反比例函数定义(课堂PPT)
合集下载
反比例函数-ppt课件
解
读 范围.
27.1 反比例函数
归纳总结
考
点
由于反比例函数表达式中只有一个待定系数 k,因此求
清
单 反比例函数的表达式只需一组对应值或一个条件即可.
解
读
27.1 反比例函数
对点典例剖析
考
点
典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4
清
单 .
解
读
(1)求 y 与 x 之间的函数表达式;
重
难
题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.
突
破
27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型
难
例 2 某公司将特色农副产品运往邻市市场进行销售,
题
型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶
突
破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=
时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=
考
点
清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与
单
解
读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+
.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与
读 范围.
27.1 反比例函数
归纳总结
考
点
由于反比例函数表达式中只有一个待定系数 k,因此求
清
单 反比例函数的表达式只需一组对应值或一个条件即可.
解
读
27.1 反比例函数
对点典例剖析
考
点
典例2 已知 y 是 x 的反比例函数,当 x=-3 时,y=4
清
单 .
解
读
(1)求 y 与 x 之间的函数表达式;
重
难
题 反比例函数→表示出组合函数→列方程组求解→写出函数
型 表达式.
突
破
27.1 反比例函数
重 ■题型二 实际问题中的反比例函数模型
难
例 2 某公司将特色农副产品运往邻市市场进行销售,
题
型 设汽车的行驶时间为 t h,平均速度为 v km/h(汽车行驶
突
破 速度不超过 110 km/h).根据经验,v,t 的部分对应值
(2)求当 x=6 时 y 的值;
(3)求当 y=
时 x 的值.
27.1 反比例函数
[答案]解:(1)设 y 与 x 之间的函数表达式为 y=
考
点
清 (k≠0),把 x=-3,y=4 代入,得 k=-3×4=-12,∴y 与
单
解
读 x 之间的函数表达式是 y=- ;
(2)当 x=6 时,y=(3)当 y=
∴y 关于 x 的函数表达式为 y=2(x-1)+
.
��
Hale Waihona Puke =2x-2+27.1 反比例函数
变式衍生1 已知 y=y1-y2,y1与 x 成正比例,y2 与
反比例函数ppt课件免费课件ppt课件
反比例函数的性质
反比例函数具有无限递减或无限递增的性质,即随着$x$的增大或减小,$f(x)$的值 会无限接近于0但永远不会等于0。
反比例函数在自变量$x$等于0时没有定义,因为分母不能为0。
反比例函数具有对称性,即当$x$取正值时和取负值时的函数值是相等的。
02
反比例函数的应用
反比例函数在生活中的应用
反比例函数与正比例函数的比较
定义域
正比例函数和反比例函数的定义 域均为$x in R$,即实数集。
函数图像
正比例函数图像是一条过原点的直 线,而反比例函数的图像是双曲线 。
增减性
正比例函数随着$x$的增大而增大或 减小,而反比例函数在$x>0$时, 随着$x$的增大而减小,在$x<0$时 ,随着$x$的增大而增大。
反比例函数与其他数学知识的结合
与一次函数的结合
反比例函数与一次函数的结合可 以用于解决一些复杂的数学问题 ,例如求解方程的根。
与指数函数的结合
反比例函数与指数函数的结合可 以用于描述一些复杂的数学关系 ,例如人口增长与时间的关系。
03
反比例函数的解析式
反比例函数的解析式
反比例函数的一般形式为 $f(x) = frac{k}{x}$,其中 $k$ 是常数且 $k neq 0$。
反比例函数在数学问题中的应用01Fra bibliotek0203
解决几何问题
在几何问题中,反比例函 数可以用于描述两个点之 间的距离与它们之间的角 度之间的关系。
解决物理问题
在物理问题中,反比例函 数可以用于描述物体的运 动规律,例如物体的加速 度与时间之间的关系。
解决概率问题
在概率问题中,反比例函 数可以用于描述事件的概 率与样本空间的大小之间 的关系。
反比例函数应用ppt课件ppt
经济中的应用
供需关系
在经济学中,反比例函数被用来描述供需关系,即当价格上涨时,需求量会相应 减少。
投资回报
在投资中,投资回报与投资风险之间存在反比例关系,即投资风险越高,投资回 报越低。
04
CATALOGUE
反比例函数与其他函数的关联
与线性函数的关联
总结词
反比例函数与线性函数具有密切关联,它们在某些条件下可以互相转化。
在物理学、工程学、经济学等各个领域,反 比例函数都有广泛的应用,如电阻、电容、 电感的关系,液体混合物的浓度,投资回报 与风险等问题的解决都离不开反比例函数。
对未来研究和应用的展望
随着科学技术的不断发展,反比例函 数的应用前景将更加广泛,如在物理 学中的量子力学、天体运动等领域, 反比例函数可能会发挥更加重要的作 用。
反比例函数应用 ppt课件
目录
• 反比例函数概述 • 反比例函数的基本性质 • 反比例函数的应用场景 • 反比例函数与其他函数的关联 • 反比例函数的应用案例分析 • 总结与展望
01
CATALOGUE
反比例函数概述
反比例函数的定义
定义
形如 y=k/x(k为常数,k≠0) 的函 数称为反比例函数。
详细描述
反比例函数y=f(x)=1/x的形式与指数函数y=a^x的形式在结构上具有相似性,两者都涉及到自变量和 因变量的变换。此外,当a为1时,指数函数退化为一个常数函数,与反比例函数在x=0处相交。
与对数函数的关联
总结词
反比例函数与对数函数之间存在一定的 关联,它们在形式上具有相似性。
VS
详细描述
反比例函数y=f(x)=1/x的形式与对数函数 y=log_a(x)的形式在结构上具有相似性, 两者都涉及到自变量和因变量的变换。此 外,当a为1时,对数函数退化为一个常 数函数,与反比例函数在x=0处相交。
反比例函数图像和性质ppt课件
反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。
关于反比例函数的ppt课件
05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件
反比例函数的定义ppt课件
将下列各题中y与x的函数关系写出来. (1)y与x成反比例; (2)y与z成反比例,z与3x成反比例; (3)y与2z成反比例,z与X成正比例;
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
【待定系数法求反比例函数的表达式】
1
x -3 -2 -1 2
-4 1
…
2…
y2 3
1
1
2 -4 2 -2 -1
(1)写出这个反比例函数的表达式; y 2
(2)根据函数表达式完成上表.
x
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
6、一水池内有污水20 米3,设放完 全池污水的时间为t(分钟),每分 钟的放水量为w(米3),规定放水 时间在4分钟至8分钟之间,请把t表 示为w的函数,并给出w的取值范围。
学习目标:
1、理解并掌握反比例函数的定义; 2、会用待定系数法求反比例函数的解析式。 学习重点:目标 1 学习难点:目标 2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
自主学习(1) 1分钟
欧姆定律 我们知道,电流I,电阻R,电压U之间满足 关系式U=IR.当U=220V时.
归纳:
反比例函数的定义
一般地,形如 y=(Xkk是常数,k≠0)的函数称为反比例函数, 其中x是自变量,y是函数.
注意:有时反比例函数也写成y=kx-1
或xy=k的形式.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
【待定系数法求反比例函数的表达式】
1
x -3 -2 -1 2
-4 1
…
2…
y2 3
1
1
2 -4 2 -2 -1
(1)写出这个反比例函数的表达式; y 2
(2)根据函数表达式完成上表.
x
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
6、一水池内有污水20 米3,设放完 全池污水的时间为t(分钟),每分 钟的放水量为w(米3),规定放水 时间在4分钟至8分钟之间,请把t表 示为w的函数,并给出w的取值范围。
学习目标:
1、理解并掌握反比例函数的定义; 2、会用待定系数法求反比例函数的解析式。 学习重点:目标 1 学习难点:目标 2
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
自主学习(1) 1分钟
欧姆定律 我们知道,电流I,电阻R,电压U之间满足 关系式U=IR.当U=220V时.
归纳:
反比例函数的定义
一般地,形如 y=(Xkk是常数,k≠0)的函数称为反比例函数, 其中x是自变量,y是函数.
注意:有时反比例函数也写成y=kx-1
或xy=k的形式.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
北师大版九年级上册6.1反比例函数的定义 课件(共27张ppt)
草坪,草坪的长y(单位:m)随宽x(单位:m)
的变化而变化.则xy=______,用x表示y的函数表
1000
达式为________.(忽略道路宽度)
函数的表达方式:
两变量的乘积为一个定值
①关系式: =
形如这样的形式,称I是R的反比例函数.
x
②表格: y
1
60
③图象:明天讲
2
30
3
20
4
k
(1)定义:y (k为常数,k 0)
x
(2)反比例函数解析式的三 种形式
k
1. y (k为常数,k 0)
x
2.xy k (k为常数, k 0)
1
3. y kx (k为常数, k 0)
课堂小结
家庭作业
A本------第42页
x
-3
y
2
3
-2
-1
1
−
2
1
2
1
2
(1)写出这个反比例函数的表达式.
(2)根据函数表达式完成上表.
2
-1
3
训练:A本--第42页-----第10题
1
10.若y+1与x成反比例,当y=1时,x= .
2
求:(1)y与x之间的函数关系式;
(2)当x=3时,y的值.
当堂训练
若 y m 1x
m2 2
第六章
反比例函数
6.1反比例函数的定义
书本第149页
以前学过哪些函数?
正比例函数:y kx(k为常数, k 0)
一次函数:y kx b(k , b为常数, k 0)
正比例函数:
反比例函数课件
反比例函数与实际问题的应用
1 经济学
反比例函数可以用于描述商品的需求和价格 的关系。
2 物理学
反比例函数可以用于描述物体的速度和时间 的关系。
3 工程学
4 生物学
反比例函数可以用于描述电阻与电流的关系。
反比例函数可以用于描述生物种群的增长和 资源的关系。
简单的反比例函数例题
例题1
已知某种物体的质量与体积成反比,当质量为8时,体积为6。求该物体的质量为12时,体积 为多少?
当反比例函数的解析式为分式时,解题的方法与简单例题类似,只是需要通 过代入法或正比例的求解方法进行计算。
练习题目与答案解析
1
题目1
已知一根长10米的绳子均匀地系在8个钉子上,如图所示。绳子从钉子1到钉子8 的长度比为3:1 :2 :1 :2 :1 :4 :3 。求每段绳子的长度。
2Hale Waihona Puke 题目2已知电阻与电流成反比,当电流为4A时,电阻为10欧姆。求电流为8A时,电阻 为多少欧姆?
反比例函数ppt课件
欢迎来到反比例函数ppt课件!通过本课件,你将学到反比例函数的定义、图 像、性质以及实际应用。我会带你从简单例题到解析式为分式的例题,并提 供练习题目与答案解析。让我们开始吧!
反比例函数的定义
反比例函数是指一个函数,其自变量和因变量之间成反比关系。当自变量增 大时,因变量就会减小;当自变量减小时,因变量就会增大。
3
题目3
某种物体的密度与体积成反比,当体积为20时,密度为5。求该物体的体积为8 时,密度为多少?
例题2
小明骑自行车到学校的时间与他的速度成反比,当速度是10km/h时,他需要30分钟到达学 校。问他以15km/h的速度骑车到学校需要多长时间?
反比例函数的图象和性质课件
函数值的无限性
01
由于x不能为0,所以y的值是无限 的,即反比例函数图像上存在无穷 多个点。
02
在每一个象限内,随着x的增大或 减小,y的值会趋近于无穷大或无 穷小。
函数值的单调性
当k>0时,函数在(0, +∞)区间内单调 递减,在(-∞, 0)区间内也单调递减。
当k<0时,函数在(0, +∞)区间内单调递 增,在(-∞, 0)区间内也单调递增。
反比例函数的定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 k 是 常数。
反比例函数的性质
反比例函数的图象是双曲线,当 k > 0 时,双曲线的两支 分别位于第一、第三象限;当 k < 0 时,双曲线的两支分 别位于第二、第四象限。
反比例函数的单调性
在各自象限内,反比例函数是单调递减的。
反比例函数的图象和性质课件
目录
• 反比例函数概述 • 反比例函数的图像性质 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01 反比例函数概述
反比例函数的定义
反比例函数是指函数形式为$f(x) = frac{k}{x}$(其中$k neq 0$)的函数。
当$k > 0$时,反比例函数的图像分布在 第一象限和第三象限;当$k < 0$时,图 像分布在第二象限和第四象限。
经济问题
在经济学中,反比例函数可以用 于描述商品价格与市场需求之间 的关系,通过分析反比例函数的 特性,可以预测市场价格的变动
趋势。
在物理中的应用
磁场问题
在电磁学中,磁场与电流之间的 关系可以用反比例函数描述,通 过分析反比例函数的特性,可以 解决与磁场和电流相关的问题。
27.1 反比例函数课件(共16张PPT)
1.要制作容积为15 700 cm3的圆柱形水桶,水桶的底面积为S cm2,高为h cm,则Sh= ,用h表示S的函数表达式为 .2.自行车运动员在长为10 000 m的路段上进行骑车训练,行驶全程所用时间为t s,行驶的平均速度为v m/s,则vt= ,用t表示v的函数表达式为 .3.y与x的乘积为-2,用x表示y的函数表达式为 .
2.下列函数是y关于x的反比例函数的是( ) A. B. C. D.3.若函数 是反比例函数,则m的值是_____.
C-1ຫໍສະໝຸດ 展提升答案:解:2. 已知y与x2成反比例,并且当x=3时,y=4. (1)写出y关于x的函数表达式; (2)当x = 1.5时,求y的值; (3)当y = 6时,求x的值.
第 二十七章 反比例函数
27.1 反比例函数
学习目标
1.认识反比例函数的概念.2.能够根据已知条件,确定反比例函数的表达式.
学习重难点
重点
理解反比例函数的概念;能根据已知条件写出函数表达式.
难点
理解反比例函数的概念.
情景引入
若将成正比例的两个量视为变量,则这两个量之间具有正比例函数关系.那么,当将两个成反比例的量视为变量时,它们之间又具有怎样的函数关系呢?
做一做
新知引入
知识点1 反比例函数的定义
15 700
10 000
归纳总结
k≠0
自变量 x 的取值范围是不等于 0 的实数.
典型例题
例1
写出下列问题中y与x之间的函数关系式,指出其中的正比例函数和反比例函数,并写出它们的比例系数k.(1)y与x互为相反数.(2)y与x互为负倒数.(3)y与2x的积等于a(a为常数,且a≠0).
k≠0
知识点2 确定反比例函数的表达式
2.下列函数是y关于x的反比例函数的是( ) A. B. C. D.3.若函数 是反比例函数,则m的值是_____.
C-1ຫໍສະໝຸດ 展提升答案:解:2. 已知y与x2成反比例,并且当x=3时,y=4. (1)写出y关于x的函数表达式; (2)当x = 1.5时,求y的值; (3)当y = 6时,求x的值.
第 二十七章 反比例函数
27.1 反比例函数
学习目标
1.认识反比例函数的概念.2.能够根据已知条件,确定反比例函数的表达式.
学习重难点
重点
理解反比例函数的概念;能根据已知条件写出函数表达式.
难点
理解反比例函数的概念.
情景引入
若将成正比例的两个量视为变量,则这两个量之间具有正比例函数关系.那么,当将两个成反比例的量视为变量时,它们之间又具有怎样的函数关系呢?
做一做
新知引入
知识点1 反比例函数的定义
15 700
10 000
归纳总结
k≠0
自变量 x 的取值范围是不等于 0 的实数.
典型例题
例1
写出下列问题中y与x之间的函数关系式,指出其中的正比例函数和反比例函数,并写出它们的比例系数k.(1)y与x互为相反数.(2)y与x互为负倒数.(3)y与2x的积等于a(a为常数,且a≠0).
k≠0
知识点2 确定反比例函数的表达式
26.1.1 反比例函数课件(共22张PPT)
x
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x
例
x, y可以表示单独字母,
函
x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2
≠
0
),
则
y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.
反比例函数ppt免费课件
与一次函数的结合
一次函数和反比例函数结合可以 形成复合函数,这种复合函数在 解决实际问题中具有广泛的应用
。
与二次函数的结合
在解决最值问题时,可以利用反比 例函数和二次函数的性质进行求解 。
与对数函数的结合
在解决增长率问题时,可以利用反 比例函数和对数函数的性质进行求 解。
CHAPTER 03
反比例函数的性质和特点
CHAPTER 02
反比例函数的应用
反比例函数在实际问题中的应用
01
02
03
物理问题
电流与电阻的关系、压强 与压力的关系等都可以用 反比例函数表示。
经济问题
例如,商品销售量与价格 的关系,当价格一定时, 销售量与价格成反比。
地理问题
例如,人口密度与土地面 积的关系,在一定条件下 ,人口密度与土地面积成 反比。
反比例函数的单调性
01
反比例函数在各自象限内单调递 减,随着x的增大,y值逐渐减小 。
02
在第一象限和第三象限,当x增大 时,y值减小;在第二象限和第四 象限,当x增大时,y值也减小。
反比例函数的奇偶性
反比例函数是奇函数,满足f(-x)=-f(x)。 在坐标系中,反比例函数的图像关于原点对称。
反比例函数的周期性和对称性
探讨两者图像的交点、单调性以及函数值的变化规律。
反比例函数与二次函数的结合
研究如何利用反比例函数的性质解决二次函数问题,如求最值等。
反比例函数在微积分中的应用
导数与反比例函数
理解反比例函数的导数形式,掌 握利用导数研究函数的单调性、 极值等问题。
积分与反比例函数
掌握对反比例函数进行积分的计 算方法,理解积分在解决实际问 题中的应用。
《反比例函数定义》课件
这些变体形式在解决实际问题时可能更加方便,但本质上仍 然是反比例数在物理中的应用
总结词
详细描述
总结词
详细描述
在物理中,反比例函数常用于 描述与距离和时间有关的物理 量,如电流与电阻之间的关系 。
在电路分析中,反比例函数用 于描述电流与电阻之间的关系, 即电流I与电阻R之间的关系为 I=V/R,其中V为电压。当电压 V保持恒定时,电流I与电阻R成 反比关系。
3
反比例函数的奇偶性
反比例函数是奇函数,因为对于任意x≠0,都有 f(-x)=-f(x)。
反比例函数的图像
反比例函数的图像
反比例函数的图像位于x轴和y轴之间, 呈现出双曲线的形状。
图像的绘制方法
图像的特点
反比例函数的图像具有渐近线,当 k>0时,图像分别位于第一、三象限; 当k<0时,图像分别位于第二、四象 限。
《反比例函数定义》课件
• 反比例函数定义 • 反比例函数的表达式 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数定义
反比例函数的定义
1 2
反比例函数定义
反比例函数是一种数学函数,其定义为y=k/x (k为常数且k≠0),其中x是自变量,y是因变 量。
反比例函数的定义域和值域
反比例函数的定义域为x≠0,值域为y≠0。
04
反比例函数的扩展知识
反比例函数与其他数学知识的联系
与一次函数的联系
一次函数和反比例函数在形式上有所 不同,但它们在某些情况下可以相互 转化。例如,当反比例函数的分母为 常数时,它可以转化为一次函数的形 式。
与几何知识的联系
反比例函数图像通常位于两个象限内, 其形状与坐标轴、原点以及其他直线 或曲线存在特定的几何关系,这些关 系有助于理解函数的性质。
反比例函数PPT课件
x、y值代入
y
k x
中得到关于k的方程.(3)解,即解
方程,求出k的值.(4)定,即将k值代入 确定函数解析式.
y
k x
中,
10
【针对练二】
4. 当m=__-_2__时,函数 y (m 2)x3m2
是反比例函数.
5.已知y与x2成反比例,并且当x=3时y=4.
(1)写出y和x之间的函数解析式为_y___3_x6_2 _;
6
【针对练一】
1. 已知游泳池的容积为a m3,向池内注满水所需时间t(h)
,随注水速度v(m3/h),那么a= vt ,当 a 为定值时 ,t、v成__反__比__例___关系.
2. 已知下列函数:(1)y x ,(2)y 3
2 x
,(3)xy
=
21
,(4)y
x
5
2
,(5)y
3 2x
,(6)y
( ≠0) ,
3
• 1.使学生理解并掌握反比例函数的概念.
• 2.能判断一个给定的函数是否为反比例函数,并会 用待定系数法求函数解析式.
• 3.能根据实际问题中的条件确定反比例函数的解析 式,体会函数的模型思想.
4
合作探究 达成目标
活动1:阅读教材第2页思考中的三个问题,并写出这 三个问题的函数解析式分别为__________,__________, __________.
1 x
3
,(7)y=x-4 ,其中是反比例函数的是_(_2_)(_3_)_(5__) .
7
合作探究 达成目标
例1 已知y是x的反比例函数,并且当x=2时, y=6.
(1)写出y关于x的函数解析式;
(2)求x=4时,求y的值.
初三反比例函数ppt课件ppt课件
反比例函数是具有极限的函数,当x趋 近于无穷大或无穷小时,y的值趋近于 0。
反比例函数的图像是关于原点对称的 。
02CHBiblioteka PTER反比例函数的应用生活中的反比例现象
总结词
生活中常见的反比例现象
详细描述
在日常生活中,许多现象可以用反比例函数来描述。例如,当两个量之间的比例保持恒定时,其中一个量增加, 另一个量会相应减少,形成反比例关系。这种现象在很多场合都可以观察到,如物体的质量和体积、电路中的电 流和电阻等。
提高练习题解析
总结词
提升解题能力
详细描述
提高练习题相对于基础练习题难度有所增加,题目设计更加灵活,需要学生具备一定的数学思维和解 题技巧。这些题目通常涉及到反比例函数与其他数学知识的综合运用,如与一次函数、二次函数等知 识的结合。
竞赛练习题解析
总结词
挑战高难度
详细描述
竞赛练习题是针对数学竞赛和数学特长生设计的题目,难度较大,题目设计更加复杂和 综合。这些题目不仅要求学生掌握反比例函数的知识,还需要具备较高的数学素养和解 题能力。通过解答这些题目,学生可以挑战自己的数学思维和解题能力,提升数学学习
对未来学习的展望
学生可以在反比例函数的基础上,进一 步学习其他类型的函数,如幂函数、对 数函数等,以拓展数学知识的广度和深
度。
学生可以尝试将反比例函数与其他学科 的知识点进行结合,例如与物理中的电 流、电压等概念进行联系,加深对相关
概念的理解。
学生可以通过参加数学竞赛、科研项目 等活动,进一步提高自己的数学素养和 解决问题的能力,为未来的学习和职业
总结词
掌握实际应用题的解题技巧是提高解 题效率的关键。
详细描述
在解决反比例函数实际应用题时,需 要将问题转化为数学模型,并运用适 当的解题技巧,如排除法、比较法等 ,以简化问题并快速找到答案。
反比例函数的定义课件
定义
反比例函数可以表示为: y = k/x,其中k是常数且不 为零。
求解
1
参数确定
通过给定函数中的一个点,可以确定反比例函数的常数k的值。
2
解法
使用代数方法来解反比例函数,将已知条件代入函数表达式并求解未知变量。
3
应用实例
反比例函数经常用于解决与比例关系有关的实际问题,如速度、密度和浓度的计 算。
实例分析
问题引入
假设一张纸的大小与折叠次 数成反比例关系,如果将纸 折叠10次,它的面积会如何 变化?
实例求解
利用反比例函数的定义,我 们可以计算出纸张在每次折 叠后的面积,得出随着折叠 次数增加,纸张面积减小的 规律。
分析归纳总结
通过分析实例,我们可以总 结反比例函数的特征和应用 方法,从而提高问题解决的 能力。
2 反比例函数的思考题
提供一些思考问题,帮助学生巩固对反比例函数的理解和应用。
3 反比例函数的相关资料参考
提供一些书籍、论文和网站链接,供深入学习和研究反比例函数。
反比例函数的定义ppt课 件
本PPT课件将介绍反比例函数的概念、图像特征、参数确定和解法,并通过 实例分析和总结来帮助学生更好地理解和应用反比例函数。
概述
含义
反比例函数是一种数学函 数,其特点是当自变量增 大时,因变量以相反的比 例减小。 Nhomakorabea图像特征
反比例函数的图像通常是 经过原点,并向两个轴无 穷逼近。
总结
课程回顾
通过学习本课件,我们了解了 反比例函数的定义和性质。
知识总结
反比例函数是一种重要的数学 概念,广泛应用于科学和工程 领域。
学习展望
希望学生能够进一步掌握反比 例函数的解法和应用,为未来 学习打下基础。
反比例函数图像和性质ppt课件
压强与面积的关系
在气瓶压力一定的情况下,压力的作 用面积与压强成反比关系,即当作用 面积增大时,压强减小;反之,当作 用面积减小时,压强增大。
在经济中的应用
供需关系
在市场经济中,商品的需求量与价格之间存在反比例关系,即当价格上涨时,需 求量减少;反之,当价格下降时,需求量增加。
投资回报
投资者在考虑投资回报时,通常会选择投资回报率较高的项目,即投资回报与投 资额成反比关系。
与几何知识的结合
与直角坐标系的结合
反比例函数的图像位于直角坐标系的两个象限内,可以通过几何知识来研究其性质,例如对称性和渐 近线。
与圆的结合
在某些条件下,反比例函数的图像与圆的图像相似,可以通过圆的性质来类比研究反比例函数的性质 。
在数学竞赛中的应用
01
反比例函数在数学竞赛中常作为 难题出现,需要学生具备扎实的 数学基础和灵活的思维才能解决 。
05 反比例函数的扩展知识
与其他函数的联系
与一次函数的联系
反比例函数与一次函数在某些条件下可以相互转化,例如$y = kx$($k neq 0$)可以转化为$y = frac{1}{x}$的 形式。
与二次函数的联系
反比例函数的图像与二次函数图像在形式上有所不同,但它们在某些性质上有相似之处,例如对称性和极值点。
反比例函数的定义域和值域
由于分母不能为0,所以反比例函数的定义域为{x|x≠0},值域 为{y|y≠0}。
反比例函数的图像
图像特点
反比例函数的图像位于第一象限 和第三象限,呈双曲线状,且随 着k值的正负变化,图像分别位于 x轴的上方和下方。
图像绘制
在直角坐标系中,取点(x,y)满足 xy=k,然后描绘出这些点的轨迹, 即为反比例函数的图像。
在气瓶压力一定的情况下,压力的作 用面积与压强成反比关系,即当作用 面积增大时,压强减小;反之,当作 用面积减小时,压强增大。
在经济中的应用
供需关系
在市场经济中,商品的需求量与价格之间存在反比例关系,即当价格上涨时,需 求量减少;反之,当价格下降时,需求量增加。
投资回报
投资者在考虑投资回报时,通常会选择投资回报率较高的项目,即投资回报与投 资额成反比关系。
与几何知识的结合
与直角坐标系的结合
反比例函数的图像位于直角坐标系的两个象限内,可以通过几何知识来研究其性质,例如对称性和渐 近线。
与圆的结合
在某些条件下,反比例函数的图像与圆的图像相似,可以通过圆的性质来类比研究反比例函数的性质 。
在数学竞赛中的应用
01
反比例函数在数学竞赛中常作为 难题出现,需要学生具备扎实的 数学基础和灵活的思维才能解决 。
05 反比例函数的扩展知识
与其他函数的联系
与一次函数的联系
反比例函数与一次函数在某些条件下可以相互转化,例如$y = kx$($k neq 0$)可以转化为$y = frac{1}{x}$的 形式。
与二次函数的联系
反比例函数的图像与二次函数图像在形式上有所不同,但它们在某些性质上有相似之处,例如对称性和极值点。
反比例函数的定义域和值域
由于分母不能为0,所以反比例函数的定义域为{x|x≠0},值域 为{y|y≠0}。
反比例函数的图像
图像特点
反比例函数的图像位于第一象限 和第三象限,呈双曲线状,且随 着k值的正负变化,图像分别位于 x轴的上方和下方。
图像绘制
在直角坐标系中,取点(x,y)满足 xy=k,然后描绘出这些点的轨迹, 即为反比例函数的图像。
反比例函数ppt课件
2. 生活中有许多反比例函数的例子,在下面的实例中,
x 和 y 成反比例函数关系的有( )
B
① x人共饮水10 kg,平均每人饮水 y kg;②底面半径 为 x m,高为 y m的圆柱形水桶的体积为10 m3;③用 铁丝做一个圆,铁丝的长为 x cm,做成圆的半径为 y cm;④在水龙头前放满一桶水,出水的速度为 x,放 满一桶水的时间 y A. 1个 B. 2个 C. 3个 D. 4个
D
x
它是反比例函数. C
4、 已知函数 y=(m-1)x|m|-2 (1)当m为何值时,y是x的正比例函数? (2)当m为何值时,y是x的反比例函数?
5、当k为何值时,y=(k2-k)xk2+k-3是反比例函数?
m2
6、若 y xm2 m1
是反比例函数,则m的值是
m
=
-1 .
2、现在学校准备建一个100m2长方形的草坪,如果你是 施工方,你如何施工?
3、我们学过电压、电流、电阻,如果通过用电器的电压 始终是220伏,则通过该用电器的电流与电阻有何关系?
讲授新课
合作探究
t 2000 b 100 I 220
v
a
R
这些函数是什么函数呢?
是一次函数吗?是二次函数吗?
一 反比例函数的概念
3 、如图所示,已知菱形 ABCD 的面积为180,设它
的两条对角线 AC,BD的长分别为x,y. 写出变量 y
与 x 之间的关系式,并指出它是什ቤተ መጻሕፍቲ ባይዱ函数.
解:因为菱形的面积等于两条对角线长
A
乘积的一半,
所以 S菱形ABCD 所以变量 y与 x
1 xy 180. 2 之间的关系式为 y
初中数学反比例函数ppt课件
03
反比例函数的应用
生活中的反比例函数
总结词
在日常生活中,反比例函数的应用十 分广泛。
详细描述
例如,在购物时,商品的单价与购买 数量成反比,购买数量越多,单价越 低;在交通中,距离和时间成反比, 行驶的距离越远,所需的时间越长。
物理中的反比例函数
总结词
反比例函数在物理学中也有着广泛的应用。
详细描述
难点
如何正确绘制反比例函数的图像,以及如何理解和应用函数的性质。
THANKS。
定义域和值域:x≠0,y≠0
反比例函数的基本形式
y=k/x(k为常数,k≠0)
图像:双曲线
变化规律:当k>0时,图像在第一、三象限,y值随x的增大而减小;当k<0时,图像在第二 、四象限,y值随x的增大而增大。
反比例函数的意义
01
02
03
04
描述两个量之间的关系
反映函数关系和自变量、因变 量的关系
简单应用
给出一些简单的反比例函数表达式和图像,让学 生指出其性质和意义。
判断题
给出一些反比例函数的表达式和图像,让学生判 断是否正确。
中等难度练习
给定一个反比例函数的图像, 让学生求出其表达式。
给定一个反比例函数的表达式 ,让学生作出其图像。
利用反比例函数解决实际问题 :如根据两个城市之间的距离 和速度关系,计算时间。
初中数学反比例函数ppt课件
目录
• 反比例函数概述 • 反比例函数的图像和性质 • 反比例函数的应用 • 反比例函数的难点与易错点 • 练习与巩固 • 总结与回顾
01
反比例函数概述
反比例函数的定义
反比例函数的定义:一般地,形如y=k/x(k为常数,k≠0)的函数叫做反比例函数 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)一般地,形如 ( y=ax2+bx+c(a,b,c是常数,a ≠0))的函数,叫 做二次函数。
1
人教版 九年义务教育 数学八年级(下)
第26章 反比例函数
26.1.1反比例函数的意义
2
学习目标
1、理解并掌握反比例函数的概念;会 判断一个函数是否是反比例函数。
2、会用待定系数法求反比例函数解析 式。
3、已知北京市的总面积为16 800平方千米,人均占有
土地面积s(单位:平方千米/人)随着全市总人口n
(单位:人)的变化而变化,用含n的式子表示s. 4
以上三个问题的函数解析式为:
v 800 t
y 10 x
s 16 800 n
根据上述三个解析式回答:
1.你能说出它们的共同特征吗?
2.你能用一个一般形式表示出来吗?
{ { 反(比26分y、)例是析y已函=x:知3数的x函-?1反数m2比y-=23(例=x-m7函-1)7解是数y得反=,比比例1xm函=例-±数1系,1则数m即为=:k_(6_m_=k.1≠0)
y=
mk+1≠0
x
y=kmx≠-1-1
xy=k
8
2、y是x的反比例函数,下表给出了x与y的一
些值:
x
-1
x
n
它们具有什么共同特征?
具有 y k 的形式,其中k≠0,k为常数. x
19
-
1 2
1 2
1
y2
4 -4 -2
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
解:∵ y是x的反比例函数,设yk(k0)
x
得k2. y 2 .
x
9
用待定系数法求解反比例函数解 析式的一般步骤
1.设出含有待定系数的反比例函数关系式
2.把一对已知的x,y的值代入关系式,得到一个关于 待定系数的方程。
待定系数法
1.设 2.代 3. 解 4.回代
13
达标检测
1、 在下列函数中,y是x的反比例函数的是( C )
(A)y
=
8
X+5
(B) y =
3 x
+7
(C)xy = 5
(D) y =
2 x2
2、一个三角形的面积为6,它的底边a与这条底边
上的高h之间的函数解析式是 ____
。
a 12 (h 0)
2m 0
m
3
1
解得:mm22
即m 2
3、已知y与x2 成反比例,并且当x=3时y=4. ⑴ 写出y和x之间的函数关系式;
⑵ 求x=2时y的值。
12
小 结:谈谈你的收获
一、知识点
反比例函数的意义:
若若yy是x的k (反k 比0例) ,函则数y,是则x的y反比kx (例k 函 0数) ;。 x
二、方法
反比例函数定义:
一般地,如果变量 y 和 x 之间函数关系可以表示
成
y
k x
(k是常数,且k≠ 0)的形式,则称 y 是 x 的
反比例函数.
反比例函数中自变量 x的取值范围是什么?
自变量x的取值范围是不为0的一切实数。
反比例函数函数值y能不能取0?为什么?
反比例函数还有没有其他的表示形式?
6
等价形式: (k≠0)
(4)庆阳五中要种植一个面积为80m2的矩形草坪,草坪的长 y(单位:m )随宽x(单位:m )的变化而变化。
(5)已知庆阳市的总面积为2.71×104平方千米,人均占有 的土地面积S(单位:平方千米/人)随全市总人口n(单位:18人) 的变化而变化。
探求新知
函数关系式:
v 1463 t
y 1000 S 2.71104
y k x
y k1 x
y=kx-1
记住这三种形式
xy=k
y与x成反比例
7
自学检测
1、下列关系式中的y是x的反比例函数吗?如果是,比例
系数k是多少?
(1)y=
4 x
(2)y= -
1 2x
(313、、)x当如y=m果1取2函3什数么y值= x(时25k4,+)3为函y反=数比y例x2 函(m数,1那)(x5么m )2ky=2=-是1X 1x,2的
3
自学检测
1、体育课上,同学们跑800米时,一个同学跑步的平均
速度v(单位:米/分)随着此同学跑完全程的时间t (单位:分)的变化而变化,用含t的式子表示v.
2、一次数学课上,老师要同学们画一个面积为10平方
厘米的矩形,同学们画后发现矩形相邻两边y(单位: 厘米)随着x(单位:厘米)的变化而变化,用含x的式 子表示y.
h
14
作业: 1、P46-47 — 1、2、5 2、轻巧夺冠P2-3 2、预习P41-42 内容.
15
形如
y
k x
(k为常数,k≠0)的函数称为反比例
函数其中x是自变量,y是函数,K叫做比例系数。
议一议
对于反比例函数
y 1000
x
①当x=50时,y=___2_0____ ②当x=-100时,y=_-__1__0___
③反比例函数自变量X取值范围是什么?为什么?
函数 y
k x
(k≠0)中,自变量x的取值范围是不为0的一切实数。
④反比例函数函数值y能不能取0?为什么?
⑤反比例函数还有没有其他的表示形式? 16
谢谢大家!
17
生活情景
在下列实际问题中,变量间的对应关系可用怎样的函 数关系式表示?并对这些关系式进行分类。
(1)灰太狼开车以60km/h匀速驶向羊村,列出它行驶的距离 S(单位:km)随时间t(单位:h)变化的关系式。
(2)灰太狼开车绑架了懒羊羊,油箱中现有汽油50升,如果不 再加油,平均每千米耗油量为0.1升,列出油箱中剩余的油量 y(单位:升)与行驶里程 x(单位:千米)的关系式。
(3)喜羊羊知道懒羊羊被灰太狼捉到了狼堡,急忙赶往5km远 的狼堡营救,列出喜羊羊赶到狼堡的时间t随它的速度v变化的关 系式。
3.解这个方程,求出待定系数。
4.将所求得的待定系数带回所设的函数关系式。
10
小组合作
1、已知y是x的反比例函数,当x=2时,y=6. (1)写出y与x的函数关系式; (2)求当x=4时y的值.
情寄待定系数法求函数的解析式
11
2、当m取什么值时,函y数(2m)xm3
是x的反比例函数?
解:由题意得
头脑风暴:
(1)一般地,在一个变化过程中,如果有两个 变量x与y ,并且对于(x的每一个确定的值 ) ,y都 有( 唯一确定的值与其对应 ),那么我们就说x是自 变量,y是x的函数。
(2)一般地,形如 y=kx+b(k、b是常数,k≠0) 的函数,叫做一次函数。
(3)一般地,形如 y=kx(k是常数,k≠0)的函数 叫做正比例函数 ,其中k叫做比例系数。
1
人教版 九年义务教育 数学八年级(下)
第26章 反比例函数
26.1.1反比例函数的意义
2
学习目标
1、理解并掌握反比例函数的概念;会 判断一个函数是否是反比例函数。
2、会用待定系数法求反比例函数解析 式。
3、已知北京市的总面积为16 800平方千米,人均占有
土地面积s(单位:平方千米/人)随着全市总人口n
(单位:人)的变化而变化,用含n的式子表示s. 4
以上三个问题的函数解析式为:
v 800 t
y 10 x
s 16 800 n
根据上述三个解析式回答:
1.你能说出它们的共同特征吗?
2.你能用一个一般形式表示出来吗?
{ { 反(比26分y、)例是析y已函=x:知3数的x函-?1反数m2比y-=23(例=x-m7函-1)7解是数y得反=,比比例1xm函=例-±数1系,1则数m即为=:k_(6_m_=k.1≠0)
y=
mk+1≠0
x
y=kmx≠-1-1
xy=k
8
2、y是x的反比例函数,下表给出了x与y的一
些值:
x
-1
x
n
它们具有什么共同特征?
具有 y k 的形式,其中k≠0,k为常数. x
19
-
1 2
1 2
1
y2
4 -4 -2
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
解:∵ y是x的反比例函数,设yk(k0)
x
得k2. y 2 .
x
9
用待定系数法求解反比例函数解 析式的一般步骤
1.设出含有待定系数的反比例函数关系式
2.把一对已知的x,y的值代入关系式,得到一个关于 待定系数的方程。
待定系数法
1.设 2.代 3. 解 4.回代
13
达标检测
1、 在下列函数中,y是x的反比例函数的是( C )
(A)y
=
8
X+5
(B) y =
3 x
+7
(C)xy = 5
(D) y =
2 x2
2、一个三角形的面积为6,它的底边a与这条底边
上的高h之间的函数解析式是 ____
。
a 12 (h 0)
2m 0
m
3
1
解得:mm22
即m 2
3、已知y与x2 成反比例,并且当x=3时y=4. ⑴ 写出y和x之间的函数关系式;
⑵ 求x=2时y的值。
12
小 结:谈谈你的收获
一、知识点
反比例函数的意义:
若若yy是x的k (反k 比0例) ,函则数y,是则x的y反比kx (例k 函 0数) ;。 x
二、方法
反比例函数定义:
一般地,如果变量 y 和 x 之间函数关系可以表示
成
y
k x
(k是常数,且k≠ 0)的形式,则称 y 是 x 的
反比例函数.
反比例函数中自变量 x的取值范围是什么?
自变量x的取值范围是不为0的一切实数。
反比例函数函数值y能不能取0?为什么?
反比例函数还有没有其他的表示形式?
6
等价形式: (k≠0)
(4)庆阳五中要种植一个面积为80m2的矩形草坪,草坪的长 y(单位:m )随宽x(单位:m )的变化而变化。
(5)已知庆阳市的总面积为2.71×104平方千米,人均占有 的土地面积S(单位:平方千米/人)随全市总人口n(单位:18人) 的变化而变化。
探求新知
函数关系式:
v 1463 t
y 1000 S 2.71104
y k x
y k1 x
y=kx-1
记住这三种形式
xy=k
y与x成反比例
7
自学检测
1、下列关系式中的y是x的反比例函数吗?如果是,比例
系数k是多少?
(1)y=
4 x
(2)y= -
1 2x
(313、、)x当如y=m果1取2函3什数么y值= x(时25k4,+)3为函y反=数比y例x2 函(m数,1那)(x5么m )2ky=2=-是1X 1x,2的
3
自学检测
1、体育课上,同学们跑800米时,一个同学跑步的平均
速度v(单位:米/分)随着此同学跑完全程的时间t (单位:分)的变化而变化,用含t的式子表示v.
2、一次数学课上,老师要同学们画一个面积为10平方
厘米的矩形,同学们画后发现矩形相邻两边y(单位: 厘米)随着x(单位:厘米)的变化而变化,用含x的式 子表示y.
h
14
作业: 1、P46-47 — 1、2、5 2、轻巧夺冠P2-3 2、预习P41-42 内容.
15
形如
y
k x
(k为常数,k≠0)的函数称为反比例
函数其中x是自变量,y是函数,K叫做比例系数。
议一议
对于反比例函数
y 1000
x
①当x=50时,y=___2_0____ ②当x=-100时,y=_-__1__0___
③反比例函数自变量X取值范围是什么?为什么?
函数 y
k x
(k≠0)中,自变量x的取值范围是不为0的一切实数。
④反比例函数函数值y能不能取0?为什么?
⑤反比例函数还有没有其他的表示形式? 16
谢谢大家!
17
生活情景
在下列实际问题中,变量间的对应关系可用怎样的函 数关系式表示?并对这些关系式进行分类。
(1)灰太狼开车以60km/h匀速驶向羊村,列出它行驶的距离 S(单位:km)随时间t(单位:h)变化的关系式。
(2)灰太狼开车绑架了懒羊羊,油箱中现有汽油50升,如果不 再加油,平均每千米耗油量为0.1升,列出油箱中剩余的油量 y(单位:升)与行驶里程 x(单位:千米)的关系式。
(3)喜羊羊知道懒羊羊被灰太狼捉到了狼堡,急忙赶往5km远 的狼堡营救,列出喜羊羊赶到狼堡的时间t随它的速度v变化的关 系式。
3.解这个方程,求出待定系数。
4.将所求得的待定系数带回所设的函数关系式。
10
小组合作
1、已知y是x的反比例函数,当x=2时,y=6. (1)写出y与x的函数关系式; (2)求当x=4时y的值.
情寄待定系数法求函数的解析式
11
2、当m取什么值时,函y数(2m)xm3
是x的反比例函数?
解:由题意得
头脑风暴:
(1)一般地,在一个变化过程中,如果有两个 变量x与y ,并且对于(x的每一个确定的值 ) ,y都 有( 唯一确定的值与其对应 ),那么我们就说x是自 变量,y是x的函数。
(2)一般地,形如 y=kx+b(k、b是常数,k≠0) 的函数,叫做一次函数。
(3)一般地,形如 y=kx(k是常数,k≠0)的函数 叫做正比例函数 ,其中k叫做比例系数。