题: 一个解析函数能否用幂级数表达? (或者说,一个解析函数能否展开成幂级数? 解析函 数在解析点能否用幂级数表示?) 数在解析点能否用幂级数表示?) 以下定理给出了肯定回答: 以下定理给出了肯定回答: 任何解析函数 任何解析函数都一定 解析函数都一定能用幂级数表示 都一定能用幂级数表示。 能用幂级数表示。
(1)另一方面, 另一方面,因ln(1+z)在从z=-1向左沿负 实轴剪开的平面内解析, 实轴剪开的平面内解析, ln(1+z)离原点最近的一 个奇点是-1,∴它的展开式的收敛范围为|z|<1.
高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案
⎝ 12
12 ⎠
6 2ei5π / 4 = 6 2⎜⎛ cos 5π + i sin 5π ⎟⎞ 。
⎝4
4⎠
15.若 (1+ i)n = (1− i)n ,试求 n 的值。
5
解 由题意即 ( 2eiπ / 4 )n = ( 2e−iπ / 4 )n , einπ / 4 = e−inπ / 4 , sin n π = 0 , 4
+
2kπ
= − arctan 5 + 2kπ, 3
k = 0,±1,±2,".
(3)
(3
+
4i)(2
2i
−
5i)
=
(3
+
4i)(2 − (2i)(−
5i)(− 2i)
2i)
=
(26
−
7i)(−
4
2i)
所以
= −7 − 26i = − 7 −13i
2
2
Re⎨⎧ (3
+
4i)(2
−
5i)⎫
⎬
=
−
7
,
⎩ 2i ⎭ 2
Im⎨⎧ ⎩
(3
+
4i)(2
2i
−
5i)⎫
⎬ ⎭
=
−13
,
1
⎡ ⎢ ⎣
(3
+
4i)(2
2i
−
5i)⎤
⎥ ⎦
=
−
7 2
+
l3i
(3 + 4i)(2 − 5i) = 5 29 ,
2i
2
Arg⎢⎣⎡ (3
+
4
复变函数与积分变换第五章习题解答
c-1r-•
1 (1 2 7) Res[f(z),O] =Iim!!:_[z = ti ,k =土1,土2, ] = o, Res[f(z),k叶= ,�, dz k冗 (zsin z)'L,, zsinz 8) Res[f位), (k+½
叶
(ch z)' :�(k+ )汀i
一
shz
=
I k为整数。
证 由题知: J(z)=(z-z。)飞(z), <p亿)*o, 则有
一 Ill
-{,, 0
0
k=O k=,;O
l 2 (sinz )"1 z O =2, 知 z=O 是 . 2 的二级极点, smz
=
故z。是 J'(z) 的 m-1 级零点。
冗l
f'(z)=m(z-z。)m 凇(z)+(z-z。) 份'(z)=(z-z0 Y,一'[m<p(z)+(z-z。炒'(z)]
六
f'(z) = (fJ(z) + (z- Zo )(fJ'(z) g'(z) lf/(z) + (z-Zo)lf/'(z)
亡,
6. 若叫z) 与 lf/(z) 分别以 z=a 为 m 级与 n 级极点(或零点),那么下列三个函数在 z=a 处各有什 (f)(Z)lf/(Z); (2) (f)(z)llf/(Z);
汗
I
2
5) cos— = L 巨 -11>0 , 知 Res [f(z), l ] = c一 . 2 "' I- z n=O (2n) !(z-1)
1 00
I
(-1) "
复变函数与积分变换(刘建亚版)2.1.
(3可导与连续若 w=f (z 在点 z0 处可导 w=f (z 点 z0 处连续. ? 证明 : 若f ( z 在z0可导, 则 0, 0, f ( z 0 z f ( z 0 使得当 0 z , 时, 有 f ( z 0 , z f ( z 0 z f ( z 0 令z f ( z0 , 则lim z 0, z 0 z 由此可得f ( z0 z f ( z0 f ( z0 z z z , z 0 lim f ( z0 z f ( z0 , 所以f ( z 在z0连续二. 解析函数的概念定义如果函数w=f (z在z0及z0的某个邻域内处处可导,则称f (z在z0解析;如果f (z在区域D内每一点都解析,则称 f (z在D内解析,或称f (z是D内的解析函数 (全纯函数或正则函数)。
如果f (z在点z0不解析,就称z0是f (z的奇点。
(1 w=f (z 在 D 内解析在D内可导。
(2 函数f (z 在 z0 点可导,未必在z0解析。
例如 (1 w=z2 在整个复平面处处可导,故是整个复平面上的解析函数; (2w=1/z,除去z=0点外,是整个复平面上的解析函数; (3 w=zRez 在整个复平面上处处不解析(见例4。
定理1 设w=f (z及w=g(z是区域D内的解析函数,则 f(z±g(z,f (zg(z 及 f (z g(z (g (z≠0时均是D内的解析函数。
由以上讨论 P ( z a0 a1 z an z n是整个复平面上的解析函数;P(z R( z 是复平面上 (除分母为 0点外的解析函数 . Q( z 定理 2 设 w=f (h 在 h 平面上的区域 G 内解析, h=g(z 在 z 平面上的区域 D 内解析, h=g(z的函数值集合G,则复合函数w=f [g(z]在D内处处解析。
复变函数与积分变换(刘建亚版)4-4
1 则 c′ n = 2π i
∫
C
f (z) dz ( n = 0, ±1, ±2,L), 其中C n +1 ( z − z0 )
是圆周 z − z0 = R ( R1 < R < R2 ) 的正向. 注 函数在圆环域内Laurent展开式是惟一的. 因此 为函数展开成Laurent级数的间接方法奠定了基础.
(3) 在 z > 2内, 有
z >2
z >2
y
1 < 1, z 2 < 1. z
o
2
x
1 1 1 1 1 1 =− × = − − 2 − 3 − L, 1− z z 1− 1 z z z z
1 −1 1 1 2 4 × = − 1 + + 2 + L . = 2− z z 1− 2 z z z z
. z0
0 < z − z0 < R2 R1 < z − z0 < ∞
0 < z − z0 < ∞
对于通常的幂级数, 对于通常的幂级数,讨论了下面两个问题: 讨论了下面两个问题: (1) 幂级数的收敛域 幂级数的收敛域是圆域, 是圆域,且和函数在收敛 且和函数在收敛域 收敛域 内解析. 内解析. (2) 在圆域内的解析函数一定能展开成幂级数. 在圆域内的解析函数一定能展开成幂级数. 对于Laurent级数, 级数,已经知道: 已经知道: Laurent级数的收敛域 级数的收敛域是圆环域, 是圆环域,且和函数 在圆环域内解析. 在圆环域内解析. 问题: 问题: 在圆环域内解析的函数是否可以展开 成Laurent级数? 级数?
证明参看书本
2.洛朗级数展开法及其应用 洛朗级数展开法及其应用( 及其应用(下章讲) 下章讲) 将函数在圆环域内展开成Laurent级数, 理论 上应该有两种方法: 直接方法与间接方法. (1) 直接方法 直接计算展开式系数 直接计算展开式系数
复变函数与积分变换 第二章课后答案
e z sin z e z sin z 则 dz z 2i dz 2 z 2i z 4 z 3 z 2 i 1
2i
e 2i sin 2i e 2i sin 2i e 2i sin 2i e 2i sin( 2i ) 2i 2i 2i 2i 2i 2 2 sin 2i e 2i e 2i sin 2i cosh 2i . 2
i
i
i i
= 2 cos i .
7. 沿指定曲线的正向计算下列各积分: (1)
C
ez dz , C : z 2 1 ; z2 dz (a 0) , C : z a a ; z a2
2
(2)
C
(3)
C
eiz 3 dz , C : z 2i ; 2 z 1 2 f ( z) dz , C : z 1 ; f ( z ) 在 z 1 上解析, z0 1 ; z z0
z 0
0.
4
(8) f ( z ) 有四个奇点, 其中 z i在c 内,作互不相交互不包含且 在 C 内的小圆周 c1和c2 包含 i 与-i,则
c1
(z
2
1 dz 1 dz 2 4)( z i ) z i c2 ( z 4)( z i ) z i
(2) 由于被积函数在全平面上解析,利用柯西积分定理得
求积分
C
3 z 2 dz 0 .
2. 设 C 是由点 0 到点 3 的直线段与点 3 到点 3 i 的直线段组成的折线,
C
Re zdz .
解 将 C 分为两段,从 z=0 到 z=3, c1 的方程为 z 3 x, 0 x 1,
复变函数与积分变换第一章习题解答
x +I+ i(y-3) =l+i成立,试求实数x,y为何值 。 5+3i x +I+ i(y-3) = [x +I+ i(y-3)X5-3i) s+3i (s+3iXs-3i) 34
Arg(i8 -4i21 +i)=arg(i8 -4i21 +i)+2k兀= arg(13i)+2k兀 =-arctan3 +2k冗 k = 0,士1,士2,···.
=
5x+3y-4 = 34 { -3x+ 5y -18 = 34
或{ 5x+3y
7 。
I 3. 证明虚单位 i 有这样的性质: -i=i" = 1 4. 证明
1) I z 1
2
=
z歹
6) Re(z) =—(弓+z), Im(z) =—(z-歹) 2 2 i
1
1
2
值才成立?
5. 又寸f壬1可z' z勹 z 1 是否成立?如果是,就给出证明。如果不是,对 z 那些
— . . —.. '—
。
n
2) R(
3) 事实上
罕 P(z) =X+iY=X- i Y; 可 = 霄芦 (因)
P(z)
立 +a,, P( 司=a。了"+a1 产+···+a,
4
l 3. 如果 z =e;r, 试证明
1 (1) z" +— = 2cosnt ; n z
II
·+anz n = 页 =a +a1 z+a产 +··
(2)
(含答案)复变函数与积分变换习题解析2
(含答案)复变函数与积分变换习题解析2习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明.(1)如果()f z 在0z 连续,那么0()f z '存在.(2)如果0()f z '存在,那么)(z f 在0z 解析.(3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导.(4)如果0z 是()f z和()g z 的⼀个奇点,那么0z 也是()()f z g z +和()()f z g z ?的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应⽤导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导.习题2.21. 设试证)(z f 在原点满⾜柯西-黎曼⽅程,但却不可导.(提⽰:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=;(2)i y x y x z f 22332)(+-=;(3)=)(z f232z z -+;(4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=;(4 4. (1)iz z z f 2)(3+=;(25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--;(2 (0)z ≠;(3)1(33)x iy ω-=-;(4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+.(1)2(1)u x y =-;(2)3223u x x xy =-+;(3)323u x xy =-;(4)23v xy x =+;(5)x y x v 222+-=;(62. 求k 值使22ky x u +=为调和函数,并求满⾜1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是⼀个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满⾜下列条件之⼀,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ;(7)i 3;(8)i i )1(+;(9)1(34)i i ++;(10))1sin(i +;(11)cos(5)i π+;(12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ;(3(4 (55.证明:(1)122=-z sh z ch ;(2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复习题⼆⼀、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B⼀、单项选择题1. ). D.z sin2. 下列说法正确的是().A.函数的连续点⼀定不是奇点B.可微的点⼀定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内⽆奇点D.不存在处处不可导的函数3. 下列说法错误的是(). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是().A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满⾜C-R ⽅程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是().A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是().7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是(). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数(). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是().A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是().A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是(). A. )(z f 在复平⾯上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是().A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==⼆、填空题在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivu)(.(1)xu=;(2)xy u=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22y=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数xu和),(yxv都具有⼆阶连续偏导数,且满⾜拉普拉斯⽅程,现令x yvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第⼆章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)zf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导,(44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(;(2)ci z z z f +-=32)(;(3)=)(z f 3z ci +;(4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2;(62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈;((5(6(7)3ln 2i k e e π-)(Zk ∈;(9 ((2.(1 (23.(1)正确;(2)正确;(3)正确.复习题⼆⼆、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0(Λ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平⾯内处处不可导,处处不解析;(2)在0=z 处可导,但在复平⾯内处处不解析,0)0(='f ;(3)在复平⾯内处处不可导,处处不解析;6.(1)4e -;(2))4sin 4(cos 3i e +;(3(4(6 (7。
(精品)《复变函数》习题及答案
第 1 页 共 10 页《复变函数》习题及答案一、 判断题1、若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导。
( )2、如果z 0是f (z )的本性奇点,则)(lim 0z f z z →一定不存在。
( )3、若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续。
( )4、cos z 与sin z 在复平面内有界。
( )5、若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点。
( )6、若f (z )在z 0处满足柯西-黎曼条件,则f (z )在z 0解析。
( )7、若)(lim 0z f z z →存在且有限,则z 0是函数的可去奇点。
( )8、若f (z )在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=⎰Cdz z f 。
( )9、若函数f (z )是单连通区域D 内的解析函数,则它在D 内有任意阶导数。
( )10、若函数f (z )在区域D 内的解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数。
( )11、若函数f (z )在z 0解析,则f (z )在z 0连续。
( ) 12、有界整函数必为常数。
( ) 13、若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛。
( )14、若f (z )在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)。
( ) 15、若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。
( ) 16、若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。
( ) 17、若函数f (z )在z 0可导,则f (z )在z 0解析。
( ) 18、若f (z )在区域D 内解析,则|f (z )|也在D 内解析。
( )19、若幂级数的收敛半径大于零,则其和函数必在收敛圆内解析。
复变函数习题解答
《复变函数与积分变换》试题解答一、填充题:(共26分)1、复数131i i i --的实部为 32 ;虚部为 52- ;模;主辐角为 5arctan 3- ;共轭复数为3522i + 。
2、复数-1 222(cos sin )33ππ+ ,指数形式表达为 232i e π 。
3、函数222(1)(1)z z z -++的奇点为 1z =-和z i =± ,分别为几阶极点 2阶极点和1阶极点 。
4、不用计算我们就能观察出积分10cos z dzz==⎰,其依据是 因被积函数在单位圆内解析,由柯西定理得 。
5、ze 在1z =点的泰勒级数表达式是 0(1)!nn z e n ∞=-∑收敛域为 1z -<∞ 。
6、11z -= 代表什么曲线 以(1,0)为圆心,半径为1的圆 。
7、()t δ函数在0t ≠处值等于 0 ,其积分()t dt δ∞-∞=⎰ 1 ,0()()t t f t dt δ∞-∞-=⎰ 0()f t 。
8、已知ω=()()f t F ,'()f t 的傅氏变换F '=[()]f t ωω()i F 。
二、证明题:(每题6分,共12分)1、证明复平面的直线方程可写成:,(0z z c c ααα+=≠的复常数,为实常数)。
[证] ,z x iy z x iy =+=- ,22z z z zx y i+-∴==,代入方程ax by c +=得 022z z z z a b c i +-++=,化简:()()2222a b a bi z i z c ++-=.和本题一致。
2、设函数()f t 的傅里叶变换F [()f t ]=F ()ω,0t 为实常数,证明:F ω--=00[()]i t f t t e F ()ω. [证] 因 F [()f t ]=F ()ω,根据定义00[()]()i t F f t t f t t e dt ω∞--∞-=-⎰,作0t t t '=-代换00[()]()i tF f t t f t t edt ω∞--∞-=-⎰00()i t i t i t f t e e dt e ωωω∞'----∞''==⎰ F ()ω。
复变函数与积分变换(练习题) (答案)
复变函数与积分变换第一章 练习题1. 计算(1)(2)i i i --;解:(1)103)31)(31()31(3123)2)(1(2i i i i i ii i i i i i i +-=+-+=-=+-=--;(2)10310)2)(1()2)(2(1)1)(1()2)(1()2)(1(i i i i i i i i i i i i i +-=---=----------=--。
2. 解方程组12122(1)43z z i i z iz i -=⎧⎨++=-⎩;解:消元法,)2()1(+⨯i 得:i z i 33)31(1-=+,解得:563)31)(31()31)(33(31331i i i i i ii z --=-+--=+-=,代入)1(得:517656322ii i z --=---⨯=。
3.求1i --、13i -+的模与辐角的主值;解:]arg arctan arctan,arctan arg ππππ,(,,三,二一,四-∈⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=z x y x y xy z , ⎥⎦⎤⎢⎣⎡-+-=--)43s i n ()43c o s (21ππi i ;[])3a r c t a n s i n ()3a r c t a n c o s (1031-+-=+-ππi i 。
4.用复数的三角表示计算312⎛⎫- ⎪ ⎪⎝⎭、; 解:1)sin()cos()3cos()3cos(23133-=-+-=⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫⎝⎛-ππππi i i ; 3,2,1,0,4243s i n 4243c o s 2)43s i n43(c o s 228341=⎪⎪⎪⎪⎭⎫⎝⎛+++=⎥⎦⎤⎢⎣⎡+k k i k i ππππππ,⎪⎭⎫ ⎝⎛+=163sin 163cos 2830ππi z ,⎪⎭⎫ ⎝⎛+=1611sin 1611cos 2831ππi z ,⎪⎭⎫ ⎝⎛+=1619sin 1619cos 2832ππi z ,⎪⎭⎫ ⎝⎛+=1627sin 1627cos 2833ππi z 。
复变函数与积分变换练习册参考答案
分析:显然原方程可化简为一个典型的二项方程。
⎛ 1+ z ⎞ 解:由直接验证可知原方程的根 z ≠ 1 。所以原方程可改写为 ⎜ ⎟ = 1。 ⎝ 1− z ⎠
令
5
ω=
1+ z , ……………(1) 1− z
2π i 5
则 ω = 1 , ……………………(2)
5
方程(2)的根为 ω = 1, e
(5) lim
z →1
zz + 2 z − z − 2 3 = 。 2 z2 −1 zz + 2 z − z − 2 ( z + 2)( z − 1) z +2 3 = lim = lim = 。 2 z →1 ( z − 1)( z + 1) z →1 z + 1 2 z −1
提示: lim
z →1
(1 − cos α ) 2 + sin 2 α = 4sin 2
α
2
= 2sin
α
2
;因为当 0 < α < π 时,
sin α > 0 , 1 − cos α > 0 ,则 arg z = arctan
= arctan(tan +i sin
π −α
2
)=
π −α
2 e
π −α i 2
sin α α = arctan(cot ) 1 − cos α 2
。
6、 ( 2)
=e
2 ln 2 − 2kπ
7、方程 sinh z = i 的解为 三、计算和证明 1、试证函数
1 在复平面上任何点都不解析。 z
利用 C-R 条件,即用解析的充要条件判别,即 u =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《复变函数与积分变换》作业参考答案
习题1:
4、计算下列各式
(1) ; (3)
;
(5) 12
z +=
,求2z ,3z ,4z ; (7)
解:(1) --;
(3)
3(23i 41288+====++;
(5) 2
13214422z --+=
==-+,
321113
1224
z z z -++--=⋅=
⋅==-,
4312z z z =⋅=-.
(7) 因为1cos isin ππ-=+,所以
22cos
isin
6
6
k k ππ
ππ
++=+,
即
0k =时,01cos
isin
i 6
6
22
w π
π
=+=
+; 1k =时,133cos
isin i 66
w ππ=+=;
2k =时,2551cos
isin i 6622w ππ=+=-+;
3k =时,3771cos
isin i 662
w ππ=+=; 4k =时,499cos isin i 66
w ππ=+=-;
5k =时,511111cos
isin i 662
w ππ=+=-.
习题2:
3、下列函数在何处可导?何处解析?在可导点求出其导数.
(2) 2
()i f z x y =-; (4) ()sin ch icos sh f z x y x y =+ (6) ()az b
f z cz d
+=
+。
解:(2) 因为2
(,)u x y x =,(,)v x y y =-,
2x u x '=,0y u '=,0x v '=,1y v '=-.
这四个一阶偏导数都连续,故(,)u x y 和(,)v x y 处处可微,但柯西-黎曼方程仅在1
2
x =-上成立,所以()f z 只在直线1
2x =-上可导,此时1122
()21x x f z x =-=-'==-,但复平面上处处不解析.
(4) 因为(,)sin ch u x y x y =,(,)cos sh v x y x y =,
cos ch x u x y '=,sin sh y u x y '=,sin sh x v x y '=-,cos ch y v x y '=.
这四个一阶偏导数都连续,故(,)u x y 和(,)v x y 处处可微,且满足柯西-黎曼方程,所以()f z 在复平面内解析,并且
()()i i i i iz iz ()i cos ch isin sh cos isin 22
cos isin cos isin 2222cos 22
y y y y
x x y y y y x x
y x y x e e e e f z u v x y x y x x e e e e x x x x e e
e e e e z
-------+-+-'''=+=-=⋅
-⋅=-++=⋅+⋅++===. (6)
02
0()()1()lim
lim ()lim
()()()z z z f z z f z a z z b az b z z c z z d cz d ad bc ad bc
cz c z d cz d cz d ∆→∆→∆→⎡⎤
+∆-+∆++=-⎢⎥∆∆+∆++⎣⎦
--==
+∆+++
所以,()f z 在除d
z c
=-
外处处解析,且2()()ad bc f z cz d -'=+.
4、指出下列函数的奇点. (1)
22
1(4)
z z z -+; (2) 222
(1)(1)z z z +++.
解:(1)
223432422
4223
2
322
(4)(1)(48)3448()(4)(4)3448
(4)z z z z z z z z z
f z z z z z z z z z z +--+-+-+'==++-+-+=
+
所以,()f z 的奇点为0,2i ±.
(2) 22232422
322
(1)(1)2(2)(1)(21)3953
()(1)(1)(1)(1)z z z z z z z z z f z z z z z ++-+++++++'==-++++ 所以,()f z 的奇点为1-,i ±.
10、如果()i f z u v =+在区域D 内解析,并且满足下列条件之一,试证()f z 在D 内是一常数.
(2) ()f z 在D 内解析;
证明:由()i f z u v =+在区域D 内解析,知(,)u x y 、(,)v x y 在区域D 内可微,且x y u v ''=,y x u v ''=-.同理,由()f z 在D 内解析,知x y u v ''=-,y x u v ''=.
从而我们得到0x y y x u v u v ''''====,
所以(,)u x y 、(,)v x y 皆为常数,故()f z 在D 内是一常数.
15、求解下列方程: (2) 10z
e += 解:1z e =-,于是
18、求Ln(i)-,Ln(34i)-+的值及主值. 解:Ln(i)ln i iarg(i)2i i 2i 2
k k π
ππ-=-+-+=-
+,所以其主值为i 2
π
-
;
4
Ln(34i)ln 34i i arg(34i)2i ln 5i(arctan )2i 3
k k πππ-+=-++-++=+-+,所以其主
值为4
ln 5i(arctan )3
π+-.
19、求1i
2
e π-,1i 4
e
π+,i 3,i
(1i)+的值.
解:1i
i()2
2
cos ()isin ()i 22e
e e
e e ππ
ππ--⎡
⎤=⋅=-+-=-⎢⎥⎣
⎦;。