换元法证明不等式

合集下载

不等式的证明的方法介绍

不等式的证明的方法介绍

不等式的证明的方法介绍不等式的性质及常用的证明方法主要有:比较法、分析法、综合法、数学归纳法等.要明确分析法、反证法、换元法、判别式法、放缩法证明不等式的步骤及应用范围. 若能够较灵活的运用常规方法(即通性通法)、运用数形结合、函数等基本数学思想,就能够证明不等式的有关问题.一、不等式的证明方法1.比较法:(1)作差法比较:.作差比较的步骤:①作差:对要比较大小的两个数(或式)作差.②变形:对差进行因式分解或配方成几个数(或式)的完全平方和.③判断差的符号:结合变形的结果及题设条件判断差的符号.注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小.例1 若水杯中的b克糖水里含有a克糖,假如再添上m克糖,糖水会变得更甜,试将这一事实用数学关系式反映出来,并证明之.分析:本例反映的事实质上是化学问题,由浓度概念(糖水加糖甜更甜)可知2.分析法:执果索因.基本步骤:要证……只需证……,只需证……①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达.3.综合法:利用不等式的性质和已经证明过的不等式以及函数的单调性导出特征不等式的方法叫做综合法,概括为“由因导果”。

综合法是分析法的逆过程,表述简单,条理清楚,所以在实际证题时,往往分析法分析用综合法写出。

例3设a,b,c都是正数,求证:4.反证法:正难则反.证明步骤:假设结论不成立,由此出发进行推理,最后导出矛盾的结果,从而得出所证的结论一定成立。

5.放缩法:将不等式一侧适当的放大或缩小以达证题目的. 放缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。

在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。

但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。

因此,使用放缩法时,如何确定放缩目标尤为重要。

证明不等式的几种方法

证明不等式的几种方法

昭通学院学生毕业论文论文题目证明不等式的几种方法姓名学号 201103010128学院数学与统计学院专业数学教育指导教师2014年3月6日证明不等式的几种方法摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。

本文主要归纳了几种不等式证明的常用方法。

关键词:不等式; 证明; 方法 1.引言在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。

证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。

主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。

2.不等式证明的常用方法2.1 比较法比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。

具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式BA与1比较大小[]1。

差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则b a ≤.”其一般步骤为:1.作差:观察不等式左右两边构成的差式,将其看成一个整体。

2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。

其中变形是求差法的关键,配方和因式分解是经常使用的方法。

3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。

应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。

商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若ba1≤则b a ≤.”其一 般步骤为:1.作商:将左右两端作商。

2.变形:化简商式到最简形式。

3.判断:商与1的大小关系,就是判定商大于1还是小于1。

应用范围:当被证的不等式两端含有幂指数式时,一般使用商值比较法。

活用换元法 巧证不等式

活用换元法 巧证不等式

1 3 + 5
等)1 + + 等+ _ + Z等) 古( )
证 明:将条件等式变形为 ( ) :2 一 , + ) ,
≥ 4 6 ×一 = . }×+ + 一 × 2
【 评析】 对于一些分母 较为复杂、变元较多的问题,我们往
往可 以引入一些新 的变量进行代换 ,以简化其结构 ,优化形 式, 使原来较 复杂的 问题化 繁为简 ,变成我们 熟悉的基本 问题 ,体

_



三 角换元 。纵横联 系
1 6y一百 ,
于 是

例 1 实数 ,Y满足等式 一 x +Z2 2 2y y= ,求证 :一 / ≤ 、 而一
+Y ≤ .

分 析 :本题 关键 是 由条件 等式寻找 实数 ,Y之 间的联 系 ,
三 角换 元是 不 错 的 选择 .
【 评析】三角函数蕴含 着丰富的公 式和 性质 ,巧妙地运 用这 些性质可以顺利地解决许多综合 问题.如三角函数中有 以下三个
这 ( cⅡ ) cn6 z} Ⅱ6c 里 : 6 一), +一) = ( 一) 十 ,= ( , +
待证不等式等价于( + ) z ) , ) ( + ) +, z y 。。 + ( 一 + : , (— ( , ( )
现 了化 归 的 思想 .
即 (

V 2
嘉 ,
=cs , on 0 )
解得 =、 cs +、 s 0 Y / i0 / o0 / i , =、 s , n n
所以 +Y =
s =_ 3 i n V -

三、参数换元 。改头换面 例 3 设 口 ,c为—个三角形三边的边长 ,证明 ( b + ,b a— ) 6c6一c +c ( 2( ) 2 c—a a )≥0 .并指出等号成立 的条件. 分析 :待证 不等式对三 角形的 边 a ,c不仅是 正数 ,而 ,b 且还 满足 Ⅱ <b+C ,b<C ,c +a <a+ ,如何利 用这些条件 ,通 b

不等式证明中的几种新颖方法

不等式证明中的几种新颖方法

不等式证明中的几种新颖方法
以下是 8 条关于不等式证明中的新颖方法:
1. 放缩法简直太神奇啦!比如说,要证明
1+1/2+1/3+……+1/n>ln(n+1),咱就可以通过巧妙地放大或缩小一些项
来达到目的。

这就好像建房子,一点一点把合适的材料放上去就能建成稳固的大厦呀!
2. 构造函数法真的是绝了!像证明x²+5>2x+3 ,咱可以构造函数
f(x)=x²-2x+2 ,通过研究函数的性质来得出不等式的结论,这多像给不等
式穿上了一件量身定制的衣服!
3. 数学归纳法也很厉害的哟!比如要证明一个关于 n 的不等式,先证
明当 n=1 时成立,然后假设 n=k 时成立去推出 n=k+1 时也成立。

这就像爬楼梯,一步步稳稳地往上走!“嘿,这不就证明出来啦!”
4. 利用均值不等式来证明,哇哦,那可太好用啦!例如证明
(a+b)/2≥√(ab) ,这就像是给不等式找了个平衡的支点!
5. 换元法也有意思呀!把复杂的式子通过换元变得简单明了,再去证明。

就好像把一团乱麻理清楚,然后就能看清它的真面目啦!“哇,原来这么简单!”
6. 反证法也超棒的呢!先假设不等式不成立,然后推出矛盾,从而证明原来的不等式是对的。

这不是和找错一样嘛,找到错的就知道对的在哪啦!
7. 排序不等式更是一绝!在一堆乱序的数中找到规律证明不等式,就像在一堆杂物中找到宝贝一样让人惊喜!
8. 柯西不等式也是很牛的哦!通过它独特的形式来证明不等式,真的是让人眼前一亮呀!“哇塞,还有这种神奇的方法!”
我觉得这些新颖的方法就像是一个个神奇的工具,能让我们在不等式的证明中如鱼得水,轻松搞定各种难题!。

高中数学 双变量不含参不等式证明方法之换元法(教师版)

高中数学 双变量不含参不等式证明方法之换元法(教师版)

nm
mnm
mnm
令 n =x,构造函数 m
g(x)=ln
x-1+x(x≥1),则 x
g′(x)=1x+x12+1.
因为 x∈[1,+∞),所以 g′(x)=1x+x12+1>0,故 g(x)在(1,+∞)上单调递增.
n
由已知 n>m>0,得 n >1,所以 g m >g(1)=0,即证得 ln n -m+ n >0 成立,所以命题得证.
ln a-ln b
ln a-ln b 2
总结提升
两个正数
a
和b
的对数平均定义:
L(a,
b)
a
ln a
b ln b
(a
b),
a(a b).
对数平均与算术平均、几何平均的大小关系: ab L(a, b) a b (此式记为对数平均不等式) 2
取等条件:当且仅当 a b 时,等号成立.
[例 3] 已知 f (x) ln x, g(x) f (x) ax2 bx ,其中 g(x) 图像在 (1, g(1)) 处的切线平行于 x 轴.
t 1 t 1
∴ g(t) 在 (1, ) 上是减函数,所以 g(t) g(1) 0 .

t
ln
2t 1
t
ln
1
2
t
t
1 得证.所以 kAB
f
( x1
x2 ) 成立. 2
总结提升
(1)本题考验不等式的变形,对于不等式 x2 ln
2 x2 x1 x2
x1 ln
2 x1 x1 x2
x2
∴ f (x) 的单调增区间是 (1 , ) ,单调减区间是 (0, 1) ,
e
e
f x 的极小值为 f (1) 1 ln 1 1 ,无极大值.

换元法在不等式中的重要应用

换元法在不等式中的重要应用

㊀㊀解题技巧与方法㊀㊀132㊀换元法在不等式中的重要应用换元法在不等式中的重要应用Һ孙㊀宇㊀(宜兴硕博教育,江苏㊀宜兴㊀214200)㊀㊀ʌ摘要ɔ 换元法 是高中数学学习中的最重要的思想方法之一,其在不等式中的应用是最为典型的,也是最巧妙㊁最广泛的.但是对于大部分学生来说,由于这类题的题干特别简单,因此解题思路反而打不开,不容易动笔求解.ʌ关键词ɔ换元法;不等式;思想方法一㊁对换元法的理解换元法 ,简单地说就是对题干中的未知元进行更换,从而使得代数式更加简单或者变换成我们熟知的一种形式(其中还可能会涉及消元法的使用).一般情况下,对于换元法的使用有两种类别:一种是将多项式进行换元(换元后,代数式中含有一个未知元或两个未知元);另一种是将函数进行换元(换元后,函数中只含有一个未知元).在换元的过程中,要特别注意未知元的取值范围.在使用换元法后,一般代数式的形式就会更加简单㊁明了,就会变成 基本不等式 ( 勾函数 形式)或者 二次函数 形式.在不等式的证明中有很多重要的方法蕴含着高度的概括性㊁层次性㊁广泛性等,其中换元法最能显示出其强大的作用.二㊁换元法在不等式中的应用例1㊀若a>0,b>0,且12a+b+1b+1=1,则a+2b的最小值为.分析理解㊀题中的已知条件较为复杂,而求解的代数式很简洁,是一个多项式.对于这一类题型,看到已知条件中的 =1 ,基本都能够想到这一题和 1 的代换有关.由于题设的条件比较复杂,因此我们可以进行二元换元法,将已知条件进行转化.设m=2a+b,n=b+1,{从而将a,b进行换元,题设的条件就变成了1m+1n=1,求解的代数式就变成了a+2b=12(m+3n)-32,这样进行一个二元变换,我们求解时就能够一目了然了.当然,这一题还可以将12a+b+1b+1=1进行通分消元,得到a=b-b2+12b,代入原式,我们发现a+2b=3b2+b+12b,这样原式就变成了非齐次分式的形式,我们可以进行常规操作:分离常数,变成基本不等式( 勾函数 )形式求解.例2㊀已知正实数x,y满足xy+2x+y=4,则x+y的最小值为.分析理解㊀和例1相比较,这一题的题设条件更加明了,可以直接进行消元,由已知得y=4-2xx+1,代入原式可以得到x+y=(x+1)+6x+1-3.实际上,上述过程也是将原式变成了非齐次分式的形式,然后分离常数,最终变成了基本不等式( 勾函数 )形式(将x+1看作整体,相当于进行了换元:令t=x+1,t>1)求解.例3㊀设实数x,y满足x24-y2=1,则3x2-2xy的最小值是.分析理解㊀和例1㊁例2相比较,这一题的题设条件比较明了,但是问题较为复杂.我们将其进行 1 的变换,3x2-2xy1=3x2-2xyx24-y2,发现原式变成了一个齐次式分式,我们马上可以想到下一步应该进行 二元变量一元化 ,分子㊁分母同时除以x2,则原式=3-2yx14-yx()2,令k=yxɪ-12,12(),则原式=4(3-2k)1-4k2,此时原式再次转化为非齐次分式的形式,我们再进行一次换元,令t=3-2kɪ(2,4),这样一步一步地进行换元,问题就会一步步简化,变成我们所熟悉的形式,从而求得结果.当然,这道题还可以用另外一种方法进行换元,观察到题设条件x24-y2=1=x2-y()x2+y(),可以令x2+y=t,则x2-y=1t,从而x=t+1t,y=12t-1t(),ìîíïïïï则原式3x2-2xy=6+2t2+4t2,这样可以更加迅速地求得结果.例4㊀已知a,bɪR,a+b=4,则1a2+1+1b2+1的最大值为.分析理解㊀我们注意到题目条件和问题均为对称形式,如果直接进行消元,会破坏其对称性,为此,我们用均值换元法来处理.令a=2+t,b=2-t,则f(t)=1t2+4t+5+1t2-4t+5=2(t2+5)(t2+5)2-16t2,令u=t2+5ȡ5,则g(u)=2uu2-16u+80=2u+80u-16,此时代数式被转化成了 勾函数 模型,运用基本不等式就可以求出最终的结果.我们回过头来看这道题目,实际上观察到代数式的 对称性 是很重要的,而且均值换元不会破坏原式的对称性,且有效地进行了消元,从而简化了计算过程,使我们能够更加轻松㊁准确地得到答案.这一类 均值换元法 在不等式中有着广泛的应用.该㊀㊀㊀解题技巧与方法133㊀㊀方法要求已知条件及所求的代数式为变量的 对称式 ,这样通过均值消元法可以很好地保持原来的 对称性 ,从而方便求解.对例题进行推广.命题:已知a>0,b>0,且a+b=t,求S=1a2+1+1b2+1的最大值.观察到命题的对称性结构,可以令a=t2+m,b=t2-m,则f(m)=1a2+1+1b2+1=2m2+t24+1()m2+t24+1()2-t2m2.令u=m2+t24+1ȡt24+1,则m2=u-t24+1(),从而f(m)=2uu2-t2u-t24+1()[]=2uu2-t2u+t24+1()t2=2u+t24+1()t2u-t2ɤ22t2t24+1()-t2.等号在u=t24+1㊃t时取得,为此,需要满足t24+1㊃tȡt24+1,即tȡ233,否则等号不成立;当0<t<233时只能用单调性求解,函数g(u)=u+t24+1()t2u为 勾函数 ,所以u取最小值时f(m)取得最大值,即m=0,a=b=t2.(1)若0<t<233,则当a=b=t2时,S取得最大值Smax=8t2+4;(2)若tȡ233,则当a,b为方程x2-tx+t2+22-(t2+2)24-1=0的两个正实根时,S取得最大值Smax=22(t2+2)24-1-t2.例5㊀若正实数x,y满足(2xy-1)2=(5y+2)(y-2),则x+12y的最大值为.分析理解㊀对于二元最值问题,我们常用换元法来进行消元,把它转化为常见的形式.对于本题,观察到题设条件和结论的特殊性,我们可以通过多种方式进行换元㊁消元,从而得到最终结果.方法一㊀由题设可知,等式两边同时除以y2,得2x-1y()2=5+2y()1-2y(),则x=5+2y()1-2y()+1y2,所以x+12y=125+2y()1-2y()+1y=-1y+1()2+94+1y+1()-1ɤ2-1y+1()2+94+1y+1()2[]-1=322-1,当且仅当-1y+1()2+94=1y+1,即y=432-4>2时等号成立,所以x+12yɤ322-1.方法二㊀由题设条件及方法一可知2x-1y()2=5+2y()1-2y(),即2x-1y()2=9-2y+2()2,则2x-1y()2+2y+2()2=9,所以9=2x-1y()2+2y+2()2ȡ122x-1y()+2y+2()[]2,从而x+12yɤ322-1.注意到方法一很巧妙地利用了题设条件的特殊性,即等式右侧是只关于y的代数式,从而把x用含有y的代数式表示出来,再进一步代入所求代数式进行化简,将1y+1看作整体(本质上就是换元),进行不等式方面的运算.方法二在方法一的思路之上进行了进一步的不等式方面的常用变换,所以一定要熟练运用不等式链:abɤa+b2ɤa2+b22(a,b>0)和abɤa+b2()2ɤa2+b22(a,bɪR).方法三㊀由题设条件,结合所求问题,将等式两边同时除以(2y)2可得x-12y()2=52+1y()12-1y(),所以12-1y(),x-12y(),52+1y()成等比数列,设公比为q(q>1),将x,1y用q表示,则x+12y=3(q-1)q2+1+12,此时代数式转化为一元非齐次的形式,令t=q-1>0,则原式=3t+2t+2+12ɤ322-1,当且仅当t=2t,即t=2时取等号.这一方法特别巧妙地利用题设关系构造出等比数列,利用公比进行统一换元㊁消元,从而简化了做题过程,提高了结果的准确率.我们综合分析三种方法的求解过程可知,解题方法的选择需要对题设条件㊁所求问题等进行综合观察,这对学生求解代数不等式问题的能力的要求比较高,需要学生有清晰的思路和理解方法,并能对不等式中重要的公式融会贯通,利用换元法进行消元,从而将二元最值问题转化为一元最值问题进行求解.三㊁综合分析通过以上几道例题我们可以看出,换元法在整个不等式问题的求解中占据着重要的位置,一般性的不等式的求解方法就是 化繁为简 .在解决不等式问题的时候,我们一定要冷静思考,探究题设条件与问题之间的内在联系,从而得到解题的思路.换元法是其中必不可少的解题方法,而且如何换元是不等式题目的难点和突破点.ʌ参考文献ɔ[1]中华人民共和国教育部.普通高中课程方案(2017年版)[M].北京:人民教育出版社,2018.。

数学论文【不等式的证明方法】(汉)

数学论文【不等式的证明方法】(汉)

黔南民族师范学院(贵定分院)毕业论文题目:不等式的证明姓名:丁成义班级:12级数学(2)班学号:2012052206专业:数学教育指导教师:张大书日期:2015年2月26日2不等式的证明方法不等式的证明方是中学数学的难点和重点,证明不等式的途径是利用不等式的性质进行代数变形,经常用到的证明不等式的主要方法有基本法 如:比较法,综合法,分析法。

其他方法:如反证法,放缩法,数学归纳法,涣元法,构造法和判别式法等。

1.证明不等式的基本方法1.1比较法比较法是证明不等式的方法之一,比较法除了比差法之外,还有比商法,它们的解题依据及步具步骤如下:比差法。

主要依据是实数的运算性质与大小顺序关系。

即 ,0,0,0a b a b a b a b a b a b ->⇔>-<⇔<-=⇔=基本解题步骤是:作差——变形——判断符号。

(1)作商比较法。

当欲证的不等式两端是乘积形式幂指数式可采用作商比较法。

当0b > 欲证a b >只需证1ab > 欲证a b <只需证1ab< 基本解题步骤是:作商——变形——判断。

(与1的大小)例1.求证: 222(2)5a b a b +≥--322224254250a b a b a b a b +≥--=>+-++≥22(44)(21)0a a b b -++++≥ 2,1a b ==-时等号成立。

所以222(2)5a b a b +≥--成立。

例2.已知,a b R +∈求证a b b a a b a b ≥证: ,a b R +∈又()a b a b b a a b aa b b -=∴()1a b b a a b a a b a b b-≥⇔≥ (1)当a b >时,1a b >,0a b ->所以()1a b ab -> (2)当a b <时01,a a b o b <<-<所以()1a b ab-> (3)当a b =时不等式取等号。

高中数学不等式证明的常用方法经典例题

高中数学不等式证明的常用方法经典例题

关于不等式证明的常用方法重难点归纳(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述 如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证(2)综合法是由因导果,而分析法是执果索因2 不等式证明还有一些常用的方法 换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等 换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性 放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法 凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法典型题例例1证明不等式n n2131211<++++Λ(n ∈N *)知识依托 本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等例2求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值知识依托 该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a >0,b >0,且a +b =1 求证 (a +a 1)(b +b 1)425证法一 (分析综合法) 证法二 (均值代换法) 证法三 (比较法) 证法四 (综合法) 证法五 (三角代换法)巩固练习1 已知x 、y 是正变数,a 、b 是正常数,且ybx a +=1,x +y 的最小值为 _ 2 设正数a 、b 、c 、d 满足 a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是_________3 若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________4 已知a ,b ,c 为正实数,a +b +c =1 求证(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤6 5 已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明 x ,y ,z ∈[0,32]6 证明下列不等式(1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则c b a y b a c x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则z y x y x z x z y +++++≥2(zy x 111++) 7 已知i ,m 、n 是正整数,且1<i ≤m <n(1)证明 n i A i m <m i A i n (2)证明 (1+m )n >(1+n )m8 若a >0,b >0,a 3+b 3=2,求证 a +b ≤2,ab ≤1不等式知识的综合应用典型题例例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)知识依托 本题求得体积V 的关系式后,应用均值定理可求得最值例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明 |c |≤1;(2)证明 当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x )知识依托 二次函数的有关性质、函数的单调性,绝对值不等式例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2a1 (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明 x 0<21x 巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A ①③B ②④C ①④D ②③2 下列四个命题中 ①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若y x 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围6 设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1(1)求证 f (0)=1,且当x <0时,f (x )>1;(2)求证 f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围7 已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3], (1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论; (3)若t ∈R ,求证 lg57≤F (|t -61|-|t +61|)≤513 数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】题型一 求有数列参与的不等式恒成立条件下参数问题求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D ,则当x ∈D 时,有f(x)≥M 恒成立⇔f(x)min ≥M ;f(x)≤M 恒成立⇔f(x)max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【例1】等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1a 1+1a 2+…+1a n 恒成立的正整数n 的取值范围.【例2】(08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n ,n ∈N*.(Ⅰ)设b n =S n -3n ,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n ∈N*,求a 的取值范围.【点评】 一般地,如果求条件与前nABCDS项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解题型二 数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】 已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <12(S 2p +S 2q ).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】 (08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3+1-c ,c ∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n ∈N*成立的充分必要条件是c ∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n ∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c,n ∈N*.题型三 求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】 (08·四川)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为______.【例6】 等比数列{a n }的首项为a 1=2002,公比q =-12.(Ⅰ)设f(n)表示该数列的前n 项的积,求f(n)的表达式;(Ⅱ)当n取何值时,f(n)有最大值.题型四 求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】 已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2>2成立. 【点评】在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【例8】 (08·湖北)已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.数列与不等式命题新亮点例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数…,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) …,则第50个括号内各数之和为_____.点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设{}n a 是由正数构成的等比数列, 12n n n b a a ++=+,3n n n c a a +=+,则( )A. nn b c > B. n n b c < C. n n b c ≥ D. n n b c ≤点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对(,1]x ∈-∞-,不等式21()2()12x x mm --<恒成立,则实数m 的取值范围( )A. (2,3)-B. (3,3)-C. (2,2)-D. (3,4)-例4四棱锥S-ABCD 的所有棱长均为1米,一只小虫从S 点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n 米后恰好回到S 点的概率为n P (1)求2P 、3P 的值; (2)求证: 131(2,)n nP P n n N ++=≥∈(3)求证: 2365>(2,)24n n P P P n n N -+++≥∈…例5 已知函数()2f x x x =+.(1)数列{}n a 满足: 10a >,()1n n a f a +'=,若11112ni ia =<+∑对任意的n N ∈恒成立,试求1a 的取值范围; (2)数列{}n b 满足: 11b =,()1n n b f b +=()n N ∈,记11n nc b =+,k S 为数列{}n c 的前k 项和, k T 为数列{}n c 的前k 项积,求证1710nk k k kT S T =<+∑. 例6 (1)证明: ()ln1(0)x x x +<> (2)数列{}n a 中. 11a =,且()11211122n n n a a n n --⎛⎫=++≥ ⎪⎝⎭; ①证明: ()724n a n ≥≥ ②()21n a e n <≥ 【专题训练】1.已知无穷数列{a n }是各项均为正数的等差数列,则有( )A .a 4a 6<a 6a 8B .a 4a 6≤a 6a 8C .a 4a 6>a 6a 8D .a 4a 6≥a 6a 82.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则( ) A .b n >c nB .b n <c nC .b n ≥c nD .b n ≤c n3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 6 4.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7 D .6 5.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 6.设S n =1+2+3+…+n ,n ∈N*,则函数f(n)=S n(n +32)S n+1的最大值为( )A .120B .130C .140D .1507.已知y 是x 的函数,且lg3,lg(sinx -12),lg(1-y)顺次成等差数列,则( )A .y 有最大值1,无最小值B .y 有最小值1112,无最大值C .y 有最小值1112,最大值1D .y 有最小值-1,最大值1 8.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A.(-∞,-1]B.(-∞,-1)∪(1,+∞) C.[3,+∞)D.(-∞,-1]∪[3,+∞)9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( )A .1B .2C .3D .410.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n ∈N*都有a n+1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充分比要条件D .既不充分又不必要条件11.{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .2112.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y ∈R ,都有f(x)f(y)=f(x +y),若a 1=12,a n =f(n)(n ∈N*),则数列{a n }的前n 项和S n 的取值范围是 ( ) A .[12,2)B .[12,2]C .[12,1)D .[12,1]13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q 的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd的最小值是________.A.0B.1C.2D.416.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A .若d <0,且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k ∈N*(k <n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k ∈N*,使a k -a k+1和a k -a k -1同号 其中真命题的序号是____________.17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项n a ;(Ⅱ)求{a n }前n 项和S n 的最大值.18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2n +1. 19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -12,n =2,3,4,…. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数. 20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n +2),n =1,2,3,….(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +42b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,2,3,… 21.已知二次函数y =f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N*都成立的最小正整数m22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n =L ,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当nm >时总有0n a <.利用导数处理与不等式有关的问题一、 利用导数证明不等式(一)、利用导数得出函数单调性来证明不等式某个区间上导数大于(或小于)0时,则该单调递增(或递减)。

不等式的几种证明方法及其应用

不等式的几种证明方法及其应用

不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。

证明不等式的几种常用方法

证明不等式的几种常用方法

证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。

中学数学不等式证明的常用策略与技巧

中学数学不等式证明的常用策略与技巧

中学数学不等式证明的常用策略与技巧一、不等式证明常用策略与技巧总览中学数学里不等式证明就像是一场有趣的挑战呢。

有时候我们可以用比较法,这就像是两个人在比大小,把要证明的不等式两边相减或者相除,然后看结果是正的还是负的,或者是大于1还是小于1。

比如要证明a > b,那我们就计算a - b的值,如果这个值大于0,那就说明a确实比b大啦。

还有综合法,这个就像是搭积木,从已知的条件开始,一步一步地推导,最后得出要证明的不等式。

比如说已知a > 0,b > 0,a + b = 1,要证明某个不等式,我们就根据这些已知条件,利用各种数学定理和公式,慢慢地搭出我们想要的结果。

分析法也很有用哦。

它是从要证明的结论出发,倒着推,看需要满足什么条件才能得到这个结论,然后再看这些条件又需要满足什么条件,一直推到已知的条件为止。

这就像是走迷宫,从出口往入口找路。

二、特殊技巧分享1. 放缩法可有趣啦。

我们可以把式子中的某些项放大或者缩小,就像把一个小气球吹大一点或者把一个大气球放一点气。

比如说要证明1 + 1/2 +1/3 + … + 1/n > ln(n + 1),我们可以通过放缩把左边的式子变成一个比较好计算的形式,然后再和右边比较。

2. 换元法就像是给式子换个“衣服”。

如果式子看起来很复杂,我们可以设一个新的变量来代替式子中的一部分。

比如说在证明一些含有根号的不等式时,设x = √a之类的,这样式子就会变得简洁很多,我们就能更容易地进行证明了。

3. 构造函数法也是个好办法。

我们根据不等式的特点构造一个函数,然后利用函数的单调性、极值等性质来证明不等式。

就像是我们创造了一个小工具,然后用这个小工具来解决问题。

三、不同题型中的应用在做具体的题目时,我们得根据题目的类型来选择合适的策略和技巧。

如果是证明两个简单式子大小关系的题目,比较法可能就很管用。

要是题目给了很多已知条件,综合法或者分析法可能就派上用场了。

不等式的证明方法

不等式的证明方法

不等式的证明方法摘要不等式的形式与结构多种多样,其证明方法繁多,技巧性强,也没有通法,所以研究范围极广,难度极大.目前国内外研究者已给出很多不等式的证明方法,已有文献分别就不等式的性质、各种证明方法及应用作了论述.论文以现有研究成果为基础,整理和归纳了常用的不等式证明方法,包括构造几何图形、构造复数、构造定比分点、构造主元、构造概率模型、构造方差模型、构造数列、构造向量、构造函数、代数换元、三角换元、放缩法、数学归纳法,让每一种方法兼具理论与实践性.旨在使学生对不等式证明问题有一个较为深入的了解,进而在解决相关不等式证明问题时能融会贯通、举一反三,达到事半功倍的效果,同时为从事教育的工作者提供参考.关键词:不等式;证明;方法Methods for Proving InequalityAbstract:The form of structure of inequality is diversity, and the proving methods of it are various which requires lots of skills, and there is no common way, so it is a extremely difficult study. Researchers have been given a lot of inequality proof methods at home and abroad, the existing literature, respectively, the nature of inequality, certificate of various methods and application are discussed. The paper on the basis of existing research results and summarizes the commonly used methods of inequality proof, including structural geometry, structure complex, the score point, tectonic principal component, structure, tectonic sequence probability model, structure of variance model, vector construction, constructor, algebra in yuan, triangle in yuan, zoom method, mathematical induction, making every kind of method with both theory and practice. The aim is to make the student have a more thorough understanding on the inequality problems , and in solving the problem of relative inequality proof can digest the lines, to achieve twice the result with half the effort, at the same time provide a reference for engaged in education workers.Key words: inequality; proof; method目录1 引言 (1)2 文献综述 (1)2.1 国内外研究状况 (1)2.2 国内外研究评价 (2)2.3 提出问题 (2)3 构造法 (2)3.1 构造几何图形 (2)3.2 构造复数 (3)3.3 构造定比分点 (4)3.4 构造主元,局部固定 (5)3.5 构造概率模型 (5)3.6 构造方差模型 (6)3.7 构造数列 (7)3.8 构造向量 (8)3.9 构造函数 (8)4 换元法 (10)4.1 代数换元 (10)4.2 三角换元 (11)5 放缩法 (11)5.1 添加或舍弃一些正项(或负项) (12)5.2 先放缩再求和(或先求和再放缩) (12)5.3 先放缩,后裂项(或先裂项再放缩) (13)5.4 放大或缩小因式 (13)5.5 固定一部分项,放缩另外的项 (14)5.6利用基本不等式放缩 (14)6 数学归纳法 (15)7 结论 (16)7.1主要发现 (16)7.2启示 (16)7.3 局限性 (16)7.4 努力方向 (17)参考文献 (18)1引言不等式具有丰富的内涵和突出的地位,并且它与数学理论、现实生活、科学研究有着紧密的联系.加之,不等式的形式与结构多种多样,其证明方法繁多,技巧性强,有些不等式用一般的方法(如比较法、分析法、综合法)很难证出来,或者是论证过程很冗长,亦或根本证不出来[1].于是,人们追寻不等式与其它知识的相互联系,构造新颖巧妙的组合,在不同知识体系的交汇处探究问题,逐步提高知识的“整合”能力,把需证明的不等式加以转换,使之以特殊的行之有效的方法得以证明,在此基础上还要注意从不同角度去分析不等式的结构与特征,应用联系、变化、对立统一的观点恰当地将问题转化,从而使不等式的证明化难为易[10].探讨不等式证明的不同方法是一项有意义的工作,下文通过典型的例题,揭示了一些不等式证明方法在解题中的应用,旨在进一步拓宽人们证明不等式的能力.2文献综述2.1国内外研究状况国内许多专家、学者研究过不等式的证明方法.在其一般方法(比较法、分析法、综合法)的基础上.早在1987年,闻厚贵就在文[1]编著了不等式证法,该书将不等式的证明方法整理归类.1990年,严镇军在文[2]中编著了不等式,该书归纳了不等式的性质、证明技巧以及应用.1987年,易康畏在文[3]中编著了不等式的图解、证明及演绎,该论著利用图解的形式详细的分析证明了不同的不等式.2009年,刘美香在文[4]中讨论了构造概率模型证明不等式.2003年,赵会娟、尹洪武在文[5]中研究了不等式证明的几种特殊方法.2004年,李文标在文[6]中浅谈了证明不等式的几种非常规方法;朱胜强在文[7]中探讨了不等式证明的几类非常规方法.2008年余焌瑞在文[8]中研究了构造法在不等式中的运用.2002王廷文、王瑞在文[9]中讨论了构造函数证明不等式.1997年,王廷文在文[10]中总结了构造法证明不等式.2007年,常椒凤在文[11]中讨论了数学解题中的图形构造法;同年,王保国在文[12]中介绍了不等式证明的六种非常规方法;黄俊峰在文[13]中介绍了利用向量的性质证明不等式.2008年,谭景宝在文[14]中介绍用构造法证明不等式;在文[15]中周燕华就利用转换视角、构造主元证明不等式的方法给出了系统、详尽的举例论证.2008年,耿道永在文[16]中提出了有关不等式的几种新颖构造性证法.2.2国内外研究评价从查到的国内外文献来看,国内外研究者对不等式证明方法介绍了很多,文献[1-17]分别就不等式的性质、不同证明方法及应用作了论述,文献中阐述一种或几种不等式证明方法,一些文献写理论较多,一些文献写例子较多,理论很少,而且许多方法有名称不一而本质一样的情形,如判别式法、构造函数法在形式上都是根据二次函数的性质来进行分解求解的,因此可以归为构造函数法.所以,有必要重新整理和归纳不等式证明方法,让每一种方法兼具理论与实践性.2.3提出问题不等式的证明问题,就其方法而言,没有定法可套,有较大的灵活性和技巧性.而且不等式证明历来是中学、特别是高中数学教学的一个重点和难点.因此在前人研究不等式证明方法的基础上,试图完整地整理出常用的几类方法,使之系统化,并在此基础上探寻新的证明方法.3构造法所谓构造法,就是指通过对条件和结论充分细致的分析,抓住问题的特征,联想熟知的数学模型,然后变换命题,恰当地构造辅助元素,它可以是图形、函数、方程、或其等价命题等,以此架起一座连接条件和结论的桥梁,从而使问题得以解决的数学方法.构造法本质上是化归思想的运用,但它常常表现出简捷、明快、精巧、新颖等特点,使数学解题突破常规,具有很强的创造性.3.1构造几何图形有些不等式若是按常规的代数方法证明,则繁难无比.若是能揭去不等式抽象的面纱,恰当地赋予几何意义,并构造出相应的几何图形,将题设条件及数量关系直接在图形中得到体现,使条件与结论的关系明朗化,就能直观揭露出不等式问题的内在实质,由此获得具体、形象、简洁的证明方法.构造几何图形证明不等式,关键是构造出恰当的几何图形,把不等式由图形来表示出来.常用到“两点间直线段最短”,“三角形中大边对大角”,“三角形两边之和大于第三边”,“直角三角形斜边大于直角边”等几何知识.例1已知正数满足条件,求证:111a b c a b c ,,,,,111a a b b c c k +=+=+=.2111ab bc ca k ++<分析:如果我们把,,均看作三个矩形的面1ab 1bc 1ca 积,看作边长为的正方形的面积,从中构造出前面的这2k k 三个矩形.证明:构造边长为的正方形(如图1),且令k ABCD ,,,,DF a =1DG AH b==AG BH b ==1BE c =1CF a =,并作出相应的矩形Ⅰ,Ⅱ,Ⅲ.由,可得. 图1ABCD S S S S I IIIII >++2111ab bc ca k ++<利用数形结合解题的关键是理解代数式的几何意义,把已知条件或要证不等式中的代数量直观化为某个图形中的几何量,即构造出一个符合条件的几何图形,便可应用该图形的性质及相应的几何知识证明不等式.因此,对于函数的图象和常见曲线要熟记,以便在应用时,能够得心应手,信手拈来.3.2构造复数复数之间不存在大小关系,但复数的模、实部、虚部作为实数,它们之间是可以比较大小的,因此复数的模、实部、虚部各自或彼此之间存在一系列不等关系.构造复数证明不等式的思路是,根据待证不等式和已知条件构造复数,然后代入复数模的不等式中,再把模的不等式化为无理不等式或线段不等式.当求证的不等式中出现“平方和的算术根”的形式的时候很容易联想到复数的模.从而可通过构造复数并利用复数模的性质来证明不等式.121212Z Z Z Z Z Z +≥+≥-例2 设,,.a b c ∈R )a b c +≥++分析:根据求证式的结构特点,联想复数模的性质.121212Z Z Z Z Z Z +≥+≥-证明:构造复数,,,则1Z a bi =+2Z b ci =+3Z c ai =+, , 1Z =2Z =3Z =n,()()123Z Z Z a b c b c a i ++=+++++)b c a b c =+≥++而,所以123123Z Z Z Z Z Z ++≥++.)a b c ≥++构造复数证明不等式有很大的局限性,只有当不等式出现“平方和算术根”时,我们才考虑构造复数.3.3构造定比分点设,是直线上的两点,点是上不同于,的任意一点,则存在一个实数1P 2P l P l 1P 2P 使,叫做点分有向线段所成的比.显然,当点在线段上时,λ21PP P P λ=λP 21P P P 12PP ;当点在线段或的延长线上时,.如果这条直线就是轴,且λ>0P 12PP 21P P λ<0l x ,,在轴上的实数分别为,, (其中),则的充要条1P P 2P x 1p p 2p 12p p <12p p p <<件是.这样,我们就可以将证明一个不等式的问题转化为对一个实数的符号的判λ>0断问题.例3 求证:.()()()()222341221x x x x ---≤≤++分析:此题我们通常用判别式法去证.如果设,,分别是有向4-()()()()2223221x x x x --++1线段上的三点,则可通过定比的值确定内、外分点来证得.λ证明:设,,分别对应数轴上的点,,,分有向线段4-()()()()2223221x x x x --++11P P 2P P 所成的比为,则12PP λ,()()()()()()()()()()222222234221312321221x x x x x x x x x x λ--++++==--+-++所以,或不存在,故点不是的外分点;0λ≥λP 21P P当时,;当时,;当不存0λ>()()()()222341221x x x x ---<<++0λ=()()()()2223221x x x x --=-4++λ在时,.()()()()22231221x x x x --=++综上所述,可知 .()()()()222341221x x x x ---≤≤++3.4构造主元,局部固定一些不等式的证明,若从整体上考虑很难入手,则当条件或结论中出现多个变量时,我们可以选取其中一个变量为主元局部固定,抓住这个主元逐一证明不等式.通常是先暂时固定某些变量,而考查个别变量的变化、结果,然后再确定整个问题的结果.例4 设,函数,求证:当时,.1a ≤()2f x ax x a =+-1x ≤()54f x ≤分析:该问题一般是通过绝对值不等式的几次放缩来证明,但我们若换一个视角,以为主元,将题中关于的函数看成的一次函数,则原命题的陈述方式可改为:一a x a 次函数的最值不超过.()()21g a x a x =-+54证明:设,,.()()21g a x a x =-+[]1,1a ∈-[]1,1x ∈-当,即时,.显然成立.210x -=1x =±()1g a =±()()54f x g a =≤当时,是的一次函数,故只需证明.210x -≠()g a a ()514g ±≤因为,所以,即;()22151124g x x x ⎛⎫=+-=+- ⎪⎝⎭()5114g -≤≤()11g ≤而,所以,即.()22151124g x x x ⎛⎫-=-++=--+ ⎪⎝⎭()5114g -≤-≤()514g -≤综上所述, ,即.()54g a ≤()54f x ≤3.5构造概率模型概率论是研究随机现象的一门数学分支,它既有其独特的概念和方法,又与其它学科分支有着密切的联系.因此在解答有关数学问题时,若能依据题设条件构建概率i 模型,可使这些数学问题简捷巧妙解决.构造概率模型解题,关键在于要找到恰当的概率模型.一旦运用成功,它能从某些方面体现出问题的本质规律和数学的内在美,往往给人以耳目一新的感觉.例5 已知.0,2x π⎡⎤∈⎢⎥⎣⎦2≥分析:原式即,由条件知,.于是只需42sin cos 21sin cos x xx x+≥++0sin 1x ≤≤0cos 1x ≤≤证,亦只需证成立,显然利用概2sin cos 1sin cos x x x x +≥++sin cos sin cos 1x x x x +-≤率模型来证极为简单.证明:设两独立事件和,即,,A B ()sin P A x =()cos P B x =则 ,()()()()P A B P A P B P AB +=+-sin cos sin cos 1x x x x =+-≤于是 .2sin cos 1sin cos x x x x +≥++因为,故,.即得,所以0,2x π⎡⎤∈⎢⎥⎣⎦sin 0x ≥cos 0x ≥42sin cos 21sin cos x x x x +≥++.2≥对于一类涉及与的不等式,常可考虑利用概率性质及加法公式01()01P A ≤≤,()()()()P A B P A P B P AB +=+-或来证.其关()()()()()()()()P A B c P A P B P C P AB P BC P AC P ABC ++=++---+键是求证式要符合概率加法公式的基本形式.3.6构造方差模型方差(其中是个数据,,,的()()()222122n x x x x x x Sn-+-++-=x n 1x 2x nx 平均数),是用于描述数据波动情况的一个量.方差的表达式可以写成.()()222212122n n x x x xx x nS n++++++-=ng显然有(当且仅当时等号成立).利用方差这一变式,我们可20S≥12nx x x x====以通过构造方差来解决一类有关个实数的和与其平方和之间的关系问题.n例6 设,证明:.(2003年全国高中352x≤≤+<联赛试题)证明:设原不等式的左边为()u0u>方差是2S=,()()21114044x u⎡⎤=+-≥⎢⎥⎣⎦352x≤≤所以u≤≤===故,原不等式成立.u<通过构造方差模型,使得复杂的无理不等式的证证明问题得以简捷解决.3.7构造数列一个不等式有时涉及多个变量.如果能根据题设条件将某些变量看成是数列的项.则可借助数列中项之间的关系来沟通变量间的联系,使问题获解.通过构造等比数列或等差数列.将不等式中出现的多个变量都用公比或公差来表示.实现了化多元为一元.从而简化了不等式证明的难度.有些不等式中含有与自然数有关的变量,这时如果将这一变量看成是某一数列的项数,构造数列,则可结合数列的知识来证明不等式.例7 求证:131212654321+<-⋅⋅nnn.分析:这是一道不等式的证明题,若我们总是在不等式的圈子里转悠,问题不能圆满的解决.跳出这个圈子,我们不难发现这是一个自然数有关的命题,那么,解决它的方法不外乎两种,一是利用数学归纳法;二是构造数列.我们来构一个数列{}n a.证明: 令=n a 132********+⋅-⋅⋅n nn ,则()()()()431213222221+⋅++⋅+=⎪⎭⎫⎝⎛+n n n n a a n n =1419281242028122323>++++++n n n n n n 所以,n n a a >+1,从而有,1121=>>>>--a a a a n n n .因此原不等式得证.3.8构造向量向量这部分知识由于独有的形与数兼备的特点,使得向量成了数形结合的桥梁.对于某些不等式的证明,若能依据不等式的条件和结论,将其转化为向量形式,利用向量和及数量积关系式,往往避免复杂的凑配技巧,使证明过程直观n m n m⋅≤⋅而又容易理解.例8 已知,.,a b R +∈1a b +=≤证明:设,,则()1,1=m n =,,.m n ⋅= m =2n = 由,得m n m n ⋅≤⋅≤构造向量时,要充分考虑待证不等式的结构特征,才能有的放矢.3.9构造函数函数揭示了变量之间的对应关系,同样也蕴含着变量之间的不等关系.我们常常利用一次函数的线性性质、二次函数的最值以及函数的单调性等性质证明某些不等式问题.如果能根据题目的条件与所证的不等式的结构特征.合理构造函数,常可使原本复杂的证明变得简便易行.构造函数证明不等式.其关键在于寻找恰当的函数模型.这往往需要将所证的不等式直接改造成函数关系式,或者将其看成某一函数解析式中的系数满足的关系.来探求函数解析式.3.9.1构造一次函数由一次函数的图像可知,如果,,则对一切均b kx y +=()0f m >()0f n >(,)x m n ∈有.我们将这一性质称为一次函数的保号性.利用一次函数的保号性可以证明()0f x >一些不等式.例9 已知、、,求证:.1a <1b <1c <2abc a b c +>++分析:首先将不等式化为并整理得20abc a b c +--->,可将其看成是关于的一次函数式.(1)20bc a b c -+-->a 证明:构造函数,这里、、,则.()(1)2f x bc x b c =-+--1b <1c <1x <1bc <因为,(1)12(1)(1)(1)0f bc b c bc b c -=-+--=-+-+->,(1)12(1)(1)0f bc b c b c =-+--=-->所以,一次函数,当时,图象在轴的上方.这就是()(1)2f x bc x b c =-+--(1,1)x ∈-x 说,当、、时,有,即.1a <1b <1c <(1)20bc a b c -+-->2abc a b c +>++从上例的证明可以看出,构造一次函数证明不等式时,可按下列步骤进行:⑴将不等式先移项使右边为零;⑵将不等号左边的式子整理成关于某一未知数的一次式;x ()0f x >⑶根据的取值范围,确定与的符号,确定当时的符x (,)m n ()f m ()f n (,)x m n ∈()f x 号进而证得不等式.构造一次函数证明不等式,其实质是将一个不等式的证明问题转化为确定解析式某个变量在两个特殊值处的符号问题,从而收到了以简驭繁的效果.3.9.2构造二次函数通过对所证不等式的观察、分析,构造出二次方程.证明中借助于二次方程的判别式,从而使不等式得证.则恒成立的充要条件是,),0(x f 2>++=a c bx ax )(设二次函数02≥++c bx ax ,根据这一等价关系,我们可以将关于其中一个不等式的证明转化为对0ac 4-b 2≤=∆另一个不等式的证明.例10 若,求证:.b a 10<<112+<-a b b分析:结论即,可将左式看成是以为主元的二次函数(其中0112>++-a b b b ),再予以证明.aa 10<<证明:令,由,得.构造二次函数x b =b a 10<<)1,0(ab x ∈=.其对称轴为.1,0(,11)(2a x a x x x f ∈++-=21=x ⑴当,即时,f(x)在(0,a1)上单调递减.211≤a 2≥a 于是 =)1(1111122+=++-a a a a a 0)(x f >)(a 1f >⑵当,即时,211>a 20<<a 有 041-1121()(>+=〉a f x f 综上,当时,恒成立,即不等式成立.1,0(a x ∈011)(2>++-=a x x x f 112+<-a b b 4换元法通过对所证不等式添设辅助元素,使原来的未知量(或变量)变换成新的未知量(或变量),从而更容易达到证明的目的,这种证明不等式的方法称之为换元法.换元法多用于条件不等式的证明,换元法分为代数换元和三角换元.此法证明不等式的一般步骤是:(1)认真分析不等式,合理换元;(2)证明换元后的不等式;(3)得证后,导出原不等式.4.1代数换元对于那些具有一定结构特点的代数式,可以巧设某些代数式换元,把冗长而又复杂的不等式化为简单明了的代数式,则可简洁明快的解决问题.例11 设求证:.,,,+∈R c b a ()()()c b a b a c a c b abc -+⋅-+⋅-+≥分析:经过观察,我们发现,把中的两个互换,不等式不变,说明这是一个对称c b a ,,不等式,如果我们令则原不等式可化为:=-+=y a c b x ,,b a c -+,c b a z -+=.()()()xyz x z z y y x 8≥+⋅+⋅+这是一个较简单而且容易与已知不等式联系的不等式,因而可以按上述换元证明不等式.证明:令,则c b a z b a c y a c b x -+=-+=-+=,,,.()z y a +=21(),21z x b +=()y x c +=21时,有;,,,+∈R c b a 0<∴xyz 当()()()xyz x z z y y x 8≥+⋅+⋅+当时,有(否则中必有两个不为正值,不妨设,0>xyz +∈R z y x ,,z y x ,,0≤x ,则,这与矛盾),0≤y 0≤c 0>c 因此,02>≥+xy y x ,02>≥+yz z y ,02>≥+zx x z ,()()()xyz x z z y y x 8≥+⋅+⋅+综上所述,恒有,()()()xyzx z z y y x 8≥+⋅+⋅+把代入上式得: z y x ,,()()()c b a b a c a c b abc -+⋅-+⋅-+≥4.2三角换元三角换元除了要正确换元外,还要熟练掌握三角函数的诱导公式以及三角函数的有界性等必要知识.对于含有根式的不等式或带有绝对值符号的不等式,可用三角换元法.把问题变成了熟悉的求三角函数值域.为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要.如变量x 、y 适合条件时,则可作三角代换、化为三角问题.)(0r r y x 222>=+θrcos x =θrsin y =例12 若求证: .,122≤+y x 2222≤-+y xy x 分析:由知点在圆的内部或边界上,因此可以考虑变换:,122≤+y x ()y x ,122=+y x .,sin θr x =θcos r y =()πθ20,10<≤≤≤r 证明:设 , 则,sin θr x =θcos r y =()πθ20,10<≤≤≤r .222y xy x -+θθ2sin 2cos 2+=r ⎪⎭⎫ ⎝⎛-≤42cos 22πθr 22r ≤2≤5放缩法在不等式证明中,经常用“舍掉一些正(负)项”而使不等式的各项变小(大),或在分式中利用放大或缩小分式的分子、分母,从而达到证明的目的.这种证明不等式的方法称之为放缩法.在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果.但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象.因此,使用放缩法时,如何确定放缩目标尤为重要.要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点.掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法.5.1添加或舍弃一些正项(或负项)若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负值,多项式的值变小.由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的.例13 已知求证:*21().n n a n N =-∈*122311...().23n n a a an n N a a a +-<+++∈证明: 111211111111.,1,2,...,,2122(21)2 3.222232k k k k k kk k a k n a +++-==-=-≥-=--+- 1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈本题在放缩时就舍去了,使分式值变小,从而使和式得到化简.22k -5.2先放缩再求和(或先求和再放缩)若分子, 分母同时存在变量, 要设法使其中之一变为常量.分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.具体可根据题目特征,选择先放缩再求和(或先求和再放缩).例14函数f (x )=,求证:f (1)+f (2)+…+f (n )>n +.xx 414+)(2121*1N n n ∈-+分析:此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.证明:由f(n)= =1-nn414+1111422n n>-+⋅得f(1)+f(2)+…+f(n)>n22112211221121⋅-++⋅-+⋅-.)(2121)2141211(41*11Nnnnnn∈-+=++++-=+-评注:本题通过左边的合理变形和放缩,最终和右边式子的结构特征一致,轻松得到了所证结果.5.3先放缩,后裂项(或先裂项再放缩)若不等式证明中涉及较复杂的分式,可根据题目特征,对分式作适当的放缩,以便于裂项化简分式(或先裂项再放缩),达到证明目的.例15 已知a n=n ,求证:<3.∑nk=1证明:<1+∑nk=∑nk=∑nk=2<1+=∑nk=21nk=+=1+ (-)∑nk=2=1+1-<2<3.评注:本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.5.4放大或缩小因式若因式中存在变量时,可以选择适当放缩使其中一部分变为常量,具体可根据题目特征选择放大或缩小因式.例16 已知数列满足求证:{}na2111,0,2n na a a+=<≤1211().32nk k kka a a++=-<∑n证明 22112131110,,,.2416n na a a a a a +<≤=∴=≤≤ 2311,0,16k k a a +∴≥<≤≤当时1211111111()()().161632nn k k k k k n k k a a a a a a a ++++==∴-≤-=-<∑∑评注:本题通过对因式放大,而得到一个容易求和的式子,最终2k a +11()nk k k a a +=-∑得出证明.例17 设)1(433221+++⨯+⨯+⨯=n n a n 求证:2)1(2)1(2+<<+n a n n n 证明:∵ n n n n =>+2)1(212)21()1(2+=+<+n n n n ∴ 212)1(+<+<n n n n ∴ , ∴2)12(31321++++<<++++n a n n 2)1(2)1(2+<<+n a n n n 评注:本题利用,对中每项都进行了放缩,从而得到可以212n n +<<n a 求和的数列,达到化简的目的.5.5固定一部分项,放缩另外的项一些不等式的证明,如若从整体考虑很难入手,通常可以先暂时固定某些项,而通过放缩个别项来达到化简和证明的目的.例18 求证:2222111171234n ++++< 证明:21111(1)1n n n n n<=---2222211111111151171()().1232231424n n n n ∴++++<++-++-=+-<- 评注:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处.5.6利用基本不等式放缩针对一些特殊形式的不等式,我们可以运用基本不等式(例:)m na a≤+进行放缩求解.例19 已知对任何正整数都成立.54na n=-1>m n,,只要证.1>51mn m na a a>++因为,,54mna mn=-(54)(54)2520()16m na a m n mn mn=--=-++故只要证5(54)12520()16mn mn m n->+-+++即只要证202037m n+->因为,558m na a m n≤+=+-558(151529)m n m n<+-++-202037m n=+-所以命题得证.评注:本题通过化简整理之后,再利用基本不等式由放大即可.m na a≤+6数学归纳法一个与自然数n有关的数学命题,如果:(1)能证明当(是使命题成立的最小整数)时,命题成立;kn=k(2)假设当(的任意正整数)时,命题成立,证明当时,命kn=kk≥1kn+=题成立.那么可以断言,这个数学命题对所有自然数n都成立.这种证明不等式的方法称之为数学归纳法.例20 证明不等式 (n ∈N).nn2131211<++++证明:①当n=1时,左边=1,右边=2.左边<右边,不等式成立.②假设n=k时,不等式成立,即.kk2131211<++++那么当n=k+1时,11131211++++++k k1112112+++=++<k k k k k .()()12112111+=++=++++<k k k k k k 这就是说,当n =k +1时,不等式成立.综上所述:由①、②可知,原不等式对任意自然数n 都成立.评注:这里要注意,当n =k +1时,要证的目标是,当代入归纳假设后,就是要证明:1211131211+<++++++k k k .12112+<++k k k 7结论7.1主要发现不等式的证明问题,就其方法而言,没有定法可套,有较大的灵活性和技巧性.而且不等式证明历来是中学、特别是高中数学教学的一个重点和难点.本文系统地归纳整理了几大类不等式的证明方法.如若学生在掌握不等式的基础知识以后,能够灵活应用文中几类方法,以其为指导,不等式问题将能够迎刃而解,使得解决不等式问题时思路清晰,运算简便.尤其是应用构造法,架起一座连接条件和结论的桥梁,在解决一些非常规不等式时作用很大.7.2 启示从文中可以看出不等式与几何图形、复数、概率、方差、数列、向量、函数有着密切的联系,在处理不等式问题时,若能灵活运用这些思想与方法,则会取得事半功倍的效果.教师在讲解具体数学内容和方法时,应该高度重视不等式方法的挖掘和渗透,重视理论和实践的结合,让学生切实领悟其价值,滋生应用的意识.同时学生在解题和学习的过程中也应认真思考,发现和归纳不等式的新方法.7.3局限性本文把理论和实践相结合,归纳了几类不等式证明的方法在解题中的应用,其中主要工作属归结概括,在一些方面存在局限性,一是在不同知识体系间寻求“交汇”跨度大、难度高,不易发现其中的本质联系;二是由于本文整理归纳了较多不等式的证明方法,多则不精,广而不深.7.4努力方向不等式的证明方法种类繁多,不同知识体系间的跨度大、难度高.在教学实践中,并不是短时间可以全部学习掌握的,需要长期学习并积累,而对于不等式的证明方法新的研究与发展,则要在大量的实践中不断摸索.。

不等式证明中的换元法

不等式证明中的换元法

数学竞赛辅导资料 不等式证明中的换元法不等式的证明因其方法灵活多变,综合性强而成为高中数学的一个难点,在各类数学竞赛中,不等式的证明问题是一个热点。

所谓换元法,就是将所要证明的不等式中的字母作适当的代换,变换数学式的形式,以显化其内在结构的本质,从而达到简化证题的过程。

一、 均值换元法若题中有X a a a n =+++ 21的条件时,常可考虑作如下换元,设),,2,1(n i t n X a i i =+=,此时021=++n t t t ,由于nX 是n a a a ,,,21 的平均值,故称之为均值换元法。

例 1 已知e d c b a ,,,,是满足16,822222=++++=++++e d c b a e d c b a 是实数,求证:5160≤≤e二、 三角换元法三角换元是指将不等式中的字母换成角的三角函数形式,再运用三角知识解题。

例2 实数y x ,满足55422=+-y xy x ,求证:310131022≤+≤y x 。

三、 增量换元法若b a ≥,可设t b a +=,其中t 为增量,故这种换元叫做增量换元法。

例3 已知c b a >>,求证:ca cb b a -≥-+-411。

四、 整体换元法有些不等式的证明,若从局部入手困难,不妨把整体看作一个元来处理,这就是整体换元。

例4 求证:3tan sec tan sec 312222≤+-≤xx x x五、 分式换元法对于含有约束条件121=+++n a a a 的某些不等式,可考虑换元:),,,2,1(21n i a ni i =++=αααα由于把不等式中的字母换成了分式,故称之为分式换元法。

例5 已知+∈R x x x x 4321,,,,且1111111114321=+++++++x x x x ,求证:814321≥x x x x 。

六、 分母换元法一些分母复杂的分式不等式的证明,可考虑将分母换元,以使分母变得简洁些,进而把问题解决,故称此法为分母换元法。

运用换元法证明不等式的步骤

运用换元法证明不等式的步骤

思路探寻成立.对于此类问题,我们只需引入新的变量,便可使问题中的代数关系变得更加明朗,将问题转化为简单的代数运算问题.例3.若x ,y 满足方程xy =100,x ≥10,y ≥10,请证明:34≤lg(y lg x )≤1.分析:该目标不等式比较复杂,我们需通过换元将该不等式化简,令μ=lg(y lg x),把含两个变量的式子转化为只含一个变量的式子,将其看作关于lg x 的二次函数式,借助二次函数式的单调性来求得最值,从而证明不等式成立.证明:设μ=lg(y lg x)=lg x lg y .因为x ,y 满足xy =100,因此y =100x,则μ=lg x (2-lg x ),又由x ≥10,y ≥10可知,lg x ≥12,lg 100x ≥12,即lg x ≤32.所以lg x ∈[12,32],令lgx =t ,则μ=-(t -1)2+1,函数在(12,1)上单调递减,(1,32)上单调递增.所以当lg x =1时,则x =10,y =10,μ=lg x lg y =1取得最大值为1;当lg x =12或lg x =32时,则x =10,y =1010或者x =1010,y =10,μ=lg x lg y 取得最小值为34.综上,34≤lg(y lg x )≤1成立.由此可见,运用换元法证明不等式,关键在于合理进行换元,其一般步骤为:1.观察题目中的已知关系式和所求目标式,明晰它们之间的联系,如是否存在导数关系、倍数关系、互余关系等;2.选择合适的式子进行换元,将原不等式用含有新元的式子表示出来;3.再对换元以后的式子进行化简,借助基本不等式、函数的单调性、导数法等证明不等式成立.换元法的适用范围较广,可以使较复杂的题目简单化,使数学式之间的关系变得清晰明了,将问题化繁为简,因此同学们要熟练掌握该方法,将其灵活地应用于解题中.(作者单位:山东省日照第二中学)53Copyright©博看网 . All Rights Reserved.。

浅谈不等式的证明方法与技巧

浅谈不等式的证明方法与技巧

浅谈不等式的证明方法与技巧也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。

不等式的证明变化大,技巧性强,它不但能够检验学生数学基础知识的掌握水准,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。

一、不等式的初等证明方法1.综合法:由因导果。

2.分析法:执果索因。

基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。

(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”实行表达。

3.反证法:正难则反。

4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。

放缩法的方法有:(1)添加或舍去一些项,如:(2)利用基本不等式,如:(3)将分子或分母放大(或缩小):5.换元法:换元的目的就是减少不等式中变量,以使问题化难为易、化繁为简,常用的换元有三角换元和代数换元。

6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。

证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。

7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。

8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,能够考虑构造相关几何图形来完成,若使用得好,有时则有神奇的功效。

9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的。

10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。

当a>0时,f(x)=ax2+bx+c>0(或<0).△<0(或>0)。

当a<0时,f(x)>0(或<0).△>0(或<0)。

二、部分方法的例题1.换元法换元法是数学中应用最广泛的解题方法之一。

有些不等式通过变量替换能够改变问题的结构,便于实行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。

不等式的八种证明方法及一题多证

不等式的八种证明方法及一题多证

不等式的证明:一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种: 1.作差比较法方法:欲证A>B,只需要证A-B>0 步骤:“作差----变形----判断符号”。

使用此法作差后主要变形形式的处理:○将差变形为常数或一个常数与几个平方和的形式常用配方法或实数特征a2≥0判断差的符号。

○将差变形为几个因式的积的形式,常用因式分解法。

○若变形后得到二次三项式,常用判别式定符号。

总之,变形的目的是有利于判断式子的符号,而变形方法不限定,也就是说,关键是变形的目标。

2.作商比较法方法:要证A>B,常分以下三种情况:若B>0,只需证明1AB >; 若B=0,只需证明A>0; 若B<0,只需证明1AB<。

(3)步骤:“作商-----变形-----判断商数与1的大小” 例:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b - a > 0 ∴0)()(>+-m b b a b m 即:b a m b m a >++ 例:已知a>b>0,求证:()2a ba ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba ababb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>例:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。

高中数学证明不等式的九种常用方法

高中数学证明不等式的九种常用方法

ab-a-b+1≥a+b-3 即ab≥a+b+(a+b-4) ∵a≥2,b≥2 ∴a+b-4≥0 ∴ab≥a+b 当且仅当a=b=2时等号成立 证毕
6 Math Part
构造法
6 Math Part 构造法
构造法:通过构造函数、图形、方程、数列、 向量等来证明不等式的方法。
本题我们使用构造函数和几何图形两种方法 来说明构造法的使用。
=a(b-1)-(b-1)-1
∴ab-a-b≥0
=(a-1)(b-1)-1
即ab≥a+b
∵a≥2,b≥2
证毕
2 Math Part
综合法
2 Math Part 综合法
综合法:综合法是从命题的已知条件出发, 利用公理、已知定义及定理,逐步推导,从 而最后推导出要证明的命题。
2 Math Part 综合法
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b
∴(a-1)(b-1)<1

∵a≥2,b≥2
∴a-1≥1,b-1≥1
∴(a-1)(b-1)≥1
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不

换元法解一元二次不等式

换元法解一元二次不等式

换元法解一元二次不等式好啦,今天咱们聊聊一元二次不等式的换元法。

听起来是不是有点儿学术,没关系,咱们轻松点儿,像聊天一样。

想象一下,这个不等式就像一位调皮捣蛋的孩子,时不时地要跟你耍脾气,让你想办法安抚他。

换元法就像是个魔法师,让你变身成更聪明的自己,轻松搞定这些麻烦。

什么是一元二次不等式呢?简单来说,就是形如ax² + bx + c > 0的表达式。

哎呀,别怕,听起来复杂,其实就像是你在逛街,前面有个大商场,你想进去,但得看看门口的指示牌。

指示牌上的数字就是a、b、c的系数,让你知道该往哪个方向走。

比如,a是商场的门面,b是商场的活动,而c就像是你兜里的钱,能不能进去全看这几样的配合。

好啦,咱们来讲换元法。

你知道吗?换元就像是在换衣服,今天你可能想穿红色的T恤,明天又想换成蓝色的外套。

换元法的核心就是把复杂的东西变得简单。

假设你有个一元二次的不等式,咱们可以先把x²替换成y,比如y = x²。

嘿,你看,这样一来,不等式就变成了ay + by + c > 0。

这个y就像是你的小伙伴,陪你一起去冒险,让一切都变得容易了许多。

我们就可以分析这个不等式了。

就像是你在朋友的聚会上,大家围坐在一起聊天,讨论哪个话题最火。

先找出这个y的零点,咱们可以求出y的值,看看y在哪儿发生变化。

其实就是找y = 0的情况,找到那些分界线。

就像在比赛中,裁判会划出界限,告诉你哪儿算进,哪儿算出。

找到零点后,咱们再看看这个不等式是怎样分布的。

就像是在看一场足球比赛,场上球员的位置很重要。

咱们可以把y的范围分成几个区间,分别检查这些区间里的数值。

挑出适合的,就像在挑选最喜欢的零食,甜的、咸的,看看哪个最合你的胃口。

通过代入这些数值,你就能知道哪些区间让不等式成立,哪些又是没戏的。

然后,再把y换回x,别担心,这就像是把你的衣服脱掉,再换上你最爱的那套。

这时候,你就能找到最终的解了。

真是痛快!这就好比经过一番努力,终于找到了一家味道绝佳的餐馆,心满意足地享用美食。

浅谈不等式证明题的常用方法与技巧

浅谈不等式证明题的常用方法与技巧

课程篇”肉谈不等式证朗题的常用方出与技巧李阳刚(贵卅省长顺县民族高级中学,贵州长顺)摘要:一般来说,不等关系以及相等关系是数学中最为基本的数量关系。

不等式的内容在高中数学的教学内容中占据着重要的比重,它是高中数学非常重要的知识点,在日常生活、学习中不等式的证明方法以及相关的应用都会得到相应的体现。

在高中不等式的教学过程中,不等式的证明方法是丰富多样的。

主要介绍了一些能够有效证明常见不等式的解题思路和技巧,希望对学生解决不等式问题有一些帮助。

关键词:不等式证明;方法与技巧;教学策略不等关系是在客观世界中广泛存在的一种基本关系,其中,:各种类型的不等式在现代数学的各个领域中都应用得较为广泛。

]不等式.即利用不等号或者是“#”)来表示不等式关系的1式子。

在高中数学不等式的证明过程中,其证明方法都有相对应:的技巧和模式,利用绝对值来求解不等式、结合分段讨论的方法:求解不等式法、综合法、放缩法、比较法、换元法等都是证明和求:解不等式的简便方法。

因此,在数学的学习过程中,教师要引导学;生结合不等式题型的特点,合理地选用不等式证明方法和技巧,1通过简便的途径来有效地解决问题,提高解题效率。

以下我们就:来实际列举一些不等式证明的常见方法与技巧。

一、利用绝对值解不等式在高中数学的不等式解题过程中,处理绝对值样式的不等式的解题思路在于将绝对值不等式转化为非绝对值的不等式。

绝对:值本质上表示数轴上的点位于原点之间的距离,所以教师只有帮1助学生清晰地认知绝对值的含义,才能够帮助学生在理解的基础1上,透彻地掌握绝对值解不等式的解题思路,有效地证明不等式。

1例如,在证明“不等式|乂-3|-|乂+5卜2成立”的过程中,|x-3|:可以表示为数轴上的点到3的距离,那么相应的b+5|就表示为数轴上的点到点-5之间的距离。

那么,不等式b-3|-h+5卜2的■解则会体现在数轴中.所以,教师就可以引导学生:数轴上的点距[离3的长度与点到-5的长度之差能够大于2的所有点都满足这[个不等式的解,则有了以下证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

换元法证明不等式
换元法证明不等式已知a,b,c,d都是实数,且满足a^2+b^2=1,c^2+d^2=4,求证:|ac+bd|≤2
a=cosA,b=sinA
c=2cosB,d=2sinB
|ac+bd|=2|cosAcocB+sinAsinB}=2|cos(A-B)|
得证
若x+y+z=1,试用换元法证明x+y+z≥1/3
解法一:(换元法)
证明:因为
(x-1/3)^2+(y-1/3)^2+(z-1/3)^2≥0
展开,得
x^2+y^2+z^2-2/3*(x+y+z)+3*1/9≥0
x^2+y^2+z^2-2/3+1/3≥0
x^2+y^2+z^2≥1/3。

其中等号当且仅当x=y=z=1/3时成立
解法二:
因为:x+y+z=1
所以:(x+y+z)=1
化解为:x+y+z+2xy+2xz+2yz=1
又因为:
x+y≥2xy;
x+z≥2xz;
y+z≥2yz;
所以x+y+z+2xy+2xz+2yz=1固x+y+z≥1/3
例1:已知a+b+c=1,求证:a2+b2+c2≥1/3
证明:令a=m+1/3,b=n+1/3,c=t+1/3,则m+n+t=0
∴a2+b2+c2=(m+1/3)2+(n+1/3)2+(t+1/3)2
=m2+n2+t2+2(m+n+t)/3+1/3
=m2+n2+t2+1/3
∵m2+n2+t2≥0,∴a2+b2+c2≥1/3 得证。

换元的目的:转化、化简已知条件,使已知条件更易于使用。

例2:已知a>b>c,求证:1/(a-b)+1/(b-c)≥4/(a-c)
证明:令x=a-b,y=b-c,则a-c=x+y且x>0,y>0
∴原不等式转化为:1/x+1/y≥4/(x+y)
因此,只要证明:(x+y)/x+(x+y)/y≥4
只要证:1+y/x+1+x/y≥4
只要证:y/x+x/y≥2,而y/x+x/y≥2恒成立。

∴1/(a-b)+1/(b-c)≥4/(a-c) 得证。

换元的目的:
化简、化熟命题,把复杂的、不熟悉的命题化为简单的、熟悉的命题。

例3:已知(x2-y2+1) 2+4x2y2-x2-y2=0,求证:(3-√5 )/2≤x2+y2≤(3 +√5 )/2
证明:令x2+y2=t
由(x2-y2+1) 2+4x2y2-x2-y2=0整理得:
(x2+y2) 2-3(x2+y2)+1=-4x2
∴(x2+y2) 2-3(x2+y2)+1≤0
∴t2-3t+1≤0,解之得:(3-√5 )/2≤t≤(3 +√5 )/2
∴(3-√5 )/2≤x2+y2≤(3 +√5 )/2 得证。

换元的目的:转化条件,建立条件与结论间的联系。

例4:已知x-1=(y+1)/2=(z-2)/3,求证:x2+y2+z2≥59/14
证明:设x-1=(y+1)/2=(z-2)/3=k,
则x=k+1,y=2k-1,z=3k+2
∴x2+y2+z2=(k+1) 2+(2k-1) 2+( 3k+2) 2
=14k2+10k+6
=14(k2+5k/7)+6
=14(k+5/14) 2+59/14≥59/14
∴x2+y2+z2≥59/14 得证。

换元的目的:减少未知数的个数,直接利用已知条件。

例5:已知a>0,求证:(a+(a+(a+(a+…+a 0.5) 0.5) 0.5) 0.5) 0.5证明:设t1=a 0.5,t2=(a+a 0.5) 0.5,……,tn=(a+(a+(a+(a+…+a 0.5) 0.5) 0.5) 0.5) 0.5
tn=(a+ tn-1) 0.5
tn2=a+ tn-1,且tn>0,而tn> tn-1
∴tn20
∴tn换元的目的:转换、化简命题
例6:已知a≥c>0,b≥c,求证:√c(a-c)+√c(b-c) ≤√ab
证明:要证明原不等式,只要证明:
√c(a-c)/ ab +√c(b-c)/ ab ≤1
只要证明:√(c/b)(1-c/a) +√c/a(1-c/b) ≤1
令sinα= √c/b ,sinβ=√c/a ,且α、β∈(0,π]
只要证明:sinαcosβ+cosαsinβ≤1
只要证明:sin(α+β)≤1,而sin(α+β)≤1显然成立
∴原不等式得证。

换元的目的:利用两个正数的和等于1进行三角换元,可以将原问题得到极大
程度的化简,在各种命题的解题中有着广泛的应用。

例7:已知a2+b2=c2,且a、b、c均为正数,求证:an+bn2且n ∈N
证明:设a=csinα,b=ccosα。

α∈(0,π/2)
则:an+bn=cnsinnα+ cncosnα=cn (sinnα+ cosnα)
∵0
来源网络搜集整理,仅作为学习参考,请按实际情况需要自行编辑。

相关文档
最新文档