大学物理实验报告 弗兰克赫兹实验

合集下载

弗兰克-赫兹实验实验报告

弗兰克-赫兹实验实验报告

课程名称:大学物理实验(二)
实验名称:弗兰克-赫兹实验
图2.1 弗兰克-赫兹管原理图
设氩原子的基态能量为E1,第一激发态的能量为E2
E2−E1。

初速度为零的电子在电位差为U的加速电场作用下具有能量则电子与氩原子只能发生弹性碰撞,二者之间几乎没有能量转移。

子与氩原子就会发生非弹性碰撞,氩原子将从电子的能量中吸收相当于从基态跃迁到第一激发态,而多余的部分仍留给电子。

位差为U0则
eU0=E2−E1
图3.1弗兰克-赫兹仪实物图
对应的V G2是内部的锯齿电压,作用是急速电压自动变化。

对应于示波器观测模
I P(×10-8A)
U G2(×
图6.1 加速电压与电流的关系图
可以发现电流随电子的能量呈现有规律的周期性变化,且两相邻谷点(或峰尖)即为氩原子的第一激发电位值。

同时,可以读出峰谷的横坐标值。

峰的横坐标值如下表:
表6.1 加速电压与电流的关系图的峰横坐标记录表
第二个峰X3第三个峰X5第四个峰X7第五个峰X9
2.90 4.08 5.25 6.46
表6.2 加速电压与电流的关系图的锋横坐标记录表
第二个谷X4第三个谷X6第四个谷X8第五个谷X10
3.52
4.66
5.84 7.04
算出氩原子的第一激发电位。

弗兰克赫兹效应实验报告

弗兰克赫兹效应实验报告

一、实验目的1. 通过弗兰克-赫兹实验,了解并掌握原子能级的存在和量子化的概念。

2. 熟悉实验仪器和操作方法,提高实验技能。

3. 培养分析实验数据、处理实验结果的能力。

二、实验原理1. 原子能级与量子化根据量子理论,原子只能处在一系列不连续的能量状态,称为定态。

相应的定态能量称为能级。

原子的能量要发生变化,必须在两个定态之间以跃迁的方式进行。

当基态原子与带一定能量的电子发生碰撞时,可以使原子从基态跃迁到高能态。

2. 弗兰克-赫兹效应弗兰克-赫兹实验采用慢电子与稀薄气体中原子碰撞的方法,证实了原子能级的存在。

实验中,电子由阴极发出,经电压加速后趋向板极,途中与气体原子发生碰撞。

若电子能量足以克服减速电压,则能穿过栅极到达板极形成电流。

当电子与原子碰撞时,部分能量会传递给原子,使原子从基态跃迁到激发态或电离态。

实验结果表明,电子的能量与原子激发态之间的能量差是量子化的。

三、实验仪器与设备1. 弗兰克-赫兹实验仪2. 数字电压表3. 数字电流表4. 氩气瓶5. 阴极灯丝加热电源6. 磁铁四、实验步骤1. 连接实验仪器,调整实验装置。

2. 加热阴极灯丝,使电子发射。

3. 调节加速电压,使电子能量逐渐增加。

4. 观察并记录不同加速电压下的板极电流。

5. 分析实验数据,绘制电子能量与板极电流的关系曲线。

6. 根据实验数据,计算氩原子的第一激发能。

五、实验结果与分析1. 实验数据根据实验数据,绘制电子能量与板极电流的关系曲线,如图所示。

2. 结果分析从实验结果可以看出,当加速电压逐渐增加时,板极电流先增大后减小,形成一个峰值。

峰值对应的电压即为氩原子的第一激发电位。

实验结果与理论值基本相符,验证了原子能级的存在。

六、实验结论1. 通过弗兰克-赫兹实验,验证了原子能级的存在,加深了对量子化概念的认识。

2. 实验结果表明,氩原子的第一激发电位为16.5V,与理论值基本相符。

3. 实验过程中,注意了实验仪器的正确使用和实验数据的准确记录,提高了实验技能。

大学弗兰克赫兹实验报告

大学弗兰克赫兹实验报告

大学弗兰克赫兹实验报告摘要本实验通过使用弗兰克-赫兹实验装置,通过测量电子在某一金属中的入射电压与出射电流之间的关系,验证了能量量子化的存在。

实验结果表明,电子在金属中的受激发碰撞后可以吸收、释放固定量的能量,而非连续的。

引言20世纪早期,弗兰克与赫兹通过一系列实验,证实了存在能量的量子化现象,这为后来的量子力学理论奠定了基础。

弗兰克-赫兹实验是其中最经典的实验之一,通过测量电子在金属中的入射电压与出射电流之间的关系,验证了能量的量子化。

实验方法实验材料1. 弗兰克-赫兹实验装置:包括真空室、加热器、阴极和阳极等组件。

2. 高压电源:用于给实验装置提供稳定的加速电压。

实验步骤1. 首先,打开真空室的进气阀,将气压降至所需的真空度。

2. 将高压电源接通并调节至一定的电压。

3. 通过加热器加热阴极,使其发射电子。

4. 在实验装置的示波器上观察到一系列的电流峰值,调节加速电压并记录相应的电流数值。

5. 重复步骤4,分别记录对应不同加速电压下的电流数值。

实验结果与分析首先,我们通过测量不同入射电压下的电流数值,绘制了电流-电压曲线如下图所示。

![弗兰克-赫兹实验图表](./frank-hertz-plot.png)从图中可以明显观察到电流在某些电压点处会急剧下降。

这是因为当电压达到一定值时,电子在金属中的能量足够大,可以克服金属原子的束缚力,进而与原子发生弹性碰撞。

在碰撞过程中,电子可以吸收或释放固定量的能量。

当入射电压低于这个能量量子时,电子无法与原子发生碰撞,因此电流保持较高的数值。

然而,当电压高于这个能量量子时,电子与原子发生碰撞并且吸收能量,导致电流急剧下降。

根据实验数据,我们可以计算得到电子与原子发生碰撞后吸收或释放能量的大小。

通过计算电流峰值出现的能量差,并除以电子的电荷得到每次碰撞吸收或释放能量的大小。

结论通过本次实验,我们验证了弗兰克-赫兹实验中能量量子化的现象。

实验结果显示,电子在金属中受激发碰撞后可以吸收或释放固定量的能量,而非连续的。

弗兰克赫兹实验报告文库

弗兰克赫兹实验报告文库

一、实验背景弗兰克-赫兹实验是由德国物理学家W.弗兰克和G.赫兹于1914年进行的,该实验旨在研究电子在电场作用下的运动规律,并证明原子能级的存在。

实验通过测量电子与原子碰撞时的能量交换,揭示了原子内部结构的量子化特性。

二、实验目的1. 测量氩原子的第一激发电势,证明原子能级的存在;2. 加深对量子化概念的认识;3. 学习电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。

三、实验原理1. 原子能级理论:根据玻尔理论,原子只能长时间地处于一些稳定的状态,称为定态。

原子在这些状态时,不发射或吸收能量;各定态有一定的能量,其数值是彼此分隔的。

原子的能量只能从一个定态跃迁到另一个定态。

2. 电子与原子碰撞:当电子在电场作用下加速时,会获得动能。

当具有一定能量的电子与原子碰撞时,会发生能量交换。

若电子传递给原子的能量恰好等于原子从一个定态跃迁到另一个定态所需的能量,则原子会被激发。

3. 激发电势:原子从一个定态跃迁到另一个定态所需的能量称为激发电势。

在本实验中,测量氩原子的第一激发电势,即从基态跃迁到第一激发态所需的能量。

四、实验装置1. 夫兰克-赫兹管:由阴极、阳极、栅极和充有氩气的真空管组成。

阴极发射电子,阳极接收电子,栅极控制电子流。

2. 加速电压:通过调节加速电压,使电子在电场作用下获得不同动能。

3. 电流计:测量电子流过夫兰克-赫兹管时的电流。

4. 数据采集系统:用于记录电流与加速电压的关系。

五、实验步骤1. 将夫兰克-赫兹管接入实验电路,调整加速电压,使电子获得不同动能。

2. 测量电子流过夫兰克-赫兹管时的电流,记录数据。

3. 改变加速电压,重复步骤2,得到一系列电流与加速电压的关系曲线。

4. 分析数据,确定氩原子的第一激发电势。

六、实验结果与分析1. 实验结果显示,电流与加速电压的关系曲线呈阶梯状。

当加速电压低于第一激发电势时,电流几乎为零;当加速电压等于第一激发电势时,电流出现突变;当加速电压高于第一激发电势时,电流逐渐增大。

弗兰克赫兹实验报告结果

弗兰克赫兹实验报告结果

一、实验背景弗兰克赫兹实验是由德国物理学家夫兰克和赫兹于1914年进行的实验,该实验旨在通过观察电子与气体原子碰撞后电子能量变化,验证原子能级的存在。

实验结果对于原子物理和量子力学的发展具有重要的意义。

二、实验目的1. 验证原子能级的存在;2. 研究电子与气体原子碰撞的能量交换;3. 深入了解原子内部结构的量子化特性。

三、实验原理根据波尔原子模型理论,原子中电子在特定轨道上运动时,具有确定的能量值,即能级。

当电子与原子碰撞时,可能会发生能量交换,从而使电子从低能级跃迁到高能级。

实验中,通过测量电子与气体原子碰撞后的能量变化,可以验证原子能级的存在。

四、实验方法1. 实验装置:实验装置主要包括电子枪、气体室、阳极、阴极和示波器等。

2. 实验步骤:(1)将氩气充入气体室,使其成为稀薄气体;(2)调节电子枪的电压,使电子从阴极发射出来;(3)通过调节阳极电压,控制电子与气体原子碰撞;(4)观察示波器上的电流变化,记录电流与加速电压的关系;(5)改变气体室的温度,重复实验。

五、实验结果1. 电流与加速电压的关系:实验结果显示,当加速电压较低时,电流随电压的增加而增加;当加速电压达到一定值时,电流不再随电压增加而增加,呈现饱和状态。

这说明电子与气体原子碰撞后,能量交换达到平衡,电子无法继续从高能级跃迁到更高能级。

2. 第一激发电位:通过实验数据,测量得到氩原子的第一激发电位为15.8V,与理论值15.76V相符。

3. 温度对实验结果的影响:实验发现,随着气体室温度的升高,第一激发电位有所降低。

这是因为温度升高导致原子振动加剧,使得电子与原子碰撞的能量交换更加困难。

六、实验结论1. 弗兰克赫兹实验验证了原子能级的存在,证明了原子内部能量是量子化的;2. 实验结果与波尔原子模型理论相符,为量子力学的发展奠定了基础;3. 实验结果表明,电子与气体原子碰撞后,能量交换是有限度的,存在能量阈值。

七、实验总结弗兰克赫兹实验是一项经典的物理实验,其结果对于原子物理和量子力学的发展具有重要的意义。

实验二十三弗兰克赫兹实验报告

实验二十三弗兰克赫兹实验报告

UKg2(V) 7.3 9.0 9.5 10.5 11.4 12.0 12.7 13.3 13.9 14.7 16.7 18.2 18.8 20.0 21.4 22.9 23.4 24.5 26.6 27.2 27.8 28.6 30.0 31.8 32.7 33.4 35.3 36.5
Uout(mV) 9.49 40.93 40.74 23.19 28.30 47.90 74.16 95.57 103.22 57.97 87.24 160.66 147.1 33.26 110.33 197.49 193.60 62.44 154.20 197.50 220.4 189.5 53.0 197.0 238.2 212.4 93.7 196.6
基础物理实验
实验二十三 弗兰克 -赫兹实验 弗兰克实验报告
பைடு நூலகம்
学院: 地球与空间科学学院 学院:地球与空间科学学院 1100012623 张晓晨 姓名: 姓名:1100012623 指导教师: 廖慧敏 时间: 2012 年 12 月 05 日
一、目的要求
1、了解弗兰克-赫兹用伏-安法证明原子存在能级的原理和方法。 2、学习用伏-安法测量非线性元件。 3、学习微电流的测量。
UKg2(V) 37.1 38.1 39.5
Uout(mV) 236.2 245.9 89.2
UKg2(V) 37.3 38.2 40.0
Uout(mV) 244.1 236.0 93.2
UKg2(V) 37.6 38.5
Uout(mV) 252.8 213.0
UKg2(V) 37.7 38.8
Uout(mV) 252.5 170.5
UKg2(V) 37.9 39.2
Uout(mV) 252.3 119.6

弗兰克赫兹实验报告内容

弗兰克赫兹实验报告内容

弗兰克赫兹实验报告内容弗兰克赫兹实验报告内容弗兰克-赫兹实验为能级的存在提供了直接的证据,对玻尔的原子理论是一个有力支持,那么,下面是CN人才公文网小编给大家整理收集的弗兰克赫兹实验报告内容,供大家阅读参考。

弗兰克赫兹实验报告内容1仪器弗兰克-赫兹管(简称F-H管)、加热炉、温控装置、F-H管电源组、扫描电源和微电流放大器、微机X-Y记录仪。

F-H管是特别的充汞四极管,它由阴极、第一栅极、第二栅极及板极组成。

为了使F-H管内保持一定的汞蒸气饱和蒸气压,实验时要把F-H管置于控温加热炉内。

加热炉的温度由控温装置设定和控制。

炉温高时,F-H管内汞的饱和蒸气压高,平均自由程较小,电子碰撞汞原子的概率高,一个电子在两次与汞原子碰撞的间隔内不会因栅极加速电压作用而积累较高的能量。

温度低时,管内汞蒸气压较低,平均自由程较大,因而电子在两次碰撞间隔内有可能积累较高的能量,受高能量的电子轰击,就可能引起汞原子电离,使管内出现辉光放电现象。

辉光放电会降低管子的使用寿命,实验中要注意防止。

F-H管电源组用来提供F-H管各极所需的工作电压。

其中包括灯丝电压UF,直流1V~5V连续可调;第一栅极电压UG1,直流0~5V连续可调;第二栅极电压UG2,直流0~15V连续可调。

扫描电源和微电流放大器,提供0~90V的手动可调直流电压或自动慢扫描输出锯齿波电压,作为F-H管的加速电压,供手动测量或函数记录仪测量。

微电流放大器用来检测F-H管的板流,其测量范围为10^-8A、10^-7A、10^-6A三挡。

微机X-Y记录仪是基于微机的集数据采集分析和结果显示为一体的仪器。

供自动慢扫描测量时,数据采集、图像显示及结果分析用。

原理玻尔的原子理论指出:①原子只能处于一些不连续的能量状态E1、E2……,处在这些状态的原子是稳定的,称为定态。

原子的能量不论通过什么方式发生改变,只能是使原子从一个定态跃迁到另一个定态;②原子从一个定态跃迁到另一个定态时,它将发射或吸收辐射的频率是一定的。

弗兰克赫兹设计实验报告(3篇)

弗兰克赫兹设计实验报告(3篇)

第1篇一、实验目的1. 测量氩原子的第一激发电势,证明原子能级的存在,从而加深对量子化概念的认识。

2. 加深对热电子发射的理解,学习将电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。

二、实验原理1. 玻尔理论:原子只能较长久地停留在一些稳定的能量状态(简称定态),其能量不能连续变化而只能是突变,即跃迁。

原子从一个定态跃迁到另一个定态而发射或吸收能量,辐射的频率是一定的。

以电量为e的电子,在电位差V的加速电场作用下,使原子从基态能级E0跃迁到第一激发态能量E1,则有eV = E1 - E0。

2. 弗兰克-赫兹实验:使用慢电子轰击呈气态的氩原子,发生碰撞,将电子的能量转移给氩原子。

通过改变加速电压来改变电子的动能,并通过电流计来测量电子的数目。

三、实验仪器与装置1. 仪器:弗兰克-赫兹管(简称F-H管)、加热炉、温控装置、F-H管电源组、扫描电源和微电流放大器、微机X-Y记录仪。

2. 装置:F-H管是特别的充氩四极管,由阴极、第一栅极、第二栅极及板极组成。

实验时将F-H管置于控温加热炉内,保持氩气饱和蒸气压。

四、实验步骤1. 将F-H管置于加热炉中,调整炉温,使氩气饱和蒸气压达到实验要求。

2. 接通F-H管电源组,调节灯丝电压、第一栅极电压和第二栅极电压,使电子在电场作用下加速,达到所需的动能。

3. 逐渐增加第二栅极电压,观察电流计指针的偏转,记录电流值。

4. 绘制电子动能与电流的关系曲线,分析实验数据。

5. 通过计算,确定氩原子的第一激发电势。

五、实验结果与分析1. 实验数据:根据实验测得的电子动能与电流的关系曲线,得到氩原子的第一激发电势约为15.9V。

2. 结果分析:实验结果表明,随着第二栅极电压的增加,电流先增大后减小,并在某一电压值处出现电流突变。

这说明在电子与氩原子发生碰撞时,能量发生了转移,使氩原子从基态跃迁到第一激发态。

当电子能量不足以使氩原子发生跃迁时,电流减小。

3. 与理论值的比较:实验测得的氩原子第一激发电势与理论值基本吻合,验证了玻尔理论的正确性。

弗兰克赫兹实验报告

弗兰克赫兹实验报告

弗兰克赫兹实验报告一、实验目的本实验旨在通过研究汞原子的第一激发电位,加深对原子能级概念的理解,以及了解弗兰克赫兹实验的基本原理和实验方法。

二、实验原理1、原子能级根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态,这些状态称为能级。

原子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子,其能量等于两个能级的能量差。

2、弗兰克赫兹实验弗兰克赫兹实验是通过让电子与原子碰撞来研究原子能级的一种方法。

在实验中,电子在加速电场中获得能量,然后与气体原子发生碰撞。

如果电子的能量小于原子的第一激发能,那么电子与原子之间的碰撞是弹性碰撞,电子的能量几乎不变。

当电子的能量达到或超过原子的第一激发能时,就会发生非弹性碰撞,电子将一部分能量传递给原子,使其从基态跃迁到第一激发态,电子自身的能量则减少。

通过测量电子在不同加速电压下的电流,可以得到电子与原子碰撞的能量转移情况,从而确定原子的第一激发电位。

三、实验仪器弗兰克赫兹实验仪、示波器四、实验步骤1、连接实验仪器将弗兰克赫兹实验仪与示波器正确连接,确保线路连接稳定。

2、预热仪器打开实验仪器电源,进行预热,使仪器达到稳定工作状态。

3、调节参数设置加速电压的起始值、终止值和步长等参数。

4、进行测量逐步增加加速电压,同时观察示波器上显示的电流信号,记录相应的电压和电流值。

5、重复测量为了提高测量的准确性,进行多次重复测量。

五、实验数据及处理1、实验数据记录以下是一组典型的实验数据:|加速电压(V)|电流(μA)||||| 10 | 05 || 20 | 10 || 30 | 15 || 40 | 20 || 50 | 25 || 60 | 30 || 70 | 35 || 80 | 40 || 90 | 45 || 100 | 50 |2、数据处理以加速电压为横坐标,电流为纵坐标,绘制出电流电压曲线。

通过对曲线的分析,可以发现电流在某些电压值处出现明显的下降,这些下降点对应的电压值即为汞原子的第一激发电位。

弗兰克赫兹实验报告

弗兰克赫兹实验报告

弗兰克赫兹实验报告一、实验目的了解弗兰克赫兹实验的原理和方法,通过实验测量氩原子的第一激发电位,证明原子能级的存在。

二、实验原理弗兰克赫兹实验是用一定能量的电子去轰击原子,通过测量电子与原子碰撞过程中的能量损失,来研究原子的能级结构。

当电子与原子发生非弹性碰撞时,电子损失的能量等于原子的激发能。

在本实验中,电子在加速电场中获得能量,然后与氩原子碰撞。

如果电子的能量小于氩原子的第一激发能,碰撞为弹性碰撞,电子能量几乎不变。

当电子能量达到氩原子的第一激发能时,会发生非弹性碰撞,电子损失能量,导致电流下降。

通过测量电流随加速电压的变化,可以得到氩原子的第一激发电位。

三、实验仪器弗兰克赫兹实验仪,包括充氩的弗兰克赫兹管、加热炉、微电流放大器、电压扫描电源等。

四、实验步骤1、连接实验仪器,打开电源,预热仪器一段时间。

2、调节加热炉温度,使弗兰克赫兹管中的氩气达到合适的工作状态。

3、调节电压扫描电源,设置起始电压、终止电压和扫描步长。

4、观察微电流放大器的示数,记录电流随加速电压的变化数据。

5、改变扫描步长,重复实验,获取多组数据。

五、实验数据及处理以下是一组实验测量得到的电流 I 随加速电压 U 的变化数据:|加速电压 U(V)|电流 I(μA)||::|::|| 10 | 20 || 20 | 35 || 30 | 50 || 40 | 70 || 50 | 85 || 60 | 60 || 70 | 45 || 80 | 75 || 90 | 60 || 100 | 40 |以加速电压 U 为横坐标,电流 I 为纵坐标,绘制电流电压曲线。

从曲线中可以明显看到电流出现多次下降,相邻两次下降对应的电压差值近似相等,这个差值即为氩原子的第一激发电位。

通过对数据的分析和计算,得到氩原子的第一激发电位约为_____V。

六、实验误差分析1、温度的影响:实验中弗兰克赫兹管的温度对氩原子的状态有影响,如果温度不稳定或偏离最佳值,可能导致实验结果的偏差。

弗兰克赫兹在_实验报告

弗兰克赫兹在_实验报告

一、实验目的1. 测量氩原子的第一激发电势,证明原子能级的存在,从而加深对量子化概念的认识。

2. 加深对热电子发射的理解,学习将电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。

二、实验原理1. 原子能级与量子化概念根据玻尔原子理论,原子中的电子只能处于特定的能级上,不能处于能级之间的任意状态。

当电子从低能级跃迁到高能级时,需要吸收一定的能量,这个能量称为激发能量。

而当电子从高能级跃迁到低能级时,会释放出与能量差相对应的电磁波。

这种能量交换的过程满足量子化条件,即能量交换是量子化的。

2. 弗兰克-赫兹实验原理弗兰克-赫兹实验通过研究电子与原子碰撞的过程,测量了电子与原子碰撞后能量交换的情况。

实验中,电子在电场中被加速,然后与稀薄气体中的原子发生碰撞。

根据能量守恒定律,碰撞前后电子与原子的总能量应保持不变。

当电子与原子碰撞时,电子将部分能量转移给原子,使原子从低能级跃迁到高能级。

此时,电子的动能减小,而原子的能量增加。

当电子的动能等于或大于原子的激发能量时,原子被激发,发生能级跃迁。

三、实验装置与步骤1. 实验装置实验装置主要包括弗兰克-赫兹管、电源、示波器、电压表、电流表等。

弗兰克-赫兹管是一个真空玻璃管,其中放置有稀薄气体(如氩气)和两个电极。

一个电极作为阴极,另一个电极作为阳极。

通过调节电源,可以改变电子在电场中的加速电压。

2. 实验步骤(1)将弗兰克-赫兹管抽成真空,并充入一定压力的氩气。

(2)接通电源,调节加速电压,使电子在电场中被加速。

(3)通过示波器观察电子与原子碰撞后的能量交换情况,记录电流与电压的关系。

(4)改变加速电压,重复实验,观察电流与电压的关系变化。

四、实验结果与分析1. 实验结果通过实验,我们得到了一系列电流与电压的关系曲线。

在电压较低时,电流随着电压的增加而增加。

当电压达到某一值时,电流不再随电压增加而增加,这个电压值称为激发电压。

激发电压对应于原子的第一激发能级。

大学物理弗兰克赫兹实验报告

大学物理弗兰克赫兹实验报告

大学物理弗兰克赫兹实验报告一、实验目的1、通过实验测定氩原子的第一激发电位,证明原子能级的存在。

2、了解弗兰克赫兹实验的原理和方法。

3、学习使用微机控制的弗兰克赫兹实验仪器。

二、实验原理弗兰克赫兹实验是研究原子能级结构的重要实验之一。

实验装置中,电子在电场的加速下与原子发生碰撞。

如果电子的能量小于原子的第一激发能,那么电子与原子之间的碰撞是弹性的,电子几乎不损失能量。

当电子的能量达到原子的第一激发能时,电子与原子发生非弹性碰撞,电子将把能量传递给原子,使原子从基态跃迁到第一激发态,电子自身的能量则显著减少。

在实验中,电子由热阴极 K 发射,经加速电场 G₁K 加速,然后穿过栅极 G₁到达板极 A 形成电流 Iₚ。

在栅极 G₁和 G₂之间加一反向电压 U₀,形成减速电场。

当电子的能量不足以克服减速电场时,就不能到达板极 A,板极电流 Iₚ就会减小。

当加速电压逐渐增加时,电子在与氩原子碰撞前的能量也逐渐增加。

当加速电压达到氩原子的第一激发电位时,电子与氩原子发生非弹性碰撞,板极电流 Iₚ会突然下降。

继续增加加速电压,电子与氩原子再次发生非弹性碰撞,板极电流 Iₚ又会下降。

这样,板极电流 Iₚ随加速电压 U 的变化就会出现周期性的起伏。

三、实验仪器弗兰克赫兹实验仪、微机等。

四、实验步骤1、连接实验仪器,打开电源,预热一段时间。

2、调节实验参数,如灯丝电压、加速电压、拒斥电压等。

3、启动微机控制软件,开始采集数据。

4、逐步增加加速电压,观察并记录板极电流 Iₚ随加速电压 U 的变化。

5、重复实验,获取多组数据。

五、实验数据及处理以下是一组典型的实验数据:|加速电压 U(V)|板极电流 Iₚ(μA)||::|:::|| 10 | 15 || 20 | 20 || 30 | 25 || 40 | 30 || 50 | 35 || 60 | 40 || 70 | 45 || 80 | 50 || 90 | 48 || 100 | 40 || 110 | 35 || 120 | 30 || 130 | 25 || 140 | 20 || 150 | 15 |以加速电压 U 为横坐标,板极电流 Iₚ为纵坐标,绘制出 Iₚ U 曲线。

弗兰克赫兹实验报告

弗兰克赫兹实验报告

弗兰克赫兹实验报告一、实验目的本实验旨在通过研究电子与原子的碰撞过程,测量汞原子的第一激发电位,从而验证原子能级的存在。

二、实验原理1、弗兰克赫兹实验原理图弗兰克赫兹实验的原理图如图 1 所示。

在充汞的玻璃管中,电子由热阴极 K 发出,在 K 和栅极 G 之间加上正向电压 UGK,形成加速电场,使电子加速。

在 G 和接收极 A 之间加反向电压 UGA,形成减速电场,只有能量足够大的电子才能克服这个电场到达A 极,形成电流。

2、电子与原子的碰撞当电子的能量小于汞原子的第一激发能时,电子与汞原子发生弹性碰撞,电子能量几乎不变。

当电子能量达到或超过汞原子的第一激发能时,电子与汞原子发生非弹性碰撞,电子将一部分能量传递给汞原子,使其从基态跃迁到第一激发态,电子自身的能量则显著减小。

3、电流电压特性曲线通过改变 UGK 的大小,测量相应的电流 IA,得到电流电压(IA UGK)特性曲线。

在曲线中,会出现一系列电流的峰值和谷值,相邻峰值或谷值之间的电压差即为汞原子的第一激发电位。

三、实验仪器弗兰克赫兹实验仪、示波器。

四、实验步骤1、仪器连接与预热将弗兰克赫兹实验仪与示波器正确连接,接通电源,预热约 30 分钟,使仪器工作稳定。

2、调整参数(1)调节灯丝电压 Uf,使阴极发射适量的电子。

(2)调节控制栅极电压 UG1K 和拒斥电压 UGA,使电流显示在合适的范围。

3、测量数据缓慢调节加速电压 UGK,从 0 开始逐渐增大,同时观察示波器上的电流信号,记录电流出现峰值和谷值时对应的电压值。

测量多个周期的数据。

4、数据处理根据记录的数据,绘制 IA UGK 特性曲线,通过分析曲线,确定汞原子的第一激发电位。

五、实验数据记录与处理1、实验数据记录表 1 实验数据记录表| UGK(V)| IA(μA)||||| 10 | 02 || 20 | 05 || 30 | 10 || 40 | 20 || 50 | 35 || 60 | 50 || 70 | 65 || 80 | 80 || 90 | 95 || 100 | 110 || 110 | 125 || 120 | 140 || 130 | 155 || 140 | 170 || 150 | 185 || 160 | 200 || 170 | 215 || 180 | 230 || 190 | 245 || 200 | 260 |2、数据处理根据实验数据,绘制 IA UGK 特性曲线,如图 2 所示。

福兰克赫兹实验报告

福兰克赫兹实验报告

一、实验背景及目的1. 实验背景1914年,德国物理学家W.弗兰克和G.赫兹共同完成了一项经典的物理实验——弗兰克-赫兹实验。

该实验旨在验证玻尔提出的原子能级理论,即原子能量是量子化的,电子在能级间跃迁时会吸收或发射特定频率的电磁波。

2. 实验目的(1)验证玻尔原子能级理论,即原子能量是量子化的;(2)测量氩原子的第一激发电位,进一步研究原子能级结构;(3)加深对量子化概念的理解,提高实验操作技能。

二、实验原理1. 原子能级理论玻尔提出的原子能级理论认为,原子内部存在一系列分立的能级,电子在这些能级间跃迁时会吸收或发射特定频率的电磁波。

原子能量量子化意味着能量只能取离散值,即E = nhν,其中E为能量,n为量子数,h为普朗克常数,ν为频率。

2. 实验原理弗兰克-赫兹实验通过观察电子与氩原子碰撞后能量变化,验证了玻尔原子能级理论。

实验装置包括:(1)电子枪:产生慢速电子,电子能量可调;(2)氩气室:充入低压氩气,形成稀薄气体;(3)偏置电压:施加在电子枪和氩气室之间,使电子加速;(4)微电流计:测量通过氩气室的电流;(5)示波器:观察电子与氩原子碰撞后能量变化。

实验过程中,当电子能量达到氩原子第一激发电位时,电子与氩原子发生碰撞,将能量转移给氩原子,使氩原子从基态跃迁到第一激发态。

此时,电子能量减小,导致通过氩气室的电流减小。

通过测量电流变化,可以确定氩原子的第一激发电位。

三、实验装置及操作1. 实验装置(1)电子枪:提供加速电压,使电子获得能量;(2)氩气室:充入低压氩气,形成稀薄气体;(3)偏置电压:施加在电子枪和氩气室之间,使电子加速;(4)微电流计:测量通过氩气室的电流;(5)示波器:观察电子与氩原子碰撞后能量变化。

2. 实验操作(1)连接实验装置,检查各部分连接是否牢固;(2)打开电子枪电源,调节加速电压,使电子能量可调;(3)充入低压氩气,观察氩气室中电流变化;(4)调节偏置电压,使电子与氩原子发生碰撞;(5)观察示波器,记录电子与氩原子碰撞后能量变化;(6)调节加速电压,重复实验,记录数据。

弗兰克物理实验报告

弗兰克物理实验报告

一、实验目的1. 了解弗兰克-赫兹实验的原理和实验方法。

2. 通过实验验证电子与原子碰撞时能量转移的规律,加深对量子化概念的理解。

3. 掌握实验仪器的操作方法和数据处理方法。

二、实验原理弗兰克-赫兹实验是德国物理学家弗兰克和赫兹于1914年进行的,通过实验证实了原子能级的存在。

实验原理如下:1. 在实验中,电子从阴极发射出来,受到加速电压的作用,获得一定的动能。

2. 电子在通过电场加速后,进入由稀薄气体组成的电离室,与气体原子发生碰撞。

3. 当电子的动能与气体原子的第一激发能相等时,电子将能量转移给气体原子,使原子从基态跃迁到第一激发态。

4. 气体原子吸收能量后,产生光子,光子的能量等于电子与原子碰撞过程中能量转移的数值。

5. 通过测量电子的能量和光子的能量,可以验证能量转移的规律,进而证明原子能级的存在。

三、实验仪器与设备1.弗兰克-赫兹实验仪2.示波器3.直流稳压电源4.电子管5.电流表6.电压表四、实验步骤1. 连接实验仪器,调整实验仪器的参数,使电子枪的阴极发射出电子。

2. 调节加速电压,使电子获得一定的动能。

3. 打开实验仪器的电源,观察示波器上的波形,调整加速电压,使电子与气体原子发生碰撞。

4. 记录示波器上的波形,分析波形的变化,确定能量转移的规律。

5. 通过实验数据,计算电子与原子碰撞过程中能量转移的数值,验证能量转移的规律。

五、实验结果与分析1. 通过实验,观察到示波器上的波形发生了变化,说明电子与气体原子发生了碰撞。

2. 通过数据处理,计算出电子与原子碰撞过程中能量转移的数值,验证了能量转移的规律。

3. 实验结果表明,电子与原子碰撞时,能量转移的数值与电子的动能有关,与气体原子的第一激发能相等时,能量转移最为显著。

六、实验结论1. 通过弗兰克-赫兹实验,验证了电子与原子碰撞时能量转移的规律,加深了对量子化概念的理解。

2. 实验结果表明,原子能级是存在的,能量转移的数值与电子的动能有关。

夫兰克-赫兹实验报告

夫兰克-赫兹实验报告

夫兰克-赫兹实验一.实验简介1914年弗兰克(J.Frank)和赫兹(G.Hertz)用电子碰撞原子的方法,观察测量到了汞的激发电位和电离电位(即著名的Frank-Hertz实验)。

从而证明了原子等级的存在,为早一年玻尔发表的原子结构理论的假说提供了有力的实验证据。

为此他们分享了1925年诺贝尔物理学奖金。

他们的实验方法至今仍是探索原子结构的重要手段之一。

本实验应用Frank-Hertz实验方法实现电子气和Hg原子的碰撞,以观察Hg 原子能级跃迁并对Hg原子第一激发电位进行测量。

通过本实验可以深刻理解弗兰克和赫兹在研究原子内部能量量子化方面所采用的实验方法,了解电子与原子碰撞和能量交换过程的微观图像。

二.实验原理1. 电子与气态Hg原子的碰撞利用电子和气态Hg原子的碰撞时最容易实现Frank-Hertz实验的方法。

为实现原子从低能级En 向高能级Em的跃迁,通常可以通过吸收确定频率γ的光子来实现。

而光子的能量等于两个能级之间的量差,即时,原子吸收全部光子能量,发生能级跃迁,式中h为普朗克常量。

也可以通过使具有一定能量的电子和原子碰撞来实现。

若与之碰撞的电子式在电势差V的加速下,速度从零加到v,则当电子的能量满足时,电子将全部能量交换给你原子。

由于E m - E n 具有确定的值,对应的V 就应该有确定的大小。

当原子吸收电子能量从基态跃迁到第一激发态时,相应的V 称为原子的第一激发电位(或中肯电子)。

因此,第一激发电位V 所对应的就是第一激发态与基态的能量差。

出于激发态的原子是不稳定的,它将以辐射光子的形式释放能量而自发跃迁到低能级。

如果电子的能量达到原子电离的能量,会有电离发生,相应的V 称为原子的电离电位。

其中61S 0(0ev )为基态,63P 1(4.9ev )为激发态,63P 0(4.7ev )、63P 2(5.47ev )为亚稳态。

当能量等于63P 0,63P 1和63P 2与基态61S 0之间的能量差,即当能量为4.7 eV ,4.9 eV 和5.47 eV 的电子与Hg 原子碰撞时,将有最大的激发概率实现能级间跃迁。

弗兰克赫兹实验实验报告

弗兰克赫兹实验实验报告

一、实验目的1. 测量氩原子的第一激发电势,验证原子能级的存在。

2. 加深对量子化概念的理解。

3. 掌握原子碰撞激发和测量的方法。

二、实验原理弗兰克-赫兹实验基于玻尔的原子能级理论。

根据该理论,原子只能长时间地停留在一些稳定的能级上,称为定态能级。

当电子从低能级跃迁到高能级时,需要吸收一定的能量,这个能量等于两能级之间的能量差。

通过实验测量电子与原子碰撞时能量的交换情况,可以证明原子能级的存在。

实验中,我们采用慢电子与稀薄气体中原子碰撞的方法。

实验装置包括弗兰克-赫兹管、加热炉、温控装置、电源组、扫描电源和微电流放大器等。

三、实验步骤1. 将弗兰克-赫兹管置于加热炉中,调节炉温至实验要求。

2. 调节灯丝电压、第一栅极电压和第二栅极电压,使管内保持一定的汞蒸气饱和蒸气压。

3. 打开电源,调节扫描电源,使电子在加速电压作用下获得足够的能量。

4. 逐渐增加加速电压,观察输出电流的变化。

5. 记录输出电流与加速电压的关系,分析实验数据。

四、实验结果与分析实验结果显示,当加速电压逐渐增加时,输出电流也随之增加。

当加速电压达到一定值时,输出电流突然减小,并保持不变。

这说明电子与汞原子发生了碰撞,将能量传递给汞原子,使其从低能级跃迁到高能级。

这个能量等于两能级之间的能量差,即第一激发电势。

根据实验数据,我们计算得出氩原子的第一激发电势约为16.5V。

这与理论值相符,证明了原子能级的存在。

五、实验结论1. 通过弗兰克-赫兹实验,我们验证了原子能级的存在,加深了对量子化概念的理解。

2. 实验结果表明,原子能级是分立的,电子与原子碰撞时能量交换是量子化的。

3. 弗兰克-赫兹实验是研究原子内部结构的重要手段,对于近代物理学的发展具有重要意义。

六、实验体会通过本次实验,我深刻体会到以下两点:1. 实验是验证理论的重要手段。

在实验过程中,我们需要仔细观察实验现象,分析实验数据,从而得出结论。

2. 实验过程中,我们需要严谨、细致,以确保实验结果的准确性。

弗兰克赫兹实验报告

弗兰克赫兹实验报告

弗兰克赫兹实验报告弗兰克赫兹实验报告欢迎来到CN人才公文网,下面是小编给大家整理的弗兰克赫兹实验报告,仅供参考。

弗兰克赫兹实验报告1姓名:xxx学号:xxxxxxxxxx 班级:本硕xxx班实验日期:xxx年10 月13日夫兰克-赫兹实验【实验目的】1、测量氩原子的第一激发电势,证明原子能级的存在,从而加深对量子化概念的认识。

2、加深对热电子发射的理解,学习将电子与原子碰撞微观过程与宏观物理量相结合的实验设计方法。

【历史背景】1911年,卢瑟福根据α粒子散射实验,提出了原子核模型。

1913年,玻尔将普朗克量子假说运用到原子有核模型,建立了与经典理论相违背的两个重要概念:原子定态能级和能级跃迁概念。

电子在能级之间迁跃时伴随电磁波的吸收和发射,电磁波频率的大小取决于原子所处两定态能级间的能量差,并满足普朗克频率定则。

随着英国物理学家埃万斯(E.J.Evans)对光谱的研究,玻尔理论被确立。

1914年,德国科学家夫兰克和他的助手赫兹采用慢电子与稀薄气体中原子碰撞的方法(与光谱研究相独立),简单而巧妙地直接证实了原子能级的存在,并且实现了对原子的可控激发。

1925年,由于他二人的卓越贡献,他们获得了当年的诺贝尔物理学奖。

夫兰克-赫兹实验至今仍是探索原子内部结构的主要手段之一。

所以,在近代物理实验中,仍把它作为传统的经典实验。

【实验原理】根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态之中,其中每一种状态相应于一定的能量值Ei(i=1,2,3‥),这些能量值称为能级。

最低能级所对应的状态称为基态,其它高能级所对应的态称为激发态。

当原子从一个稳定状态过渡到另一个稳定状态时就会吸收或辐射一定频率的电磁波,频率大小决定于原子所处两定态能级间的能量差,并满足普朗克频率选择定则:( h为普朗克常数)本实验中是利用一定能量的电子与原子碰撞交换能量而实现,并满足能量选择定则:ev=E-E(1) 110E为第一激发能量(第一激发态是距基态最近的一个能态),E为基态能量,ev为该原子第一激发能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为了研究原子内部的能量时态问题,弗兰克和赫兹使用简单而有效的方法,用低速电子去轰击原子,观察它们之间的相互作用和能量传递过程,从而证明原子内部量子化能级的存在。

实验要求:
通过对汞原子第一激发电位测量,了解弗兰克和赫兹在研究原子内部能量量子化方面所采用的实验方法。

了解电子与原子碰撞和能量交换过程的微观图像。

理论基础
Hg原子能级
其中61S0(0ev)为基态,63P1()为激发态,63P0()、63P2()为亚稳态实现能级跃迁,吸收光子
原子与电子碰撞
处于激发态的原子不稳定,发射光子回到低能态。

原理图
F-H管内充汞,灯丝加热K使其发射电子,G1控制通过G1的电子数目,G2加速电子,G1、G2空间较大,提供足够的碰撞概率,A接收电子,AG2加一扼止电压,使失去动能的电子不能到达,形成电流。

实验曲线:
碰撞过程及能量交换
此过程在G1G2空间发生,在加速场的作用下,电子获得动能,与原子的弹性碰撞中,电子总能量损失较小,在不断的加速场作用下,电子的能量逐渐增大,就有可能与原子发生非弹性碰撞,使原子激发到高能态,电子失去相对应的能
量,使其不能到达A从而不能形成电流。

= ,使原子激发到63P 0,此态较稳定,不容易再产生跃迁,故不容易观察到这个吸收。

= ,使原子激发到63P 1,引起共振吸收,电子速度几乎为零,电子不能到达A,形成第一个峰。

= ,电子与原子发生两次非弹性碰撞,在G 2处失去动能,形成第二个峰。

= ,将形成第n个峰。

电子平均自由程对激发或电离的影响
主要由炉温决定,还与电子速度等有关。

λ很短,相邻两次碰撞间获得能量小,经多次碰撞能量积累到第一激发态的能量时,能使原子激发到激发态,不容易激发到较高能态。

λ很长,相邻两次碰撞间获得能量大,激发到高能态的可能性很大,所以在λ很长,加速电压较高,会使某些电子有足够能量使原子激发到较高能态,甚至电离。

注意事项
先将温度调到设定值,打开温控电源,加温指示灯on亮(绿色),到设定温度off指示灯亮(红色)。

接线,将V f,V G1K,V G2P,V G2K的旋钮调到最小,到设定温度后,再打开两仪器电源,然后据炉上标签设定各电压值。

用“手动”档测曲线。

实验中若产生电离击穿(电流迅速严重过载),立即将加速电压调到零,减小灯丝电压,每次减小~,重新测曲线。

加热炉的炉温较高,移动时应注意,导线不要挂在炉壁上。

在实验中注意炉温及灯丝电压的选择。

思考题:
灯丝电压的大小对曲线有何影响
说明温度对充汞F-H管曲线影响的物理机制。

相关文档
最新文档