六年级下册奥数知识点梳理:计数与分数问题及方程解题等

合集下载

小学五六年级奥数培优——分数的问题(word解析版)

小学五六年级奥数培优——分数的问题(word解析版)

小学五六年级奥数培优——分数的问题【知识点梳理】1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2.分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

【教学重难、点】一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。

②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

③由整数部分和分数部分组成的分数叫做带分数。

2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。

③异分母分数,先化成同分母分数(分数单位相同),再进行比较。

(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。

五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。

(一般保留三位小数。

)3、分数和小数比较大小:一般把分数变成小数后比较更简便。

六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。

六年级下册数学知识大全-小学奥数知识点梳理-通用版

六年级下册数学知识大全-小学奥数知识点梳理-通用版

3
各数位上数字的和是 3 的倍数
5
末尾是 0 或 5
9
各数位上数字的和是 9 的倍数
11
奇数位上数字的和与偶数位上数字的和,两者之差是 11 的倍数
4 和 25 末两位数是 4(或 25)的倍数
8 和 125 末三位数是 8(或 125)的倍数
7、11、13 末三位数与前几位数的差是 7(或 11 或 13)的倍数
三、 几何图形
1. 平面图形
⑴多边形的内角和 N 边形的内角和=(N-2)×180°
⑵等积变形(位移、割补) ① 三角形内等底等高的三角形 ② 平行线内等底等高的三角形 ③ 公共部分的传递性 ④ 极值原理(变与不变)
⑶三角形面积与底的正比关系
S1︰S2 =a︰b ; ⑷相似三角形性质(份数、比例)
n= p1 a1 × p2 a2 ×...×pk ak
7. 约数个数与约数和定理
设自然数n的质因子分解式如n= p1 a1 × p2 a2 ×...×pk ak 那么:
n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)
n的所有约数和:(1+P1+P1 2 +…p1 a1 )(1+P2+P2 2 +…p2 a2 )…(1+Pk+Pk 2 +…pk ak )
3. 不定方程的分析求解 以系数大者为试值角度
4. 不等方程的分析求解
九、 找规律
⑴周期性问题
② 余数的应用 ⑵数列问题
① 等差数列 通项公式 求项数:
求和:
② 等比数列
an=a1+(n-1)d
n= an a1 1 d

六年级奥数知识点汇总

六年级奥数知识点汇总

六年级奥数知识点汇总一、数论1. 质数与合数- 定义- 质数的判定方法- 质数的性质2. 因数与倍数- 因数分解- 最大公约数和最小公倍数- 质因数分解3. 整数的性质- 奇偶性- 整数的四则运算性质- 整数的不等式二、分数1. 分数的基本概念- 真分数与假分数- 带分数与混合数2. 分数的运算- 加减乘除- 分数的通分与约分- 分数的比较3. 分数的应用- 分数在实际问题中的应用- 比例问题三、几何1. 平面几何- 点、线、面的基本性质 - 角的概念及分类- 三角形的性质- 四边形的性质- 圆的基本性质2. 立体几何- 立体图形的认识- 体积和表面积的计算 - 空间图形的投影四、代数1. 代数表达式- 字母表示数- 单项式与多项式- 代数式的加减运算2. 方程与不等式- 一元一次方程- 不等式及其解集- 方程与不等式的解法五、逻辑与推理1. 逻辑推理- 条件与结论- 逻辑运算2. 数列与序列- 等差数列- 等比数列- 数列的求和3. 证明方法- 直接证明- 反证法- 归纳法六、组合数学1. 排列与组合- 排列组合的基本概念- 排列组合的计算公式2. 概率- 概率的基本概念- 事件的概率计算3. 简单的计数问题- 加法原理- 乘法原理- 排列组合的应用请注意,以上内容是一个概要,每个部分都需要进一步扩展和详细解释,以形成一个完整的知识点汇总。

您可以根据这个框架添加更多的细节和例子,以帮助学生更好地理解和掌握这些概念。

完成后,您可以使用Word文档的样式和格式功能来增强文档的可读性和专业性。

六年级下册数学2020年最全小学奥数知识要点

六年级下册数学2020年最全小学奥数知识要点

同学们、家长朋友们,小学奥数可以分为计算、计数、数论、几何、应用题、行程、组合七大板块,其中必须掌握的三十六个知识点,内容从和差倍问题、年龄问题到循环小数,包含了小学奥数七个模块的知识。

以下是小学奥数知识清单:2、年龄问题的三个基本特征: ①两个人的年龄差是不变的; ②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的; 北京市海淀区期末学考复习、归一问题 基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;5、鸡兔同笼问题 基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来; 基本思路: ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样): ②假设后,发生了和题目条件不同的差,找出这个差是多少; ③每个事物造成的差是固定的,从而找出出现这个差的原因; ④再根据这两个差作适当的调整,消去出现的差。

基本公式: ①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。

6、盈亏问题 基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量. 基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量. 基本题型: ①一次有余数,另一次不足; 基本公式:总份数=(余数+不足数)÷两次每份数的差 ②当两次都有余数; 基本公式:总份数=(较大余数一较小余数)÷两次每份数的差 ③当两次都不足; 基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差 基本特点:对象总量和总的组数是不变的。

六年级奥数课程

六年级奥数课程

六年级奥数课程
六年级奥数课程通常涵盖了以下知识点:
1. 分数计算:包括分数的加减、乘除以及约分、通分等基本运算。

2. 比例与比例关系:理解比例的概念,掌握比例的基本性质,能够解决与比例有关的实际问题。

3. 代数基础:学习基本的代数知识,如方程、不等式、函数等,并能够解决简单的代数问题。

4. 几何知识:学习平面几何和立体几何的基础知识,如三角形、四边形、圆、长方体、正方体等,并能够解决与几何图形有关的实际问题。

5. 逻辑推理:通过填空、选择、判断等题型,训练学生的逻辑推理能力,使他们能够运用所学的知识解决一些较为复杂的数学问题。

6. 策略与方法:学习一些数学解题的策略和方法,如枚举法、归纳法、反证法等,提高学生的数学思维能力。

7. 数学广角:学习一些有趣的数学问题,如鸡兔同笼、抽屉原理等,拓宽学生的数学视野。

8. 趣味数学:学习一些有趣的数学游戏和智力题,激发学生的数学兴趣和探索精神。

在六年级奥数课程中,学生需要掌握以上知识点,并且能够灵活运用所学知识解决实际问题。

同时,学生还需要培养自己的数学思维能力、逻辑推理能力和创新精神等方面的素质。

六年级课后奥数知识点

六年级课后奥数知识点

六年级课后奥数知识点奥数,即奥林匹克数学竞赛,是一项全球性的数学竞赛活动。

它旨在提高学生的数学思维能力和解决问题的能力。

在六年级,奥数的相关知识点将为学生打下坚实的数学基础。

以下是六年级课后奥数的一些重要知识点及解题技巧。

一、分数与小数转化1. 将小数转化为分数:当小数的位数较少时,可以根据小数点后的数字位数进行相应分数转换。

例如,0.5可以转化为1/2,0.25可以转化为1/4。

2. 将分数转化为小数:将分子除以分母即可得到小数表示。

例如,3/4可以转化为0.75,2/5可以转化为0.4。

二、数的性质及运算1. 质数和合数:质数是指大于1且只能被1和自身整除的数,如2、3、5、7等。

合数是指大于1且不是质数的数,如4、6、8、9等。

2. 互质数:两个数的最大公因数为1,则它们互为互质数。

例如,8和9是互质数。

3. 奇数和偶数:能被2整除的数为偶数,不能被2整除的数为奇数。

4. 除法的应用:利用除法可以判断一个数是否能被其他数整除,以及计算商和余数。

三、平方数与平方根1. 平方数:一个数的平方,即这个数与自身相乘的结果。

如4的平方为16,5的平方为25。

2. 平方根:一个数的平方根是指与这个数相乘并得到平方的数。

如16的平方根为4,25的平方根为5。

四、倍数和约数1. 倍数:一个数如果可以被另一个数整除,那么前一个数就是后一个数的倍数。

如6是3的倍数,10是5的倍数。

2. 约数:能够整除某个数的因子称为约数。

如6的约数为1、2、3和6本身。

五、几何图形与空间1. 三角形:三边之和等于180°,分为等边三角形、等腰三角形和普通三角形。

2. 正方形与长方形:正方形是四边长度相等且内角均为90°的四边形;长方形是四边长度不等且相对的内角均为90°的四边形。

3. 立方体和长方体:立方体和长方体都是由矩形面拼接而成的空间图形,立方体的六个面积相等,长方体的相对两个面积分别相等。

小学六年级奥数经典讲义(全套36讲)

小学六年级奥数经典讲义(全套36讲)

第一讲循环小数与分数第二讲和差倍分问题第三讲行程问题第五讲质数与合数第六讲工程问题第七讲牛吃草问题第八讲包含与排除第九讲整数的拆分第十讲逻辑推理第十一讲通分与裂项第十二讲几何综合第十三讲植树问题第十五讲余数问题第十六讲直线面积第十七讲圆与扇形第十八讲数列与数表综合第十九讲数字迷综合第二十讲计数综合第二十一讲行程与工程第二十二讲复杂工程问题第二十三讲运用比例求解行程问题第二十四讲应用题综合第二十五讲数论综合2第二十六讲进位制问题第二十七讲取整问题第二十八讲数论综合3第二十九讲数论综合4第三十讲几何综合2第三十一讲图形变换第三十二讲勾股定理第三十三讲计数综合第三十四讲最值问题第三十五讲构造与论证1第三十六讲构造与论证2第一讲循环小数与分数循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.真分数7a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少?【分析与解】17=0.142857 ,27=0.285714 ,37=0.428571 ,47=0.571428 ,57=0.714285 , 67=0.857142. 因此,真分数7a化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以7a =0..857142 ,即a =6.评注:7a的特殊性,循环节中数字不变,且顺序不变,只是开始循环的这个数有所变化.2.某学生将1.23乘以一个数a 时,把1.23 误看成1.23,使乘积比正确结果减少0.3.则正确结果该是多少?【分析与解】 由题意得:1.23 a -1.23a =0.3,即:0.003 a =0.3,所以有:3390010a =.解得a = 90,所以1.23a =1.23 × 90=123290-×90=11190× 90=111.3.计算:0.1+0.125+0.3+0.16,结果保留三位小数. 【分析与解】 方法一:0.1+0.125+0.3+0.16≈-0.1111+0.1250+0.3333+0.1666=0.7359≈0.736方法二:0.1+0.125+0.3+0.16113159899011118853720.7361=+++=+== ≈0.7364.计算:0.010.120.230.340.780.89+++++ 【分析与解】 方法一:0.010.120.230.340.780.89+++++ =1121232343787898909090909090-----+++++ =11121317181909090909090+++++ =21690=2.4方法二:0.010.120.230.340.780.89+++++ =0+0.1+0.2+0.3+0.7+0.8+(0.010.020.030.040.080.09+++++ ) =2.1+0.01×(1+2+3+4+8+9) =2.1+190×27 =2.1+0.3 =2.4方法三:如下式, 0.011111… 0.122222... 0.233333... 0.344444...(1+2+3+4+8+9=27) 0.788888...+0.899999... 2.399997...注意到,百万分位的7是因为没有进位造成,而实际情况应该是2.399999…=2.39 =2.4.评注:0.9=99=1 ,0.09 =919010=.5.将循环小数0.027与0.179672 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?【分析与解】0.×0.179672=27179672117967248560.00485699999999937999999999999⨯=⨯== 循环节有6位,100÷6=16……4,因此第100位小数是循环节中的第4位8,第10l 位是5.这样四舍五入后第100位为9.6.将下列分数约成最简分数:166********66666666664【分析与解】 找规律:161644=,16616644=,1666166644= ,166661666644=,…所以1666666666666666666664=14评注:类似问题还有38538853888538888538888888885234 (29729972999729999729999999997)+⨯+⨯+⨯++.7.将下列算式的计算结果写成带分数:0.523659119⨯⨯【分析与解】0.523659119⨯⨯=11859119⨯=1(1)119-×59=59-59119=58601198.计算:744808333÷2193425909÷11855635255【分析与解】 744808333÷2193425909÷11855635255=62811259093525583332193453811⨯⨯ =373997131993564111136412119973331993⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=7523⨯⨯=5569.计算:1111111 81282545081016203240648128 ++++++【分析与解】原式1111111 81288128406420321016508254 =++++++2111118128406420321016508254 =+++++ 1111114064406420321016508254 =+++++ 11111203220321016508254=++++111110161016508254=+++111508508254=++11254254=+1127=10.计算:153219(4.85 3.6 6.153) 5.5 1.75(1) 4185321⎡⎤⨯÷-+⨯+-⨯+⎢⎥⎣⎦【分析与解】原式=1757193.6(4.851 6.15)5.5443421⨯⨯-++-⨯-⨯=135193.610 5.5412+⨯⨯+-=9+5.5-4.5 =1011.计算: 41.2×8.1+11×194+537×0.19【分析与解】原式=412×0.81+11×9.25+0.19×(412+125) =412×(0.81+0.19)+11×9.25+0.19×125 =412+11×8+11×1.25+19×1.25=412+88+1.25×30=500+37.5=537.512.计算:2255 (97)() 7979+÷+【分析与解】原式=656555 ()() 7979+÷+=[]555513()()137979⨯+÷+=13.计算:12324648127142113526104122072135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯【分析与解】 原式=33333333123(1247)1232135(1247)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯14.(1)已知等式0.126×79+1235×□-6310÷25=10.08,那么口所代表的数是多少? (2)设上题答案为a .在算式(1993.81+a )×○的○内,填入一个适当的一位自然数,使乘积的个位数字达到最小值.问○内所填的数字是多少? 【分析与解】 (1)设口所代表的数是x ,0.126×79+1235x -6310÷25=10.08,解得:x =0.03,即口所代表的数是0.03.(2)设○内所填的数字是y ,(1993.81+O.03)×y =1993.84×y ,有当y 为8时1993.84×y =1993.84×8=15050.94,所以○内所填的数字是8.15.求下述算式计算结果的整数部分:111111()38523571113+++++⨯ 【分析与解】原式=111111(38538538538538538523571113⨯+⨯+⨯+⨯+⨯+⨯≈192.5+128.3+77+55+35+29.6=517.4 所以原式的整数部分是517.第二讲 和差倍分问题各种具有和差倍分关系的综合应用题,重点是包含分数的问题.基本的解题方法是将已知条件用恰当形式写出或变形,并结合起来进行比较而求出相关的量,其中要注意单位“1”的恰当选取.1.有甲、乙两个数,如果把甲数的小数点向左移两位,就是乙数的18,那么甲数是乙数的多少倍?【分析与解】甲数的小数点向左移动两位,则甲数缩小到原来的1100,设这时的甲数为“1”,则乙数为1×8=8,那么原来的甲数=l×100=100,则甲数是乙数的100÷8=12.5倍.2.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的25.如果把这三堆棋子集中在一起,那么白子占全部棋子的几分之几?【分析与解】如下表所示:设全部黑子为“5”份,则第三堆里的黑子为“2”份,那么剩下的黑子占5-2=“3”份,而第一堆里的黑子和第二堆里的白子一样多,将第一堆黑子和第二堆白子调换,则第二堆全部为黑子.所以第二堆棋子总数为“3”份,三堆棋子总数为3×3=“9”份,其中黑子占“5”份,则白子占剩下的9-5=“4”份,那么白子占全部棋子的4÷9=49.3.甲、乙两厂共同完成一批机床的生产任务,已知甲厂比乙厂少生产8台机床,并且甲厂的生产量是乙厂的1213,那么甲、乙两厂一共生产了机床多少台?【分析与解】因为甲厂生产的是乙厂的1213,也就是甲厂为12份,乙厂为13份,那么甲厂比乙厂少1份=8台.总共=8×(12+13)=200台.4.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,那么一张门票降价多少元?【分析与解】设原来人数为“1”,则现在有1+0.5=1.5.原来收入为l×15=15,降价后收人为15×(1+15)=18元,那么降价后门票为18÷1.5=12元,则一张门票降价15-12=3元.5.李刚给军属王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块.这时,已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【分析与解】已经运来的是没有运来的57,则运来的是5份,没有运来的是7份,也就是运来的占总数的512.则共有50÷(512-38)=1200块,还剩下1200×712=700块.6.有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样长的一段以后,发现短纸带剩下的长度是长纸带剩下的长度的813.问剪下的一段长多少厘米?【分析与解】方法一:开始时,两条纸带的长度差为21-13=8厘米.因为两条纸带都剪去同样长度,所以两条纸带前后的长度差不变.设剪后短纸带长度为“8”份,长纸带即为“13”份,那么它们的差为13-8=5份,则每份为8÷5=1.6(厘米).所以,剪后短纸带长为1.6×8=12.8(厘米),于是剪去13-12.8=O.2(厘米).方法二:设剪下x厘米,则1382113xx-=-,交叉相乘得:13×(13-x)=8×(21-x),解得x=0.2,即剪下的一段长0.2厘米.7.为挖通300米长的隧道,甲、乙两个施工队分别从隧道两端同时相对施工.第一天甲、乙两队各掘进了10米,从第二天起,甲队每天的工作效率总是前一天的2倍,乙队每天的工作效率总是前一天的l 12倍.那么,两队挖通这条隧道需要多少天?【分析与解】如下表所示:天数工作量1 2 3 4 5甲10 20 40 80 160乙10 15 22.5 33.75 50.625 当天工作量20 35 62.5 113.75 210.625已完成工作量20 55 117.5 231.25 441.375 说明在第五天没有全天干活,则第四天干完以后剩下:300-231.25=68.75米,那么共用时间为4+68.75÷210.625=4110 337天.8.有一块菜地和一块麦地.菜地的一半和麦地的三分之一放在一起是13公顷.麦地的一半和菜地的三分之一放在一起是12公顷.那么菜地是多少公顷?【分析与解】如下表所示:菜地12麦地13⇒13公顷菜地3 麦地2 ⇒78公顷菜地2 麦地3 ⇒72公顷菜地13麦地12⇒12公顷即5倍菜地公顷数+5倍麦地公顷数=78+72=150,所以菜地与麦地共有150÷5=30(公顷).而菜地减去麦地,为78-72=6(公顷),所以菜地有(30+6)÷2=18(公顷).9.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的3 5和30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【分析与解】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份-15棵,则一份为(1500-30+15)÷(2+2+5)=165棵,有:杨树=5×165=825棵;柳树=165×2+30=360棵;槐树=165×2-15=315棵.10.师徒二人共同加工170个零件,师傅加工零件个数的13比徒弟加工零件个数的14还多10个.那么,徒弟一共加工了多少个零件?【分析与解】我们用“师”表示师傅加工的零件个数,“徒”表示徒弟加工的零件个数,有:1 3“师”-14“徒”=10,4“师”- 3“徒”=120,而4“师”+4“徒”=170×4=680.那么有7“徒”=680-120=560,“徒”=80,徒弟一共加工了80个零件.11. 一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的11 2倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地,其他人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天.那么这批工人共有多少名?【分析与解】设甲工地的工作量为“1.5”,则乙工地的工作量为“1”.甲乙上午33134=+11134=+下午7121-712=512于是甲工地一整天平均用了这批工人的372()24123+÷=,乙工地一整天平均用了这批工人的1-21 33 =.这批工人的23完成了“1.5”的工作量,那么13的这批工人完成1.5÷2=“0.75”的工作量,于是乙工地还剩下1-0.75=“0.25”的工作量,这“0.25”的工作量需要4人工作1天.而甲、乙工地的工作量为1.5+1=2.5,那么需2.5÷0.25× 4=40人工作1天.所以原来这批工人共有40-4=36人.12.有一个分数,如果分子加1,这个分数就等于12;如果分母加1,这个分数就等于13.问原来的分数是多少?【分析与解】如果分子加1,则分数为12,设这时的分数为:2xx,则原来的分数为12xx-,分母加1后为:11213xx-=+,交叉相乘得:3(x-1)=2x+1,解得x=4,则原分数为38.13.图2-1是某市的园林规划图,其中草地占正方形的34,竹林占圆形的67,正方形和圆形的公共部分是水池.已知竹林的面积比草地的面积大450平方米.问水池的面积是多少平方米?【分析与解】因为水池是正方形的14,是圆的17,则正方形是水池的4倍,圆是水池的7倍,相差7-4=3倍,差450平方米,则水池=450÷3=150平方米.14.唐僧师徒四人吃了许多馒头,唐僧和猪八戒共吃了总数的12,唐僧和沙僧共吃了总数的13,唐僧和孙悟空共吃了总数的14.那么唐僧吃了总数的几分之几?【分析与解】唐+猪=12、唐+沙=13、唐+孙=14.(两边同时加减)唐+猪+唐+沙+唐+孙=2唐+(唐+猪+沙+孙)=2唐+1=12+13+14=1112.则:2唐=112,唐=124.唐僧吃了总数的124.15.小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟.现在他们要共同完成制作300个零件的任务,需要多少分钟?【分析与解】方法一:先估算出大致所需时间,然后再进行调整.因为小李、小张的工作效率大致相等,那么完成时小李完成300÷2=150个零件左右;小李完成150个零件需要150÷3×4=200分钟;在200分钟左右,198分钟是5.5的整数倍,此时乙生产198÷5.5×4=144个零件,并且刚休息完,所以在2分钟后,即200分钟时完成144+2=146个零件;那么在200分钟时,小李、小张共生产150+146=296个零件,还剩下4个零件未完成,所以再需2分钟,小李生产2个零件,小张生产2个零件,正好完成.所以共需202分钟才能完成.方法二:把休息时间包括进去,小李每4分钟做3个,小张每5.5分钟做4个.则在44分钟内小李做了:44÷4×3=33个,小张做了:44÷5.5×4=32个,他们一共做了:33+32=65个.300÷65=4……40,也就是他们共同做了4个44分钟即:44×4=176分钟后,还剩下40个零件没有做完.而22=4+4+4+4+4+2=5.5×4,所以22分钟内小李做了:3+3+3+3+3+2=17个,小张做了:4×2=16个,那么还剩下:40-17-16=7个,4分钟内小李做3个,小张做4个,共做4+3=7个,即这40个零件还需要26分钟.所以共用时间:44×4+26=202分钟.第三讲行程问题(1)涉及分数的行程问题.顺水速度、逆水速度与流速的关系,以及与此相关的问题.环形道路上的行程问题.解题时要注意发挥图示的辅助作用,有时宜恰当选择运动过程中的关键点分段加以考虑.1.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?【分析与解】设甲地到乙地的路程为单位“1”,那么按时的往返一次需时间260,现在从甲到乙花费了时间1÷55=155千米,所以从乙地返回到甲地时所需的时间只能是211 605566-=.即如果他想按时返回甲地,他应以每小时66千米的速度往回开.2.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地.摩托车开始速度是每小时50千米,中途减速后为每小时40千米.汽车速度是每小时80千米,汽车曾在途中停驶1O 分钟.那么小张驾驶的摩托车减速是在他出发后的多少小时?【分析与解】 汽车从甲地到乙地的行驶时问为100÷80=1.25小时=1小时15分钟,加上中途停驶的10分钟,共用时1小时25分钟.而小张先小李1小时出发,但却同时到达,所以小张从甲到乙共用了2小时25分钟,即2最小时.以下给出两种解法:方法一:设小张驾驶的摩托车减速是在他出发后x 小时,有50×x +40×5210012x ⎛⎫-= ⎪⎝⎭,解得13x =. 所以小张驾驶的摩托车减速是在他出发后13小时. 方法二:如果全程以每小时50千米的速度行驶,需100÷50=2小时的时间,全程以每小时40千米的速度行驶,需100÷40=2.5小时.依据鸡兔同笼的思想知,小张以每小时50千米的速度行驶了52.521122.526-=-的路程,即行驶了10015010063⨯=千米的路程,距出发5015033÷=小时.3. 一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?【分析与解】 我们知道顺风速度=无风速度+风速,逆风速度=无风速度-风速. 有顺风时速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒. 则无风速度=2顺风速度+逆风速度=982+7=米/秒 所以无风的时候跑100米,需100÷8=12.5秒.124.一条小河流过A ,B, C 三镇.A,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A,B 两镇间的距离是多少千米?【分析与解】 如下画出示意图,有A →B 段顺水的速度为11+1.5=12.5千米/小时, 有B →C 段顺水的速度为3.5+1.5=5千米/小时. 而从A →C 全程的行驶时间为8-1=7小时. 设AB 长x 千米,有50712.55x x -+=,解得x =25. 所以A,B 两镇间的距离是25千米.5.一条大河有A,B 两个港口,水由A 流向B,水流速度是每小时4千米.甲、乙两船同时由A 向B 行驶,各自不停地在A,B 之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米.已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A 处同时开始出发的那一次)的地点相距40千米,求A,B 两个港口之间的距离.【分析与解】 设AB 两地的路程为单位“1”,则:甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次同向相遇时,甲、乙两人的路程差为2n ;甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次相向相遇时,甲、乙两人的路程和为2n ;甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次同向相遇时,甲、乙两人的路程差为(2n -1);甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次相向相遇时,甲、乙两人的路程和为(2n -1).有甲船的顺水速度为32千米/小时,逆水速度为24千米/小时, 乙船的顺水速度为24千米/小时,逆水速度为16千米/小时. 两船第二次迎面相遇时,它们的路程和为“4”;甲船第二次追上乙船时,它们的路程差为“4”.(一)第二次迎面相遇时,一定是甲走了2~3个AB 长度,乙走了2~1个AB 长度,设甲走了2+x 个AB 的长度,则乙走了2-x 个AB 的长度,有11322432x ++=112416x -+,解得13x =,即第二次迎面相遇的地点距A 点13AB 的距离.(二)①第二次甲追上乙时,有甲行走2y z +(y 为整数,z ≤1)个AB 的长度,则乙行走了24y z -+个AB 的长度,有322432y y z ++=22241624y y z --++,化简得320y z +=,显然无法满足y 为整数,z ≤1;②第二次甲追上乙时,有甲行走21y z ++(y 为整数,z ≤1)个AB 的长度,则乙行走了23y z -+个AB 的长度,有1322424y y z +++=12241616y y z--++,化简有3213y z +=,有0.5z =,4y =. 即第二次甲追上乙时的地点距B 点12AB 的距离,那么距A 也是12AB 的距离.所以,题中两次相遇点的距离为(111236⎛⎫-= ⎪⎝⎭AB ,为40千米,所以AB 全长为240千米.6.甲、乙两船分别在一条河的A ,B 两地同时相向而行,甲顺流而下,乙逆流而上.相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B 地、乙到达A 地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米.如果从第一次相遇到第二次相遇的时间相隔为1小时20分,那么河水的流速为每小时多少千米? 【分析与解】 因为甲、乙第一次相遇时行驶的路程相等,所以有甲、乙同时刻各自到达B 、A 两地.接着两船再分别从B 、A 两地往AB 中间行驶.所以在第二次相遇前始终是一船逆流、一船顺流,那么它们的速度和始终等于它们在静水中的速度和.有:甲静水速度+水速=乙静水速度-水速.还有从开始到甲第一次到达B 地,乙第一次到达A 地之前,两船在河流中的速度相等.所以甲船比乙船少行驶的1000米是在甲、乙各自返航时产生的.甲乙返航时,有甲在河流中行驶的速度为:甲静水速度-水速,乙在河流中的速度为:乙静水速度+水速.它们的速度差为4倍水速.从第一次相遇到第二次相遇,两船共行驶了2AB 的路程,而从返航到第二次相遇两船共行驶了AB 的路程,需时间80÷2=40分钟. 有4倍水速=401000150060⎛⎫÷=⎪⎝⎭,有水速=375米/小时=0.375千米/小时. 即河水的流速为每小时0.375千米.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟? 【分析与解】 甲行走45分钟,再行走70-45=25分钟即可走完一圈.而甲行走45分钟,乙行走45分钟也能走完一圈.所以甲行走25分钟的路程相当于乙行走45分钟的路程. 甲行走一圈需70分钟,所以乙需70÷25×45=126分钟.即乙走一圈的时间是126分钟.8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.9.甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的23.甲跑第二圈时速度比第一圈提高了13;乙跑第二圈时速度提高了15.已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米? 【分析与解】设甲跑第一圈的速度为3,那么乙跑第一圈的速度为2,甲跑第二圈的速度为4,乙跑第二圈的速度为125. 如下图,第一次相遇地点逆时针方向距出发点35的跑道长度. 有甲回到出发点时,乙才跑了23的跑道长度.在乙接下来跑了13跑道的距离时,甲以“4”的速度跑了122433÷⨯=圈.所以还剩下13的跑道长度,甲以4的速度,乙以125的速度相对而跑,所以乙跑了112124355⎡⎤⎛⎫⨯÷+ ⎪⎢⎥⎝⎭⎣⎦18=圈.也就是第二次相遇点逆时针方向距出发点18圈.即第一次相遇点与第二次相遇点相差31195840-=圈, 所以,这条椭圆形跑道的长度为1919040040÷=米.10.如图3-2,在400米的环形跑道上,A,B 两点相距100米.甲、乙两人分别从A ,B 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么甲追上乙需要时间是多少秒?【分析与解】 如果甲、乙均不休息,那么甲追上乙的时间为100÷(5-4)=100秒. 此时甲跑了100×5=500米,乙跑了100×4=400米.而实际上甲跑500米,所需的时间为100+4×10=140秒,所以140~150秒时甲都在逆时针距A 点500处.而乙跑400米所需的时间为100+3×10=130秒,所以130~140秒时乙走在逆时针距B点400处.显然从开始计算140秒时,甲、乙在同一地点,即甲追上乙需要时间是140秒.11.周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米? 【分析与解】 如下图,记甲乙相遇点为C.当甲跑了AC 的路程时,乙跑了BC 的路程;而当甲跑了400米时,乙跑了2BC 的路程. 由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A 点所需时间的12. 即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A ,乙到达B 时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l 圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.12.如图3-3,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【分析与解】 开始时,甲在顺时针方向距乙8+13+8=29米.因为一边最长为 13、所以最少要追至只相差13,即至少要追上29-13=16米. 甲追上乙16米所需时间为16÷(3-2)=16秒,此时甲行了3×16=48米,乙行了2×16=32米.甲、乙的位置如右图所示:显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面 的那条边之前到达上面的边,从而看见乙.而甲要到达上面的边,需再跑2米,所需时间为2÷3=23秒. 所以经过16+23=1623秒后甲第一次看见乙.13.如图3-4,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A 处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?【分析与解】 如下图,甲、乙只可能在大跑道上相遇.并且只能在AB 顺时针的半跑道上.易知小跑道AB 逆时针路程为100,顺时针路程为200,大跑道上AB 的顺、逆时针路程均是200米.我们将甲、乙的行程状况分析清楚.当甲第一次到达B 时,乙还没有到达B 点,所以第一次相遇一定在逆时针的BA 某处.而当乙第一次到达B 点时,所需时间为200÷4=50秒,此时甲跑了50×6=300米,在B 点300-200=100米处.乙跑出小跑道到达A 需100÷4=25秒,则甲又跑了25×6=150米,在A 点左边(100+150)-200=50米处.所以当甲到达B 处时,乙还未到B 处,那么甲必定能在B 点右边某处与乙第二次相遇. 从乙再次到达A 处开始计算,还需(400-50)÷(6+4)=35秒,甲、乙第二次相遇,此时甲共跑了50+25+35=110秒.所以,从开始到甲、乙第二次相遇甲共跑了110×6=660米.14.如图3-5,正方形ABCD 是一条环形公路.已知汽车在AB 上时速是90千米,在BC 上的时速是120千米,在CD 上的时速是60千米,在DA 上的时速是80千米.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 的中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 相遇.问A 至N 的距离除以N 至B 的距离所得到的商是多少?【分析与解】 如下图,设甲始终顺时针运动,乙始终逆时针运动,并设正方形ABCD 的边长为单位“1”.有甲从P 到达AB 中点O 所需时间为608090PD DA AO ++10.5608090PD =++. 乙从P 到达AB 中点O 所需时间为6012090PC BC BO ++10.56012090PD =++. 有甲、乙同时从P 点出发,则在AB 的中点O 相遇,所以有:16080PD +=160120PC +且有PD=DC-PC=1-PC,代入有116080PC -+160120PC =+,解得PC=58. 所以PM=MC=516,DP=38.现在甲、乙同时从PC 的中点出发,相遇在N 点,设AN 的距离为x .有甲从M 到达N 点所需时间为608090MD DA AN ++351816608090x+=++; 乙从M 到达N 点所需时间为6012090MC CB BN ++511166012090x-=++. 有351816608090x +++511166012090x -=++,解得132x =.即AN=132. 所以AN ÷BN 1313232=÷131=15.如图3-6,8时10分,有甲、乙两人以相同的速度分别从相距60米的A ,B 两地顺时针方向沿长方形ABCD 的边走向D 点.甲8时20分到D 点后,丙、丁两人立即以相同速度从D 点出发.丙由D 向A 走去,8时24分与乙在E 点相遇;丁由D 向C 走去,8时30分在F 点被乙追上.问三角形BEF 的面积为多少平方米?【分析与解】 如下图,标出部分时刻甲、乙、丙、丁的位置.先分析甲的情况,甲10分钟,行走了AD 的路程;再看乙的情况,乙的速度等于甲的速度,乙14分钟行走了60+AE 的路程,乙20分钟走了60+AD+DF 的路程.所以乙10分钟走了(60+AD+DF)-(AD)=60+DF 的路程.有601014AD AE +=6010DF +=,有()()607560AD DFAE ED AE =+⎧⎪⎨-=+⎪⎩然后分析丙的情况,丙4分钟,行了走ED 的路程,再看丁的情况,丁的速度等于丙的速度,丁10分钟行走了DF 的距离.。

六年级下册奥数知识点梳理:计数与分数问题及方程解题等

六年级下册奥数知识点梳理:计数与分数问题及方程解题等

一、计数问题1.加法原理:分类枚举2.乘法原理:排列组合3.容斥原理:①总数量=A+B+C-(AB+AC+BC)+ABC②常用:总数量=A+B-AB4.抽屉原理:至多至少问题5.握手问题在图形计数中应用广泛①角、线段、三角形,②长方形、梯形、平行四边形③正方形二、分数问题1.量率对应2.以不变量为“1”3.利润问题4.浓度问题倒三角原理例:5.工程问题①合作问题②水池进出水问题6. 按比例分配三、 方程解题1. 等量关系① 相关联量的表示法例: 甲 + 乙 =100甲÷乙=3 x 100-x3x x ②解方程技巧恒等变形2. 二元一次方程组的求解代入法、消元法3. 不定方程的分析求解以系数大者为试值角度4. 不等方程的分析求解四、 找规律⑴周期性问题① 年月日、星期几问题② 余数的应用⑵数列问题① 等差数列通项公式 a n =a 1+(n -1)d求项数: n=11n a a d -+求和: S=1()2n a a n+② 等比数列求和: S=1(1)1na q q --③裴波那契数列⑶策略问题①抢报30②放硬币⑷最值问题①最短线路a.一个字符阵组的分线读法b.在格子路线上的最短走法数②最优化问题a.统筹方法b.烙饼问题五、算式谜1.填充型2.替代型3.填运算符号4.横式变竖式5.结合数论知识点六、数阵问题1.相等和值问题2.数列分组⑴知行列数,求某数⑵知某数,求行列数3.幻方⑴奇阶幻方问题:杨辉法罗伯法⑵偶阶幻方问题:双偶阶:对称交换法单偶阶:同心方阵法七、二进制1.二进制计数法①二进制位值原则②二进制数与十进制数的互相转化③二进制的运算2.其它进制(十六进制)八、一笔画1.一笔画定理:⑴一笔画图形中只能有0个或两个奇点;⑵两个奇点进必须从一个奇点进,另一个奇点出;2.哈密尔顿圈与哈密尔顿链3.多笔画定理奇点数笔画数=2九、逻辑推理1.等价条件的转换2.列表法3.对阵图竞赛问题,涉及体育比赛常识十、火柴棒问题1.移动火柴棒改变图形个数2.移动火柴棒改变算式,使之成立十一、智力问题1.突破思维定势2.某些特殊情境问题十二、解题方法(结合杂题的处理)1.代换法2.消元法3.倒推法4.假设法5.反证法6.极值法7.设数法8.整体法9.画图法10.列表法11.排除法12.染色法13.构造法14.配对法15.列方程⑴方程⑵不定方程⑶不等方程。

六年级奥数知识点大汇总

六年级奥数知识点大汇总

一、整数的加减乘除运算1.完成含有复杂运算的整数计算,包括加减乘除。

2.正整数和负整数的加减乘除运算。

3.多个整数相加(减)。

二、分数的加减乘除运算1.分数和整数相加(减)。

2.分数相加(减)。

3.分数的乘法和除法运算。

4.分数的化简与约分。

三、小数的加减乘除运算1.完成小数的加减乘除运算。

2.整数与小数相加(减)。

3.小数与小数相加(减)。

四、百分数的运算1.将百分数转化为小数和分数。

2.将百分数转化为小数进行运算。

3.完成包含百分数的加减乘除运算。

4.将小数转化为百分数。

五、图形的认识和计算1.熟悉各种常见图形的名称和性质。

2.利用图形的性质解决问题。

3.利用图形的面积和周长进行计算。

4.利用图形的相似性进行计算。

六、数的性质和运算规律1.数的倍数和约数。

2.数与数的关系。

3.运用数的性质解决问题。

4.运用数的规律进行计算。

七、代数方程1.利用已知条件建立简单的代数方程。

2.运用代数方程解决问题。

3.运用等式交换法则解决问题。

八、图形的位置关系和运动1.图形的位置关系,包括平行、垂直、相交等。

2.利用图形的位置关系解决问题。

3.图形的旋转和对称运动。

九、时间和空间的问题1.计算机算时间的进退。

2.计算车速、工作效率等问题。

3.解决包括时间、速度、距离、容积等单位转化的问题。

4.运用公式解决时间和空间的问题。

十、排列组合和概率1.利用排列组合的原理解决问题。

2.运用概率解决问题。

3.了解数学中的一些常见概率概念。

十一、逻辑推理和解决问题1.运用逻辑推理解决问题。

2.运用问题解决方法解决数学问题。

3.运用直觉猜想解决问题。

六年级下册数学奥数讲义-分数、百分数应用题(二)(无答案)全国通用

六年级下册数学奥数讲义-分数、百分数应用题(二)(无答案)全国通用

1
,第二天比
2
【巩固】 迎 春农机厂计划生产一批插秧机,现已完成计划的 划产量的 16%.那么,原计划生产插秧机台.
56%,如果再生产 5040 台,总产量就超过计
【例 9】 某运输队运一批大米. 第一天运走总数的 1 多 60 袋,第二天运走总数的 1 少 60 袋.还剩下 220
5
4
袋没有运走。这批大米原来一共有多少袋?
我国人口是部分数, 世界人口就是单
位“ 1”。
解答题关键:只要找准总数和部分数,确定单位“
1”就很容易了。
(二)、两种数量比较
分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是
带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通
常就作为标准量,也就是单位“ 1”。
分数、百分数应用题(二)
知识框架
一、 知识点概述:
分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一
方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”
之间的对应是解题的关键. 关键: 分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称
【例 6】 一个机关精简机构后有工作人员 120 人,比原来工作人员少 40 人,精简了百分之几?
【巩固】 小 强看一本书,每天看 15 页, 4 天后加快进度,又看了全书的 多少页?
2 ,还剩下 30 页,这本故事书有 5
【例 7】 有男女同学 325 人,新学年男生增加 25 人, 女生减少 5%,总人数增加 16 人,那么现有男同学 多少人?

奥数六年级下册知识点

奥数六年级下册知识点

奥数六年级下册知识点下面是奥数六年级下册的一些重要知识点,希望对同学们的学习有所帮助。

一、四则运算1. 加法:两个数的和叫做和,用加号(+)表示。

例如:3 + 4 = 72. 减法:两个数的差叫做差,用减号(-)表示。

例如:7 - 3 = 43. 乘法:两个数的积叫做积,用乘号(×)表示。

例如:2 × 3 = 64. 除法:一个数除以另一个数得到商,用除号(÷)表示。

例如:8 ÷ 4 = 2二、小数1. 小数的概念:小数是指整数和分数之间的数。

例如:0.5,1.252. 小数的读法:读小数时,可以将小数点念作“点”。

例如:0.25 读作“零点二五”三、分数1. 分数的概念:分数是指一个整体被分成几个相等的部分,每个部分叫做一份。

例如:1/2,3/42. 分数的意义:分数可以表示部分和整体之间的关系。

例如:1/2表示一个整体中的一半,3/4表示一个整体中的三分之四。

四、倍数与约数1. 倍数:一个数如果能够被另一个数整除,那么这个数就是另一个数的倍数。

例如:12是6的倍数,因为12能够被6整除。

2. 约数:一个数的约数是能够整除这个数的数。

例如:1、2、3、4、6和12都是12的约数。

五、图形与面积1. 正方形:四条边相等且四个角都是直角的四边形。

2. 长方形:相邻两边相等且四个角都是直角的四边形。

3. 三角形:有三条边和三个角的多边形。

4. 圆形:平面上的一组点,到一个固定点的距离都相等。

5. 面积:图形所占的平面的大小叫做图形的面积。

六、日期和时间1. 周:一周有7天,分别是星期一、星期二、星期三、星期四、星期五、星期六和星期日。

2. 月:一年有12个月,分别是1月、2月、3月、4月、5月、6月、7月、8月、9月、10月、11月和12月。

3. 季节:一年被划分为春季、夏季、秋季和冬季四个季节。

4. 时间:一天24小时,每小时60分钟,每分钟60秒。

以上是奥数六年级下册的一些重要知识点,希望同学们能够认真复习并灵活运用这些知识。

奥数竞赛六年级下册知识点

奥数竞赛六年级下册知识点

奥数竞赛六年级下册知识点在六年级下册的奥数竞赛中,有一些重要的知识点需要学生们掌握。

这些知识点包括数学的各个方面,如代数、几何、概率等等。

接下来,我们将逐一介绍这些知识点,并且给出一些解题技巧。

1. 代数代数是数学中的重要分支,也是奥数竞赛中的核心内容之一。

六年级下册的代数知识主要包括方程、不等式、函数等。

对于方程和不等式,我们需要掌握解方程和不等式的方法,包括移项、合并同类项、因式分解等。

在解函数方面,我们需要理解函数的定义和性质,并能灵活运用函数来解决实际问题。

2. 几何几何是研究空间图形和它们的性质的学科。

六年级下册的几何知识主要涉及到平面图形和立体图形的面积、周长、体积等计算。

在解题过程中,我们需要掌握计算各种图形的公式,例如矩形的面积公式、三角形的面积公式等。

此外,对于立体图形的计算,我们还需要了解如何计算体积和表面积,包括长方体、正方体、圆柱体等。

3. 概率概率是研究随机事件发生可能性的学科。

六年级下册的概率知识主要包括事件的概率计算和问题的解答。

在解题时,我们需要了解事件的概率计算公式,例如事件A发生的概率P(A) = 事件A 发生的次数 / 总的可能次数。

此外,我们还需要掌握计算相互独立事件的概率以及使用概率解决实际问题的方法。

4. 应用题奥数竞赛中的应用题是将数学知识应用到实际问题中的题目。

六年级下册的应用题包含了各个知识点的综合运用。

解决应用题需要我们对数学知识有一个整体的理解和把握,能够分析问题、提炼关键信息,并找到解决问题的方法。

在解题过程中,我们还需要注意思路的清晰和计算的准确性。

5. 解题技巧在六年级下册的奥数竞赛中,除了对各个知识点有深入的理解外,我们还需要掌握一些解题技巧。

这些技巧包括:寻找规律、逆向思维、尝试与推导等。

通过灵活运用这些技巧,我们可以更加高效地解决问题,并提升解题的能力。

通过对奥数竞赛六年级下册知识点的学习和理解,我们可以提高数学思维的能力,培养逻辑思维和问题解决能力。

小学奥数知识点(六年级)

小学奥数知识点(六年级)

学习改变命运,思考成就未来!姓名 _______________一、 计算1. 四则混合运算⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言: ① 加减运算中,能化成有限小数的统一以小数形式; ② 乘除运算中,统一以分数形式。

⑶带分数与假分数的互化 2. 简便计算⑴凑整思想 ⑵基准数思想 ⑶裂项与拆分⑷提取公因数 ⑸商不变性质 ⑹改变运算顺序 运算定律的综合运用① 连减的性质 ② 连除的性质 ③ 同级运算移项的性质 ④ 增减括号的性质 ⑤ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法 4. 比较大小① 通分a. 通分母b. 通分子 ② 利用倒数性质若111a b c>>,则c>b>a.。

定义新运算 5. 特殊数列求和运用相关公式:()21321+=++n n n 131171001⨯⨯⨯=⨯=abc abc abcabc ()()b a b a b a -+=-22 二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇 奇±偶=奇 奇×偶=偶 偶±偶=偶 偶×偶=偶2. 位值原则形如:abc=100a+10b+c10.孙子定理(中国剩余定理)11.辗转相除法12.数论解题的常用方法:枚举、归纳、反证、构造、配对、估计三、几何图形1.平面图形⑴多边形的内角和N边形的内角和=(N-2)×180°⑵等积变形(位移、割补)①三角形内等底等高的三角形②平行线内等底等高的三角形③公共部分的传递性④极值原理(变与不变)⑶三角形面积与底的正比关系S1︰S2 =a︰b ;S1︰S2=S4︰S3或者S1×S3=S2×S4组合图形的思考方法化整为零先补后去正反结合四、典型应用题1.植树问题①开放型与封闭型②间隔与株数的关系2.方阵问题外层边长数-2=内层边长数(外层边长数-1)×4=外周长数外层边长数2-中空边长数2=实面积数3.列车过桥问题①车长+桥长=速度×时间②车长甲+车长乙=速度和×相遇时间③车长甲+车长乙=速度差×追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和×相遇时间车长=速度差×追及时间4.年龄问题(差不变原理)5.鸡兔同笼(假设法的解题思想)6.牛吃草问题原有草量=(牛吃速度-草长速度)×时间7.平均数问题8.盈亏问题(分析差量关系)9.和差问题10.和倍问题11.差倍问题12.逆推问题(还原法,从结果入手)13.代换问题(列表消元法;等价条件代换)五、行程问题1.相遇问题路程和=速度和×相遇时间2.追及问题路程差=速度差×追及时间3.流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷24.多次相遇线型路程:甲乙共行全程数=相遇次数×2-1环型路程:甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程×共行全程数5.环形跑道6.行程问题中正反比例关系的应用路程一定,速度和时间成反比。

六年级奥数解题指导(第12讲):列方程解分数问题_

六年级奥数解题指导(第12讲):列方程解分数问题_

六年级奥数解题指导(第12讲):列方程解分数问题_列方程解应用题实质上就是用符合(x,y)代替未知数量(设元),把实际问题转化为数学问题(列方程)来解答。

对于一些数量关系较复杂的应用题,列方程解答思路比较简洁。

列方程解应用题的一般步骤方法在五年级奥数课堂已经学习了,请查阅:【原创】五年级奥数解析(三十六)列方程解应用题(上)本讲学习列方程解答数量关系比较复杂的分数应用题,解题步骤方法与五年级所学相同,解题的关键有两点:一、根据题中的关键句,找出应用题中数量之间的相等关系,列出等量关系式。

二、根据所列等量关系式设元列方程。

通常假设其中某个分率对应的未知单位“1”为x。

解决上面两个关键点后,再根据所列方程的解求出题中的其它问题。

《奥赛天天练》第12讲,模仿训练,练习1【题目】:实验小学五年级举行数学竞赛,参加竞赛的女生比男生多28人,根据成绩,男生全部获奖,女生有3/4的人获奖,已知获奖总人数是42人,又知参加数学竞赛的总人数是全年级人数的2/5,五年级共有多少人?【解析】:先求出参加数学竞赛的总人数,再求出五年级总人数。

根据题中的数量关系可列出等量关系式:参加数学竞赛的男生人数+参加数学竞赛的女生人数的3/4=42人假设参加数学竞赛的女生人数(单位“1”)为x人,根据题意可列出方程:x-28+xx3/4=42解得:x=40所以参加数学竞赛的总人数为:40-28+40=52(人)五年级总人数为:52÷2/5=130(人)。

《奥赛天天练》第12讲,模仿训练,练习2【题目】:建造两座房子,其中第一座造价比第二座的3倍少32万元,而第二座房子的造价占两座房子总造价的3/7,第二座房子的造价是多少万元?【解析】:解法一:根据题中的数量关系可列出等量关系式:(第一座房子的造价+第二座房子的造价)x3/7=第二座房子的造价假设第二座房子的造价为x万元,根据题意可列出方程:(3x-32+x)x3/7=x解得:x=19.2所以第二座房子的造价是19.2万元。

六年级下小升初典型奥数之分数与百分数问题

六年级下小升初典型奥数之分数与百分数问题

六年级下小升初典型奥数之分数与百分数问题在小学六年级的数学学习中,分数与百分数问题是小升初考试中经常出现的重要知识点。

掌握好这部分内容,不仅能提高数学成绩,还能为今后的数学学习打下坚实的基础。

接下来,让我们一起深入探讨这些典型的分数与百分数问题。

一、分数的基本概念分数是把单位“1”平均分成若干份,表示这样一份或几份的数。

例如,把一个蛋糕平均分成 8 份,其中的 3 份就是 3/8。

在解决分数问题时,我们要明确分母表示把单位“1”平均分的份数,分子表示取的份数。

二、百分数的基本概念百分数表示一个数是另一个数的百分之几。

百分数也叫做百分率或百分比。

例如,25%表示 25 是 100 的 25%。

三、分数与百分数的相互转换1、分数化为百分数将分数化成小数(用分子除以分母),然后将小数乘以 100%,即可得到对应的百分数。

例如,3/4 = 075,075 × 100% = 75%2、百分数化为分数先把百分数写成分数形式,能约分的要约成最简分数。

例如,40% = 40/100 = 2/5四、常见的分数与百分数问题类型1、求一个数是另一个数的几分之几(或百分之几)用一个数除以另一个数,结果写成分数或百分数形式。

例 1:有 20 个苹果,15 个梨,梨的个数是苹果个数的几分之几?15÷20 = 3/4例 2:某班有 50 名学生,其中 20 名是女生,女生人数占全班人数的百分之几?20÷50 × 100% = 40%2、已知一个数,求它的几分之几(或百分之几)是多少用这个数乘以对应的分数或百分数。

例 3:一本书 120 页,看了 1/3,看了多少页?120 × 1/3 = 40(页)例 4:某工厂上个月生产产品 500 件,这个月产量增加了 20%,这个月生产了多少件?500 ×(1 + 20%)= 600(件)3、已知一个数的几分之几(或百分之几)是多少,求这个数用已知的数量除以对应的分数或百分数。

奥数六年级知识点总结

奥数六年级知识点总结

奥数六年级知识点总结在六年级的奥数学习中,我们将继续深入探索各个数学领域,并学习一些更加复杂和抽象的概念。

下面是对六年级奥数知识点的总结:一、整数与分数1. 整数的概念和性质:正整数、负整数、绝对值等。

2. 分数的相关概念:分子、分母、最简分数、带分数等。

3. 整数和分数的加减乘除运算:包括整数与整数运算、整数与分数运算、分数与分数运算等。

二、几何图形1. 直线、射线和线段:它们的定义和特点,并能准确区分它们。

2. 平行线和垂直线:了解平行线和垂直线的性质,能判断给定的两条线是否平行或垂直。

3. 三角形的性质:等腰三角形、等边三角形、直角三角形等。

4. 四边形:正方形、长方形、菱形、平行四边形等。

三、单位换算与计算1. 长度单位换算:米、厘米、千米等的换算。

2. 重量单位换算:克、千克、斤等的换算。

3. 容量单位换算:升、毫升、立方米等的换算。

4. 计算应用题:包括长度、重量和容量的实际应用问题。

四、平面图形的面积和周长1. 长方形和正方形的面积和周长计算。

2. 三角形和梯形的面积计算。

3. 圆的面积和周长计算。

五、方程和代数1. 一次方程的概念和解法:通过移项、合并同类项等方法解一次方程。

2. 代数式和多项式:理解代数式和多项式的概念,进行简单的多项式运算。

3. 几何问题的代数解法:使用代数方程解决几何问题。

六、概率与统计1. 样本空间和事件:了解样本空间和事件的概念。

2. 概率的计算:对简单的概率问题进行计算。

3. 数据统计:对一组数据进行统计,包括求平均数、中位数等。

七、平面与立体图形1. 三维几何体:了解立方体、正方体、圆柱体、圆锥体、球等的特点和计算表达式。

2. 平面图形的投影:理解正投影和侧投影。

以上是六年级奥数的主要知识点总结。

通过对这些知识点的学习和掌握,我们将培养出良好的逻辑思维能力、数学运算能力和问题分析能力,为日后的数学学习打下坚实的基础。

希望同学们能在六年级的奥数学习中取得优异的成绩!。

六年级下册数学奥数讲义分数、百分数应用题(二)全国通用

六年级下册数学奥数讲义分数、百分数应用题(二)全国通用

一、 知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几? 方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=. 方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=. 二、 怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相知识框架分数、百分数应用题(二)当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

奥数六年级数学下册知识点

奥数六年级数学下册知识点

奥数六年级数学下册知识点六年级数学下册是奥数学习过程中的重要阶段,涵盖了多个知识点。

下面将介绍六年级数学下册的一些重要知识点,并提供相关例题进行说明。

一、数的认识与整数运算1. 自然数与整数的认识自然数是指正整数,即1、2、3、4......。

整数包括自然数和它们的相反数,即......-4、-3、-2、-1、0、1、2、3......。

2. 整数的加法与减法整数的加法和减法遵循以下原则:- 两个正整数相加(减),结果仍为正整数。

- 两个负整数相加(减),结果仍为负整数。

- 正整数与负整数相加(减),结果的符号由绝对值较大的整数决定。

【例题】计算下列各题:1)7 +(-5) =2)12 -(-8)=3)-15 + 13 =二、图形与几何1. 直角、钝角与锐角角是由两条射线共同起点组成的一对线段,常用单位为度。

根据角度的大小,可将角分为直角、钝角和锐角三种类型。

- 直角:角的度数为90°,如图所示□ABC 中∠ABC为直角。

- 钝角:角的度数大于90°小于180°,如图所示∠ADC为钝角。

- 锐角:角的度数小于90°,如图所示∠AEB为锐角。

【例题】判断下列各角属于直角、钝角还是锐角:1)∠OPQ = 90°2)∠RST = 120°3)∠UVW = 50°三、计算与应用1. 倍数和约数- 倍数:若一个数b可被另一个数a整除,则a为b的倍数。

- 约数:若一个数c能被另一个数d整除,则d为c的约数。

【例题】判断下列各数的倍数和约数:1)10的倍数是 _________,约数是 _________。

2)15的倍数是 _________,约数是 _________。

3)20的倍数是 _________,约数是 _________。

四、分数与比例1. 分数的概念与运算分数由分子与分母组成,分子表示分数的份数,分母表示每份的等分数。

- 分数的加法与减法:要求分母相同,将分子相加(减),分母保持不变。

【奥数】小学六年级数学知识点详细讲解(分数、百分数实际问题)

【奥数】小学六年级数学知识点详细讲解(分数、百分数实际问题)

240 192
48
答:比苹果树多栽48棵。
易错2 750千克增加百分之多少是900千克?
错因: 单位“1”没有找准。
正确解法: (900-750)÷750 =20%
归纳总结
基本数量 关系
易错点
解题思路
基本题型
已知一个数的几(百) 分之几是多少,求这 个数。方法: 对应数量÷对应分率 =“1”的实际量
源题解析
题1 六(4)班有学生40人,其中女生18人,女生人数占全班的几
分之几?
分析:本题的标准量 (单位“1”)是全班 的人数,是40人,比较 量是女生18人。方法是 用比较量除以标准量。
解: 18 40 9 20
• 黑豆网 https:// 黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源! • 金马医药招商网:## 金马医药招商网是专业提供医药代理招商的资讯信息发布平台,医药代理招商网即医药视频招商
答:女生人数占全班的
9 20

题2
本题的单位“1”是公路长---600米, 3
求已修的公路长就是求600米的 4 。
解:
600
3 4
450
(米)
答:修了450米。
题3
本题的单位 “1”是这本书
的全部页数,是未知的。全
5
部页数的 8 是45页。
解:
45 5 8
45 8 5
72 (页)
答:这本书共有72(页)。
易错点拨
错解:
240 1 40 6
错因: 把梨树的棵数看作单位 “1”,而实际上是苹果树 的棵数为单位“1”的量。
对策: 帮助学生弄清题中被比较的 量(单位“1”的去理 解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、计数问题
1.加法原理:分类枚举
2.乘法原理:排列组合
3.容斥原理:
①总数量=A+B+C-(AB+AC+BC)+ABC
②常用:总数量=A+B-AB
4.抽屉原理:
至多至少问题
5.握手问题
在图形计数中应用广泛
①角、线段、三角形,
②长方形、梯形、平行四边形
③正方形
二、分数问题
1.量率对应
2.以不变量为“1”
3.利润问题
4.浓度问题
倒三角原理
例:
5.工程问题
①合作问题
②水池进出水问题
6. 按比例分配
三、 方程解题
1. 等量关系
① 相关联量的表示法
例: 甲 + 乙 =100
甲÷乙=3 x 100-x
3x x ②解方程技巧
恒等变形
2. 二元一次方程组的求解
代入法、消元法
3. 不定方程的分析求解
以系数大者为试值角度
4. 不等方程的分析求解
四、 找规律
⑴周期性问题
① 年月日、星期几问题
② 余数的应用
⑵数列问题
① 等差数列
通项公式 a n =a 1+(n -1)d
求项数: n=1
1n a a d -+
求和: S=1()2
n a a n
+
② 等比数列
求和: S=1(1)
1n
a q q --
③裴波那契数列
⑶策略问题
①抢报30
②放硬币
⑷最值问题
①最短线路
a.一个字符阵组的分线读法
b.在格子路线上的最短走法数
②最优化问题
a.统筹方法
b.烙饼问题
五、算式谜
1.填充型
2.替代型
3.填运算符号
4.横式变竖式
5.结合数论知识点
六、数阵问题
1.相等和值问题
2.数列分组
⑴知行列数,求某数
⑵知某数,求行列数
3.幻方
⑴奇阶幻方问题:
杨辉法罗伯法
⑵偶阶幻方问题:
双偶阶:对称交换法
单偶阶:同心方阵法
七、二进制
1.二进制计数法
①二进制位值原则
②二进制数与十进制数的互相转化
③二进制的运算
2.其它进制(十六进制)
八、一笔画
1.一笔画定理:
⑴一笔画图形中只能有0个或两个奇点;
⑵两个奇点进必须从一个奇点进,另一个奇点出;2.哈密尔顿圈与哈密尔顿链
3.多笔画定理
奇点数
笔画数=
2
九、逻辑推理
1.等价条件的转换
2.列表法
3.对阵图
竞赛问题,涉及体育比赛常识
十、火柴棒问题
1.移动火柴棒改变图形个数2.移动火柴棒改变算式,使之成立
十一、智力问题
1.突破思维定势
2.某些特殊情境问题
十二、解题方法
(结合杂题的处理)
1.代换法
2.消元法
3.倒推法
4.假设法
5.反证法
6.极值法
7.设数法
8.整体法
9.画图法
10.列表法
11.排除法
12.染色法
13.构造法
14.配对法
15.列方程
⑴方程
⑵不定方程
⑶不等方程。

相关文档
最新文档