材料力学性能第二章

合集下载

工程材料力学性能第二章

工程材料力学性能第二章
❖ 6〕不仅适用于脆性也适用于塑性金属材料。
❖ 7〕 缺点 外表切应力大,心部小,变形不均匀。
二、扭转实验 扭转试样:圆柱形式〔d0=10mm,L0=50m或100mm〕 试验方法:对试样施加扭矩T,相对扭转角以Φ表示
弹性范围内外表的切应力和切应变
扭转试验可测定以下主要性能指标: (1) 切变模量G
在弹性范围内,Kt的数值决定于缺口的几何形状和 尺寸 与材料性质无关.
❖ 2.厚板: ❖ εz=0, σz≠0 ❖ 根部:两向拉伸力状态, ❖ 内侧:三向拉伸的立体应力平面应变状态, ❖ σz =ν〔σy+σx〕 ❖ σy>σz >σx
3.缺口效应: 1〕根部应力集中 2〕改变缺口的应力状态,由单向应力状态改变为两
思考题: ❖ 1 缺口效应及其产生原因; ❖ 2 缺口强化; ❖ 3 缺口敏感度。

第六节 硬度
前言 •古时,利用固体互相刻划来区分材料的软硬 •硬度仍用来表示材料的软硬程度。 •硬度值大小取决于材料的性质、成分和显微组织,测
量方法和条件不符合统一标准就不能反映真实硬度。 •目前还没有统一而确切的关于硬度的物理定义。 •硬度测定简便,造成的外表损伤小,根本上属于“无
可利用扭转试验研究或检验工件热处理的外表质量和各 种外表强化工艺的效果。
❖ 4)扭转时试样中的最大正应力与最大切应力在数值 上大体相等,而生产上所使用的大局部金属材料的 正断抗力 大于切断抗力 ,扭转试验是测定这些材 料切断抗力最可靠的方法。
❖ 5〕根据扭转试样的宏观断口特征,区分金属材料 最终断裂方式是正断还是切断。
油孔,台阶,螺纹,爆缝等对材料的性能影响有以下 四个方面: ❖ 1 缺口产生应力集中 ❖ 2 引起三向应力状态,使材料脆化 ❖ 3 由应力集中产生应变集中 ❖ 4 使缺口附近的应变速率增高

材料力学第二章

材料力学第二章

拉伸和压缩是杆件基本受力与变形形式 中最简单的一种,所涉及的一些基本原理与方 法比较简单,但在材料力学中却有一定的普遍 意义。
承受轴向载荷的拉(压)杆在工程中的应用 非常广泛。
一些机器和结构中所用的各 种紧固螺栓,在紧固时,要对螺 栓施加预紧力,螺栓承受轴向拉 力,将发生伸长变形。
承受轴向载荷的拉(压)杆在工程中的应用 非常广泛。
FN F A A
0 , max p sin cos sin sin 2 45 , max 2
2
A A F F F cos F F F p cos cos A A A p 2 k
一 试 件 和 实 验 条 件
常 温 、 静 载
材料压缩时的力学性能
二 塑 性 材 料 ( 低 碳 钢 ) 的 压 缩
p —
S —
比例极限
e —
弹性极限
屈服极限 E --- 弹性摸量
拉伸与压缩在屈服 阶段以前完全相同。
材料压缩时的力学性能
三 脆 性 材 料 ( 铸 铁 ) 的 压 缩 脆性材料的抗拉与抗压性质不完全 相同 压缩时的强度极限远大于拉伸时的 强度极限 bc bt
观察变形:
横向线ab、cd仍为直线,且仍垂直于杆轴 线,只是分别平行移至a’b’、c’d’。
F
a b
a
b
c
d
c d
F
平面假设—变形前原为平面的横截面, 变形后仍保持为平面且仍垂直于轴线。
直杆轴向拉伸或压缩时横截面上的内力和应力
从平面假设可以判断: (1)所有纵向纤维伸长相等
(2)因材料均匀,故各纤维受力相等 (3)内力均匀分布,各点正应力相等,为常量

材料力学性能知到章节答案智慧树2023年西安工业大学

材料力学性能知到章节答案智慧树2023年西安工业大学
34.在循环应力加载过程中,如果材料出现的应力集中越明显,则应力集中处的贝纹线间距()。
参考答案:
越宽
35.典型疲劳断口具有3个特征区分别为()。
参考答案:
疲劳裂纹扩展区
;疲劳源
;瞬断区
36.疲劳条带和贝纹线均属于疲劳断口的微观特征形貌。()
参考答案:

37.同种材料不同应力状态下,表现出的应力~寿命曲线是不同的,相应的疲劳极限也不相同。一般而言,对称弯曲疲劳极限()对称拉压疲劳极限。
参考答案:

26.线弹性断裂力学研究方法之一是应力应变分析方法,与之相对应的是()判据。
参考答案:
K
27.要测量金属材料的断裂韧性(断裂韧度)KIC,中国国家标准中规定了四种试样,下列中不属于这四种试样的是()。
参考答案:
标准四点弯曲试样
28.奥氏体钢的KIC比马氏体钢的高。)
参考答案:

29.对于过共析钢而言,如果沿晶界析出二次渗碳体的数量逐渐增多,则该材料的KIC()。
参考答案:
晶粒大小
;金相组织
;加载速度
第四章测试
23.裂纹扩展的基本形式有()。
参考答案:
滑开型
;张开型
;撕开型
24.某材料的KIC=50MPa·m^-1/2,承受1000MPa的拉应力,假设K=1.2σ(πa)^1/2,该试样的临界裂纹尺寸是()。
参考答案:
1.1mm
25.应力场强度因子,综合反映了外加应力和裂纹长度、裂纹形状对裂纹尖端应力场强度影响,是材料本身固有的力学性能。()
参考答案:

59.两表面完全分开,形成液体与液体之间的摩擦是流体摩擦。()
参考答案:

材料力学第二章

材料力学第二章
圣维南原理Saint-Venaes
拉压杆横截面上的应力Stresses over the cross section 1.试验观察 Experimental observation
变形后横线仍为直线,仍垂直于杆件轴线,只是间距增大. Transversal line after deformation : straight; perpendicular to the axis.
E= tanα -elastic modulus 弹性模量
1.等直杆或小锥度杆Straight bar(or stepped bar) with uniform section, or with small taper ; 2.外力过轴线 The applied force P acts through the centroid of the cross section; 3.当外力均匀地加在截面上,此式对整个杆件都 适用,否则仅适用于离开外力作用处稍远的截面 The normal stress distribution in an axially loaded member is uniform, except in the near vicinity of the applied load (known as Saint-Venant's Principle) .
§4~5 Mechanical Properties of Materials
材料的力学性能 拉伸试验与应力-应变图Tensile Tests and Stress-Strain Diagram 低碳钢拉伸应力-应变曲线Tensile Stress-Strain Curve for Mild Steel 卸载与再加载路径Unloading and Reloading Path 名义屈服极限Conditional Yield Limit 脆性材料拉伸应力-应变曲线Stress-Strain Curves for Brittle Materials 复合与高分子材料的力学性能Strength Properties of Composite Materials

《材料力学》第二章

《材料力学》第二章

F
F
F
F
横截面上 正应力分
横截面间 的纤维变
斜截面间 的纤维变
斜截面上 应力均匀
布均匀
形相同
形相同
m
分布
F
m
p
Page24
第二章 轴向拉压应力与材料的力学性能 s t
n
F p
n p
FN FN p s 0 cos A A / cos
s p cos s 0 cos 2 s t p sin 0 sin 2
二、材料拉伸力学性能 低碳钢Q235
s
D E A
o
线弹性 屈服
硬化
缩颈
e
四个阶段:Linear, yielding, hardening, necking
Page32
第二章 轴向拉压应力与材料的力学性能
低碳钢Q235拉伸试验 线性阶段
s
B A
规律:
s Ee (OA段)
变形:变形很小,弹性 特征点:s p 200MPa (比例极限)
应力——应变曲线(低碳钢)
思考:颈缩阶段后,图中应力为什么会下降?
Page37
第二章 轴向拉压应力与材料的力学性能
名义应力与真实应力
真实应力曲线 名义应力曲线 名义应力
FN s A
变形前截面积
颈缩阶段载荷减小,截面积也减小,真实应力继续增加
Page38
第二章 轴向拉压应力与材料的力学性能
低碳钢试件在拉伸过程中的力学现象
材料力学应力分析的基本方法:
•试验观察
•几何方程
e const 变形关系
•提出假设
•物理方程
s Ee

第二章钢筋和混凝土材料的力学性能1解读

第二章钢筋和混凝土材料的力学性能1解读
•塑性要求:保证结构延性,给人以破坏的预兆。伸长率和冷弯 要求
2024/10/12
一、钢筋的物理力学性能
钢筋的力学性能指标 Index of mechanical properties of materials
强度指标
Index of strength
塑性指标
Index of deformation
fy --屈服强度 yielding strength
fu ---极限抗拉强度 ultimate tensile strength
stage
下屈服点
0.2%
有明显流幅的钢筋 Mild steel
无明显流幅的钢筋 Hard steel
钢筋受压和受拉时的应力-应变曲线几乎相同
河南理工大学土木工程学院
2024/10/12
一、钢筋的物理力学性能
强度指标Strength index
Steel reinforcement with stage of flow
2. 钢筋的分类(Types of reinforcing bar)
按化学成分(Chemical composition)
低碳钢(含碳量<0.25%) 含碳量越高,
碳素钢Carbon Steel (铁、碳、硅、锰、 硫、磷等元素)
强度越高,但
中碳钢(含碳量0.25~0.6%) 塑性和可焊性 高碳钢(含碳量0.6~1.4%) 减低
用钢筋试样拉断后断口两侧的残留应变(用百分率
表示)作伸长率,即
l' l 100 %
l
* 冷弯性能Cold-formed capacity:将直径为d的钢
筋绕直径为D的钢辊弯成一定的角度而不发生断
裂及起层现象

材料力学-第二章

材料力学-第二章

第二单元第二章 杆件的轴向拉压应力与材料的力学性能§2-1 引言工程实例: 连杆、螺栓、桁架、房屋立柱、桥墩……等等。

力学特征: 构件:直杆外力:合力沿杆轴作用(偏离轴线、怎样处理?)内力:在轴向载荷作用下,杆件横截面上的唯一内力分量为轴力N ,它们在该截面的两部分的大小相等、方向相反。

规定拉力为正,压力为负。

变形:轴向伸缩§2-2 拉压杆的应力一、拉压杆横截面上的应力(可演示,杆件受拉,上面所划的横线和纵线仍保持直线,仅距离改变,表明横截面仍保持为平面)平面假设→应变均匀→应力均匀AN=σ或A P =σ(拉为正,压为负)二、Saint-Venant 原理(1797-1886,原理于1855年提出)问题:杆端作用均布力,横截面应力均布。

杆端作用集中力,横截面应力均布吗? 如图, 随距离增大迅速趋于均匀。

局部力系的等效代换只影响局部。

它已由大量试验和计算证实,但一百多年以来,无数数学力学家试图严格证明它,至今仍未成功。

这是固体力学中一颗难以采撷的明珠。

三、拉压杆斜截面上的应力(低碳钢拉伸,沿45°出现滑移线,为什么?)0cos =-P Ap αα ασ=α=αcos cos AP p ασ=α=σαα2cos cos pασ=α=ταα22sin sin p ()0=ασ=σm ax ()452=ασ=τmax方位角α:逆时针方向为正剪应力τ:使研究对象有顺时针转动趋势为正。

例1和例2,看书p17,18§2-3 材料拉伸时的力学性能(构件的强度、刚度和稳定性,不仅与构件的形状、尺寸和所受外力有关,而且与材料的力学性能有关。

拉伸试验是最基本、最常用的试验。

)一、拉伸试验P18: 试样 拉伸图绘图系统放大变形传感器力传感器--→→→→二、低碳钢拉伸时的力学性能材料分类:脆性材料(玻璃、陶瓷和铸铁)、塑性材料(低碳钢:典型塑性材料)四个阶段:线性阶段(应力应变成正比,符合胡克定律,正比阶段的结束点称为比例极限)、屈服阶段(滑移线)(可听见响声,屈服极限s σ)、强化阶段(b σ强度极限)、局部变形(颈缩)阶段(名义应力↓,实际应力↑) 三(四个)特征点:比例极限、(接近弹性极限)、屈服极限、强度极限(超过强度极限、名义应力下降、实际应力仍上升)。

第二章金属材料力学性能基本知识及钢材的脆化

第二章金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识及钢材的脆化金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。

通常所指的金属材料性能包括以下两个方面:1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。

使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。

2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。

工艺性能对制造成本、生成效率、产品质量有重要影响。

1.1材料力学基本知识金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。

材料在外力作用下所表现的一些性能称为材料的力学性能。

锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。

1.1.1 强度金属的强度是指金属抵抗永久变形和断裂的能力。

材料强度指标可以通过拉伸试验测出。

把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。

根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。

在拉伸曲线上可以得到该材料强度性能的一些数据。

图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。

所以曲线称为P—AL曲线或一一s曲线。

图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:1.弹性阶段即曲线的o-e段,在此段若加载不超过e点的应力值,卸载后试件的变形可全部消失,故e点的应力值为材料只产生弹性变形时应力的最高限,称为弹性极限,曲线的o~e’段为直线,在此段内应力与应变成正比,即材料符合虎克定律,该段称为线弹性阶段。

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理

材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列力学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。

材料力学性能教案

材料力学性能教案

材料力学性能教案第一章:材料力学性能概述教学目标:1. 理解材料力学性能的概念及其重要性。

2. 掌握材料力学性能的主要指标。

3. 了解不同材料的力学性能特点。

教学内容:1. 材料力学性能的概念:定义、重要性。

2. 材料力学性能的主要指标:弹性模量、屈服强度、抗拉强度、韧性、硬度等。

3. 不同材料的力学性能特点:金属材料、非金属材料、复合材料等。

教学活动:1. 引入讨论:为什么了解材料的力学性能很重要?2. 讲解材料力学性能的概念及其重要性。

3. 通过示例介绍不同材料的力学性能特点。

4. 练习计算材料力学性能指标。

作业:1. 复习材料力学性能的主要指标及其计算方法。

2. 选择一种材料,描述其力学性能特点,并解释其在实际应用中的作用。

第二章:弹性模量教学目标:1. 理解弹性模量的概念及其物理意义。

2. 掌握弹性模量的计算方法。

3. 了解弹性模量在不同材料中的变化规律。

教学内容:1. 弹性模量的概念:定义、物理意义。

2. 弹性模量的计算方法:胡克定律、应力-应变关系。

3. 弹性模量在不同材料中的变化规律:金属材料、非金属材料、复合材料等。

教学活动:1. 复习上一章的内容,引入弹性模量的概念。

2. 讲解弹性模量的计算方法,并通过示例进行演示。

3. 通过实验或示例观察不同材料的弹性模量变化规律。

作业:1. 复习弹性模量的概念及其计算方法。

2. 完成弹性模量的计算练习题。

第三章:屈服强度与抗拉强度教学目标:1. 理解屈服强度与抗拉强度的概念及其物理意义。

2. 掌握屈服强度与抗拉强度的计算方法。

3. 了解屈服强度与抗拉强度在不同材料中的变化规律。

教学内容:1. 屈服强度与抗拉强度的概念:定义、物理意义。

2. 屈服强度与抗拉强度的计算方法:应力-应变关系、极限状态方程。

3. 屈服强度与抗拉强度在不同材料中的变化规律:金属材料、非金属材料、复合材料等。

教学活动:1. 复习上一章的内容,引入屈服强度与抗拉强度的概念。

第二章 轴向拉压应力与材料的力学性能

第二章 轴向拉压应力与材料的力学性能

拉压杆斜截面上的应力P
A为横截面的面积 A为斜截面的面积 横截面上的正应力 斜截面上的应力
N p A P P cos cos A A cos
P A
斜截面上的正应力和剪应力
p cos cos2 p sin cos sin
P
1 1 P A N1 3P C 2 N2
A
∴N2=P-3P= -2P
2
3、内力图
P A l P
3P
B
注意:
1 、一次只能取一个截面, 将原构件分成两部分。
C
l

O
2、内力方向设为正向后建立平 衡方程求解。(说明+-)
3 、分离体图与原图上下对 齐,截面位置一目了然。 4 、轴力图大小近似按比例, 也要与上图对齐。 练习:
1、变形规律试验及平面假设:
a c
P
b d
变形前
a´ c´
b´ d´
受力后 P
2、变形规律: 横向线——仍为平行的直线,且间距增大。 纵向线——仍为平行的直线,且间距减小。 平面假设:原为平面的横截面在变形后仍为平面. N 3、横截面上的应力:均匀分布 A
例2-4:计算下图中指定截面上的应力。AB段与CD段的横截面积均 为20mm2,AB段横截面积为 10 mm2 ,
C
已知:三角架 ABC 的〔σ 〕=120 MPa,AB 杆为 2 根 80*80*7 的等边角钢,AC 为 2 根 10 号槽钢,AB、AC 两杆的夹角为300 。 求:此结构所能承担的最大外荷载 Fmax
解: 1、F 与 FN 的关系
Y
0
X 0 F Y 0 F
NAC
FNAB cos30 0

第二章 轴向拉压应力与材料的力学性能

第二章 轴向拉压应力与材料的力学性能

Page
40
第二章 轴向拉压应力与材料的力学性能
大厦受撞击后,为什么沿铅垂方向塌毁?
据分析,由于大量飞机燃油燃烧,温度高达1200℃,组成 大楼结构的钢材强度急剧降低,致使大厦铅垂塌毁
Page 41
第二章 轴向拉压应力与材料的力学性能
§2-6 应力集中与材料疲劳 灾难性事故
1954年,英国海外航空 公司的两架“彗星”号 大型喷气式客机接连失 事,通过对飞机残骸的 打捞分析发现,失事的 原因是由于气密舱窗口 处的柳钉孔边缘的微小 裂纹发展所致,而这个 柳钉孔的直径仅为 3.175mm
例:画轴力图。 解: 分段计算轴力 由平衡方程: AB段 FN1 = qx BC段 CD段 FN3 = F 画轴力图
FN 2 = F x F a
q q=F a
2F
g
A
x a
B
a
C
a
D
FN1
x FN 2 2F
g
FN3
F F
+
F
Page 9
• 轴力图:表示轴力沿杆轴 变化的图。 • 设正法(为什么要用设正法?) • 作图要求:图与杆轴线对齐,用工具作图
材料力学
北方民族大学 土木工程学院 傅博
第一章回顾
构建设计基本要求:强度,刚度和稳定性 材料力学的任务: 材料力学研究对象:杆(杆、轴、梁),简单板壳 基本假设:连续、均匀、各向同性 内力计算:截面法 应力、应变、胡克定律(剪切胡克定律)
u u u u u u
第二章 轴向拉压应力与材料的力学性能
低碳钢
(压缩)
s p
(拉伸)
o
愈压愈扁 Et Ec
ts
cs
Page 38

材料力学性能——第二章

材料力学性能——第二章
材料力学性能
一、缺口效应
(一)缺口试样在弹性状态下的应力分布(厚板)
理论应力集中系数
Kt max
与薄板相比, 厚板在垂直于板厚方向的收缩变形受到 约束,即:
z 0
z
1 E
[ z
(
x
y )]
z ( x y )
y> z> x
材料力学性能
一、缺口效应
(二)缺口试样在塑性状态下的应力分布(厚板)
一、应力状态软性系数α
(1)较硬的应力状态试验,主要用于塑性金属材料力学性能的测定。 (2)较软的应力状态试验,主要用于脆性金属材料力学性能的测定。
材料力学性能
第二节 压缩
一、压缩试验的特点
(1) 单向压缩试验的应力状态软性系数α=2,所以 主要用于拉伸时呈脆性的金属材料力学性能的测定。
(2) 拉伸时塑性很好的材料,在压缩时只发生压缩 变形而不断裂。
原因:
切应力:引起金属材料产生塑性变形以及韧性断裂。 正应力:引起金属材料产生脆性断裂。
反之亦然
1
材料力学性能
第一节 应力状态软性系数
材料在受到载荷作用时(单向拉伸), max s
max k
产生屈服 产生断裂
在复杂的应力状态下(用三个主应力表示成σ1、σ2、 σ3 )
最大切应力理论: max
一、缺口效应 定义
在静载荷作用下,由于缺口的存在,而使其尖端出现应力、应变集中; 并改变了缺口前方的应力状态,由原来的单向应力状态变为两向或三向 应力状态; 并使塑性材料的强度增加,塑性降低。
材料力学性能
一、缺口效应
(一)缺口试样在弹性状态下的应力分布(薄板)
在拉应力σ的作用下,缺口的存在使 横截面上的应力分布不均匀: 轴向应力σy分布:σy在缺口根部最大, 随着距离x↑ ,σy ↓ ,所以在缺口根部 产生了应力集中的现象。 横向应力σx分布:缺口根部可自由变形, σx=0,远离x轴,变形阻力增大, σx↑, 达到一定距离后,由于σy↓导致σx ↓。

材料力学性能复习

材料力学性能复习

材料⼒学性能复习第⼆章材料在静载荷下的⼒学性能1.连续塑性变形强化材料和⾮连续塑性形变强化材料曲线、变形过程、屈服强度。

2.指出以下应⼒应变曲线与哪些典型材料相对应,并对其经历的变形过程做出说明。

3.拉伸断裂前,发⽣少量塑性变形,⽆颈缩,在最⾼载荷点处断裂;4.断裂前先发⽣弹性变形,然后进⼊屈服阶段,之后发⽣形变强化+均匀塑性变形,有颈缩现象,再发⽣⾮均匀塑性变形直⾄断裂;5.应⼒状态软性系数的定义及其意义、应⼒状态图的应⽤。

6.画出低碳钢的应⼒应变曲线,并说明获得该材料的强度和塑性指标?⽐例极限弹性极限屈服极限强度极限断裂强度延伸率断⾯收缩率7.⼯程应⼒、⼯程应变、真应⼒和真应变之间有什么关系?8.为什么灰⼝铸铁的拉伸断⼝与拉伸轴垂直,⽽压缩断⼝却与压缩⼒轴成45o⾓?9.材料为灰铸铁,其试样直径d=30mm,原标距长度h。

=45mm。

在压缩试验时,当试样承受到485kN压⼒时发⽣破坏,试验后长度h=40mm。

试求其抗压强度和相对收缩率。

10.布⽒、洛⽒、维⽒硬度的试验原理、特点、应⽤。

11.现有如下⼯件需测定硬度,选⽤何种硬度试验⽅法为宜? (1) 渗碳层的硬度分布;(2)灰铸铁;(3)淬⽕钢件;(4)氮化层;(5)双相钢中的铁素体和马⽒体;(6)⾼速钢⼑具;(7)硬质合⾦;(8)退⽕态下的软钢。

第三章材料的变形12.⾦属的弹性模量主要取决于什么?材料的弹性模量可以通过材料热处理等⽅式进⾏有效改变的吗?为什么说它是⼀个对结构不敏感的⼒学性能?弹性也称之为刚度,都是表征材料变形的能⼒?特点:单值性,可逆性,变形量⼩;物理本质:克服原⼦间⼒(双原⼦模型)组织不敏感:E主要取决于材料的本性,与晶格类型和原⼦间距有关,合⾦中固溶原⼦、热处理⼯艺、冷塑性变形,温度、加载⽅式等都对弹性模量影响不⼤;刚度:弹性与刚度是不同的,弹性表征材料弹性变形的能⼒,刚度表征材料弹性变形的抗⼒。

13.弹性变形的不完整性?灰⼝铸铁可以⽤作机床机⾝,为什么?对理想弹性体,在应⼒作⽤下产⽣的应变,与应⼒间存在三个关系:线性、瞬时和唯⼀性。

材料力学第二章总结

材料力学第二章总结

第2章拉伸、压缩与剪切§2-1 轴向拉伸与压缩的概念和实例ACF以轴向拉压为主要变形的杆件,称为拉压杆或轴向承载杆。

§2-2 轴向拉伸或压缩时横截面上的内力和应力F N以1-1截面的右段为研究对象:F N沿轴线方向,所以称为轴力。

F N+直观反映轴力与截面位置变化关系;确定出最大轴力的数值及其所在位置,即确定危险截面位置,为强度计算提供依据。

F N 1A B CF AF B F C F D O OA 段内力F N 1:设截面如图=X 01=−+−+N A B C D F F F F F 05841=−+−+N F F F F FF N 21=∴A B C D F AF BF CF DF N 2F N 3D F DF N 4A B C F AF B F C F D O :段内力:0=−D C F 03=−−D C F F F ,F N 4= FB C D F B F C F D C D F CF D F N 2= –3F ,F N 4= FA B CF A F B F C F D O2F3F 5FF2、变形规律:横向线——仍为平行的直线,且间距增大。

纵向线——仍为平行的直线,且间距减小。

3、平面假设:变形前的横截面,变形后仍为平面且各横截面沿杆轴线作相对平移。

轴向拉压杆横截面上正应力的计算公式σA or =σANor =σAC 45°12B45°AC45°12B 1NF y45°§2-3 直杆轴向拉伸或压缩时斜截面上的应力ασααcos cos cos ==A F A F αp ααxF N F N α§2-4 材料拉伸时的力学性能常温、静载两个塑性指标:%100%5>δ为塑性材料§2-5 材料压缩时的力学性能σbL,铸铁抗压性能远远大于抗拉性§2-7 失效、安全因素和强度计算§2-8 轴向拉伸或压缩时变形(胡克定律的另一种表达方式)1L 1a a1b伸长为正,缩短为负。

材料力学 第02章 轴向拉伸和压缩及连接件的强度计算

材料力学 第02章 轴向拉伸和压缩及连接件的强度计算
O e
弹屈 性服 阶阶 段段
强 化 阶 段
颈 缩 阶 段
33/113
2.3 材料在拉伸或压缩时的力学性能 2.3.1 低碳钢Q235拉伸时的力学性能-弹性阶段
Oa段应力与应变成正比
s Ee
s
b a
弹性模量E是直线Oa的斜率 Q235 E≈200GPa
直线部分的最高点a所对应的应力称为 比例极限,sp Oa段材料处于线弹性阶段
(2) 杆AB段上与杆轴线夹45°角(逆时针方向)斜截面上的正应力 和切应力。
A 1 300 mm B 500 kN 300 mm 2 C 3 300 kN 400 mm
26/113
D
200 kN
2.2 拉压杆截面上的内力和应力 【例2-3】解
A 1 300 mm B 500 kN 300 mm 2 C
内力相同,
但是常识告诉我们,
F F
直径细的拉杆更容易破坏。
求得各个截面上的轴力后,并不能直接判断杆件是否具有足 够的强度。必须用横截面上的应力来度量杆件的受力程度。 用横截面上的应力来度量杆件的受力程度。
18/113
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
a
F
c
c' d'
F4
D
FN4
F
x
0 FN4 F4 0
FN4 20 kN 拉
16/113
同一位置处左右侧截面上的内力分量具有相同的正负号
2.2 拉压杆截面上的内力和应力 【例】解
1
FR A F1
F1=40kN,F2=55kN,F3=25kN,F4=20kN
2
F2 B

【材料物理性能与力学性能】第1-2章

【材料物理性能与力学性能】第1-2章

内耗:材料在变形过程中被吸收的功。
弹性滞后环:应力-应变曲线中,加载线和卸载线不重合而形成一 个封闭回路,称为弹性滞后环。 弹性滞后环说明加载时材料吸收的变形功大于卸载时材料释放的 变形功,有一部分加载变形功被材料吸收,即为内耗,其大小等 于弹性滞后环的面积。(内耗大小主要取决于应变和应力之间的位 相差)
2)晶体结构
单晶体:各向异性
多晶体:伪各向同性
最大值与最小值差值可达4倍
非晶:各向同性
3)化学成分----引起原子间距和键合方式的变化
4)微观组织----影响较小
晶粒大小对E值无影响;
第二相的影响取决于体积比例和分布状态;
冷加工的影响在5%以内
5)温度----温度升高,E降低
特例:橡胶。其弹性模量随温度升高而增加。
三、影响金属材料屈服强度的因素
1、晶体结构
(派纳力)
位错宽度w大,位错易于移动, bcc金属相反
p n小,屈服强度小,如fcc金属.
2、晶界和亚结构 晶界越多,晶粒越小,位错中应力集中程度不够,需要更大
的外加切应力才能够使位错运动,因此屈服强度越大。——
细晶强化
3、溶质元素——固溶强化 此外,
上屈服点:试样发生屈服而力首次下降前的最大应力值。 su
屈服平台(屈服齿):屈服伸长对应的水平线段或曲折线段。
材料产生屈服的原因:与材料内部的位错运动有关。
位错运动速率与切应力的关系: v ( )m 0

'
其中,m 为位错运动速率应力敏感指数。

'
b v
:塑性应变速率




6)加载条件和负荷持续时间 加载方式、速率和负荷持续时间对金属材料、陶瓷材料 影响很小。

材料力学第2章

材料力学第2章

扭转试样中的应力与应变
第二章
3、扭转试验的力学性能指标
试样在弹性范围内表面切应力τ和切应变γ为:
T W

d 0
3 式中,W为试样抗扭截面系数,圆柱试样 (d0 ) / 16 1、切变模量G 弹性范围内,切应力τ与切应变γ之比。 测出扭矩增量ΔT和相应扭角增量Δφ,求出切应力与切应变, 即得 32TL0
缺口引起的应力集中程度常用理论应力集中系数Kt 表示: max kt

max 缺口净截面上的最大应 力 平均应力
Kt值与材料性质无关,只决定于缺口几何形状。
缺口效应Ⅰ
引起应力集中,并改变缺口前方的应力状态,使缺 口试样或机件所受应力由原来的单向应力状态变为 两向或三向应力状态。
使塑性材料强度增高,塑性降低。
二、缺口试样静拉伸试验
缺口试样静拉伸试验又可分为轴向拉伸和偏斜拉伸两种。
第二章
常用缺口试样的抗拉强度σbn与等截面尺寸光滑试样的
抗拉强度σb的比值作为材料的缺口敏感性指标,称为缺口敏 感度,用qe或NSR。
bn qe b q ↑→缺口敏感性↓。
e
脆性材料:qe<1 ,高强度材料qe<1。表明缺口根部尚
2 L0
G
2、扭转屈服点τs 在扭转曲线或试验机扭矩读盘上读出屈服时的扭矩Ts即可得 扭转屈服点 τs T
第二章
d 04
s
s
W
3、规定非比例扭转应力τp 试样标距部分表面的非比例切应变γP达到规定数值时, 按弹性扭转公式计算的切应力,称为规定非比例扭转应 力τp
p
Tp
W
4、抗扭强度τb 试样在扭断前承受的最大扭矩Tb,利用弹性扭转公式计 算的切应力为抗扭强度。

材料力学02(第二章 轴向拉压应力与材料的力学性能)

材料力学02(第二章 轴向拉压应力与材料的力学性能)
F 1= A1 sin F 2=A2 tan
FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin

A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

查表得水平杆AB的面积为A2=2×12.74cm2
FN 2
A2
3F
A2
F
1 3

A2
1 1.732

120 106

2

12.74

104
176.7kN
4、许可载荷 F min57.6kN 176.7kN
F 57.6kN
FN1 2F
则横截面MK上的正应力为:

A:-50Mpa B:-40MP C:-90Mpa D:+90MPa
5KN M
4KN 13KN
K 12、拉杆的应力计算公式σ=N/A的应用条件是: 。
A:应力在比例极限内; B:外力的合力作用线必须沿杆件的轴线; C:应力在屈服极限内; D:杆件必须为矩形截面杆;
例题1 杆 OD左端固定,受力如图,OC段 的横 截面面积是CD段横截面面积A的2倍。求杆内最大轴 力,最大正应力,最大切应力及其所在位置。
EG
பைடு நூலகம்
FA
MB 0 P 2a FA a 0 FA 2P 20KN

AE

FA A

20103 4 3.14 202
MPa
63.6MPa
1
取DF为研究对象,分析FG 杆受力
D
3a
F’A
1.5a F
E FG
3a D
A a B 2a P 1.5a F
1.5m A 1 B
F
2m
2
C
FN 1

B
FN 2
F
F FN 2 sin 0 FN 1 FN 2cos 0
FN 1

3 4
F
FN 2


5 4
F
2、F=2 吨时,校核强度
钢杆1:直径d=16 mm
杆2:边长 a=100 mm
1杆:
1

FN 1 A1

76.8MPa
[
]1

1 2

m
ax

F A
CD段与杆轴成45°的斜面上;
1、变截面杆件承受拉力
2A
A
P
2
1
3
A:σ1>σ2>σ3; B:σ2>σ3>σ1 C:σ3>σ1>σ2
D:σ2>σ1>σ3
2、设m-m的面积为A,那么P/A代表 A:横截面上正应力;B:斜截面上剪应力;C:斜截面上正应力; D:斜截面上应力。
m P
20KN FN
10KN
FN
20KN
10KN
0KN
例2 起吊钢索如图所示,截面积分别为 A1 3 cm2, A2 4 cm2,
l1 l 2 50 m, P 12kN, 0.028 N/cm3,
试绘制轴力图,并求 max
C
L2
B L1
A
P
(1)计算轴力
N2
AB段:取任意截面
例3:AC为50×50×5的等边角钢,AB为10号槽 钢,〔σ〕=120MPa。求F。
1、计算轴力
FN1

A
FN 2
F
Fx 0 FN1 cos FN 2 0
Fy 0 FN1 sin F 0
FN1 F / sin 2F
FN2 FN1 cos 3F
22、低碳钢的拉伸时的应力-应变曲线如图。如断裂点的
横坐标为ε,则ε 。
A:大于延伸率; B:等于延伸率 C:小于延伸率; D:不能确定。
24、已知低碳钢的应力应变曲线,在点f试件被拉断,图中代表
延伸率的线段是: ,代表消失的弹性变形的线段是

σ f
O
O1 O2
ε
25 同种材料制成两根完全相同的试件,其中一根直接拉断,另一 根拉伸到强化阶段的某一点卸载,再重新加载拉断。 比较两根试件拉伸破坏后有何变化?
2杆:
2

FN 2 A2
2.5MPa [ ]2
因此结构安全。
[ ]1 150 MPa
[ ]2 4.5MPa
FN 1

3 4
F
5 FN 2 4 F
3、F 未知,求许可载荷[F]
FN 1,max A1
[
]1
3F
4 A1
[ ]1
F

4 3

A1 [
]1
x1 l1 NB P A1l1 12.42KN
C L2
B L1
A
P
x2 0
x2 l2
NB P A1l1 A2 x2 12.42KN
NC P A1l1 A2l2 12.98KN
(3)作轴力图
(4)应力计算
B
NB A1
41.4MPa
B
P C
3、作下列各杆件的轴力图
60KN 30KN
50KN
30KN
50KN
40KN
10KN
30KN 90KN
20KN 50KN 20KN
P
P P
2P
P
2P
2P
P
2P
4、已知:横截面的面积为A,杆长为L,单位 体积的重量为γ。
P
5、已知杆件的轴力图,作杆件的受力图
FN 5KN
15KN
10KN
6、已知杆件的轴力图,作杆件的受力图
P=40KN
30
2 现有两种说法: ①弹性变形中,σ-ε一定是线性关系 ②弹塑性变形中σ-ε一定是非线性关系。 A:①对②错;B:①对②对; C:②对①错;
D:①错②错;
3、进入屈服阶段以后,材料发生
变形。
A:弹性;B:非线性;C:塑性;D:弹塑性;
4、外载卸掉以后,消失的变形和遗留的变形分别


2、根据AC杆的强度条件,确定许可载荷
查表得斜杆AC的面积为A1=2×4.8cm2
FN1
A1
2F
A1
FN1 2F
FN2 3F
F

1 2

A1
1 120106 2 4.8 104 2
57.6kN
3、根据AB杆的强度条件,求许可载荷
6KN 18KN
12KN
2A
A
5、AB、BC、CD、AD四杆构成正方形,AC杆为对角 线,各杆的截面同为圆截面,直径均为D=40毫米。 求各杆内的应力。
A
D
P=10KN
B
C
6、横截面的面积为A=10平方厘米的铜杆,P= 20KN。求固定端处的应力。
P
P
P
7、已知横梁AB、BC均为刚性。1杆的直径为10 毫,2杆的直径为20毫米。求1、2杆内的应力。
变形过程无

A:弹性阶段、屈服阶段;
σ
B:强化阶段、颈缩阶段;
C:屈服阶段、强化阶段;
D:屈服阶段、颈缩阶段。
ε
16、“构件失效时的极限应力是材料的强度极限。”
17、低碳钢在拉伸过程中依次表现为 , , , 四 个阶段
18、铸铁压缩试件,破坏是在 截面发生剪切错动,是由于 引起的。
19、三根杆的尺寸相同、但材料不同,材料的应力-应变曲
F
FN
F
F x
F
例3:已知F1=10kN;F2=20kN; F3=35kN; F4=25kN;试画出图示杆件的轴力图。
A
B
F1
F2
C
D
F3
F4
A 1B
F1
FN kN
1 F2
10
2 C 3D
2 F3 3 F4
25
x
10
1、计算各段轴力 2、绘制轴力图。 3、确定危险面位置
F1
FN1
FN1 F1 10kN
FN2 3F
例1、P=10KN,杆AE直径D=20毫米,许用应力 [σ]1=120MPa;杆FG采用边长a=30毫米的正方 形截面,许用应力[σ]2=100MPa,校核系统。
A a B 2a P
3a D
1.5a F
E G
取AB为研究对象,分析AE 杆受力
A a B 2a
P
3a D
A a B 2a P 1.5a F
B
C
4F
3F
O
D 2F
1、作轴力图
B
C
4F
3F
O
FN 3F
D 2F
FN max 3F
(在OB段)
2F
F
2、分段求 max
OB

FN OB 2A

3F , 2A
CD

FNCD A

2F A
FN
3F
O
B
C
F
max
CD

2F A
(在CD段)
2F D
3、求 max
max
线如图。问
材料的强度高?
材料的刚度大?
塑性好?
1
2
3
20、当低碳钢试件的试验应力σ=σs时,试件将 。
A:完全失去承载能力;B:破断;C:发生局部颈缩现象;D:产生很大的塑性变形;
21、低碳钢材料试件在拉伸试验中,经过冷作硬化后,以下四根指
标中 得到了提高的是

A:强度极限 B:比例极限C:截面收缩率 D:延伸率
m
5 受轴向拉力F=160KN的杆件,若任意截面的剪应力都不 得超过80MPa,求杆件的最小截面面积A=?
相关文档
最新文档