函数的单调性教学案例

合集下载

函数的单调性市公开课获奖教案省名师优质课赛课一等奖教案

函数的单调性市公开课获奖教案省名师优质课赛课一等奖教案

函数的单调性教案一、引入函数的单调性是高中数学中的重要概念,它描述的是函数在定义域上的变化趋势。

在解题中,了解函数的单调性能够帮助我们简化问题,提高解题效率。

本教案将通过详细的讲解和例题分析,帮助学生掌握函数的单调性的概念、判断和应用。

二、概念剖析1. 单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≤ f(x2),则称 f(x) 在定义域上是单调递增的。

2. 单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≥ f(x2),则称 f(x) 在定义域上是单调递减的。

3. 严格单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) < f(x2),则称 f(x) 在定义域上是严格单调递增的。

4. 严格单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) > f(x2),则称 f(x) 在定义域上是严格单调递减的。

三、判断方法1. 导数判断法:对于函数 f(x),通过求导数 f'(x),可以判断函数的单调性。

当 f'(x) > 0 时,函数 f(x) 单调递增;当 f'(x) < 0 时,函数f(x) 单调递减。

2. 一阶差分判断法:对于函数 f(x),通过计算相邻两点之间的函数值差来判断函数的单调性。

当 f(x2) - f(x1) > 0 时,函数 f(x) 单调递增;当 f(x2) - f(x1) < 0 时,函数 f(x) 单调递减。

四、应用示例1. 实例1:判断函数 f(x) = 3x + 2 的单调性。

解析:根据导数判断法,求出函数 f(x) 的导数 f'(x) = 3。

函数单调性教案-ppt课件

函数单调性教案-ppt课件

定义:
y y f(x)
f (x1) f(x2)
O
x1
x2
x
探求新知
y y f(x)
注意:
f(x1) f(x2)
O x1 x2
x
在给定的区间上任
取x1,x2; x1 x2
f(x 1) f(x 2 )
函数f (x)在给定区 间上为增函数。这
个给定的区间就为
单调增区间。
在给定的区间上任
x x 取x1,x2; 1
1 证明函数f(x)=-x2在0, 上是减函数.
2、预习下节课我们要学习的内容——最大(小)值.
函数单调性
复习思考
1 函数的概念?
设A,B为非空数集,如果按某一确定的对应关系f,使对于 集合A中任意一个元素x,在集合B中都有唯一确定的元素y与之对 应,那么就称对应f:A→B为从集合A到B的映射;即f:A→B的 一个函数.记作y=f(x),其中x∈A,y∈B.
函数的三要素:定义域、值域、对应关系
2
f(x1) f(x 2 )
函数f (x)在给定区
间上为减函数。这
个给定的区间就为
单调减区间。
巩固反思
例1 如右图是定义 在闭区间 [-5,5]上的 函数y=f(x) ,根据图 象说出函数的单调区 间,以及在每一单调 区间上,它是增函数 还是减函数.
解:函数y=f(x) 的单调区间有[-5,-2) , [-2,1) , [1,3) , [3,5).
在定义域区间内,
① 图像从左到右一直上升——x的值增大,函数值y也增大; ② 图像从左到右一直下降——x的值增大,函数值y反而减小. 问题2:那么对于二次函数的变化规律又是怎样描述的呢?
y

函数的单调性教案()

函数的单调性教案()

函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。

教学内容:(1) 引入函数单调性的概念。

(2) 讲解函数单调增和单调减的定义。

(3) 举例说明函数单调性的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。

(2) 采用提问法,引导学生思考函数单调性的含义和应用。

教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。

(2) 讲解函数单调增和单调减的定义,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。

(4) 总结函数单调性的应用,如解不等式、求最值等。

1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。

教学内容:(1) 讲解函数单调性的传递性。

(2) 讲解函数单调性的同增异减性质。

(3) 举例说明函数单调性性质的应用。

教学方法:(1) 采用讲解法,讲解函数单调性的性质。

(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。

教学步骤:(1) 讲解函数单调性的传递性,举例说明。

(2) 讲解函数单调性的同增异减性质,举例说明。

(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。

(4) 总结函数单调性性质的应用,如解不等式、求最值等。

第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。

教学内容:(1) 讲解导数与函数单调性的关系。

(2) 讲解利用导数判断函数单调性的方法。

(3) 举例说明利用导数判断函数单调性的应用。

教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。

(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。

教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。

(2) 讲解利用导数判断函数单调性的方法,举例说明。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。

章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。

2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。

3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。

2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。

3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。

章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。

2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。

3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。

章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。

2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。

3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。

4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。

函数的单调性教案()

函数的单调性教案()

函数的单调性教案(优秀)第一章:引言1.1 教学目标了解函数单调性的概念及其在数学中的重要性。

理解单调性对解决实际问题的重要作用。

1.2 教学内容介绍函数单调性的概念。

通过实际例子说明单调性在解决实际问题中的应用。

1.3 教学方法使用多媒体演示和实际例子来讲解函数单调性的概念。

引导学生通过思考和讨论来理解单调性的重要性。

1.4 教学评估通过课堂提问和小组讨论来评估学生对函数单调性的理解程度。

第二章:函数单调性的定义与性质2.1 教学目标理解函数单调性的定义及其性质。

学会判断函数的单调性。

2.2 教学内容介绍函数单调性的定义。

讲解函数单调性的性质,如单调递增和单调递减。

2.3 教学方法使用数学定义和示例来解释函数单调性的概念。

引导学生通过自主学习和小组讨论来掌握函数单调性的性质。

2.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性定义和性质的理解程度。

第三章:函数单调性的应用3.1 教学目标学会使用函数单调性解决实际问题。

理解函数单调性在数学和其他领域中的应用。

3.2 教学内容介绍函数单调性在解决实际问题中的应用。

讲解函数单调性在其他领域中的应用,如经济学和物理学。

3.3 教学方法使用实际例子和应用问题来展示函数单调性的使用。

引导学生通过思考和讨论来理解函数单调性在实际问题中的应用。

3.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性应用的理解程度。

第四章:函数单调性的证明4.1 教学目标学会使用数学方法证明函数的单调性。

理解证明函数单调性的重要性和方法。

4.2 教学内容介绍证明函数单调性的方法和技巧。

讲解不同类型的函数单调性证明。

4.3 教学方法使用示例和练习来讲解证明函数单调性的方法。

引导学生通过自主学习和小组讨论来掌握证明函数单调性的技巧。

4.4 教学评估通过课堂练习和小组讨论来评估学生对证明函数单调性的理解程度。

5.1 教学目标拓展对函数单调性的深入理解。

5.2 教学内容介绍函数单调性的进一步研究和发展。

《函数的单调性》教学设计[合集5篇]

《函数的单调性》教学设计[合集5篇]

《函数的单调性》教学设计[合集5篇]第一篇:《函数的单调性》教学设计《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标(1)知识与技能目标:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;(2)过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.三、教法学法分析教法分析:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.学法分析:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.四、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答. [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,这一情形进行描述.引导学生回答:对于自变量8<10,f(t1)=1,t2=10时,f(t2)=4”对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1<t2时,是否都有f(t1)<f(t2)呢? [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当x1<x2时,都有f(x1)<f(x2)”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明f(x)=1在区间(0,+ ∞)上是单调减函数.x[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念 [教师活动]给出一组题:1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R 上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(x)满足f(1+a)<f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P29例1、2(2)书面作业:必做:教材作业选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数b的值唯一吗?探究:函数y=x在定义域内是增函数,函数y=1有两个单调减区间,由这两个基本函x数构成的函数y=x+1的单调性如何?请证明你得到的结论.x[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.五、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.第二篇:函数单调性教学设计函数单调性教学设计关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。

函数的单调性优秀教案

函数的单调性优秀教案

函数的单调性优秀教案一、教学目标1、知识与技能目标理解函数单调性的概念,能够根据函数的图象判断函数的单调性。

掌握函数单调性的证明方法,能运用定义证明函数的单调性。

2、过程与方法目标通过观察函数图象,引导学生发现函数单调性的特征,培养学生的观察能力和归纳能力。

通过函数单调性的证明,让学生体会从特殊到一般、从具体到抽象的思维方法,提高学生的逻辑推理能力。

3、情感态度与价值观目标让学生在自主探究中体验成功的喜悦,增强学习数学的信心。

通过函数单调性的应用,让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。

二、教学重难点1、教学重点函数单调性的概念。

运用定义证明函数的单调性。

2、教学难点函数单调性定义的理解。

利用定义证明函数的单调性。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课展示函数图象,如一次函数 y = 2x + 1,二次函数 y = x²的图象。

引导学生观察图象的上升和下降趋势,提问:“从图象中,你能发现函数值随着自变量的变化有什么规律吗?”2、讲授新课给出函数单调性的定义:设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。

强调定义中的关键词:定义域、区间、任意、都有。

通过具体例子,如 f(x) = x²在区间 0, +∞)上是增函数,在区间(∞, 0 上是减函数,帮助学生理解函数单调性的概念。

3、例题讲解例 1:判断函数 f(x) = 2x 1 在区间(∞,+∞)上的单调性。

分析:设 x₁,x₂是区间(∞,+∞)上的任意两个实数,且 x₁< x₂,计算 f(x₂) f(x₁),判断其符号。

解:f(x₂) f(x₁) =(2x₂ 1) (2x₁ 1) = 2(x₂ x₁)因为 x₁< x₂,所以 x₂ x₁> 0,所以 2(x₂ x₁) > 0,即 f(x₂) f(x₁) > 0,所以 f(x) = 2x 1 在区间(∞,+∞)上是增函数。

函数的单调性教案

函数的单调性教案

函数的单调性教案第一章:函数单调性的基本概念1.1 引入:引导学生回顾初中阶段学过的函数概念,复习一次函数、二次函数的图像和性质。

提问:函数的图像是否具有单调性?如何描述函数的单调性?1.2 单调性的定义:讲解函数单调性的定义,引导学生理解单调递增和单调递减的概念。

举例说明:如y=x,y=2x+1等函数的单调性。

1.3 单调性的判断:教授如何判断函数的单调性,引导学生掌握利用导数或图像判断单调性的方法。

第二章:单调递增函数的性质2.1 单调递增的定义:复习单调递增的定义,强调函数值随着自变量的增加而增加的特点。

举例说明:如y=x,y=2x+1等函数的单调递增性质。

2.2 单调递增函数的图像:讲解单调递增函数的图像特点,引导学生理解函数图像随着x的增加而上升的趋势。

2.3 单调递增函数的性质:教授单调递增函数的性质,如凹凸性、极值等。

第三章:单调递减函数的性质3.1 单调递减的定义:复习单调递减的定义,强调函数值随着自变量的增加而减少的特点。

举例说明:如y=-x,y=-2x-1等函数的单调递减性质。

3.2 单调递减函数的图像:讲解单调递减函数的图像特点,引导学生理解函数图像随着x的增加而下降的趋势。

3.3 单调递减函数的性质:教授单调递减函数的性质,如凹凸性、极值等。

第四章:单调性的应用4.1 最大值和最小值:讲解如何利用函数的单调性求解最大值和最小值问题。

4.2 函数的单调区间:讲解如何确定函数的单调递增区间和单调递减区间。

4.3 函数的单调性与方程的解:讲解如何利用函数的单调性来解决方程的解的问题。

第五章:单调性的综合应用5.1 函数图像的变换:讲解如何利用单调性来分析和理解函数图像的平移、翻折等变换。

5.2 函数的单调性与实际问题:引导学生将函数的单调性应用于解决实际问题,如优化问题、经济问题等。

5.3 单调性的进一步探讨:引导学生思考单调性的局限性,如非单调函数的特殊情况。

第六章:复合函数的单调性6.1 复合函数的概念:引导学生回顾复合函数的定义,理解复合函数是由两个或多个基本函数通过函数运算组合而成的。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:函数单调性的概念及定义1.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如商品价格的变化、物体运动的速度等。

1.2 讲解:单调性的定义,函数单调递增和单调递减的概念。

1.3 练习:判断几个简单函数的单调性,如f(x)=x, f(x)=-x, f(x)=x^2等。

第二章:函数单调性的判断方法2.1 引入:通过实际例子,让学生理解单调性判断的重要性。

2.2 讲解:利用导数、图像、定义等方法判断函数的单调性。

2.3 练习:判断一些复杂函数的单调性,并进行验证。

第三章:函数单调性的应用3.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如最优化问题、不等式的证明等。

3.2 讲解:函数单调性在解决最优化问题、不等式证明等方面的应用。

3.3 练习:解决一些实际问题,如求函数的最值、证明不等式等。

第四章:函数单调性的性质与定理4.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的周期性、奇偶性等。

4.2 讲解:函数单调性的性质与定理,如拉格朗日中值定理、柯西中值定理等。

4.3 练习:运用性质与定理解决一些实际问题。

第五章:函数单调性与导数的关系5.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的极值点。

5.2 讲解:函数单调性与导数的关系,如单调递增的充分必要条件是导数大于0,单调递减的充分必要条件是导数小于0。

5.3 练习:判断函数的单调性,并找出其极值点。

第六章:复合函数的单调性6.1 引入:通过实际例子,让学生感受复合函数单调性在实际生活中的应用,如温度随高度和纬度的变化。

6.2 讲解:复合函数单调性的定义和判断方法。

6.3 练习:判断复合函数的单调性,并进行验证。

第七章:反函数的单调性7.1 引入:通过实际例子,让学生感受反函数单调性在实际生活中的应用,如坐标系的转换。

7.2 讲解:反函数单调性的性质和判断方法。

函数单调性优秀教案

函数单调性优秀教案

函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。

为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。

在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

他是高中数学中相当重要的一个基础知识点。

是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:引言1.1 现实生活中的单调性1.引入概念:单调性是指函数在定义域内的变化趋势。

2.举例说明:(1)商品价格随时间的变化;(2)物体的高度随时间的变化。

1.2 函数单调性的意义1.函数单调性在实际生活中的应用:(1)优化问题;(2)经济决策。

2.函数单调性在数学领域的应用:(1)导数的定义;(2)最值问题的求解。

第二章:函数单调性的定义与性质2.1 函数单调性的定义1.单调递增函数:若对于定义域内的任意x1<x2,都有f(x1)<f(x2),则函数f(x)为单调递增函数。

2.单调递减函数:若对于定义域内的任意x1<x2,都有f(x1)>f(x2),则函数f(x)为单调递减函数。

2.2 函数单调性的性质1.若函数f(x)在定义域内单调递增,则在任意子区间内也单调递增;2.若函数f(x)在定义域内单调递减,则在任意子区间内也单调递减;3.单调递增函数的导数大于等于0;4.单调递减函数的导数小于等于0。

第三章:函数单调性的判断与证明3.1 函数单调性的判断1.利用导数判断:若函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则函数f(x)在定义域内单调递增(或单调递减)。

2.利用图像判断:观察函数图像,若图像随着x的增大而上升,则为单调递增函数;若图像随着x的增大而下降,则为单调递减函数。

3.2 函数单调性的证明1.利用导数证明:假设函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则对于定义域内的任意x1<x2,有f(x1)<f(x2)(或f(x1)>f(x2)),从而证明函数f(x)单调递增(或单调递减)。

2.利用数学归纳法证明:对于定义域内的任意x1<x2,证明f(x1)<f(x2)(或f(x1)>f(x2)),从而得出函数f(x)单调递增(或单调递减)。

第四章:函数单调性与最值问题4.1 函数单调性与最值的关系1.若函数f(x)在定义域内单调递增,则函数在定义域内的最小值出现在定义域的左端点;2.若函数f(x)在定义域内单调递减,则函数在定义域内的最大值出现在定义域的左端点。

函数的基本性质单调性教案

函数的基本性质单调性教案

函数的基本性质-单调性教案第一章:函数单调性的概念与定义1.1 引入:通过实际例子,让学生感受函数单调性的存在。

1.2 单调性的定义:函数单调递增和单调递减的定义。

1.3 单调性的表示:用符号表示函数的单调性。

1.4 单调性的性质:单调性的一些基本性质,如传递性、复合函数的单调性等。

第二章:函数单调性的判断与证明2.1 单调性的判断方法:通过导数或者图像来判断函数的单调性。

2.2 单调性的证明:利用导数或者定义来证明函数的单调性。

2.3 单调性的应用:利用单调性解决一些实际问题,如最值问题、不等式问题等。

第三章:函数单调性与极值的关系3.1 极值的概念:函数的极大值和极小值的定义。

3.2 极值与单调性的关系:函数在极值点附近的单调性变化。

3.3 利用单调性求极值:通过单调性来确定函数的极值点。

第四章:函数单调性与图像的关系4.1 图像的单调性:函数图像的单调递增和单调递减。

4.2 单调性与图像的交点:函数图像的交点与单调性的关系。

4.3 利用图像判断单调性:通过观察函数图像来判断函数的单调性。

第五章:函数单调性的应用5.1 函数的单调区间:确定函数的单调递增或单调递减区间。

5.2 单调性与函数值的关系:函数值的变化与单调性的关系。

5.3 应用实例:利用单调性解决实际问题,如最大值、最小值问题等。

第六章:单调性在实际问题中的应用6.1 引言:通过实际问题引入单调性的应用。

6.2 单调性在优化问题中的应用:如最短路径问题、最大收益问题等。

6.3 单调性在经济学中的应用:如市场需求、价格调整等。

第七章:函数单调性的进一步探讨7.1 函数的严格单调性:严格单调递增和严格单调递减的定义。

7.2 单调性的不变性:函数单调性在坐标变换下的性质。

7.3 单调性与连续性的关系:连续函数的单调性性质。

第八章:复合函数的单调性8.1 复合函数的定义:两个函数的组合。

8.2 复合函数的单调性:复合函数单调性的判定方法。

函数单调性教案范文

函数单调性教案范文

函数单调性教案范文教案一:函数单调性初步学科:数学年级:初中课时数:2课时教学目标:1.理解函数的单调性的概念;2.掌握通过一阶导数判断函数的单调性;3.能够应用函数单调性解决实际问题。

教学重点:1.函数单调性的概念和判断方法;2.巧妙运用函数单调性解决实际问题。

教学难点:通过一阶导数判断函数单调性。

教学准备:教师:教材、黑板、彩色粉笔、课件;学生:课本、笔记本、书写工具。

教学策略:讲授法、练习法、讨论法、实验法。

教学过程:第一步:导入新课1.看两个数列:{1,3,5,7,9}和{9,7,5,3,1},分别问学生两个数列的特点是什么。

第二步:函数单调性的概念和判断方法1.将函数单调性的概念写在黑板,并解释其意义。

2.引导学生思考如何通过函数的图像判断函数的单调性。

3.教师讲授通过一阶导数判断函数的单调性的方法,并解释其原理。

第三步:通过例题巩固掌握1.通过几个简单的例子,演示如何用一阶导数判断函数的单调性。

2.练习题:让学生独立尝试判断给定函数的单调性,并与同桌讨论答案。

3.教师根据学生的表现进行讲解和指导。

第四步:应用函数单调性解决实际问题1.通过一个生活实际问题,引导学生思考如何用函数的单调性解决问题。

2.练习题:让学生独立应用函数单调性解决实际问题,并与同桌讨论答案。

3.教师根据学生的表现进行讲解和指导。

第五步:总结归纳1.引导学生总结函数单调性的判断方法和应用。

2.教师进行总结和补充,并强调函数单调性在数学和生活中的重要性。

课后作业:1.完成课堂上没有完成的练习题;2.思考一个实际问题,应用函数单调性解决问题,并写出解题步骤。

教学反思:通过此次教学,学生掌握了函数单调性的概念和判断方法。

他们在练习题中的表现也较好,能够独立判断函数的单调性并且应用于实际问题。

但是,部分学生对于一阶导数的概念理解不够深刻,导致在判断函数单调性时存在一些错误。

因此,下一节课需要加强对一阶导数的讲解和练习,以加深学生对函数单调性的理解。

“函数的单调性”教案

“函数的单调性”教案

函数的单调性教案一、教学目标:1. 理解单调性的概念,能判断简单函数的单调性。

2. 掌握单调性的证明方法,能运用单调性解决实际问题。

3. 理解单调性在数学分析中的重要性,培养学生的逻辑思维能力。

二、教学内容:1. 单调性的定义与性质2. 单调性的判断方法3. 单调性的证明方法4. 单调性在实际问题中的应用5. 单调性的进一步探讨三、教学重点与难点:1. 单调性的定义与性质2. 单调性的判断方法3. 单调性的证明方法四、教学方法:1. 采用讲授法,讲解单调性的定义、性质、判断方法和证明方法。

2. 利用实例分析,让学生直观地理解单调性。

3. 引导学生运用单调性解决实际问题,培养学生的应用能力。

4. 开展小组讨论,激发学生的思考与创新。

五、教学过程:1. 导入:回顾函数的基本概念,引导学生思考函数的性质。

2. 新课讲解:(1)介绍单调性的定义与性质,通过示例让学生理解单调递增和单调递减的概念。

(2)讲解单调性的判断方法,引导学生学会如何判断函数的单调性。

(3)教授单调性的证明方法,让学生掌握如何证明函数的单调性。

3. 实例分析:分析实际问题,运用单调性解决问题。

4. 小组讨论:让学生围绕单调性展开讨论,分享自己的观点和心得。

5. 总结与拓展:回顾本节课的内容,布置课后作业,引导学生进一步探讨单调性的相关问题。

六、课后作业:(1)f(x) = x²(2)f(x) = -x(1)f(x) = x³(2)f(x) = x + 13. 运用单调性解决实际问题:(1)已知函数f(x) = x²4x + 3,求函数的最大值。

(2)已知函数f(x) = 2x 3,求函数在区间[1, +∞)上的最小值。

七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习积极性。

2. 课后作业:检查学生的作业完成情况,评价学生对单调性的理解和掌握程度。

3. 小组讨论:评价学生在讨论中的表现,包括思考问题、分享观点和合作意识等方面。

函数的单调性教学设计全国比赛案例

函数的单调性教学设计全国比赛案例

穷举,从而引导学生在 给定的区间内任取两个 自变量。
数足为。,增(所函以 数2)。f (取x()多3组x)2在数任值取[0验,x1,证x2)均[0上满,), •
把对单调性的认识由感 性上升到理性认识的高 度,完成对概念的第二 次认识。
且 x〈1 x 2,因 为 x 1 2 x 2 2 ( x 1 x 2 ) ( x 1 x 2 ) 〈 0 • 事实上也给出了证明单

f
(
x)
x
2

[
0,
)
上为增函数。
调性的方法,为第三阶 段的学习做好铺垫
教学过程
2、抽象思维,形成概念
问题5:你能用准确的数学符号语言 表述出增函数的定义吗?
,
设计意图
• 引导学生归纳、 抽象出函数单 调性的定义
• 使学生经历从 具体到抽象,从 特殊到一般的 认知过程
• 培养学生归纳 概括能 力
教学过程
(二)探究新知,构建概念 (23min)
借助图象 直观感知
抽象思维 形成概念
教学过程
1、借助图象,直观感知
问题1:分别作出函数 y x 2, y x 2, y x2和y 1 的图象,
x 并且观察当自变量变化 时,函 数值有什么变化规律?
设计意图
教学过程
1、借助图象,直观感知
教学过程
2、抽象思维,形成概念
问题3:下图是函数 y x 2(x 0) 的图象,能说出这个函数分别x 在哪个
区间为增函数或减函数吗?
设计意图 • 学生难以确定分界
点的确切位置。
• 通过讨论,使学生 感受到用图象判断 函数单调性比较直 观,但有时不够精 确,需要结合解析 式进行严密化、精 确化的研究。使学 生体会到用数量大 小关系严格表述函 数单调性的必要性。

高中数学《函数的单调性》优秀教案

高中数学《函数的单调性》优秀教案

高中数学教案课题:函数的单调性课型新授课课时1 课时教学目标知识目标理解增函数、减函数的概念;能力目标 1.掌握判断和证明某些函数增、减性的方法;2.培养学生观察、比较、分析的能力;3.增强数形结合的意识与能力;德育目标熟悉从感性认识到理性认识,从具体到抽象的研究问题的方法。

教材内容要求分解表教学重点《教学论》中指出了教科书中现有理论知识,要有应用的技能、技巧,教材的内容、要有反映生活、建设上的实际材料。

这一准则对数学教学尤其重要。

函数的单调性是函数的重要性质之一,也有广泛的应用。

但因这节课为新授课,不宜过于深入,点到为止,因而单调性的相关概念是重点。

教学难点利用概念证明或判断函数的单调性学法指导1. 理解和掌握函数的单调性的相关概念2.由于图象法是认识函数性质的重要方法,也是记忆和掌握函数性质的有效工具。

掌握下表内容,有助于提高研究函数的能力,特别是有助于数形结合思想与方法融会贯通。

函数图象直观显示函数的性质(部分)(1)着重注意从实际出发,从感性认识提高到理性认识(2)注重运用对比的方法和及时利用反馈信息纠错与强化(3)坚持结合直观图形或函数图象来说明和帮助学生理解概念(4)充分利用电脑与几何画板等辅助作用,增强教学效果。

教学流程设计开始师生问好学生作图观察教师提出问题师生对话:单调性定义不正确反馈正确例1,2,3(阅读、讲评)师生对话不正确反馈正确学生练习教师评讲引入例4(讲解)不理解反馈理解分组练习、教师讲评教师:课堂小结(布置作业)结束教学用具多媒体、实物投影仪、CAI课件、几何画板软件教学过程一.新课引入:日常生活中,我们有过这样的体验:从阶梯教室前向后走,逐步上升,从从阶梯教室后向前走,逐步下降;上下楼梯也是一样很多函数也具有类似性质。

如(学生在电脑上用几何画板画出图象):y=3x+2 y=1/x (x>0)图一图二从左往右看,函数的图象逐步上升(图一)或逐步下降(图二),这就是我们要研究的函数的重要性质之一:函数的单调性(电脑给出课题、教学目标)二.新授课1. 先由学生结合图象猜想函数的单调性的定义,然后纠错补充再让学生阅读书上从P58到P59的例1以上的部分。

函数的单调性教案(获奖)

函数的单调性教案(获奖)

函数的单调性教案(获奖)第一章:引言1.1 现实背景(1) 学生通过观察生活中的实例,如商品价格与销售量的关系,了解函数的单调性在实际问题中的应用。

(2) 引导学生思考:如何判断一个函数在其定义域内的单调性?1.2 知识准备(1) 回顾函数的定义及其图像表示。

(2) 复习导数的概念及其性质。

第二章:函数单调性的定义与性质2.1 函数单调性的定义(1) 介绍函数单调递增和单调递减的定义。

(2) 引导学生通过实例理解单调性的概念。

2.2 函数单调性的性质(1) 分析单调性在函数图像上的表现。

(2) 引导学生总结单调性的基本性质。

第三章:利用导数判断函数单调性3.1 导数与单调性的关系(1) 讲解导数在判断函数单调性方面的应用。

(2) 引导学生理解导数正负与函数单调性的关系。

3.2 利用导数判断函数单调性(1) 举例说明如何利用导数判断函数的单调性。

(2) 学生分组讨论,尝试自行判断给定函数的单调性。

第四章:单调性在实际问题中的应用4.1 实际问题建模(1) 引导学生将实际问题转化为函数单调性问题。

(2) 分析实际问题中函数单调性的应用。

4.2 求解最值问题(1) 讲解如何利用函数单调性求解最值问题。

(2) 学生练习求解具有单调性的最值问题。

第五章:总结与拓展5.1 课堂小结(1) 引导学生回顾本章所学内容,总结函数单调性的概念、性质及应用。

(2) 学生分享自己在实际问题中应用函数单调性的心得体会。

5.2 课后拓展(1) 布置课后习题,巩固函数单调性的相关知识。

(2) 鼓励学生探索函数单调性在其他领域的应用。

第六章:函数单调性的进一步探讨6.1 连续函数的单调性(1) 引入连续函数的概念,讨论连续函数的单调性。

(2) 引导学生理解连续函数单调性的重要性。

6.2 单调函数的图像特征(1) 分析单调函数图像的形状和位置。

(2) 学生通过绘制函数图像,加深对单调性的理解。

第七章:利用单调性解决实际问题7.1 最大值和最小值问题(1) 讲解如何利用单调性求解函数的最大值和最小值。

《函数单调性》教学案例

《函数单调性》教学案例

《函数单调性》教学案例第一篇:《函数单调性》教学案例《函数单调性》教学案例1.【案例背景】“函数的单调性”是新课标人教版《数学·1》第一章第三节的教学内容。

“课标”规定两个课时,所选案例为第一课时。

函数的单调性是函数的一条基本性质,从知识结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究基本初等函数、三角函数等内容的基础。

在这之前,学生已经学过函数的定义,函数的表示,学习过一次函数,二次函数,反比例函数等,函数单调性是学生研究函数整体性质的开始,之后还有奇偶性周期性等,所以本节内容承前启后,解决有关的函数问题,这一节学好了,学生获得的知识就会对后面几节的知识产生正迁移作用。

2.【教学内容分析】首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识;第二阶段是在高一进一步学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数为工具研究函数的单调性.高一单调性的学习,既是初中学习的延续和深化,又为高三的学习奠定基础.其次,从函数角度来讲.函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.3.【学情分析】高一的学生正处于经验逻辑思维发展阶段,具备了一定的逻辑思维但要想使学生“以一系列的行动队一系列的条件作出反应”却需要很大的努力的。

函数单调性的本质是利用定量的方法来研究函数图象的性质,如何将图形特征用严谨的数学语言来刻画是本节课的难点之一.另一难点是学生在高中阶段第一次接触代数证明,如何进行严格的推理论证并完成规范的书面表达.因此首先要重视学生的亲身体验:将新知识与学生的已有知识建立了联系.如:学生对一次函数、二次函数和反比例函数的认识。

函数的单调性教案()

函数的单调性教案()

函数的单调性教案(优秀)第一章:函数单调性的概念与定义1.1 引入通过现实生活中的例子(如商品价格随数量的变化)引出函数单调性的概念。

提问:如何描述函数值随自变量变化的速度和方向?1.2 单调性的定义讲解单调递增和单调递减的定义。

举例说明单调递增和单调递减的函数。

1.3 单调性示意图绘制几个单调递增和单调递减的函数图像,让学生直观理解单调性。

1.4 练习题设计一些练习题,让学生判断给定函数的单调性。

第二章:函数单调性的判断方法2.1 导数与单调性引入导数的概念,讲解导数与函数单调性的关系。

证明导数大于0时函数单调递增,导数小于0时函数单调递减。

2.2 单调性区间讲解如何找出函数的单调递增和单调递减区间。

举例说明如何找出函数的单调区间。

2.3 练习题设计一些练习题,让学生判断给定函数的单调区间。

第三章:函数单调性的应用3.1 最大值和最小值讲解如何利用函数单调性求函数的最大值和最小值。

举例说明如何求函数的最大值和最小值。

3.2 应用实例通过实际问题,讲解如何运用函数单调性解决实际问题。

3.3 练习题设计一些练习题,让学生运用函数单调性解决问题。

第四章:函数单调性的拓展4.1 多元函数单调性引入多元函数的概念,讲解多元函数的单调性。

举例说明多元函数的单调性。

4.2 函数的周期性讲解函数周期性与单调性的关系。

举例说明周期函数的单调性。

4.3 练习题设计一些练习题,让学生判断多元函数和周期函数的单调性。

第五章:总结与提高5.1 总结回顾本章内容,让学生总结函数单调性的概念、判断方法和应用。

提问:如何运用函数单调性解决实际问题?5.2 提高讲解一些函数单调性的高级应用,如函数的凹凸性、拐点等。

举例说明高级应用的实际意义。

5.3 练习题设计一些练习题,让学生运用函数单调性解决实际问题。

第六章:函数单调性的综合应用6.1 经济增长模型通过一个实际的经济增长模型,展示如何利用函数单调性分析经济增长的速度和趋势。

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)

函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。

《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。

把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。

从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。

【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性教学案例
【教材分析】
《函数单调性》是高中数学新教材必修一第二章第三节的内容。

在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。

掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

【教学目标】
知识与技能:
1.通过生活中的例子帮助学生理解增函数、减函数及其几何意义。

2.学会应用函数的图象理解和研究函数的单调性及其几何意义。

过程与方法:
1.通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。

2.通过探究与活动,使学生明白考虑问题要细致,说理要明确。

情感与态度:
1.通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。

2.通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。

【重点难点】
重点:函数单调性概念的理解及应用。

难点:函数单调性的判定及证明。

关键:增函数与减函数的概念的理解。

【教法分析】
为了实现本节课的教学目标,在教法上我采取了:
1.通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

3.在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

【学法分析】
在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。

然后通过对函数单调性的概念的学习理解,最终把问题解决。

整个过程学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

【教学过程设计】
(一)问题情境
1.海宁潮,又名钱江潮,自古称之为“天下奇观”。

“八月十八潮,壮观
天下无”。

海宁潮是一个壮观无比的自然动态奇观,当江潮从东面来时,似
一条银线,“则玉城雪岭际天而来,大声如雷霆,震撼激射,吞天沃日,势
极雄豪”。

潮起潮落,牵动了无数人的心。

如何用函数形式来表示,起和落
2.教师和学生一起举出生活中描述上升或下降的变化规律的成语:蒸蒸日上、每况愈下、此起彼伏。

如何用学过的函数图象来描绘这些成语
设计意图:创设海宁潮潮起潮落,成语→图象的问题情境,让学生用朴素的生活语言描述他们对变化规律的理解,并请学生将文字语言转化为图形语言,这样做可使教学过程富有情趣,可激发学生的学习热情,教学起点的设定也比较恰当,学生的参与度较高。

(二)温故知新
1.问题1:观察学生绘制的函数的图象(实际教学中可根据学生回答的情况而定),指出图象的变化的趋势。

观察得到:随着x 值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。

2.问题2:对“图象呈逐渐上升趋势”这句话初中是怎样描述的
例如:初中研究2
y x =时,我们知道,当x <0时,函数值y 随x 的增大而减小,当x >0时,函数值y 随x 的增大而增大。

回忆初中对函数单调性的解释:
图象呈逐渐上升趋势⇔数值y 随x 的增大而增大;图象呈逐渐下降趋势⇔数值y 随x 的增大而减小。

函数这种性质称为函数的单调性。

设计意图:学生在函数单调性这一概念的学习上有三个认知基础:一是生活体验,二是函数图象,三是初中对函数单调性的认识。

对照绘制的函数图象,让学生回忆初中对函数单调性的描述的定义,并在此基础上进行概念的符号化建构,与学生的认知起点衔接紧密,符合学生的认知规律。

(三)建构概念
问题3:如何用符号化的数学语言来准确地表述函数的单调性呢
对于区间I 内的任意两个值12,x x ,当12x x <时,都有12()()f x f x <。

单调增函数的定义:
问题4:如何定义单调减函数呢
可以通过类比的方法由学生给出。

设计意图:通过师生双边活动及学生讨论,可以让学生充分参与用严格的数学符号语言定义函数单调性的全过程,让他们亲身体验数学概念如何从直观到抽象,从文字到符号,从粗疏到严密。

让他们充分感悟数学概念符号化的建构原则。

问题4则要求学生结合图象化单调增函数的定义,通过类比的方法,由学生自己得到单调减函数的概念,在这个过程中,学生可以体会数学概念是如何扩充完善的。

(四)理解概念
1.顾名思义,对“单调”两字加深理解
汉语大词典对“单调”的解释是:简单、重复而没有变化。

2.呼应引入,解决问题情境中的问题
如:21y x =+的单调增区间是(,)-∞+∞;1y x =在(0,)+∞上是减函数。

3.单调性是函数的“局部”性质
如:函数1y x =
在(0,)+∞和(,0)-∞上都是减函数,能否说1y x =在定义域(,0)(0,)-∞+∞U 上上减函数
引导学生讨论,从图象上观察或用特殊值代入验证否定结论(如取1211,2
x x =-=)。

设计意图:学生对一个概念的认识不可能一次完成,教师要善于从多个角度,通过概念变式教学和构造反例帮助学生理解概念的内涵与外延。

在学习如何证明一个函数的单调性之前,先与学生一起探讨怎样才能否定一个函数的单调性对帮助学生理解函数单调性的概念尤为重要,可以加深学生对“任意”两字的理解。

(五)运用概念
通过两例,教师要向学生说明:
1.判断函数单调性的主要方法:①观察法:画出函数图象来观察;②定义法:严格按照定义进行验证;③分解法:对函数进行恰当的变形,使之变成我们所熟悉的且已知其单调性的较简单函数的组合。

2.概括出证明函数单调性的一般步骤:取值→作差→变形→定号。

练习:作出函数|1|1y x =--、2|1|y x =-的图象,写出他们的单调区间。

设计意图:单调性证明是学生在函数内容中首次接触到的代数论证问题,通过本例,要让学生理解判断函数单调性与证明函数单调性的差别,掌握证明函数单调性的程序,并深入理解什么是代数证明,代数证明要做什么事。

(六)回顾总结
本节课主要学习了函数单调性的定义,单调区间的概念,能利用(1)图象法;(2)定义法来判定函数的单调性,从中体会了数形结合的思想,学会从“特殊到一般再到特殊”的思维方法来研究问题。

相关文档
最新文档