苏科版九上 一元二次方程及其解法 测试题
苏科版九年级上1.2一元二次方程的解法(1)同步练习含答案.doc
苏科版九年级上 1.2 一元二次方程的解法(1)同步练习含答案1.2一元二次方程的解法(1)【基础提优】1.已知一元二次方程mx2n 0(m0) ,若方程可以用直接开平方法求解,且有两个不相等的实数根,则m , n 必须满足的条件是()A .n 0 B.m,n异号C.n是m的整数倍 D .m,n同号2.方程3x2 9 0 的根为()A .3 B. 3 C. 3 D.无实数根3x 4 是一元二次方程x23x a2 的一个根,那么常数a的值为().如果A .2 B. 2 C. 2 D . 44.已知一元二次方程( x 6)2 16 可转化为两个一元一次方程,若其中一个一元一次方程是 x 6 4 ,则另一个一元一次方程是()A .x 6 4B .x 6 4C.x 6 4 D .x 6 45.下列解方程的过程中,正确的是()A .x2 2 ,解方程,得x 2B.( x 2)2 4 ,解方程,得x 2 2 , x 4C.4( x 1) 2 9 ,解方程,得4(x 1) 3 , x1 7 , x2 14 4D.( 2x 3) 2 25 ,解方程,得2x 3 5 ,x1 1 , x2 46.若最简二次根式 a 2 25 与4a2 2 是同类二次根式,则 a .7.当x 时,分式x2 9的值为 0.x 2 18.某药品经过两次降价,每瓶零售价由100 元降为 81 元.已知两次降价的百分比都为x ,那么 x 所满足的方程是, x .9.用直接开平方法解下列方程:(1)x2 3 0 ;( 2)4x2 9 0 ;(3)(2)2 9 0;( 4)4( y 3) 2169 ;x1(5)( 2x 1)2 8 ;( 6)1(x 3)2 3 .4【拓展提优】1.( 1)一元二次方程(x 1)2 2 的解为;( 2)一元二次方程12(3 2x) 2 3 0 的解为.2.若( a2 b 2 2)2 49 ,则a2 b2 .3.若x2 8y2 0 ,则x y.x y4.已知关于x的方程a( x m)2 b 0(a,m,b 均为常数,且 a 0) 的解是x1 2 ,x2 1 ,则关于 x 的方程 a(x m 2) 2 b 0 的解是.5.用直接开平方法解下列方程:(1)x2 4x 4 1 ;( 2)(2x 1)2 ( x 2) 2.6.已知双曲线y 28x 相交于点A,求点A的坐标.与直线 yx7.某商场今年 2 月份的营业额为 400 万元, 3 月份的营业额比 2 月份增加 10%, 5 月份的营业额达到 633.6 万元,求 3 月份至 5 月份营业额的月平均增长率.28.某工程队在我市实施棚户区改造过程中承包了一项拆迁工程.原计划每天拆迁1250m 2,因为准备工作不足,第一天少拆迁了 20%.从第二天开始,该工程队加快了拆迁速度,第 3 天拆迁了1440m2.(1)该工程队第一天拆迁的面积;(2)若该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.【趣味思考】1.已知y x 0 ,x y 2 xy 2 ,试求x y 的值.参考答案【基础提优】1-5 BDCDD6. 37. 3.100(1 x) 281; 0.1839.解:( 1)x1 3 , x2 33 3 ;( 2)x1 , x2 ;2 2( 3)x1 5 , x2 1 ;19, y 27 ( 4)y1 ;2 2( 5)x1 1 2 2, x21 2 22 2;( 6)x1 3 2 3 , x2 3 23.【拓展提优】1.( 1)x1 1 2 , x2 17 5 2 ;(2)x1 , x2 .4 42. 99 4 23.74.x1 4 , x2 15.解:( 1)x1 1, x2 3 ;(2) x1 1 , x2 1 .6. A (0.5,4)或A(0.5 ,4)7. 20%8.( 1) 1000m2;( 2) 20%【趣味思考】1. 24。
苏科版九年级上册数学第1章 一元二次方程含答案【完整版】
苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、三角形两边的长是3和4,第三边的长是方程的根,则该三角形的周长为()A.10B.12C.14D.12或142、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片。
如果全班有x名学生,根据题意,列出方程为()A.x(x-1)=2070B.x(x+1)=2070C.2x(x+1)=2070D.3、某药品经过两次降价,每瓶零售价由1000元降为640元,已知两次降价的百分率都为x,则x满足的方程是()A.1000(1+x)2=640B.1000(1﹣x)2=640C.1000(1﹣x%)2=640 D.1000x 2=6404、下列说法正确的是()A.x 2=4的根为x=2B. 是x 2=2的根C.方程的根为D.x 2=﹣a没有实数根5、要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0B.a≠3C.a≠3且b≠-1D.a≠3且b≠-1且c≠06、一元二次方程(x+6)2﹣9=0的解是()A.x1=6,x2=﹣6 B.x1=x2=﹣6 C.x1=﹣3,x2=﹣9 D.x1=3,x2=﹣97、已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长是()A.5B.7C.5或7D.108、一元二次方程配方后可变形为().A. B. C. D.9、一元二次方程x2+x﹣1=0的两根分别为x1, x2,则=()A. B.1 C. D.10、关于x的一元二次方程有两个实数根,则m的取值范围是()A.m≤1B.m<1C.m<1且m≠0D.m≤1且m≠011、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根0,则a值为()A.1或-1B.-1C.1D.012、若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A.k>-1B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠013、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有()人.A.12B.10C.9D.814、如果x2﹣x﹣1=(x+1)0,那么x的值为()A.2或﹣1B.0或1C.2D.-115、从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是________.17、若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=________.18、一种药品经过两次降价,药价从每盒100元调至每盒81元,则平均每次降价的百分率是________ .19、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________20、已知x=3是方程x2-6x+k=0的一个根,则k=________.21、方程(x-3)2=x-3的根是________.22、设等腰三角形的三条边长分别为a、b、c.已知a=4,b、c是关于x的方程x2−6x+m=0两个根,则m的值是________.23、已知方程x2﹣3x+k=0有两个相等的实数根,则k=________.24、关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.25、已知是关于的方程的一个根,则________三、解答题(共5题,共计25分)26、解方程:27、阅读下面的例题:解方程解:当x≥0时,原方程化为x2– x –2=0,解得:x1=2,x2= - 1(不合题意,舍去)当x<0时,原方程化为x2 + x –2=0,解得:x1=1,(不合题意,舍去)x2= -2∴原方程的根是x1=2, x2= - 2请参照例题解方程28、解下列方程:(1)x(x﹣1)+2(x﹣1)=0;(2)x2+1.5=3x.29、阅读例题,解答下题.范例:解方程:x2+∣x+1∣﹣1=0解:⑴当x+1≥0,即x≥﹣1时,x2+x+1﹣1=0x2+x=0解得x1=0,x2=﹣1⑵当x+1<0,即x<﹣1时,x2﹣(x+1)﹣1=0x2﹣x﹣2=0解得x1=﹣1,x2=2∵x<﹣1,∴x1=﹣1,x2=2都舍去.综上所述,原方程的解是x1=0,x2=﹣1依照上例解法,解方程:x2﹣2∣x-2∣-4=0 30、求不等式组的整数解参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、B6、C8、A9、B10、D11、B12、D13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
苏科版九年级上册数学第1章 一元二次方程 含答案
苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、用因式分解法解方程,下列方法中正确的是()A.(2x-2)(3x-4)=0 , ∴2x-2=0或3x-4=0B.(x+3)(x-1)=1 ,∴x+3=0或x-1=1 C.(x-2)(x-3)=2×3 , ∴x-2=2或x-3=3 D.x(x+2)=0 ,∴x+2=02、用配方法解一元二次方程x2-3=4x,下列配方正确的是()A.(x+2) 2=2B.(x-2) 2=7C.(x+2) 2=7D.(x-2) 2=13、是关于的一元一次方程的解,则()A.-2B.-3C.4D.-64、用配方法解方程时,配方后所得的方程为()A. B. C. D.5、定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程的解为()A. 或B. 或C. 或D. 或6、关于的一元二次方程有一个实数根,则下面关于该方程的判别式的说法正确的是( )A. B. C. D.无法确定7、关于的一元二次方程的两个实数根分别为,,且,则的取值范围是()A. B. 且 C. D. 且8、已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2B.k<2C.k>2D.k<2且k≠19、下列方程中没有实数根的是()A.x 2+x-1=0B.x 2+8x+1=0C.x 2+x+2=0D.x 2-2 x+2=010、某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.25(1+x) 2=64B.25(1+x 2)=64C.64(1-x) 2=25 D.64(1-x 2)=2511、若关于x的一元二次方程有两个不相等的实数根,则实数k的取值范围是()A. B. 且 C. D. 且12、关于x的方程有两个不相等的实数根,且较小的根为2,则下列结论:①;②;③关于的方程有两个不相等的实数根;④抛物线的顶点在第四象限。
苏科版九年级数学上册1-2一元二次方程的解法 同步练习题【含答案】
两边开平方,得 .
所以 , .
19.(1) x1=5, x2=﹣15;(2) x1=3+ ,x2=﹣2+
(1)(x+2)2+6(x+2)﹣91=0;
设y=x+2,则原方程可变形为:
y2+6y﹣91=0,
解得:y1=7,y2=﹣13,
当y1=7时,x+2=7,
x1=5;
当y2=﹣13时,x+2=﹣13,
A.x=2B.x=0C.x1=﹣2,x2=0D.x1=2,x2=0
二、填空题
9.若 ,则代数式 的值为_____
10.已知x为实数,且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x=.
11.等腰△ABC中,AC=8,AB、BC的长是关于x的方程x2﹣9x+m=0的两根,则m的值是.
12.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根x1和x2,且x12﹣2x1+2x2=x1x2,则k的值是.
1.2一元二次方程的解法
一、单选题
1.用配方法解方程 时,应在方程两边同时加上( )
A.3B.9C.6D.36
2.已知 ,则 的值是()
A.3或 B. 或2C.3D.
3. 的根是()
A. B. 或 C. D. 或
4.如果关于x的方程 只有一个实数根,那么方程 的根的情况是()
A.没有实数根B.有两个不相等的实数根
x= ,
x1= ,x2= ;
(4)(x+1)2=2x+2,
(x+1)2﹣2(x+1)=0,
初中数学苏科版九年级上册第1章 一元二次方程1.2 一元二次方程的解法-章节测试习题
章节测试题1.【题文】解方程:x2-4x-1=0.【答案】x1=2+,x2=2-.【分析】根据配方法,可得答案.【解答】解:∵x2-4x-1=0,∴x2-4x=1,∴x2-4x+4=1+4,∴(x-2)2=5,∴x=2±,∴x1=2+,x2=2-.2.【题文】解下列方程:(1)x2+10x+25=0(2)x2﹣x﹣1=0.【答案】(1)x1=x2=﹣5;(2)x1=,x2=【分析】本题考查了一元二次方程的解法---配方法,按照先移项,再配方,后开方的步骤求解即可..【解答】解:(1)配方,得:(x+5)2=0,开方,得:x+5=0,解得x=﹣5,x1=x2=﹣5;(2)移项,得:x2﹣x=1,配方,得:x2﹣x+=,(x﹣)2=,开方,得x﹣=±,x1=,x2=.3.【题文】解方程:(1)x2﹣9=0(2)x2+2x﹣1=0.【答案】(1)x1=3,x2=﹣3;(2)x1=﹣1+,x2=﹣1﹣.【分析】(1)根据本题方程的特点,用“直接开平方法”解答即可;(2)根据本题方程的特点,用“配方法”或“公式法”解答即可.【解答】解:(1)x2﹣9=0,∴x2=9,∴x=±3,∴x1=3,x2=﹣3;(2)x2+2x﹣1=0,移项得:x2+2x=1,配方得:x2+2x+1=2,∴(x+1)2=2,∴x+1=±,∴ x1=﹣1+,x2=﹣1﹣.4.【题文】用配方法解方程:.【答案】,【分析】先把常数项移到右边,两边同时加上一次项系数的一半的平方,即都加上9,把左边写成完全平方式,即的形式,然后两边开平方求出未知数的值.【解答】解:,,,,,∴,.5.【题文】用配方法说明下列结论:(1)代数式x2+8x+17的值恒大于0;(2)代数式2x-x2-3的值恒小于0【答案】(1)代数式x2+8x+17的值恒大于0(2)代数式2x-x2-3的值恒小于0【分析】运用配方法的运算方法,第一步:如果二次项数不是1,首先提取二次项系数,一次项与二次项都提取二次项系数并加括号,常数项可以不参与运算;第二步:配方,加常数项为一次项系数一半的平方,注意括号外应相应的加减这个常数项,保证配方后不改变原式的值,分别进行运算即可.【解答】解:(1)x2+8x+17= x2+8x+16-16+17=(x+4)2+1∵(x+4)2≥0∴(x+4)2+1>0即代数式x2+8x+17的值恒大于0(2)2x-x2-3= -x2+2x -3= -(x2-2x +3)= -(x2-2x+1-1 +3)= -[(x-1)2+2]= -(x-1)2-2∵-(x-1)2≤0∴-(x-1)2-2<0即代数式2x-x2-3的值恒小于0.6.【题文】解方程:【答案】,【分析】本题考查了一元二次方程的解法,根据完全平方公式配方,配方的方法是:先将常数项移到右边,然后两边都加一次项系数一半的平方.【解答】解:,7.【题文】解方程:x2+4x﹣4=0.【答案】x1=﹣2+2,x2=﹣2﹣2.【分析】根据这个一元二次方程的特点,用“配方法”或“公式法”解即可.【解答】解:方程移项得:x2+4x=4,配方得:x2+4x+4=8,即(x+2)2=8,∴x+2=±2,解得:x1=﹣2+2,x2=﹣2﹣2.8.【题文】解方程:2x2-4x-1=0.【答案】.【分析】根据配方法解方程即可.【解答】解:移项得,2x2-4x=1,将二次项系数化为1得,,配方得,x2-2x+1=+1,,∴,∴.9.【题文】用配方法解下列方程:(1)4x2 -4x -1 = 0;(2)7x2 -28x +7= 0. (3) x2-x-4=0(4) 3x2-45=30x【答案】(1);(2);(3);(4)【分析】(1)把二次项系数化为1,常数项移到等号右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(2)把二次项系数化为1,常数项移到等号右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(3)把二次项系数化为1,常数项移到等号右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(4)整理成一般式,把二次项系数化为1,常数项移到等号的右边后,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案.【解答】解:(1)4x2 -4x -1 = 0,x2-x-=0,x2-x=,x2-x+=+,即(x-)2=,则x-1=±,;(2)7x2 -28x +7= 0,x2-4x=-1,x2-4x+22=-1+22,即(x-2)2=3,则x-2=±,x=2±,即;(3)x2-x-4=0x2-4x=16,x2-4x+22=16+22,即(x-2)2=20,则x-2=±,x=2±,即;(4)3x2-45=30x,x2-10x=15,x2-10x+52=15+52,即(x-5)2=40,则x-5=±,x=5±,即.10.【题文】用配方法解下列方程:(1)x2+2x-8=0 (2)x2+12x-15=0(3)x2-4x=16 (4)x2=x+56【答案】(1);(2);(3);(4)【分析】(1)常数项移到等号的右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(2)常数项移到等号的右边,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(3)两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案;(4)整理成一般式,常数项移到等号的右边后,两边都加上一次项系数一半的平方,配成完全平方式,然后开平方即可得出答案.【解答】解:(1)x2+2x-8=0,x2+2x=8,x2+2x+12=8+12,即(x+1)2=9,则x+1=±3,x=−1±3,即;(2)x2+12x-15=0,x2+12x=15,x2+12x+62=15+62,即(x+6)2=51,则x+6=±,x=−6±,即;(3)x2-4x=16,x2-4x+22=16+22,即(x-2)2=20,则x-2=±,x=2±,;(4)x2=x+56,x2-x+2=56+2,(2=,则x-=±,x-=±+,即.11.【题文】x2﹣4x+1=0(用配方法)【答案】x1=2+,x2=2﹣.【分析】先移项,然后配方,解出x即可.【解答】解:x2-4x+1=0,移项,得x2-4x=-1,配方,得x2-4x+4=-1+4,即(x-2)2=3,解得,x-2=,即x1=2+,x2=2-.12.【题文】解下列方程:(1)(1+x)2-2=0;(2)9(x-1)2-4=0.【答案】(1);(2).【分析】(1)先移项,再用“直接开平方法”解方程即可;(2)先移项,再把二次项系数化为1,然后用“直接开平方法”解方程即可.【解答】解:(1)移项得:,∴,∴.(2)原方程可化为:,∴,∴.13.【题文】解关于x的方程(x+m)2=n.【答案】当时,方程无解;当时,,.【分析】由于题目中没有告诉“n”的取值范围,所以分“n0”和“n<0”进行解答即可.【解答】解:(1)当n≥0时,x+m=±,∴ x1=-m,x2=--m.(2)当n<0时,方程无解.14.【题文】解方程:(1)x2+4x﹣1=0.(2)x2﹣2x=4.【答案】(1)x1=﹣2+,x2=﹣2﹣;(2)x1=1+,x2=1﹣【分析】(1)利用配方法即可解决;(2)利用配方法即可解决.【解答】解:解:(1)∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.(2)配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.15.【题文】阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.【答案】(1)4;(2)7;(3)2【分析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=-1,a=3,则a-b=4;(2)∵2a2+b2-4a-6b+11=0,∴2a2-4a++2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(3)∵x+y=2,∴y=2-x,则x(2-x)-z2-4z=5,∴x2-2x+1+z2+4z+4=0,∴(x-1)2+(z+2)2=0,则x-1=0,z+2=0,解得x=1,y=1,z=-2,∴xy z=2.16.【题文】“a2=0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2﹣4x+6=(x)2+ ;所以当x= 时,代数式x2﹣4x+6有最(填“大”或“小”)值,这个最值为.(2)比较代数式x2﹣1与2x﹣3的大小.【答案】(1)﹣2;2;2;小;2;(2)x2﹣1>2x﹣3.【分析】(1)把原式利用平方法化为完全平方算与一个常数的和的形式,利用偶次方的非负性解答;(2)利用求差法和配方法解答即可.【解答】解:(1)x2-4x+6=(x-2)2+2,所以当x=2时,代数式x2-4x+6有最小值,这个最值为2,故答案为:-2;2;2;小;2;(2)x2-1-(2x-3)=x2-2x+2;=(x-1)2+1>0,则x2-1>2x-3.17.【题文】如果a、b为实数,满足+b2-12b+36=0,求ab的值.【答案】-8【分析】将原式化为+(b-6)2=0,由此可得,分别求出a、b 的值即可求出ab.【解答】解:原等式可化为+(b-6)2=0,∴,∴a=,b=6,∴ab=-8.故答案为-8.18.【题文】用配方法解下列方程:(1)x2+4x+1=0;(2)2x2-4x-1=0;(3)9y2-18y-4=0;(4)x2+3=2x.【答案】(1)x1=-2,x2=--2;(2)x1=1+,x2=1-;(3)y1=+1,y2=1-;(4)x1=x2=.【分析】(1)先移项,再配方,解出x即可;(2)先移项,再将二次项系数化为1,最后配方解出x即可;(3)先移项,再将二次项系数化为1,最后配方解出x 即可;(4)先移项,再配方解出x即可.【解答】解:(1)移项,得x2+4x=-1,配方,得x2+4x+22=-1+22,即(x+2)2=3,解得x1=-2,x2=--2;(2)移项,得2x2-4x=1,二次项系数化为1,得x2-2x=,配方,得x2-2x+12=+12,即(x-1)2=,解得x-1=±,即x1=1+,x2=1-;(3)移项,得9y2-18y=4,二次项系数化为1,得y2-2y=,配方,得y2-2y+12=+12,即(y-1)2=,解得y-1=±,即y1=+1,y2=1-;(4)移项,得x2-2x+3=0,配方,得(x-)2=0,解得x1=x2=.19.【题文】用配方法解方程,下面的过程对吗?如果不对,找出错在哪里,并改正.解:方程两边都除以2并移项,得,配方,得,即,解得,即.【答案】.【分析】上面过程不对,错在配方一步,改正即可.【解答】解:上面的过程不对,错在配方一步,改正如下:配方,得x2-x+=15+,即(x-)2=,解得x-=±,即x1=3,x2=.20.【题文】解下列方程:(1)x2+6x+5=0;(2)2x2+6x-2=0;(3)(1+x)2+2(1+x)-4=0.【答案】(1)∴x1=-1,x2=-5;(2)x1=-,x2=--;(3)x1=-2,x2=--2【分析】(1)先移项,再配方解出x即可;(2)先移项,再将二次项系数化为1,然后配方解出x即可;(3)先去括号,再移项,然后配方解出x即可.【解答】解:(1)移项,得x2+6x=-5,配方,得x2+6x+32=-5+32,即(x+3)2=4,由此可得:x+3=±2,∴x1=-1,x2=-5;(2)移项,得2x2+6x=-2,二次项系数化为1,得x2+3x=-1,配方,得x2+3x+()2=-1+()2,即(x+)2=,由此可得x+=±,∴x1=-,x2=--;(3)去括号整理,得x2+4x-1=0,移项,得x2+4x=1,配方,得(x+2)2=5,由此可得x+2=±,∴x1=-2,x2=--2.。
苏科版九年级数学上册《1.2一元二次方程的解法》练习题-带答案
苏科版九年级数学上册《1.2一元二次方程的解法》练习题-带答案基础巩固提优1.用公式法解一元二次方程3x²−4x=8时,化方程为一般式,当中的a、b、c 依次为( ).A. 3、一4、8B. 3、4、8C. 3、4、—8D. 3、—4、—82.以x=b±√b2−4c2为根的一元二次方程可能是( ).A.x²+bx+c=0B.x²+bx−c=0C.x²−bx+c=0D.x²−bx−c=03.把方程53x+13=x2−13化为一般形式是 ,其中 a= ,b= ,c=,b²−4ac=,方程的根是x₁=。
4.定义新运算“*”,规则为a∗b={a(a≥b),b(a<b),如3∗1=3,(−√5)∗√2=√2若x²+x−1=0的两根为x₁、x₂,则.x₁∗x₂= 5.用公式法解下列一元二次方程:(1)5x²+2x−1=0;(2)5x²−10x=−5。
6.解方程:(1)x²+2x−5=0;(2)2x²−3x−6=0;(3)10x²−9x+2=0;(4)6x²−4x+7=0。
7.当x为何值时,代数式5x²−x的值与4x—2的值互为相反数.思维拓展提优8. 下列方程适合用公式法解的是( ).A.(x−3)²=2B.325x²−326x+1=0C.x²−100x+2500=0D.2x²+3x−1=09.方程2x²−6x−1=0的负数根为 .10.已知a²+ab−b²=0且ab≠0,则 ba的值为 .11.用公式法解下列一元二次方程:(1)x2+118=23x;(2)3x²−2=2x。
(3)(x+1)(x—3)=1.12. 解关于x 的方程:(m−1)x²+2mx+m+3=013.对于实数a、b,新定义一种运算“※”:(a※b={ab−b2(a≥b),b2−ab(a<b),例如:∵4>1,∴4※1=4×1--1²=3.(1)计算:2※(--1)= ,(--1)※2= ;(2)若x₁和x₂是方程.x²−5x−6=0的两个根且x₁<x₂,,求x₁※x₂的值;(3)若x※2与3※x 的值相等,求x的值.14.有长为 30米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆(平行于 AB)的矩形花圃,设花圃的一边 AB 为x 米,面积为y 平方米. (1)用含x 的代数式表示y ;(2)如果要围成面积为 63 平方米的花圃,AB 的长是多少?(3)能围成面积为 78平方米的花圃吗? 若能,求出AB 的长;若不能,请说明理由.延伸探究提优15.欧几里得的《几何原本》中记载了形如 x²−2bx +4c²=0(b ⟩2c >0)的方程根的图形解法:构造 Rt△BAC ,AD 为斜边中线,且 AD =12BC,作AE⊥AD,与BC 的延长线交于点E.设DE=b,AE=2c,则 x²−2bx +4c²=0较小的根是( ).A. BD 的长度B. CE 的长度C. AC 的长度D. AE 的长度 16.请阅读下列材料:我们规定一种运算: |a c bd |=ad −bc,例如: |2345|=2×5−3×4=10−12=−2,按照这种运算的规定,请解答下列问题. (1)直接写出 |−12−20.5|的计算结果;(2)当x取何值时,|x0.5−x12x|=0;(3)若直接写出x 和y的值.17.如图,在△ABC 中,已知∠BAC=45°,AD⊥BC,垂足为D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以 AB、AC 为对称轴,画出△ABD、△ACD的轴对称图形,点D 的对称点分别为点E、F,延长EB、FC 相交于点G,求证:四边形 AEGF 是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.中考提分新题18.一元二次方程x²+4x−8=0的解是( ).A.x1=2+2√3,x2=2−2√3B.x1=2+2√2,x2=2−2√2C.x1=−2+2√2,x2=−2−2√2D.x1=−2+2√3,x2=−2−2√3参考答案1. D [解析]3x²−4x=8,化为一般式为3x²−4x−8=0,则a=3,b=—4,c=—8.故选D.2. C [解析]由题意,可知二次项系数为1,一次项系数为--b,常数项为c.故选 C.3.3x²-5x-2=0 3 —5 —2 49-1324−1+√52[解析]x²+x−1=0∵a=1,b=1,c=-1∴△=1-4×(-1)=5>0.∴x=−b±√b2−4ac2a =−1±√52.∴x1=−1+√52,x2=−1−√52.∴−1+√52>−1−√52,∴x1∗x2=−1+√52.5.(1)x1=−1+√65,x2=−1−√65(2)x₁=x₂=16.(1)x1=−1+√6,x2=−1−√6(2)x1=3+√574,x2=3−√574(3)x1=25,x2=12(4)∵△=(−4)²−4×6×7=−152<0;∴原方程无解.7.由题意,得5x²−x+4x−2=0,即5x²+3x−2=0,∴x=−3±√9+4010=−3±710,∴x1=−1,x2=25.故当x=--125₅时,代数5x²−x的值与4x—2的值互为相反数.8. D [解析]根据方程的特点及各方法的优缺点解答即可.A.此方程适合直接开平方法求解;B.此方程不适合用公式法求解;C.此方程适合配方法求解;D.此方程适合公式法求解.9.3−√11210.1±√52 [解析]由题意,得a≠0,等式两边同除a²,得1+ba−(ba)2=0令ba=t,则t²−t−1=0,解得t=1±√52,故ba=1±√52.11.(1)整理,得18x²−12x+1=0,∴△=144-4×18×1=72∘x=12±√722×18=2±√26.∗x1=2+√26,x2=2−√26.(2)整理,得3x²−2x−2=0,∴△=(−2)²−4×3×(−2)=28>0.∴x=2±√282×3=1±√73.∴x1=1+√73,x2=1−√73.(3)x1=1+√5,x2=1−√512.当m-1=0,即m=1时,方程为一元一次方程,解得x=-2;当m—1≠0,即m≠1时,方程为一元二次方程①当Δ>0,即4m²-4(m--1)(m+3)>0时,解得m<32,此时x1=−m+√3−2mm−1x2=−m−√3−2mm−1;②当△=0,即m=32时此时x₁=x₂=−3;③当Δ<0,即m>32时,方程无解.解后反思本题考查了分类讨论的思想,考虑问题要全面.13.(1)—3 6 [解析]由题意,得2※(—1)=2×(-1)-(-1)²=-2-1=-3;(-1)※2=2²-(-1)×2=4+2=6.(2)解方程x²−5x−6=0,得x₁=−1,x₂=6,所以x₁※a x₂=(−1)×6=6²−(−1)×6=42.(3)当x<2时,2²−2x=3x−x²整理得x²−5x+4=0解得x₁=1,x₂=4(舍去);当2≤x≤3时,2x−2²=3x−x²整理,得x²−x−4=0,解得x1=1+√172,x2=1−√172(舍去);当x>3时,2x−2²=x²−3x整理,得.x²−5x+4=0解得x₁=1(舍去)x₂=4。
(精练)苏科版九年级上册数学第1章 一元二次方程含答案
苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、用配方法解方程,变形后的结果正确的是().A. B. C. D.2、若是关于x的一元二次方程,则a的值是()A.0B.2C.-2D.±23、下列方程中有两个相等实数根的是()A.2x 2+4x+35=0B.x 2+1=2xC.(x﹣1)2=﹣1D.5x 2+4x=14、一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和25、下列方程一定是一元二次方程的是()A.x 2﹣1=0B.x+y=1C.D.6、一元二次方程的实数根是()A.0或1B.0C.1D.±17、关于的方程的两根的平方和是5,则的值是( )A.-1或5B.1C.5D.-18、关于x的一元二次方程有一个根是,则A.1B.-1C.±1D.09、若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥ 且k≠110、一元二次方程化成一般形式是()A. B. C. D.11、下列方程中,是关于x的一元二次方程的是()A. +x=3B.x 2+2x﹣3=0C.4x+3=xD.x 2+x+1=x 2﹣2x12、方程(x﹣1)(x+2)=0的两根分别为()A.x1=﹣1,x2=2 B.x1=1,x2=2C.x1=﹣1,x2=﹣2 D.x1=1,x2=﹣213、用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4B.(x﹣3)2=4C.(x+3)2=5D.(x+3)2=±14、已知a,b,c是△ABC三条边的长,那么方程cx2+(a+b)x+=0的根的情况是( ).A.没有实数根B.有两个不相等的正实数根C.有两个不相等的负实数根D.有两个异号实数根15、一元二次方程x2-5x-6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=-6 D.x1=-1,x2=6二、填空题(共10题,共计30分)16、在平面直角坐标系中,如果存在一点P(a,b),满足ab =-1,那么称点P为“负倒数点”,则函数的图象上负倒数点的个数为________个.17、把方程(x﹣1)(x﹣2)=4化成一般形式是________.18、一元二次方程的两个根为,且则k=________。
苏科版九年级(上)数学课时练习:1.2一元二次方程的解法(含答案)
1.2一元二次方程的解法题号一二三总分得分第Ⅰ卷(选择题)一.选择题(共12小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣33.一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根 B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3 4.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A. B.﹣C.﹣D.5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2= 6.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2[来源:]7.若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A.﹣2或4 B.4 C.﹣2 D.2或﹣48.△ABC三边a,b,c满足a2+b+|﹣2|=10a+2﹣22,△ABC 为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能10.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则这个正方形的面积为()A. B.C.D.(1+)211.关于x的一元二次方程的两根应为()A.B.,C.D.12.已知α,β是方程x2+2019x+1=0的两个根,则(1+2019α+α2)(1+2019β+β2)的值为()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题)二.填空题(共5小题)13.若关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,则a的取值范围是.14.如果α,β(α≠β)是一元二次方程x2+2x﹣1=0的两个根,则α2+α﹣β的值是.15.若关于x的方程(3+a)x2﹣5x+1=0有实数根,则整数a的最大值.16.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=17.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=.三.解答题(共6小题)18.解方程(1)x2﹣36=0(2)x2﹣3x+2=019.已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.20.我们规定:方程ax2+bx+c=0的变形方程为a(x+1)2+b(x+1)+c=0.例如,方程2x2﹣3x+4=0的变形方程为2(x+1)2﹣3(x+1)+4=0(1)直接写出方程x2+2x﹣5=0的变形方程;(2)若方程x2+2x+m=0的变形方程有两个不相等的实数根,求m的取值范围;(3)若方程ax2+bx+c=0的变形方程为x2+2x+1=0,直接写出a+b+c 的值.21.已知关于x的一元二次方程(m2﹣4)x2+(2m﹣1)x+1=0.(1)m为何值时,方程有实数根?(2)若x1,x2是方程的两个实数根,S=﹣+﹣++10,求S的取值范围.22.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a ﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.23.先阅读后解题.已知m2+2m+n2﹣6n+10=0,求m和n的值.解:把等式的左边分解因式:(m2+2m+1)+(n2﹣6n+9)=0.即(m+1)2+(n﹣3)2=0.因为(m+1)2≥0,(n﹣3)2≥0.所以m+1=0,n﹣3=0即m=﹣1,n=﹣3.利用以上解法,解下列问题:(1)已知:x2﹣4x+y2+2y+5=0,求x和y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b﹣52且△ABC为等腰三角形,求c.参考答案一.选择题1.B.2.C.3.D.4.C.5.B.6.C.7.B.8.A.9.C.10.A.11.B.12.D二.填空题13.a≤2.14.315.3.16.[来源:]﹣2.17.﹣三.解答题18.解:(1)∵x2﹣36=0,∴x2=36,则x=6或x=﹣6;(2)∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,则x﹣1=0或x﹣2=0,解得:x=1或x=2.19.解:(1)证明:原方程可变形为x2﹣5x+6﹣p2﹣p=0.∵△=(﹣5)2﹣4(6﹣p2﹣p)=25﹣24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∴无论p取何值此方程总有两个实数根;[来源:学+科+网Z+X+X+K] (2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6﹣p2﹣p.又∵x12+x22﹣x1x2=3p2+1,∴(x1+x2)2﹣3x1x2=3p2+1,∴52﹣3(6﹣p2﹣p)=3p2+1,∴25﹣18+3p2+3p=3p2+1,∴3p=﹣6,∴p=﹣2.20.解:(1)用x+1表示方程x2+2x﹣5=0里的x,可得(x+1)2+2(x+1)﹣5=0.(2)用x+1表示方程x2+2x+m=0里的x,得(x+1)2+2(x+1)+m=0.整理,得x2+4x+3+m=0∵变形后的方程有两个不相等的实数根,∴△=42﹣4(3+m)=4﹣4m>0,∴m<1.(3)a+b+c=1.(方程ax2+bx+c=0的变形方程为a(x+1)2+b(x+1)+c=0,[来源:学。
1.2一元二次方程的解法(因式分解法同步基础练习)+2024—2025学年苏科版数学九年级上册
2024-2025学年苏科版数学九年级上册1.2一元二次方程的解法 (因式分解法同步基础练习)一、选择题(本题共8小题) 1.方程2x x =的解是( ) A .1x =B .0x =C .11x =,20x =D .12x =-20x =2.一元二次方程x (x+2)=0的解是( ) A .x 1=x 2=0 B .x 1=x 2=2 C .x 1=2,x 2=0D .x 1=﹣2,x 2=03.用因式分解法解方程,下列方法中正确的是( ) A .(2x -2)(3x -4)=0 , ∴2x -2=0或3x -4=0 B .(x+3)(x -1)=1 ,∴x+3=0或x -1=1 C .(x -2)(x -3)=2×3 , ∴x -2=2或x -3=3 D .x(x+2)=0 ,∴x+2=04.下列方程能用因式分解法求解的有( )①2x x =;②2104x x -+=;③230x x --=;④2(32)16x +=.A .1个B .2个C .3个D .4个5.用分组分解法将222x xy y x --+分解因式,下列分组不恰当的是( )A .()()222x x y xy --+ B .()()222x xy y x --+ C .()()222x y xy x ++--D .()()222x x xy y ---6.关于x 的方程x (x ﹣1)=3(x ﹣1),下列解法完全正确的是( )ABCD两边同时除以(x ﹣1)得,x =3整理得,x 2﹣4x =﹣3∵a=1,b =﹣4,c =﹣3,b 2﹣4ac =28∴x =4282±=2±7整理得,x 2﹣4x =﹣3配方得,x 2﹣4x+2=﹣1 ∴(x ﹣2)2=﹣1∴x ﹣2=±1∴x 1=1,x 2=3 移项得,(x ﹣3)(x﹣1)=0∴x ﹣3=0或x ﹣1=0 ∴x 1=1,x 2=3A .AB .BC .CD .D7.若菱形ABCD 的一条对角线长为12,边CD 的长是方程x 2﹣12x+35=0的一个根,则该菱形ABCD 的周长为( ) A .20B .24C .28D .20或288.解一元二次方程x 2+px+q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是5,﹣4,则原来的方程是( ) A .x 2+2x ﹣3=0 B .x 2+2x ﹣20=0 C .x 2﹣2x ﹣20=0 D .x 2﹣2x ﹣3=0二、填空题(本题共8小题) 9.方程320x x +=的解是 .10.一元二次方程x(x ﹣5)=x ﹣5的解为___________. 11.如果代数式22x x ++与52x -的值相等,那么x=______.12.如果x 满足一元二次方程()()450x x -+=,则代数式4x -的值是______.13.一个三角形的两边长分别为3和9,第三边的长为一元二次方程214480x x -+=的一个根,则这个三角形的周长为____.14.若关于x 的一元二次方程()2215320m x x m m -++-+=的常数项为0,则m =______.15.已知关于x 的一元二次方程20ax bx c ++=(a ,b ,c 为常数,且0a ≠),此方程的解为12x =,23x =.则关于x 的一元二次方程2930ax bx c -+=的解为______.16.关于x 的方程ax 2﹣2bx ﹣3=0(ab ≠0)两根为m ,n ,且(2am 2﹣4bm+2a )(3an 2﹣6bn ﹣2a )=54,则a 的值为 . 三、解答题(本题共8小题) 17.用因式分解法解方程: (1)x 2﹣8x+15=0; (2)x 2+4x ﹣7=0.18.解方程:(1) ()223240x x --+= (2)24810x x -+=19.以下是圆圆解方程的具体过程:()()2323x x -=-的具体过程,方程两边同除以()3x -,得32x -=,移项,得5x =,试问圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.20.阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x 的值. 【问题】解方程:2262680x x x x ----=. 【提示】可以用“换元法”解方程. 解:设26x x t -=(t ≥0),则有226x x t -=, 原方程可化为:2280t t --=, 【续解】21.阅读例题,解答问题:例:解方程220x x --=.解:原方程化为220x x --=.令y x =,原方程化成220y y --= 解得12y =,21y =-(不合题意,舍去).2x ∴=.2x ∴=±.∴原方程的解是12x =,22x =- 请模仿上面的方法解方程:()215160x x ----=.22.解方程:(1)解方程:()()2323x x x -=-;(2)关于x 的一元二次方程24250x x m --+=有两个实数根1x ,2x ,并且12x x ≠. ①求实数m 的取值范围;②满足212126x x x x m ++=+,求m 的值.23.通过学习,我们知道常用的因式分解的方法有提公因式法和公式法,与此同时,某些多项式只用上述一种方法无法因式分解,下面是甲、乙两位同学对多项式进行因式分解的过程. 甲:222x xy x y +--()2(22)x xy x y =+-+(先分成两组)()2()x x y x y =+-+ ()(2)x y x =+-.乙:2221a b b -+-()2221a b b =--+(先分成两组)22(1)a b =-- (1)(1)a b a b =+--+.两位同学分解因式的方法叫做分组分解法,请你仔细观察并对以下多项式进行因式分解, (1)试用上述方法分解因式:222m mn n ma na ++++. (2)已知14x y +=,且32230x x y xy y +--=,求x y -.24.【材料阅读】利用整式的乘法运算法则推导得出:()()()2ax b cx d acx ad bc x bd ++=+++.我们知道因式分解是与整式乘法方向相反的变形,利用这种关系可得()()()2acx ad bc x bd ax b cx d +++=++.通过观察可把()2acx ad bc x bd +++看作以x 为未知数,a b c d 、、、为常数的二次三项式,此种因式分解是把二次三项式的二次项系数ac 与常数项bd 分别进行适当的分解来凑一次项的系数,分解过程可形象地表述为“竖乘得首、尾,叉乘凑中项”,如图1,这种分解因式的方法称为十字相乘法.例如,将二次三项式221112x x ++的二次项系数2与常数项12分别进行适当的分解,如图2,则()()221112423x x x x ++=++.根据阅读材料解决下列问题: 【应用新知】(1)用十字相乘法分解因式:2310x x +-; (2)用十字相乘法分解因式:25136x x --; 【拓展提升】(3)结合本题知识,分解因式:()()26720x y x y +-+-.。
初中数学苏科版九年级上册第1章 一元二次方程1.2 一元二次方程的解法-章节测试习题(31)
章节测试题1.【题文】解方程:(1)2x2﹣4x﹣9=0(用配方法解);(2)(用公式法解)【答案】(1)x1=1+,x2=1﹣;(2),【分析】方程(1)用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式;方程(2)用公式法求解方程的根.【解答】(1)∵2x2﹣4x﹣9=0,∴2x2﹣4x=9,∴x2﹣2x=,∴x2﹣2x+1=+1,∴(x﹣1)2=,x=1±,解得x1=1+,x2=1﹣(2)∵a=3,b=﹣4;;,c=2,∴b2﹣4ac=24,⇒x==,解得.2.【题文】解方程(1)(x+6)-9=0;(2)(3)先化简,再求值:,其中m是方程的根.【答案】(1);(2)x=-1;(3);(4)【分析】(1)先移项,然后通过直接开平方法解方程;(2)把分式方程化为整式方程,再求解;(3)先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.【解答】(1)由原方程,得(x+6)2=9,开平方,得x+6=±3,解得:x1=−3,x2=9.(2)原方程即去分母得x=2x−1+2,x=−1经检验:x=−1是原方程的解,∴原方程的解是x=−1.(3)原式====,∵m是方程x2+3x−1=0的根.∴m2+3m−1=0,即m2+3m=1,∴原式=.3.【题文】(1)求下列式中的:4(2)计算:【答案】(1)x或;(2)-3.95.【分析】(1)变形后直接开平方即可;(2)先化简二次根式、三次根式后再加减.【解答】(1).4∴∴x或(2)=-4+0.3-=-3.954.【题文】解方程:x2=3x【答案】x1=0,x2=3【分析】移项后运用因式分解法即可求解.【解答】x2=3xx2-3x=0x(x-3)=0解得:x1=0,x2=35.【题文】解方程:(1)-=0(2)2x2-2x=x+1【答案】x=2;x1=,x2=【分析】(1)先去括号,把分式方程化为整式方程,解这个整式方程,检验即可;(2)先移项,再运用公式法求解即可.【解答】(1)去分母得,3(x-1)-(x+1)=0解得:x=2经检验,x=2是原方程的解;(2)移项得:2x2-2x-x-1=0整是得,2x2-3x-1=0∴x1=,x2=6.【题文】解方程:x2-2x=2x+1.【答案】x1=2-,x2=2+.【分析】根据方程,求出系数a、b、c,然后求一元二次方程的根的判别式,最后根据求根公式求解即可.【解答】方程化为x2-4x-1=0.∵b2-4ac=(-4)2-4×1×(-1)=20,∴x==2±,∴x1=2-,x2=2+.7.【题文】解方程:3x2+2x+1=0.【答案】原方程没有实数根.【分析】利用公式法解方程即可.【解答】∵a=3,b=2,c=1,∴b2-4ac=4-4×3×1=-8<0.∴原方程没有实数根.8.【题文】(1)解方程:x2―6x+4=0;(2)解不等式组【答案】(1);(2)【分析】(1)运用公式法解一元二次方程;(2)先解两个不等式,再求它们的交集.【解答】(1)(2)9.【题文】解方程:(1)(2)【答案】(1),;(2),【分析】(1)利用直接开平方法求解即可;(2)将括号展开,运用配方法求解即可得解.【解答】(1),(2),,10.【题文】(2)求x值:【答案】(1);(2)x=7或-3【分析】(1)根据平方根、立方根、乘方可求解;(2)根据平方根的意义,直接开平方即可求解.【解答】(1)原式=(2)解:x-2=x=7或-311.【题文】(1)解方程:(x+1)2=64;(2)计算:【答案】(1)x1=7,x2=-8;(2)-36【分析】(1)原式利用平方根计算即可得到结果;(2)根据实数的运算法则进行计算即可得解.【解答】(1)∵(x+1)2=64,∴x+1=±8,当x+1=8时,x=7;当x+1=-8时,x=-8.(2)原式=(-8)×4+(-4)×-3=-3612.【题文】解方程或方程组:(1)(2)【答案】(1)4或x=0(2)【分析】(1)方程两边同除以3,然后用直接开平方法即可求得方程的解;(2)先把方程组变形,然后再用加减消元法求解即可.【解答】(1)4或x=0(2)解得13.【题文】如图,在矩形ABCD中,AB=16cm,BC=6cm,点P从A出发沿AB以3cm/s的速度向点B移动,一直到达点B为止;同时,点Q从点C出发沿以2cm/s 的速度向点D移动.经过多长时间P、Q两点的距离是10?【答案】P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.【分析】作PH⊥CD,垂足为H,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.【解答】当P在Q下方时,方法同上,只不过表示等边三角形底边一半的时候稍有不同.设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,作PH⊥CD,垂足为H,则PH=BC=6,PQ=10,HQ=CD﹣AP﹣CQ=16﹣5t.∵PH2+HQ2=PQ2,可得:(16﹣5t)2+62=102,解得t1=4.8,t2=1.6.答:P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm14.【综合题文】如图,长方形的边,在坐标轴上,(0,2),(4,0).点从点出发,以每秒1个单位长度的速度沿射线方向运动,同时点从点出发,以每秒2个单位的速度沿射线方向运动.设点运动时间为秒().15.【题文】请选择适当的方法解下列一元二次方程:(1)(2)【答案】(1)x1=﹣2,x2=2;(2),.【分析】(1)利用直接开平方法直接可求解;(2)先化简,再根据公式法求解.【解答】(1)x2﹣4=0x2=4x=±2(2)x(x﹣6)=5x2-6x-5=0∵a=1,b=-6,c=-5∴△=36-4×(-5)=56>0∴,∴,16.【题文】解方程:x2﹣5x+3=0【答案】x1=,x2=【分析】首先根据题意得出a、b、c的值,然后根据求根公式得出方程的解.【解答】a=1,b=-5,c=3则=25-4×1×3=13则x=即.17.【答题】我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于.若我们规定一个新数“”,使其满足(即一元二次方程有一个根为).例如:解方程,解:,,,.∴的解为:,.根据上面的解题方法,则方程的解为______.【答案】,【分析】本题考查了新定义,根据一元二次方程的解法解答即可.【解答】,,,,,∴,.故答案为:,18.【答题】方程(x﹣5)2=0的根是______.【答案】x1=x2=5.【分析】根据直接开平方法解答即可.【解答】(x﹣5)2=0,∴x﹣5=0,∴x1=x2=5,故答案为:x1=x2=5.19.【答题】利用解一元二次方程的方法,在实数范围内分解因式x2﹣2x﹣1=______.【答案】(x﹣1﹣)(x﹣1+)【分析】根据一元二次方程的解法解答即可.【解答】令x2-2x-1=0,解得:x=1±,则原式=(x-1-)(x-1+).故答案为:(x-1-)(x-1+).20.【答题】方程(x﹣1)2=4的解为______.【答案】x1=3,x2=﹣1【分析】根据直接开平方法解答即可.【解答】(x﹣1)2=4,即x﹣1=±2,∴x1=3,x2=﹣1.故答案为:x1=3,x2=﹣1.。
苏科版九年级上册数学第1章 一元二次方程 含答案
苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、关于的一元二次方程有实数根,则实数的取值范围是()A. B. C. 且 D.2、用配方法解方程x2+2x﹣3=0,下列配方结果正确是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=43、下列方程中,是一元二次方程的是( )A. B. C. D.4、将一元二次方程x2-6x-5=0化成(x+a)2=b的形式,则b等于A.-4B.4C.-14D.145、方程的根的情况是()A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.无法判断6、关于x的一元二次方程的一个根是0,则的值为()A.1B.C. 或D.7、已知x=-1是关于x的方程2x2+ax-a2=0的一个根,则a为()A.1B.2C.3D. -2或18、已知x1, x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A.6B.0C.7D.-19、若a为方程x2+x﹣5=0的解,则a2+a+1的值为()A.12B.6C.9D.1610、已知方程x2﹣(k+1)x+3k=0的一个根是2,则k为()A.﹣2B.﹣3C.3D.111、下列一元二次方程中,两实数根的和为的是( )A. B. C. D.12、解方程,可用配方法将其变形为()A. B. C. D.13、已知是方程的一个实数根,那么p的值是()A.3B.1C.-3D.-114、下列方程是一元二次方程的是()A.x-2=0B.x 2-2x-3C.xy+1=0D.x 2-1=015、若25x2=16,则x的值为()A. B. C. D.二、填空题(共10题,共计30分)16、已知是一元二次方程()的一个根,则另一根是________.17、设x1、x2是方程x2﹣x﹣2015=0的两实数根,则=________ .18、现有张正面分别标有数字0,1,2,3,4,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根,且关于的分式方程有解的概率为________.19、已知x=1是方程x2﹣a=0的根,则a=________.20、有四张正面分别标有数字,1,2,4的不透明卡片,除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任意抽取一张,将该卡片正面上的数字记为;放回后再从中任意抽取一张,将该卡片正面朝上的数字记为,则使关于的一元二次方程有实根的概率为________.21、已知是方程两根,则________.22、关于m的一元二次方程nm2﹣n2m﹣2=0的一个根为2,则n2+n﹣2=________ .23、已知关于x的一元二次方程(k+1)x2-2x+1=0有实数根,则k的取值范围是________.24、已知关于x的一元二次方程x2-4x+1=0的两个实数根是x1、x2,那么x 1+x2=________.25、从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.三、解答题(共5题,共计25分)26、已知实数a满足,求的值.27、用配方法解方程:x2﹣2x﹣4=028、已知关于x的一元二次方程,(1)若方程有两个相等的实数根,求a的值及此时方程的根;(2)若方程有两个不相等的实数根,求a的取值范围.29、先化简,再求值:,其中x满足方程:x2+x﹣6=0.30、先化简,再求值:,其中实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、D6、B7、D8、D9、B10、A11、D12、B13、A14、D15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
苏科版九年级数学上册试题 第1章 一元二次方程 章节测试卷(含解析)
第1章《 一元二次方程》章节测试卷一.选择题(每小题2分,共12分)1.下列方程中是一元二次方程的是( )A. 2x+1=0B. y 2+x=1C. x 2+1=0D. 2.用配方法解方程时,配方后所得的方程为( )A. B. C. D. 3.已知关于x 的一元二次方程有两个相等的实数根,则a 的值是( )A. 4B. ﹣4C. 1D. ﹣14.已知一次函数y=ax+c 图象如图,那么一元二次方程ax 2+bx+c=0根的情况是( )A. 方程有两个不相等的实数根B. 方程有两个相等的实数根C. 方程没有实数根D. 无法判断5.已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的底边长为( )A. 2B. 4C. 8D. 2或46.如图,把一块长为40cm ,宽为30cm 的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm 2,设剪去小正方形的边长为xcm ,则可列方程为( )A .(30-2x )(40-x )=600B .(30-x )(40-x )=6002210x x++=2x 2x 10--=2x 10+=()2x 10-=()2x 12+=()2x 12-=()2x 2x a 0+-=2680x x -+=C .(30-x )(40-2x )=600D .(30-2x )(40-2x )=600二.填空题(每小题2分,共20分)7. 一元二次方程x (x ﹣3)=3﹣x 的根是__ __.8.关于x 的方程(m 2﹣1)x 3+(m ﹣1)x 2+2x+6=0,当m=________时为一元二次方程.9.已知关于x 的一元二次方程x 2-4x+1=0的两个实数根是x 1、x 2,那么x 1+x 2=________.10.若关于的一元二次方程的一个根是-2,则另一个根是______.11.将一元二次方程x 2+4x+1=0化成(x+a )2=b 的形式,其中a ,b 是常数,则a+b=________12. 某商品成本价为300元,两次降价后现价为160元,若每次降价的百分率相同,设降价的百分率为x ,则方程为 .13.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了______个人.14.若m 是关于X 的方程的根,且m 0,则m+n=________.15. 已知关于x 的方程(a -1)x 2-2x+1=0是一元二次方程,则a 的取值范围是______.16.如图,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =2cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边BC 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是_____.三.解答题(共68分)17.(12分)用适当的方法解下列方程:(1)(x ﹣3)2=9; (2)2m 2+3m ﹣1=0; (3)5x ﹣2=(2﹣5x )(3x+4)x 2(3)0x k x k +++=2x nx m 0++=≠18.(10分)已知关于x的一元二次方程x2-3x+m-3=0.(1)若此方程有两个不相等的实数根,求 m的取值范围;(2)若此方程的两根互为倒数,求 m的值.19.(8分)已知:m是方程x2﹣x﹣1=0的一个根,求代数式5m2﹣5m+2008的值.20.(8分)在一幅长8分米,宽6分米的矩形风景画(如图①)的四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.21. (10分)某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?22.(10分)如图,在中,,,,动点从点开始沿着边向点以的速度移动(不与点重合),动点从点开始沿着边向点以的速度移动(不与点重合).若、两点同时移动;当移动几秒时,的面积为.设四边形的面积为,当移动几秒时,四边形的面积为?ABC V B 90∠= AB 12cm =BC 24cm =P A AB B 2cm /s B Q B BC C 4cm /s C P Q ()t s 1()BPQ V 232cm 2()APQC ()2S cm APQC 2108cm23.(10分)阅读理解:材料1.若一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2,则x 1+x 2=-,x 1x 2=.材料2.已知实数m ,n 满足m 2-m-1=0,n 2-n-1=0,且m ≠n ,求的值.解:由题知m ,n 是方程x 2-x-1=0的两个不相等的实数根,根据材料1得m+n=1,mn=-1,∴.解决问题:(1)一元二次方程x 2-4x-3=0的两根为x 1,x 2,则x 1+x 2= ,x 1x 2= .(2)已知实数m ,n 满足2m 2-2m-1=0,2n 2-2n-1=0,且m ≠n ,求m 2n+mn 2的值.(3)已知实数p ,q 满足p 2=3p+2,2q 2=3q+1,且p ≠2q ,求p 2+4q 2 的值.b ac an m m n+()22221231m n mn n m m n m n mn mn +-+++====--答案一.选择题1.C【解析】根据一元二次方程的意义:含有一个未知数,未知数的最高次数为2的整式方程,因此C 正确.故选C2.D【解析】根据配方的正确结果作出判断:.故选D .3.D【解析】解:根据一元二次方程根的判别式得,△,解得a=﹣1.故选D .4.A【解析】由图象知:a<0,c>0,∵△=b 2−4ac>0,∴一元二次方程ax 2+bx+c=0有两个不相等的实数根,故选A.5.A【解析】解:x 2-6x+8=0(x -4)(x -2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,所以三角形的底边长为2,故选:A .()2222x 2x 10x 2x 1x 2x 111x 12--=⇒-=⇒-+=+⇒-=()224a 0=-⋅-=6.D【解析】解:设剪去小正方形的边长是xcm ,则纸盒底面的长为(40-2x )cm ,宽为(30-2x )cm ,根据题意得:(40-2x )(30-2x )=32.故选:D .二.填空题7. x 1=3,x 2=﹣1.【解析】x (x ﹣3)=3﹣x ,x (x ﹣3)-(3﹣x )=0,(x ﹣3)(x+1)=0,∴x 1=3,x 2=﹣1,故答案为x 1=3,x 2=﹣1.8.m=-1【解析】一元二次方程是指只含有一个未知数,且未知数的最高次数为2次的整式方程,本题根据定义可得:-1=0且m -1≠0,解得:m=-1.9.4.【解析】根据一元二次方程中两根之和等于,所以.故答案是4.10.1【解析】将x=-2代入可得:4-2(k+3)+k=0,解得:k=-2,则原方程为:+x -2=0,则(x+2)(x -1)=0,解得:x=-2或x=1,即另一个根为1.11.5【解析】故答案为5.2m -b a124x x +=2x 2410,x x ++=241,x x +=-2443,x x ++=2(2) 3.x +=2, 3.a b ∴== 5.a b +=12.300(1-x)2=160.【解析】解:设每次降价的百分率为x,依题意得300(1-x)2=160.故填空答案:300(1-x)2=160.13.12【解析】解:设平均一人传染了x人,x+1+(x+1)x=169解得:x=12或x=-14(舍去).∴平均一人传染12人.故答案为:12.14.-1【解析】把m代入x2+nx+m=0,得m2+nm+m=0,∴m(m+n+1)=0,又∵m≠0,∴m+n+1=0,∴m+n=-1.故答案-1.15. a≠1.【解析】要使方程是一元二次方程,则:a-1≠0,∴a≠1.【解析】∵AP=CQ=t,∴CP=6-t,∴∵0≤t≤2,∴当t=2时,PQ的值最小,∴线段PQ的最小值是.为三.解答题17.(1)(x ﹣3)2=9,∴x ﹣3=±3,∴x 1=0,x 2=6;(2)a=2,b=3,c=﹣1,∴b 2﹣4ac=32﹣4×2×(﹣1)=9+8=17>0,∴,∴m 1,m 2(3)(2﹣5x )+(2﹣5x )(3x+4)=0∴(2﹣5x )(1+3x+4)=0解得:x 1= x 2=﹣ 18.(1)∵方程 x 2-3x+m-3=0 有两个不相等的实数根,∴△=(-3)2-4(m-3)>0,解得:m <,∴m 的取值范围为m<;(2)设此方程的两个根分别为:α,β,∴α+β=3,αβ=m-3,∵此方程的两根互为倒数,∴αβ=m-3=1,∴m=4.19.把代入方程.可得:即所以2553214214x m =210x x --=210.m m --=21m m -=,225520085()2008520082013m m m m -+=-+=+=.20.解:设金色纸边的宽为x 分米,根据题意,得(2x +6)(2x +8)=80.解得:x 1=1,x 2=-8(不合题意,舍去).答:金色纸边的宽为1分米21. 解:(1)设每件应降价x 元,由题意可列方程为(40-x )(30+2x )=1200 , 解得x 1=0 ,x 2=25 ,当x=0时,能卖出30 件;当x=25 时,能卖出80件,根据题意,x=25 时能卖出80 件,符合题意,不降价也能盈利1200元,符合题意,因为要减少库存,所以应降价25 元,答:每件衬衫应降价25 元;22.(1)P 、Q 同时出发后经过的时间为ts ,的面积为,则有:(12-2t )×4t=32,解得:t=2或t=4.答:当移动秒或秒时,的面积为.,解得:.答:当移动秒时,四边形的面积为.23.(1)x 1+x 2=﹣,x 1x 2=﹣;故答案为﹣ ,﹣;(2)∵m 、n 满足2m 2﹣2m ﹣1=0,2n 2﹣2n ﹣1=0,∴m 、n 可看作方程2x 2﹣2x ﹣1=0的两实数解,∴m+n=1,mn=﹣,BPQ V 232cm 1224BPQ V 232cm ()()22122444241441082ABC BPQ S S S AB BC t t t t =-=⋅--=-+=V V 3t =3APQC 2108cm 3212321212∴m 2n+mn 2=mn (m+n )=﹣×1=﹣;(3)设t=2q ,代入2q 2=3q+1化简为t 2=3t+2,则p 与t (即2q )为方程x 2﹣3x ﹣2=0的两实数解,∴p+2q=3,p •2q=﹣2,∴p 2+4q 2=(p+2q )2﹣2p •2q=32﹣2×(﹣2)=13.1212。
初中数学苏科版九年级上册第1章 一元二次方程1.2 一元二次方程的解法-章节测试习题(27)
章节测试题1.【答题】方程的解是()A. ,B.C. D.【答案】C【分析】根据直接开平方法解答即可.【解答】∵(x+1)2=4,∴x+1=±2,解得x1=1,x2=﹣3.选C.2.【答题】一元二次方程(x+2017)2=1的解为()A. ﹣2016,﹣2018B. ﹣2016C. ﹣2018D. ﹣2017 【答案】A【分析】根据直接开平方法解答即可.【解答】(x+2017)2=1x+2017=±1,∴x1=-2018,x2=-2016.选A.3.【答题】一元二次方程(x-1)2=9的解为()A. 4B. -2C. 4或-2D. 3或-3 【答案】C【分析】根据直接开平方法解答即可.【解答】∵(x-1)2=9,∴x-1=±3,∴x=4或x=-2.选C.4.【答题】若(a+b﹣1)(a+b+1)﹣4=0,则a+b的值为()A. 2B. ±2C.D. ±【答案】D【分析】把a+b看作一个整体,根据直接开平方法解答即可.【解答】(a+b)2﹣1﹣4=0,(a+b)2=5,∴a+b=±.选D.5.【答题】方程3+9=0的根为()A. 3B. -3C. ±3D. 无实数根【答案】D【分析】根据直接开平方法解答即可.【解答】原方程可化为:,∵负数没有平方根,∴原方程无实数根.选D.6.【答题】已知三角形的两边长是4和6,第三边的长是方程(x-3)2-1=0的根,则此三角形的周长为()A. 10B. 12C. 14D. 12或14【答案】C【分析】根据直接开平方法解答即可.【解答】∵(x-3)2-1=0,∴x-3=±1,解得:x=4或x=2.∵6-4<x<6+4,即2<x<10,∴x=4,故周长为:4+6+4=14.选C.7.【答题】有下列方程:①x2-2x=0;②9x2-25=0;③(2x-1)2=1;④.其中能用直接开平方法做的是()A. B. C. D.【答案】C【分析】根据直接开平方法解答即可.【解答】①x2-2x=0,因式分解法;②9x2-25=0,直接开平方法;③(2x-1)2=1,直接开平方法;④,直接开平方法,则能用直接开平方法做的是②③④.选C.8.【答题】若a,b,c满足则关于x的方程的解是()A. 1,0B. -1,0C. 1,-1D. 无实数根【答案】C【分析】由方程组得到a+c=0,即a=-c,b=0,再代入方程可求解.【解答】∵a+b+c=0——①;a-b+c=0——②且a≠0,联立两式①+②得a+c=0,即a=-c,b=0,代入ax²+bx+c=0得:ax²-a=0解得x=1或x=-1选C9.【答题】如果关于x的方程(m﹣1)x3﹣mx2+2=0是一元二次方程,那么此方程的根是______.【答案】【分析】直接利用一元二次方程的定义得出m的取值范围,再代入方程解方程即可.【解答】由题意得:,∴m=1,原方程变为:﹣x2+2=0,x=,故答案为.10.【答题】已知,则的值为______.【答案】1【分析】根据直接开平方法解答即可.【解答】∵,∴,∴,∴,∴.故答案为1.11.【答题】一元二次方程(4-2x)2-36=0的解是______.【答案】x1=-1,x2=5【分析】根据直接开平方法解答即可.【解答】移项得:(4﹣2x)2=36,开方得:4﹣2x=±6,解得:x1=﹣1,x2=5.故答案为:x1=﹣1,x2=5.12.【答题】若2x2+3与2x2﹣4互为相反数,则x为______.【答案】±【分析】根据直接开平方法解答即可.【解答】由题意可得:解得:故答案为13.【答题】已知,那么______.【答案】3【分析】把看成一个整体设为x,再解一元二次方程舍去负值即可.【解答】设,则原方程化为:,,,,,故答案为:3.14.【题文】(1)(x+5)2+16=80;(2)(x-1)2-9=0【答案】(1)x1=-13,x2=3;(2)x1=4,x2=-2.【分析】根据直接开平方法解答即可.【解答】(1)(x+5)2+16=80,移项,得(x+5)2=64,∴x+5=±8,∴x=-5±8,∴x1=-13,x2=3;(2)(x-1)2-9=0,(x-1)2=9,x-1=3或x-1=-3∴x1=4,x2=-2.15.【题文】解方程:【答案】当时,原方程的解是,当时,原方程无实数解【分析】先移项,再合并同类项可得,根据求出,再讨论时,,分别计算出方程的解.【解答】解:移项得:,化简得:,,,当时,,原方程无实数解,当时,,,当时,原方程的解是当时,原方程无实数解.16.【题文】解方程:;【答案】,【分析】移项后利用直接开平方法解方程即可.【解答】.得.即,或.解得,.17.【题文】(1)解方程:(x+1)2=64;(2)计算:【答案】(1)x1=7,x2=-8;(2)-36【分析】(1)原式利用平方根计算即可得到结果;(2)根据实数的运算法则进行计算即可得解.【解答】(1)∵(x+1)2=64,∴x+1=±8当x+1=8时,x=7;当x+1=-8时,x=-8.(2)原式=(-8)×4+(-4)×-3=-3618.【题文】解方程与计算(1)利用平方根解方程:2(x﹣1)2﹣6=0(2)计算:【答案】(1);;(2)-2【分析】(1)根据等式的性质,先将方程整理成(x﹣1)2=3的形式,再直接开平方即可;(2)根据实数的运算顺序先开平方和乘方,再加减即可;【解答】(1)方程整理得:(x﹣1)2=3,开方得:x﹣1=±,.解得:x1=1+,x2=1﹣;(2)原式=10×﹣5+2=1﹣5+2=﹣2.19.【题文】解方程:(1)(x+1)2=9;(2)x2-4x+2=0.【答案】(1)x1=2,x2=-4;(2)x1=2+,x2=2-.【分析】(1)直接开平方;(2)先变形,再开平方;【解答】(1)(x+1)2=9x+1=3或x+1=-312(2)x2-4x+2=0x2-4x+2+2=2(x-2)2=2或∴x1=2+,x2=2﹣20.【题文】解方程:(x+1)2-1=8.【答案】x1=2,x2=-4.【分析】移项后,直接开平方即可.【解答】(1)去分母得:x(x+2)-(x-1)(x+2)=3,去括号得:2x-2x+x+2=3,解得:x=1,经检验x=1时,分母为0,方程无解.(2)(x+1)2-1=8(x+1)2=9,∴x+1=3或x+1=-3,12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习七一元二次方程及其解法
一、选择
1、下列方程中,常数项为零的是 ( )
A、x2+x=1
B、2x2-x-12=12
C、2(x2-1)=3(x-1)
D、2(x2+1)=x+2
2、已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于()
A、1
B、-1
C、0
D、2
3、下列方程:①x2=0,② -2=0,③2+3x=(1+2x)(2+x),④3-=0,⑤-8x+ 1=0
中,一元二次方程的个数是 ( )
A、1个
B、2个
C、3个
D、4个
4、方程x(x+1)=3(x+1)的解的情况是()
A、x=-1
B、x=3
C、
D、以上答案都不对
二、填空
5、把方程4 —x2 = 3x化为ax2 + bx + c = 0(a≠0)形式为,则该方程的二次项系数、一次项系数和常数项分别为。
6、在关于x的方程(m-5)x m-7+(m+3)x-3=0中:当m=_____时,它是一元二次方程;当m=_____时,它是一元一次方程。
7、方程的解为.
8、已知关于x的一元二次方程x2+kx+k=0的一个根是–2,那么k=____。
9、已知y=x2-2x-3,当x= 时,y的值是-3。
10、若方程有整数根,则的值可以是_________(只填一个)。
三、解答
11、解下列方程
(1)x2-4x+4=0 (2)8y2-2=4y(配方法)
(3)2(2x-3)2-3(2x-3)=0 (4)x2-(1+2)x+-3=0
12、如果一元二次方程x2+ax +b= 0的两个根是0和—2,则a、b分别等于多少?
13、如下图,用一块正方形纸板,在四个角上截去四个相同的边长为2厘米的小正方形,然后把四边折起来,做成一个没有盖的长方体盒子,使它的容积为32立方厘米。
所用的正方形纸板的边长应是多少厘米?(仅列方程,不求出解)
14、已知下列n(n为正整数)个关于x的一元二次方程:
(1)请解上述一元二次方程<1>、<2>、<3>、<n>;
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可。
答案:
一、D、A、A、C
二、5、x2 + 3x —4=0,1、3、—4;6、9、8;7、0、4;
8、4;9、0、2;10、例如m=0,1,4,9,……
三、11、(1)x1=x2=2;(2)原方程没有实数解;(3)x1=,x2=;(4)x1=3+,x2=-2+
12、-2、0
13、方法一:设宽为xcm,则长为(x+5)cm,列方程x(x+5)=150 ,化简得x2 +5x =150 ;方法二:设长为xcm,则宽为(x—5)cm,列方程x(x—5)=150,化简得x2—5x =150 ;
14、(1)<1>,所以
<2>,所以
<3>,所以
……
<n>,所以………………4分
(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等。