自动控制原理实验

合集下载

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告一、实验目的。

本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。

二、实验原理。

PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。

比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。

PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。

三、实验装置。

本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。

四、实验步骤。

1. 将PID控制器与被控对象连接好,并接通电源。

2. 调节PID控制器的参数,使其逐渐接近理想状态。

3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。

4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。

五、实验结果与分析。

经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。

因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。

六、实验总结。

通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。

同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。

七、实验心得。

本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。

只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。

八、参考文献。

[1] 《自动控制原理》,XXX,XXX出版社,2010年。

[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理实验

自动控制原理实验
2、 实验要求:(1)以具体实验系统为例,引导学生 将方块图和实验装置进行对照,以建立对控制系统的感 性认识。(2)让学生观看开环演示实验,观察输入对 输出的的控制作用,干扰对输出的扰动作用。(3)让 学生观看闭环演示实验,观察给定输入和扰动输入对输 出的影响,让学生认识到闭环控制的优越性。
返回
实验二 典型环节的模拟研究(2学时) 实验三 典型二阶系统实验(2学时)
1、 实验目的:(1)学习系统(或环节)频率特 性的测量方法;(2)学习用频率特性确定数学模型的 方法 。 2、 实验要求:(1)测量并绘制一阶和二阶典型 环节的频率特性;(2)根据一阶和二阶典型环节的频 率特性确定其传递函数;(3)测量并绘制一个闭环系 统的频率特性
返回
实验六 系统的串联校正(2学时)
返回
实验四 根轨迹曲线的计算机绘制(2学时)
1、实验目的(1)训练学生应用计算机进行根轨迹 辅助分析;(2)让学生进一步加深系统零极点分布 对根轨迹形状的影响。 2、实验要求:(1)教师提供辅助分析软件,让学 生尽快学会使用;(2)每个学生做十例以上,并记 录各种根轨迹图。
返回
实验五 频率特性的研究 (2学时)
1、 实验目的:(1)学习正确选择校正装置的 种类及参数;(2)学习系统的调试方法。 2、 实验要求:(1)学生必须根据给定的条件及 指标要求确定校正装置的传递函数;(2)测出系统 的开环频率特性和闭环频率特性;(3)根据频率特 性求取系统的性能指标。
返回
1、 实验目的:(1)学习用阻容元件及线性组件 组成一个二阶系统进行各种实验的方法;(2)研 究阻尼比ξ和无阻尼自然振荡频率ω 对阶跃响应的
n
影响。 2、 实验要求:(1)要求学生画出实验电路图, 选择元器件并按照原理图连接成控制系统;(2) 改变参数,用长余辉示波器观察系统阶跃响应的变 化并记录。

自控原理课程实验报告

自控原理课程实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。

3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。

二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。

本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。

2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。

(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。

(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。

(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。

(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。

(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。

2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。

(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

(2)根据仿真结果,优化系统参数,提高系统性能。

四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。

自动控制原理实验教案省名师优质课赛课获奖课件市赛课一等奖课件

自动控制原理实验教案省名师优质课赛课获奖课件市赛课一等奖课件

0.0478z 0.0464 G(z) z2 1.81z 0.9048
采样时间Ts=0.1s,试分析系统旳稳定性。
4、已知有一离散系统如图5.2所示,其中
G1 ( s)
K s(s 1)

设采样时间Ts=0.5s,利用根轨迹图,试分析要保持系
统稳定,增益系数K旳取值范围。
F (s)
1 esT s
产生传递函数:
10 ----------------s^2 + 2 s + 10
产生闭环传递函数:
10 ----------------s^2 + 2 s + 20
求闭环传递函 数旳极点
求开环和闭环传递函 数旳单位阶跃响应
绘制开环和闭环传递函数 旳单位阶跃响应波形图
试验一 线性系统时域分析
2、利用SIMULINK构建模型。
s 10 s2 2s 20
Y(s)
图3.1
试验三 线性系统旳综合校正
二、试验内容
2、有一制导控制系统如图3.2所示。其中飞行器等 效传函G(s)=23/(s+23),设PI控制器传函 为Gc(s)=Kp+Ki/s,现设计PI控制器,使得 系统加入PI控制器后到达下列要求:
(1)稳定时间不大于1秒(超调不大于2%)。
[mag,phase,w]=bode(sys)
[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w)
figure (3) nyquist(sys)
绘制Nyquist图
Using the margin function。 Gm=gain margin Pm=phase margin Wcg=freq.for phase=-180 Wcp=freq.for gain=0db

自控制原理实验报告(3篇)

自控制原理实验报告(3篇)

第1篇一、实验目的1. 理解自控制原理的基本概念和基本方法。

2. 掌握典型控制系统的组成和基本工作原理。

3. 学习使用实验仪器,进行控制系统模拟实验。

4. 分析和评估控制系统的性能指标,提高对控制系统设计和优化的认识。

二、实验仪器与设备1. EL-AT-III型自动控制系统实验箱一台2. 计算机一台3. 万用表一个三、实验原理1. 自控制原理基本概念:自控制原理是研究如何利用反馈信息来控制系统的行为,使其达到预定的目标。

其基本原理是:通过将系统的输出信号反馈到输入端,与输入信号进行比较,产生误差信号,然后根据误差信号调整系统的控制策略,以达到控制目标。

2. 典型控制系统组成:典型控制系统通常由控制器、被控对象、反馈环节和执行机构组成。

3. 控制系统模拟实验:利用实验箱和计算机,通过模拟电路搭建典型控制系统,进行实验研究。

四、实验内容1. 实验一:典型环节及其阶跃响应- 实验目的:掌握控制模拟实验的基本原理和一般方法,掌握控制系统时域性能指标的测量方法。

- 实验步骤:1. 搭建一阶系统的模拟电路。

2. 通过计算机等测量仪器,测量系统的输出,得到系统的动态响应曲线及性能指标。

3. 改变系统的参数,分析参数对系统性能的影响。

2. 实验二:二阶系统阶跃响应- 实验目的:了解二阶系统的阶跃响应特性,掌握二阶系统的性能指标。

- 实验步骤:1. 搭建二阶系统的模拟电路。

2. 通过计算机等测量仪器,测量系统的输出,得到系统的阶跃响应曲线及性能指标。

3. 分析二阶系统的性能指标,如上升时间、超调量、调节时间等。

3. 实验三:连续系统串联校正- 实验目的:学习连续系统串联校正方法,提高控制系统的性能。

- 实验步骤:1. 搭建连续系统的模拟电路。

2. 分析系统的性能指标,确定校正方法。

3. 通过计算机等测量仪器,测量校正后的系统输出,评估校正效果。

五、实验结果与分析1. 实验一:通过搭建一阶系统的模拟电路,测量系统的输出,得到系统的动态响应曲线及性能指标。

自动控制原理实验3

自动控制原理实验3
实验 三
经典三阶系统旳稳定性 研究
一、试验目旳
1、 熟悉反馈控制系统旳构造和工作原理; 2、了解开环放大系数对系统稳定性旳影 响。
二、试验要求:
观察开环增益对三阶系统稳定性 旳影响。
三、试验仪器:
1.自控系统教学模拟机 XMN-2 1台; 2.TDS1000B-SC 系列数字存储示波 器1台; 3.万用表
由劳斯判据懂得,当:
11.9619.6 19.6k 0
19.6k 0
得到系统稳定范围:0 k 11.96
当:
11.96 19.6 19.6k 0
得到系统临界稳定时:
k 11.96
当:
11.96 19.6 19.6k 0
得到系统不稳定范围:k 11.96
将K=510/R代入(3-6)~(3-8)得: R>42.6KΩ 系统稳定 R=42.6KΩ 系统临界稳定 R<42.6KΩ 系统不稳定
G(S)H (S)
510 / R
S(0.1S 1)(0.51S 1)
系统旳特征方程为:
S 3 11.96S 2 19.6S 19.6K 0
用劳斯判据求出系统稳定、临界稳定、 不稳定时旳开环增益:
S3
1
19.6
S2
11.96
19.6K
11.96 19.6 19.6K
S1
11.96
S0
19.6K
四、试验原理和内容:
利用自控系统教学模拟机来模拟 给定三阶系统。
经典三阶系统原理方块图如下图 所示。
G(S )H (S )
K1K 2
T0S (T1S 1)(T2S 1)
K
S(T1S 1)(T2S 1)
给定三阶系统电模拟图

自动控制原理实验心得

自动控制原理实验心得

自动控制原理实验心得在学习自动控制原理这门课的时候,我原本以为会是一堆枯燥的理论和复杂的公式,没想到还有实验环节。

而正是这个实验,让我对这门课有了全新的认识。

我们的实验是关于控制系统的性能分析和校正。

一开始,看到那些实验设备和线路,我脑袋都大了。

一堆的仪器仪表、电路板,还有错综复杂的线路,感觉就像是走进了一个电子迷宫。

老师在前面讲着实验步骤和注意事项,我在下面听得云里雾里。

好不容易开始动手操作了,我紧张得手都有点抖。

第一步是连接线路,我拿着导线,眼睛死死盯着插孔,生怕插错了。

每插一根线,都要反复确认好几遍,心里还默默祈祷着千万别出错。

好不容易把线路连好了,打开电源,却发现仪器没有任何反应。

我瞬间慌了神,心里想着:“完了完了,这可咋办?”赶紧又从头到尾检查了一遍线路,发现原来是有一根线松了。

虚惊一场之后,我长舒了一口气。

接下来是调试参数,这可真是个技术活。

要根据不同的要求,不断地调整电阻、电容的值,然后观察系统的输出响应。

我小心翼翼地转动着旋钮,眼睛紧紧盯着示波器上的波形,心里盼着能出现理想的曲线。

可是,事情往往没有那么顺利。

调了半天,波形还是乱七八糟的,不是超调太大,就是响应太慢。

我急得满头大汗,心里那个烦躁啊,真想把这些东西都扔一边不管了。

就在我快要崩溃的时候,旁边的同学提醒我:“你试试先把某个参数固定住,再调整另一个。

”我听了他的建议,重新静下心来,一步一步地调整。

嘿,还真别说,这方法还挺管用。

经过一番努力,终于看到了那让人满意的波形,那一刻,我心里的成就感简直爆棚。

在实验过程中,我还犯了一个超级搞笑的错误。

有一次,我调好了参数,正得意洋洋地准备记录数据,结果一不留神,胳膊碰到了一个旋钮,参数全变了。

我当时那个郁闷啊,真想给自己一巴掌。

没办法,只能重新再来一遍。

还有一次,我为了看得更清楚示波器上的波形,把脸凑得特别近。

结果,旁边的同学不小心碰到了桌子,我的头就直接撞到了示波器上,疼得我“哎哟”一声叫了出来。

2023年自动控制原理实验系统超前校正实验报告

2023年自动控制原理实验系统超前校正实验报告

试验五 系统超前校正(4课时)本试验为设计性试验 一、试验目旳1. 理解和观测校正装置对系统稳定性及动态特性旳影响。

2. 学习校正装置旳设计和实现措施。

二、试验原理工程上常用旳校正措施一般是把一种高阶系统近似地简化成低阶系统, 并从中找出少数经典系统作为工程设计旳基础, 一般选用二阶、三阶经典系统作为预期经典系统。

只要掌握经典系统与性能之间旳关系, 根据设计规定, 就可以设计系统参数, 进而把工程实践确认旳参数推荐为“工程最佳参数”, 对应旳性能确定为经典系统旳性能指标。

根据经典系统选择控制器形式和工程最佳参数, 据此进行系统电路参数计算。

在工程设计中, 常常采用二阶经典系统来替代高阶系统(如采用主导极点、偶极子等概念分析问题)其动态构造图如图7-1所示。

同步还常常采用“最优”旳综合校正措施。

图7-1二阶经典系统动态构造图二阶经典系统旳开环传递函数为)2()1()(2n n s s Ts s Ks G ξωω+=+= 闭环传递函数2222)(nn ns s s ωξωω++=Φ 式中 , 或者 二阶系统旳最优模型 (1)最优模型旳条件根据控制理论, 当 时, 其闭环频带最宽, 动态品质最佳。

把 代入 得到, , 这就是进行校正旳条件。

(2)最优模型旳动态指标为%3.4%100%21/=⨯=--ξξπσe,T t ns 3.43≈=ω三、试验仪器及耗材1.EL —AT3自动控制原理试验箱一台; 2.PC 机一台; 3.数字万用表一块 4.配套试验软件一套。

四、试验内容及规定未校正系统旳方框图如图7-2所示, 图7-3是它旳模拟电路。

图7-2未校正系统旳方框图矫正后未调整电路图图7-3未校正系统旳模拟电路设计串联校正装置使系统满足下述性能指标(1) 超调量%σ≤5% (2) 调整时间t s ≤1秒(3) 静态速度误差系数v K ≥20 1/秒 1. 测量未校正系统旳性能指标 (1)按图7-3接线;(2)加入单位阶跃电压, 观测阶跃响应曲线, 并测出超调量 和调整时间ts 。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。

5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。

6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。

二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。

自动控制原理实验报告

自动控制原理实验报告

一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。

2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。

3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。

二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。

实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。

2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。

3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。

三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。

2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。

3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。

六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。

2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。

3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。

自动控制原理实验报告分析

自动控制原理实验报告分析

自动控制原理实验报告分析1. 引言自动控制原理是现代工程中非常重要的一门学科。

它研究如何设计和分析能够实现自动化控制的系统,以满足特定的性能要求。

通过实验,我们可以验证控制系统的性能,并深入理解自动控制原理的基本概念和工作原理。

本文将对自动控制原理实验进行详细分析和总结。

2. 实验目的本次实验的目的是研究PID(比例-积分-微分)控制器在温度控制系统中的应用。

通过调节PID控制器的参数,我们可以观察到不同控制参数对系统稳定性、响应速度和超调量等性能指标的影响。

3. 实验步骤本次实验使用了一个温度控制系统。

我们需要调节PID控制器的三个参数(比例增益、积分时间和微分时间)来实现温度的稳定控制。

具体的实验步骤如下:3.1 准备工作在进行实验之前,我们需要确保实验所需的设备和软件已经准备就绪。

这包括温度传感器、温度控制器、计算机等。

3.2 连接系统将温度传感器连接到温度控制器,并将温度控制器连接到计算机。

确保连接正确并稳定。

3.3 设置初始参数在实验开始前,我们需要设置PID控制器的初始参数。

一般情况下,我们可以先将比例增益和积分时间设置为较小的值,微分时间设置为0。

3.4 开始实验启动温度控制系统,并记录温度的变化。

观察温度的稳定性、响应速度和超调量等指标,并记录下来。

3.5 调节参数根据实验结果,我们可以调节PID控制器的参数来改善系统的性能。

通过增大比例增益可以提高系统的响应速度,但可能会导致较大的超调量。

增大积分时间可以减小超调量,但可能会降低系统的稳定性。

调节微分时间可以改善系统的稳定性和响应速度。

3.6 重复实验根据实验结果,我们可以不断调节PID控制器的参数,并进行多次实验,以得到更好的控制效果。

4. 实验结果分析根据实验的记录数据,我们可以对实验结果进行分析。

通过观察温度的变化曲线以及性能指标的大小,我们可以得出如下结论:•较大的比例增益可以提高系统的响应速度,但会导致较大的超调量。

•较大的积分时间可以减小超调量,但会降低系统的稳定性。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验目的本次自动控制原理实验的目的是通过对传统反馈控制系统的模拟和实现,了解并掌握基本的控制原理和控制器设计方法,进一步深化对自动控制理论的理解。

实验装置本次实验使用的是一台水位控制系统,该系统由电源、电机、计量储水罐、信号检测器、PID控制器、水泵等组成。

电源将电能转换为机械能,通过水泵将水流入到计量储水罐中,信号检测器对储水罐中的水位进行检测并反馈给PID控制器,PID控制器对信号进行处理并控制电机的转速,从而实现对水位的控制。

实验步骤1. 确定实验参数在进行实验之前,首先需要确定实验的一些参数,如PID控制器的比例系数、积分系数以及微分系数等。

这需要根据具体实验情况进行设定,以确保控制系统具有良好的稳定性和响应能力。

2. 实施控制将水泵开启,令水流入计量储水罐中,同时PID控制器对信号进行处理,调节电机的转速以控制水位。

实验过程中需要注意及时进行系统动态的监控和调整,以确保控制系统的稳定性和故障排除。

3. 结束实验并分析结果实验结束后,需要对实验结果进行分析,包括控制系统的响应速度、稳定性以及对参数的灵敏度等。

通过对实验数据的收集和分析,可以进一步提高对自动控制理论的理解和应用能力。

实验结果分析本次实验中,我们实现了对水位的控制,并对PID控制器的参数进行了设定和调整。

实验结果表明,我们所设计的控制系统具有较好的稳定性和响应能力,并且对参数的灵敏度较高。

同时,通过实验数据的分析,我们也发现了一些问题和不足之处,如控制系统的动态响应速度过慢等,这需要我们在实际应用中加以改进和完善。

结论本次自动控制原理实验通过实现对水位的控制,进一步加深了对自动控制理论的理解,掌握了基本的控制原理和控制器设计方法。

同时,通过实验数据的分析和总结,也为今后在自动控制领域的实际应用提供了一定的参考和指导。

自控实验报告终极版

自控实验报告终极版

自动控制原理课程设计实验报告一、 实验目的1、了解自动控制原理的数学和系统稳定验证的方法。

2、了解自动控制系统的放大系数对系统的稳态误差和稳定性的影响。

3、 熟悉MABLAB 系统仿真的应用,加强对MABLAB 软件应用的认识。

二、 实验内容1、设单位反馈控制系统的开环传递函数如下,试用MATLAB 绘制闭环根轨迹图。

33*)2()1()(++=s s K s G2、两个系统的传递函数分别为:)65)(1)(254()144)(3(50)()()1(2232++-++++-=s s s s s s s s s s H s G )1)(2)(6())(133(3)()()2(2222323+++-+++++=s s s s s s s s s s s s H s G 计算上述所给系统在2=ω和20=ω时的幅频特性)(ωA ,对数幅频特性)(ωL 以及相频特性)(ωϕ。

(用MATLAB 验证) 3、设单位反馈的开环传递函数为)15.0)(1()(0++=s s s Ks G要求设计一串联校正网络,使校正后系统的开环增益K=5,相角裕度不低于40°,幅值裕度不小于10dB.(用MATLAB 验证)三、实验步骤及MATLAB 验证仿真1、设单位反馈控制系统的开环传递函数如下,试用MATLAB 绘制闭环根轨迹图。

33*)2()1()(++=s s K s G 解:33*)2()1()(++=s s K s G用MATLAB 绘制闭环根轨迹图如下:程序:num=conv([1 1],conv([1 1],[1 1])); den=conv([1 2],conv([1 2],[1 2])); sys=tf(num,den); rlocus(sys); grid on其闭环根轨迹图如下:2、两个系统的传递函数分别为:)65)(1)(254()144)(3(50)()()1(2232++-++++-=s s s s s s s s s s H s G )1)(2)(6())(133(3)()()2(2222323+++-+++++=s s s s s s s s s s s s H s G(1) 解:)(lg 20)(3462541)14(5094116)25()14(950)()()()3)(2)(1)(425()12)(3(50))H(j ()3)(2)(1)(254()12)(3(50)()(42222222222222222ωωωωωωωωωωωωωωωωωωωωωωωωωωωωωA L j H j G A j j j j j j j j G s s s s s s s s s H s G =+-+++=++++-++==++-+-+-=+--+++-=当ω<5时,o2o2o o 90)2arctan()arctan()254arctan()2arctan(2)32arctan(-)3arctan()2arctan())arctan(180(254arctan90)2arctan(2)3arctan(-180)(--+--+-=---+----++=ωωωωωωωωωωωωωωϕ当ω>5时,o2o2o o 270)2arctan()arctan()254arctan()2arctan(2)32arctan(-)3arctan()2arctan())arctan(180(254arctan90)2arctan(2)3arctan(-180)(--+--+-=---+----++=ωωωωωωωωωωωωωωϕ当ω=2时,87.7904543.6385.2093.15138.6790)22arctan()2arctan()22524arctan()42arctan()322arctan()2(513.999.2lg 20)2lgA(20)2L(99.224346254414214450)2(o o24-=--+-+-=--+-⨯-+-=≈==≈+⨯-+++⨯⨯=ϕ)(A当ω=20时,9. 24027029.8414.8704.1214.17793. 162270)220arctan()20arctan()2025204arctan()402arctan()3202arctan( )20(7.31026.0lg20)20lgA(20)20L(026.0204003462544001400 201400450) 20 (o o2 4-=--+++-=--+-⨯-+-=-≈==≈+⨯-+++⨯⨯=ϕ)(A用MATLAB验证如下:程序:num=conv(50,conv([1 -3],[4 4 1]));den=conv([1 4 25 0],conv([1 -1],[1 5 6]));sys=tf(num,den);margin(sys);grid on其MABLAB验证图如下:由计算值和MATLAB 验证可知,当ω=2时,()()%032.0%100)2()2()2(:16.8251.92L ,87.7)2(513.9)2(99.2)2()2(≈⨯'-=-='='-===L L L L A L δϕϕ故其误差值分别为,,仿真值:,,理论值:%68.3%100)22()2()2(-≈⨯'-=()ϕϕϕδϕ当时20=ω理论值:()(),)(,, 9.240207.3120L 026.020A -=-≈≈ϕ仿真值:()(),, 241207.3120L -='-='ϕ故其误差值分别为:()()()()()()%04.0%1002020200%10020L 20L 20L 2020L -≈⨯'-==⨯'-=ϕϕϕδδϕ)()((2)解:)1)(2)(2)(3()1(3)1)(2)(6())(133(3)()(242222323+++-++=+++-+++++=s s s s s s s s s s s s s s s s s s s H s G )1)(2)(2)(3()1(3)()(24ωωωωωωωωωj j j j j j j H j G +-+-++=422222222222221)4(9)1(3)1(449)1(3|)()(|)(ωωωωωωωωωωωωωωωω+-+++=+-++++==j H j G A )(lg 20)(ωβωA L =()()()()()05.027087.247.8155.34827020120arctan 320arctan 20arctan 42077.908.3lg 2020lg 202008.320201420920120203)20(,2026.162702arctan 4270212arctan 32arctan 2arctan 4)2(18.35275lg 20)2(lg 20)2(44.1221)42(92)12(23)2(,22701arctan3arctan arctan 4)1arctan 180(2arctan )]7arctan(180[3arctan arctan 490)(,1242222242222222-=-+-≈----=≈==≈+-+++⨯⨯==-≈-=----====≈+-+++⨯⨯==----=-+---+--+=>ϕωϕωωωωωωωωωωωωϕωA L A A L A 时当时当时当用MATLAB 验证如下:程序:num=conv(3,conv([1 3 3 1],[1 1 0 0])); den=conv([1 1 -6],conv([1 2 0],[1 1 1])); sys=tf(num,den); margin(sys); grid on其MATLAB 验证图如下:(下一页)由计算值和MATLAB 验证可知; 当时,2=ω理论值:()()() 26.162,18.32,44.12-≈=≈ϕL A 验证值:()() 2.162,17.32-='='ϕL 故其误差值分别为:()%14.3%100)2()2(2)2(≈⨯'-=L L L L δ%37.0%100)2()2()2()2(≈⨯'-=ϕϕϕδϕ当时,20=ω理论值:()()() 05.02077.920L 08.320A -=≈≈ϕ,, 验证值:()() 0512.02041.920L -='='ϕ, 故其误差值分别为:()()()()%68.3%10020L 20L 2020L ≈⨯'-=L δ()()()%4.2%10020202020-=⨯'-=ϕϕϕδϕ)(3、设单位反馈的开环传递函数为)15.0)(1()(0++=s s s Ks G要求设计一串联校正网络,使校正后系统的开环增益K=5,相角裕度不低于40°,幅值裕度不小于10dB.(用MATLAB 验证)解:设校正后c ω截止频率为r c ''",ω为指标求值,通过串联滞后校正,设滞后校正传递函数为()sss G c 71671++=()()())12)(1(1015.01++=++=s s s s s s s s G()()()12110++=ωωωωj j j j G()2110lg2022++=ωωωωL() 902arctanarctan ---=ωωωψ由()()c c c r r ωψω''+''''='' ,且()c c ωψ''取为 14- ,得()() 541440=+=''-''=''''c r c r ωψω由()()c c r ''+=''''ωψω 180得 () 126180540-=-=''x ωψ通过Bode 图得 442.0="c ω程序: num=[10]; den=[1,3,2,0]; G=tf(num,den); margin(G); grid on其MATLAB 伯德图如下:则()1.202442.01442.0442.010log20442.02≈++='=⎪⎭⎫ ⎝⎛"'L L c ω所以有:()()()()()ss s s s s s s s s s G s G s G c 266.30449.45383.1501083.15083.1501083.15115.0152340++++=++⋅++=⋅=程序:num1=[10];den1=[1,3,2,0]; num2=[150.83,10];den2=[150.83,453.49,304.66,2,0]; G1=tf(num1,den1); margin(G1); hold onG2=tf(num2,den2); margin(G2); bode(G1,':'); grid on其MATLAB 验证图如下()sss G T b bTl b c cc 83.1501083.15183.1501.015.010lg 20++=⎩⎨⎧==⎪⎩⎪⎨⎧''==⎪⎭⎫ ⎝⎛"'+得ωω校正前系统阶跃响应如下:程序:num=[10];den=[1,3,2,0];G=tf(num,den);figure(1);step(feedback(G,1,-1));grid on其MATLAB验证图如下校正后系统阶跃响应如下:程序:num=[150.83,10];den=[150.83,453.49,304.66,2,0]; G=tf(num,den);figure(1);step(feedback(G,1,-1));grid on其MATLAB验证图如下校正方法分析:ω附近很窄的频率范围内在此题中,采用相位超前校正是不怎么有效的,此例在c对数幅频和相频特性衰减很快,若采用相位超前校正,虽然校正环节可提供超前相角,ω右移,又将使系统的相位产生较大的滞后量,而使系统的相位裕量不会有但又会使c明显的改善。

自动控制原理实验

自动控制原理实验

自动控制原理实验自动控制原理实验是自动控制原理课程的重要组成部分,通过实验可以加深对自动控制原理的理解,提高实际操作能力。

本文将介绍自动控制原理实验的基本内容和实验步骤。

一、PID控制器实验。

PID控制器是自动控制中常用的一种控制器,它包括比例环节、积分环节和微分环节。

在PID控制器实验中,首先需要搭建一个控制系统模型,然后根据实验要求调节PID参数,观察系统的响应特性。

通过实验可以了解PID参数对系统稳定性和动态性能的影响,为工程实际应用提供参考。

二、系统辨识实验。

系统辨识是自动控制领域的重要内容,通过实验可以获取系统的数学模型,为控制器设计提供依据。

在系统辨识实验中,需要输入一定的信号,观察系统的输出响应,并利用系统辨识方法建立系统的数学模型。

实验过程中需要注意信号的选择和采样频率,以保证实验数据的准确性和可靠性。

三、闭环控制实验。

闭环控制是自动控制中常用的一种控制策略,通过实验可以验证闭环控制系统的性能。

在闭环控制实验中,需要搭建一个闭环控制系统,然后根据实验要求设计控制器参数,并观察系统的稳定性和跟踪性能。

实验过程中需要注意控制器参数的选择和调节,以保证系统的稳定性和性能。

四、数字控制实验。

数字控制是现代控制领域的重要内容,通过实验可以了解数字控制系统的特点和设计方法。

在数字控制实验中,需要搭建一个数字控制系统,然后根据实验要求设计数字控制器,并观察系统的响应特性。

实验过程中需要注意采样周期和数字控制器参数的选择,以保证系统的性能和稳定性。

通过以上实验,可以加深对自动控制原理的理解,提高实际操作能力,为将来的工程实际应用打下基础。

希望同学们能够认真对待自动控制原理实验,不断提高自己的实验能力和动手能力,为将来的工程实践做好准备。

自动控制原理实验

自动控制原理实验

自动控制原理实验实验1 控制系统典型环节的模拟利用运算放大器的基本特性,如:开环增益高,输入阻抗大、输出阻抗小等,通过设置不同的反馈网络,可以模拟各种典型环节。

一.实验目的● 掌握用运算放大器组成控制系统典型环节的电子电路原理。

●观察几种典型环节的阶跃响应曲线。

● 了解参数变化对典型环节输出动态性能(即阶跃响应)的影响。

二.实验仪器●THSCC-1实验箱一台。

● 示波器一台。

三.实验内容 1.比例环节比例(P )环节的方框图如图1-1所示。

图1-1比例环节方框图K Z Z S u S u S G i o ==-=12)()()(当输入为单位阶跃信号,即u i =-1V 时,u i (s )=s 1,则u o (s )=K s1,所以输出响应为:u o (t )=K (t ≥0)。

比例环节实验原理图如图1-2所示。

选择:K=R2/R1=2,例如选择R2=820k ,R1=410k ,或选择R2=100k ,R1=51k 。

R2图1-2 比例环节实验原理图和输出波形实验步骤: (1)调整示波器: ● 选择输入通道CH1或CH2。

● 逆时针调节示波器的时间旋钮“TIME/DIV ”到底,使光标为一点,并调节上下“位移”旋钮使光标位于0线上。

●调整示波器的输入幅度档位选择开关,选择合适的档位使信号幅度便于观察,例如选择档位为1V 档。

● 将输入幅度档位选择开关中心的微调旋钮顺时针旋到底。

● 将信号选择开关打到DC 档。

(2)顺时针调节实验箱的旋钮,使阶跃信号为负(绿灯亮)。

(3)阶跃信号接到示波器上,调节实验箱的幅度旋钮。

使负跳变幅度为一格(即Ui=-1V )。

(4)接好实验线路,按下阶跃信号按钮,观察示波器的波形。

预习思考:输出幅度跳变应为……? 2.惯性环节惯性环节实验原理图如图1-3所示。

其传递函数为:11)()()(+==TS K s u s u S G i o , K= R2/R1,T=R2*C 当输入为单位阶跃信号,即u i (t )=-1V 时,u i (s )=S 1,则u o (s )=S11TS 1⋅+ 所以输出响应为u o (t )=)e1(K Tt--。

自动控制原理_实验报告

自动控制原理_实验报告

一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。

二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。

三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。

它主要由控制器、被控对象和反馈环节组成。

控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。

1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。

比例环节的响应特性为输出信号与输入信号成线性关系。

(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。

积分环节的响应特性为输出信号随时间逐渐逼近输入信号。

(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。

比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。

2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。

PID控制器可以实现对系统的快速、稳定和精确控制。

四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。

2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理实验实验一 控制系统的数学模型一、 实验目的1. 熟悉Matlab 的实验环境,掌握Matlab 建立系统数学模型的方法。

2. 学习构成典型环节的模拟电路并掌握典型环节的软件仿真方法。

3. 学习由阶跃响应计算典型环节的传递函数。

二、 实验内容1. 已知图1.1中()G s 和()H s 两方框相对应的微分方程分别是:()610()20()()205()10()dc t c t e t dtdb t b t c t dt+=+=且满足零初始条件,用Matlab 求传递函数()()C s R s 和()()E s R s 。

图1.1 系统结构图2. 构成比例环节、惯性环节、积分环节、比例-积分环节、比例-微分环节和比例-积分-微分环节的模拟电路并用Matlab 仿真;3. 求以上各个环节的单位阶跃响应。

三、 实验原理1. 构成比例环节的模拟电路如图1.2所示,该电路的传递函数为:21().R G s R =-图1.2 比例环节的模拟电路原理图2. 构成惯性环节的模拟电路如图1.3所示,该电路的传递函数为:221(),,.1R KG s K T R C Ts R =-==+图1.2 惯性环节的模拟电路原理图3. 构成积分环节的模拟电路如图1.3所示,该电路的传递函数为:1(),.G s T RC Ts==图1.3 积分环节的模拟电路原理图4. 构成比例-积分环节的模拟电路如图1.4所示,该电路的传递函数为:2211()1,,.R G s K K T R C Ts R ⎛⎫=-+== ⎪⎝⎭图1.4 比例-积分环节的模拟电路原理图5. 构成比例-微分环节的模拟电路如图1.5所示,该电路的传递函数为:221()(1),,.R G s K Ts K T R C R =-+==图1.5 比例-微分环节的模拟电路原理图6. 构成比例-积分-微分环节的模拟电路如图1.6所示,该电路的传递函数为:121211212121121()1(1)()()()()()p d i f p i i ff i f f f f f d f f G s K T s T s R R R R C K R R C T R CT R R C R R C R R R R R R CC T R R C R R C⎛⎫=++ ⎪⎝⎭++=+==+++++=+++图1.6 比例-积分-微分环节的模拟电路原理图四、实验要求1.画出各环节的模拟电路图。

比例环节的模拟电路原理图惯性环节的模拟电路原理图积分环节的模拟电路原理图比例-积分环节的模拟电路原理图比例-微分环节的模拟电路原理2.获得各个典型环节的单位阶跃响应曲线。

环节图像比例积分比例微分惯性环节3.针对惯性环节、积分环节,适当改变参数(自行选取),改变相应的时间常数,比较和分析单位阶跃响应曲线的区别。

4.从图中可看出,随着时间常数T的增加,振荡环节的调节时间增加,积分环节的斜率越小。

五、实验思考1.为什么函数step()不支持纯微分环节?为什么说纯微分环节在实际中无法实现?答:因为纯微分环节的输出量只与输入量对时间的各阶导数有关,单位阶跃函数的导数为无穷大,故函数step()不支持纯微分环节。

在实际系统或元件中,由于惯性的普遍存在,以致很难实现理想的纯微分关系。

2.惯性环节在什么情况下可视为比例环节?能否通过实验验证?答:在时间常数T比较小时,可视为比例环节,可以通过实验近似验证。

实验二二阶系统的动态过程分析一、实验目的1.掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。

2.定量分析二阶系统的阻尼比ξ和无阻尼自然频率ω对系统动态性n能的影响。

3.加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。

4.了解和学习二阶控制系统及其阶跃响应的Matlab仿真和Simulink实现方法。

二、实验内容1.分析典型二阶系统()G s的ξ和nω变化时,对系统的阶跃响应的影响。

从图中可看出,当wn 不变时,随着ζ的减小,系统的超调量越来越大;当ζ不变,随着wn 的增加,系统的调节时间减小。

2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。

图2.1 控制系统的结构图其中k=12.4、т=0.16;单位阶跃响应图线:从图中可看出t d=0.35s 、t r=0.62s 、t s=2.02s 3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。

图中,输入信号()r t t θ=,放大器增益A K 分别取13.5,200和1500。

试分别写出系统的误差响应表达式,并估算其性能指标。

图2.2 控制系统的结构图K=13.5K=200 K=1500三、 实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。

将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。

通常,二阶控制系统222()2nn nG s s ωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图2.3所示,对应的模拟电路图如图2.4所示。

图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r c u t r t u t c t ==-。

比例常数(增益系数)21R K R =,惯性时间常数131T R C =,积分时间常数242T R C =。

其闭环传递函数为:12221112()1()(1)c r KU s TT K K U s T s T s K s s T TT ==++++(0.1)又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。

其闭环传递函数的标准形式为:222()()2n n nC s R s s ωξωω=++ (0.2)比较(0.1)和(0.2)两式可得:n ωξ== 当3412,R R R C C C ====时,有12()T T T RC ===,因此,n ωξ==可见:(1)在其它参数不变的情况下,同时改变系统的增益系数K 和时间常数T (即调节21R R 的比值和改变RC 的乘积)而保持n ω不变时,可以实现ξ单独变化。

只改变时间常数T 时,可以单独改变n ω。

这些都可以引起控制系统的延迟时间d t 、上升时间r t 、调节时间s t 、峰值时间p t 、超调量%σ和振荡次数N 等的变化。

(2)记录示波器上的响应曲线满足性能要求时的各分立元件值,就可以计算出相应的参数和其它性能指标值。

四、 实验要求4. 记录ξ和n ω变化时二阶系统的阶跃响应曲线以及所测得的相应的超调量%σ,峰值时间p t 和调节时间s t 值,分析ξ和n ω对系统性能的影响。

1. 画出研究内容2题中对应的模拟电路图,并标明各电路元件的取值。

2. 根据研究内容3题中不同的A K 值,计算出该二阶系统的ξ和n ω,由近似公式求其动态性能,并与仿真结果比较。

五、 实验思考1. 分析通常采用系统的阶跃响应特性来评价其动态性能指标的原因。

因为典型输入信号的数学表达式比较简单,并且比较接近系统的实际输入信号,因此常被用来作为研究系统时域性能的输入信号。

2. 用Matlab 绘制以下问题中系统的输出响应曲线。

设角度随动系统如图2.5所示。

图中,K 为开环增益,0.1T s =为伺服电动机的时间常数。

若要求系统的单位阶跃响应无超调,且调节时间1s t s ≤,K 应取多大?此时系统的延迟时间d t 及上升时间r t 各等于多少?此时k=2.5由单位阶跃响应图可知:td=0.3s 、tr=1.5s图2.5 角度随动系统实验三 控制系统的稳定性分析一、 实验目的1. 观察系统的不稳定现象。

2. 了解系统的开环增益和时间常数对系统稳定性的影响。

3. 研究系统在不同输入下的稳态误差的变化。

4. 掌握系统型次及开环增益对稳态误差的影响。

二、 实验内容1. 分析开环增益0K 和时间常数T 改变对系统稳定性及稳态误差的影响。

系统开环传递函数为:10().(0.11)(1)K G s s s Ts =++2. 分析实验内容1中系统型次v 改变对系统稳态误差的影响。

3. 分析实验内容1中系统在不同输入时的稳态误差。

4. 用实验的方法求解以下问题:设具有测速发动机内反馈的位置随动系统原理图如图3.1所示。

要求计算()r t 分别为21(),,2t t t 时,系统的稳态误差,并对系统在不同输入形式下具有不同稳态误差的现象进行物理说明。

图3.1 位置随动系统原理图三、 实验原理构成实验内容1系统的模拟电路如图3.2所示。

图3.2 稳定性实验系统的模拟电路系统的开环传递函数为:10().(0.11)(1)K G s s s Ts =++式中,20121,100,0~500;,100R K R k R k T RC R k R ==Ω=Ω==Ω,C 取1F μ或0.1F μ两种情况。

(1)输入信号1,1r U C F μ==;改变电位器,使2R 从0500k →Ω方向变化,观察系统的输入波形,确定使系统输出产生等幅振荡时相应的2R 值及0K 值,分析0K 变化对系统稳定性的影响。

(2)分析T 值变化对系统的影响。

(3)观察系统在不同输入下稳态误差变化的情况。

四、实验要求1.记录各步骤中绘出的响应曲线。

2.T=1; K o=0.04 k o=0.1 k o=1Ko=0.4;T =2 T=10 T=0.13.对响应曲线进行分析,验证参数K、T即系统型次与系统稳定性和稳态误差之间的关系。

随着K0的增加,系统的超调量增加;随着T的减小,系统的动态性能变好。

五、实验思考影响系统稳定性和稳态误差的因素有哪些?如何改善系统的稳定性,减小和消除稳态误差?影响因素有开环增益和系统的型别,增大开环增益可以减小稳态误差,提高系统的型别可以减少稳态误差。

实验四 控制系统的根轨迹分析一、实验目的1. 学习MATLAB 在控制系统中的应用;2.熟悉MATLAB 在绘制根轨迹中的应用;2. 掌握控制系统根轨迹绘制,应用根轨迹分系统性能的方法。

二、实验内容1.熟悉MATLAB 中已知开环传递函数绘制闭环根轨迹的方法;2.学习使用MATLAB 进行一阶、二阶系统仿真的基本方法。

3.对下列给定的开环传递函数系统,绘制根轨迹图并计算相应参数值。

(1)10)()(+=*S K s H s G (2))6)(2()()(++=*S S K s H s G (3)2)3)(1()2()()(+++=*S S S K s H s G (4))5010)(2()3()()(2++++=*S S S S S K s H s G (5))5.2)(5.2()54)(5.1()()(22++++++=*S S S S S S S K s H s G已知开环传递函数绘制闭环根轨迹命令格式: rlocus(num,den) 求根轨迹上任一点处的增益命令格式: rlocfind( num,den )要求:记录根轨迹,并观察根轨迹的起点、终点,根轨迹与开环零、极点分布的关系,实轴上的分离点、会合点,虚轴交点,出射角、入射角,和系统在不同值下的工作状态。

相关文档
最新文档