整式的乘法与因式分解单元测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故选A.
7.下列各式中,不能运用平方差公式进行计算的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
运用平方差公式(a+b)(a-b)=a -b 时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.
【详解】
A.中不存在互为相反数的项,
B. C. D中均存在相同和相反的项,
故选A.
10.下列因式分解正确的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
根据因式分解的定义及方法逐项分析即可.
【详解】
A. ,故不正确;
B. 在实数范围内不能因式分解,故不正确;
C. ,正确;
D. 的右边不是积的形式,故不正确;
故选C.
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.
A.201030B.201010C.301020D.203010
【答案】B
【解析】
【分析】
【详解】
解:x3-xy2=x(x2-y2)=x(x+y)(x-y),
当x=20,y=10时,x=20,x+y=30,x-y=10,
组成密码的数字应包括20,30,10,
所以组成的密码不可能是201010.
故选B.
2.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式 ,因式分解的结果是 ,若取 , 时,则各个因式的值为 , , ,于是就可以把“ ”作为一个六位数的密码.对于多项式 ,取 , 时,用上述方法产生的密码不可能是()
4.在矩形ABCD中,AD=3,AB=2,现将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.则S1﹣S2的值为()
A.-1B.b﹣aC.-aD.﹣b
整式的乘法与因式分解单元测试卷附答案
一、八年级数学整式的乘法与因式分解选择题压轴题(难)
1.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为()
3.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是( )
A.1B.4C.11D.12
【答案】C
【解析】
分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.
详解:∵(x+p)(x+q)= x2+(p+q)x+pq= x2+mx-12
【点睛】
此题考查平方差公式,解题关键在于掌握平方差公式结构特征.
8.把 分解因式,结果正确的是()
A. B.
C. D.
【答案】C
【解析】
【分析】
先提公因式2,然后再利用平方差公式进行分解即可.
【详解】
=
= ,
故选C.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.
6.若x2+2(m+1)x+25是一个完全平方式,那么m的值()
A.4 或-6B.4C.6 或4D.-6
【答案】A
【解析】
【详解】
解:∵x2+2(m+1)x+25是一个完全平方式,
∴△=b2-4ac=0,
即:[2(m+1)]2-4×25=0
整理得,m2+2m-24=0,
解得m1=4,m2=-6,
所以m的值为4或-6.
【答案】D
【解析】
(x-2 015)2+(x-2 017)2
=(x-2 016+1)2+(x-2 016-1)2
=
= =34

故选D.
点睛:本题主要考查了完全平方公式的应用,把(x-2 015)2+(x-2 017)2化为(x-2 016+1)2+(x-2 016-1)2,利用完全平方公式展开,化简后即可求得(x-2 016)2的值,注意要把x-2016当作一个整体.
解:
设2为a,3为b,
则根据5张边长为2的正方形纸片的面积是5a2,
4张边长分别为2、3的矩形纸片的面积是4ab,
6张边长为3的正方形纸片的面积是6b2,
∵a2+4ab+4b2=(a+2b)2,(b>a)
∴拼成的正方形的边长最长可以为a+2b=2+6=8,
故选C.
【点睛】Baidu Nhomakorabea
此题考查了完全平方公式的几何背景,关键是根据题意得出a2+4ab+4b2=(a+2b)2,用到的知识点是完全平方公式.
A.6B.7C.8D.9
【答案】C
【解析】
【分析】
设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6a2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式将a、b代入,即可得出答案.
【详解】
【答案】D
【解析】
【分析】
利用面积的和差分别表示出S1、S2,然后利用整式的混合运算计算它们的差.
【详解】


故选D.
【点睛】
本题考查了整式的混合运算,计算量比较大,注意不要出错,熟练掌握整式运算法则是解题关键.
5.已知(x-2015)2+(x-2017)2=34,则(x-2016)2的值是( )
A.4B.8C.12D.16
∴p+q=m,pq=-12.
∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12
∴m=-11或11或4或-4或1或-1.
∴m的最大值为11.
故选C.
点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.
9.已知a﹣b=2,则a2﹣b2﹣4b的值为()
A.2B.4C.6D.8
【答案】B
【解析】
【分析】
原式变形后,把已知等式代入计算即可求出值.
【详解】
∵a﹣b=2,
∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.
故选:B.
【点睛】
此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.
相关文档
最新文档