弯曲内力习题及答案
弯曲内力习题与答案
弯曲力1. 长l的梁用绳向上吊起,如图所示。
钢绳绑扎处离梁端部的距离为x。
梁由自重引起的最大弯矩|M|max为最小时的x值为:(A) /2l;(B) /6l;(C…) 1)/2l。
l;(D) 1)/22. 多跨静定梁的两种受载情况如图(a)、(b)所示。
下列结论中哪个是正确的?(A) 两者的剪力图相同,弯矩图也相同;(B) 两者的剪力图相同,弯矩图不同;(C) 两者的剪力图不同,弯矩图相同;(D….) 两者的剪力图不同,弯矩图也不同。
3. 图示(a)、(b)两根梁,它们的(A) 剪力图、弯矩图都相同;(B…) 剪力图相同,弯矩图不同;(C) 剪力图不同,弯矩图相同;(D) 剪力图、弯矩图都不同。
4. 图示梁,当力偶M e的位置改变时,有下列结论:(A) 剪力图、弯矩图都改变;(B…) 剪力图不变,只弯矩图改变;(C) 弯矩图不变,只剪力图改变;(D) 剪力图、弯矩图都不变。
5. 图示梁C截面弯矩M C = ;为使M C =0,则M e= ;为使全梁不出现正弯矩,则M e≥。
6. 图示梁,已知F、l、a。
使梁的最大弯矩为最小时,梁端重量P= 。
7. 图示梁受分布力偶作用,其值沿轴线按线性规律分布,则B端支反力为,弯矩图为 次曲线,|M |max 发生在 处。
8. 图示梁,m (x )为沿梁长每单位长度上的力偶矩值,m (x )、q (x )、F S (x )和M (x )之间的微分关系为:S d ();d F x x = d ()d M x x = 。
9. 外伸梁受载如图,欲使AB 中点的弯矩等于零时,需在B 端加多大的集中力偶矩(将大小和方向标在图上)。
10. 简支梁受载如图,欲使A 截面弯矩等于零时,则=e21e /M M 。
1-10题答案:1. C 2. D 3. B 4. B 5. 28e2M ql -;42ql ;22ql 6. ⎪⎭⎫⎝⎛-a l a F 24 7. m 0/2;二;l /28. q (x );F S (x )+ m (x ) 9. 10. 1/211-60题. 作图示梁的剪力图和弯矩图。
02-弯曲内力-习题课
第5章弯曲内力5-1 选择题答: CmaxMS max F 如将图示的力F 平移到梁AD 的C 截面上,则梁上的与 。
FCBDAaaaA. 前者不变,后者改变B. 两者都改变C. 前者改变,后者不变D. 两者都不变 , 3A F F =23D F F =S max 23F F =max 24233B M M F a Fa ==⋅=max 22233C F M M a Fa==⋅=因为平移后支反力不变, , 不变。
,平移后 , 但平移前5-2 选择题答: D图示平面刚架ABC ,A 端固定,在其平面内施加图示集中力F ,其m-m 截面上的 内力分量不为零。
A. B. C. D. M S F NF 、 、 M NF、 M S F 、 S F NF、 F CBAmm力F 作用线过m-m 截面形心,弯矩M 为零。
5-3 选择题答: C图示简支梁上作用均布载荷q 和集中力偶M 0,当M 0在梁上任意移动时,梁的 。
A. M 、F S 图都变化B. M 、F S 图都不变化C. M 图改变、F S 图不变D. F S 图改变、M 图不变当M 0在梁上任意移动时,支反力不会改变,q 也不变, F S 只与横向外力有关,所以F S 图不变 。
M 0位置不同,M 图发生突变的截面改变了。
BqAM 05-4 选择题设梁的剪力图如图所示,则梁的 。
答:B33(kN)F S 5ABCA. AB 段有均布载荷,BC 段没有B. BC 段有均布载荷,AB 段没有C. 两段均有均布载荷D. 两段均无均布载荷S F =常数Sd ==0d F q xSd =0d F q x<AB 段, , BC 段为斜直线,5-5 选择题右端固定的悬臂梁长为4 m ,其 M 图如图所示,则在x =2m 处 。
答:AA. 既有集中力,又有集中力偶B. 只有集中力C. 既无集中力,也无集中力偶D. 只有集中力偶M (kN·m)332m2m该处M 有突变,说明有集中力偶;两边M 图斜率不同,说明F S 不同,是集中力作用引起的。
力学(弯曲)例题
AB段:由键力图上查得Q=- qa<0,由 知,M图斜率为负值。
BC段:因q<0,由 知,Q图斜率为负值,在Q图上,随着x的增加,剪力由正值变为负值;因为 ,故M图的斜率由正值变为负值,当Q=0时,M取得最大值。
CD段:情况同AB段。
【例3】矩形截面松木梁两端搁在墙上,
承受由梁板传来的荷载作用如图所示。已知梁的间距a=1.2m,两墙的间距为L=5m,楼板承受均布荷载,起面集度为P=3KN/ ,松木的弯曲许用应力[σ]=10MPa。试选择梁的截面尺寸。设 。
(a)
解:此题可以采用下面四种不同方法求解。
解一:利用附录五上简支梁受集中载荷作用的解答。由查表可知,当简支梁上作用集中载荷P时,梁中点的挠度为
令梁在左半跨作用均布载荷,如图a所示,稍作变化即可得中点挠度
=-
解二:利用对称性求解。原题半跨均布载荷可分解为正对称载荷和反对称载荷两种情况的叠加(图b)。
解:梁计算简图如图所示荷载的线集中度为:q=
最大弯矩在跨中截面,其值
1.按正应力强度条件选择截面尺寸
h=1.5b,W =
b≥
取b=150mm,h=1.5b=225mm。
2.该梁为木梁,须校核剪应力强度。在邻近支座的截面上有
Q
矩形截面梁
剪切强度足够。故选定b=150mm,h=225mm。
【例4】简支梁在半个跨度上作用的均布载荷q,如图a所示,试求梁中点的挠度。
(d)(e)
4.对于3-3截面(图d)
∑Y=0Q3=YA-2qa-p=-30kN
∑MC=0M3=2YAa-2qa2-pa=20kN•m
5.对于4-4截面(图e)
∑Y=0Q4=YA-2qa-p=-30kN
弯曲内力例题(0509)
和
M max 及其所
P
y
m=Pa
1、列出梁的剪力方程和弯矩方程
AB段:
A
x
x a
B a
C
x
FQ ( x) 0
(0 x a )
M ( x) m Pa (0 x a)
材料力学
弯曲内力/剪力方程和弯矩方程 剪力图和弯矩图 BC段: m=Pa P
FQ ( x) P
( a x 2a )
弯矩 立柱弯矩图为抛物线,左侧受压,1、2截面的弯矩值为
M1 0,
qa2/2
3
qa/2
4
2M4 0
qa/2
1
FAy
材料力学
M
FAx
1 2 1 2 M 2 qa a qa qa , 2 2 1 2 M 3 qa , M 4 0 2
作弯矩图。
弯曲内力/平面刚架内力图
x 3.1m
1 M E F 3.1 FAy 2.1 q 2.12 2
(-)
材料力学
1.41kN.m (+)
-3kN.m
(-)
-2.2kN.m
1.41kN.m M D左 2.2kN.m
q
P qa q
qa qa
a
FQ
a
a 2qa qa
M
qa 2 qa / 2
材料力学
弯曲内力/剪力和弯矩
M1 2qa
A
2
q
M 2 2qa2
B
C
a a 4a
FAy
FBy
取左段梁为研究对象:
取右段梁为研究对象:
FQc FAy q 2a qa
05第五章 材料力学习题解答(弯曲内力)
a
a
(i)
解:(a) (1) 求约束反力
qa
2qa qa
C
A
B
q
a
a
a
a
(j)
MA
A x
2P
C
M0=Pa
B
RA
∑Y = 0 RA − 2P = 0
RA = 2P
∑ M A = 0 M A − 2Pa + M0 = 0
(2) 列剪力方程和弯矩方程
M A = Pa
Q(x)
⎧= ⎨⎩=
RA RA
= −
2P 2P
q
M2
C
a
求内力
P=qa
B
Q2 = P + qa = 2qa
M2
=
−P
×
a
−
qa
×
a 2
+
M
=
−
1 2
qa 2
(b) (1)求约束反力
P=200N
1
23
A
1C
DB
RA 200
23
200 200
RD
∑ MD = 0 RA × 400 − P × 200 = 0
RA = 100N
(2) 截开 1-1 截面,取左段,加内力
=
x 0
∈ (0,a) x ∈(a,
2a]
上海理工大学 力学教研室
3
M
(x)
⎧= ⎨⎩ =
RA RA
× ×
x x
+ +
MA MA
= −
2Px − Pa 2P × (x − a)
=
Pa
(3) 画 Q 图和 M 图
最新弯曲的内力与强度计算习题
弯曲的内力与强度计算一、判断题1.如图1示截面上,弯矩M和剪力Q的符号是:M为正,Q为负。
()图12.取不同的坐标系时,弯曲内力的符号情况是M不同,Q相同。
()3、在集中力作用的截面处,Q图有突变,M连续但不光滑。
()4、梁在集中力偶作用截面处,M图有突变,Q图无变化。
()5.梁在某截面处,若剪力Q=0,则该截面的M值一定为零值。
()6.在梁的某一段上,若无荷载作用,则该梁段上的剪力为常数。
()7.梁的内力图通常与横截面面积有关。
()8.应用理论力学中的外力定理,将梁的横向集中力左右平移时,梁的Q 图,M图都不变。
()9.将梁上集中力偶左右平移时,梁的Q图不变,M图变化。
()10.图2所示简支梁跨中截面上的内力为M≠0,Q=0。
()图 2 图 311.梁的剪力图如图3所示,则梁的BC段有均布荷载,AB段没有。
()12.上题中,作用于B处的集中力大小为6KN,方向向上。
()13.右端固定的悬臂梁,长为4m,M图如图示,则在x=2m处,既有集中力又有集中力偶。
()图 4 图 514.上题中,作用在x=2m处的集中力偶大小为6KN·m,转向为顺时针。
()15.图5所示梁中,AB跨间剪力为零。
()16.中性轴是中性层与横截面的交线。
()17.梁任意截面上的剪力,在数值上等于截面一侧所有外力的代数和。
()18.弯矩图表示梁的各横截面上弯矩沿轴线变化的情况,是分析梁的危险截面的依据之一。
()19.梁上某段无荷载作用,即q=0,此段剪力图为平行x的直线;弯矩图也为平行x轴的直线。
()20.梁上某段有均布荷载作用,即q=常数,故剪力图为斜直线;弯矩图为二次抛物线。
()21.极值弯矩一定是梁上最大的弯矩。
()22.最大弯矩Mmax只可能发生在集中力F作用处,因此只需校核此截面强度是否满足梁的强度条件。
()23.截面积相等,抗弯截面模量必相等,截面积不等,抗弯截面模量必不相等。
()24.大多数梁都只进行弯曲正应力强度核算,而不作弯曲剪应力核算,这是因为它们横截面上只有正应力存在。
第5章-弯曲内力例题详解
剪力弯矩最大值: 剪力弯矩最大值
FS max = qa
M max
4. 讨论
作用处, 在 Me 作用处,左右横截面 上的剪力相同, 上的剪力相同,弯矩值突变
单辉祖,材料力学教程
M 右 − M左 = Me
5
例 5-4 载荷可沿梁移动,求梁的最大剪力与最大弯矩 载荷可沿梁移动, 解:1. FS 与 M 图 :
3. 画剪力与弯矩图 剪力图:
FS1 = bF l FS2 = − aF l
弯矩图: 弯矩图
M1 =
bF x1 l
M2 =
aF x2 l Fab = l
最大值: 最大值
FS,max
bF = (b > a 时) l
M max
4. 讨论
作用处, 在 F 作用处 左右横截面上 的弯矩相,
∑M
A
= 0,
∑F
y
=0
FAx = qa, FCy = FAy = qa/2
2. 建立内力方程 BC 段:
qa FS1 = − , 2
qa M1 = x1 2
AB 段:
FS2 = qx 2 ,
qa q 2 M 2 = a − x2 2 2 qa FN2 = 2
单辉祖,材料力学教程
14
3. 画内力图
FSA+ = − FAy = −2F
单辉祖,材料力学教程
M A+ = M e − FAy ⋅ ∆ = Fl
M D− = F ⋅0=0 =
1
FSD− = F
例 题
例 5-2 建立剪力与弯矩方程,画剪力与弯矩图 建立剪力与弯矩方程,
FAy = bF l FBy = aF l
解:1. 支反力计算 : 2. 建立剪力与弯矩方程
材料力学弯曲变形答案
第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( ) 1.2 内力只作用在杆件截面的形心处。
( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。
( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。
( ) 1.9 同一截面上各点的切应力η必相互平行。
( ) 1.10 应变分为正应变ε和切应变γ。
( ) 1.11 应变为无量纲量。
( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ) 1.13 若物体内各点的应变均为零,则物体无位移。
( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。
1.2 拉伸或压缩的受力特征是 ,变形特征是 。
1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
1.9 根据固体材料的性能作如下三个基本假设 , , 。
测试题-弯曲内力(答案)
班级:学号:姓名:《工程力学》弯曲内力测试题一、判断题(每小题2分,共20分)1、根据剪力图和弯矩图,可以初步判断梁的危险截面位置。
(√)2、梁的内力图通常与横截面面积有关。
(×)3、将梁上的集中力平移,不会改变梁的内力分布。
(×)4、梁端铰支座处无集中力偶作用,该端铰支座处的弯矩必为零。
(√)5、分布载荷q(x)向上为负,向下为正。
(×)6、简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。
(√)7、剪力图上斜直线部分一定有分布载荷作用。
(√)8、在集中力作用的截面处,剪力图有突变,弯矩图连续但不光滑。
(√)9、梁在集中力偶作用截面处,弯矩图有突变,剪力图无变化。
(√)10、在梁的某一段上,若无载荷q作用,则该段梁上的剪力为常数。
(√)二、单项选择题(每小题2分,共20分)1、如图所示,火车轮轴产生的是(D )。
A.拉伸或压缩变形B.剪切变形C.扭转变形D.弯曲变形2、梁在集中力偶作用的截面处,它的内力图为(C )。
A. 剪力图有突变,弯矩图无变化B. 剪力图有突变,弯矩图有转折C. 弯矩图有突变,剪力图无变化D. 弯矩图有突变,剪力图有转折3、在下图四种情况中,截面上弯矩为正,剪力为负的是(B )。
4、梁在某一段内作用有向下的分布力时,则在该段内,弯矩图是一条(A )。
A. 上凸曲线B. 下凸曲线C. 带有拐点的曲线;D. 斜直线5、梁受力如图,在B截面处(D )A. 剪力图有突变,弯矩图连续光滑B. 剪力图有尖角,弯矩图连续光滑C. 剪力图、弯矩图都有尖角D. 剪力图有突变,弯矩图有尖角6、图示梁,当力偶M e的位置改变时,有(B )A. 剪力图、弯矩图都改变B. 剪力图不变,只弯矩图改变C. 弯矩图不变,只剪力图改变D. 剪力图、弯矩图都不变F qCBAFM eaqa a7、若梁的受力情况对于梁的中央截面为反对称(如图),则下列结论中正确的是(D )A. 剪力图和弯矩图均为反对称,中央截面上剪力为零B. 剪力图和弯矩图均为对称,中央截面上弯矩为零C. 剪力图反对称,弯矩图对称,中央截面上剪力为零D. 剪力图对称,弯矩图反对称,中央截面上弯矩为零8、多跨静定梁的两种受载情况分别如图所示,力F靠近铰链,以下结论正确的是(C )A. 两者的剪力图和弯矩图完全相同B. 两者的剪力图相同,弯矩图不同C. 两者的剪力图不同,弯矩图相同D. 两者的剪力图和弯矩图均不相同9、多跨静定梁的两种受载情况如图所示,下列结论中正确的是(D )A. 两者的剪力图和弯矩图完全相同B. 两者的剪力图相同,弯矩图不同C. 两者的剪力图不同,弯矩图相同D. 两者的剪力图和弯矩图均不相同10、若梁的剪力图和弯矩图分别如图所示,则该图表明(C )A. AB段有均布载荷,BC段无载荷;B. AB 段无载荷,B截面处有向上的集中力,BC段有向下的均布载荷;C. AB 段无载荷,B截面处有向下的集中力,BC段有向下的均布载荷;D. AB 段无载荷,B截面处有顺时针的集中力偶,BC段有向下的均布载荷。
材料力学答案4弯曲内力
A
C
B 出剪力图和弯矩图。
x1
x2
解:1.确定约束力
FAy
l
FBy
M /l
M A=0, MB=0
Fs:
Ma / l
M:
FAy=M / l FBy= -M / l
2.写出剪力和弯矩方程
AC FS x1=M / l 0 x1 a
M x1=Mx1 / l 0 x1 a
剪力图和弯矩图
例1
1kN.m
A
C D B 解法2:1.确定约束力
FAY
Fs( kN) 0.89
1.5m
1.5m
2kN
1.5m
FBY
1.11
(+)
FAy=0.89 kN FFy=1.11 kN
(-)
2.确定控制面为A、C 、D、B两侧截面。
3.从A截面左侧开始画
剪力图。
19
剪力图和弯矩图
例1
x 5.确定控制面上的 弯矩值,并将其标在
M-x中。
22
剪力图和弯矩图
例2
q
D 解法2:1.确定约束力
A
B
FAy
9qa/4
4a
a qa FBy
FAy=
9 4
qa
,
FBy=
3 4
qa
Fs (+)
(-) qa
7qa/4
2.确定控制面,即A 、B、D两侧截面。
3.从A截面左测开始画
剪力图。
23
剪力图和弯矩图
Mb / l
CB FS x2 =M / l 0 x2 b
M x2 = Mx2 / l 0 x2 b
弯曲内力习题课
x MA
FAy
F’Dy
q
x
FDy
FBy
FDy qa / 2 FBy 3qa / 2
FAy qa / 2 M A qa2 / 2
Fs
15KN
O
(-)
1.5m 20KN
M
+
2.5m
(-)
x
25KN
O
(-)
8.75KN•m 20KN•m
x
40KN•m
Fs
qa 3qa 4 3qa 4
O
(+)
(+)
M B=0, M A=0
∴ FAy=8/9 kN , FBy=10/9 kN
2.确定控制面 在集中力、集中力偶以及支座的两侧截面均为控制
面。即A、C、D、E、F、B截面。
1KN.m
A
CD E F B
3.建立坐标系
8/9 kN=FAY
FS (KN)
O
1.5m
2kN
1.5m
1.5m
10/9
(+)
(-)
8/9
FBY 建立FS-x和M-x坐标系
=10/9 kN
4.应用截面法确定控制 x 面上的剪力和弯矩值,并
将 其 标 在 FS - x 和 M - x
坐标系中。再根据微分关
M (KN.m)
系连图线。
O (-)
(-)
x
1/3
4/3
5/3
试画出图示外伸梁的剪力图和弯矩图。
P1 =2kN q =1kN/m
一梁段上载荷图、剪力图、弯矩图三图的形状关系
q图
FS图
水平直线
斜直线
M图 斜直线
工程力学弯曲内力课后答案
工程力学弯曲内力课后答案【篇一:工程力学的习题详细解答第08(1)章】ass=txt>1-1、2-2截面无限接近于载荷作用解:(a) 以整个梁为研究对象,求得支反力: ra?rb?p2由截面法,分别以1-1截面左半部分、2-2截面右半部分为研究对象,求得:qppl1?2, m1?4q??ppl22, m2?4可见,集中力作用处,剪力有突变,突变值为p,弯矩不变。
(b) 以整个梁为研究对象,求得支反力: rmma??l,rb?l由截面法,分别以1-1截面左半部分、2-2截面右半部分为研究对象,求得: qmm1??l,m1??2qmm2??l,m2?2可见,集中力偶作用处,弯矩有突变,突变值为m,剪力不变。
6-1(a)(a1)(a2)(a3)解:1.求支反力,图(a),?mc?0: ra?6?12?10?3?0,ra?7kn?y?0: ra?rb?10?0,rb?3kn2.列内力方程,图(a)和(a1),q(x)???7kn 0?x?3??3kn 3?x?6m(x)???7x?12 kn?m0? x ?3?3(6?x) kn?m3? x ?63.作内力图,图(a2),(a)。
(b)(b1)(b2)q(b3)m解:1.求支反力,图(b),?m0: r1lb?a?l?2ql2?ql?2?0,ra?0?y?0: ra?rb?q?l?ql?0, rb?2ql 2.列内力方程,图(b)和(b1), q(x)????qx 0?x?l?ql l?x?3l2m(x)????qx20?x?l??ql(3l2?x) l ?x?3l23.作内力图,图(b2),(b3)。
6-2qm(b)6-3q (kn/m)为的等截面钢筋混矩的绝对值相等,应将起吊点a、b放在何处(即a??)?解:作梁的计算简图及其m图。
由m?max?m?max,即ql?l?q?l2qa22??2?a???2???2???2即a2?la?l24?0求得 a?2?12l?0.20l7。
第四章弯曲内力练习题
第四章 弯曲内力一、选择题1、具有中间铰的静定梁如图所示,在列全梁的剪力和弯矩方程时,分段正确的是( )A )二段:AC 、CE ;B )三段:AC 、CD 、DE ; C )四段:AB 、BC 、CD 、DE 。
2、简支梁部分区段受均布载荷作用,如图所示,以下结论错误的是( )A )AC 段,剪力表达式qa x Q 41)(=B )AC 段,弯矩表达式qax x M 41)(=;C )CB 段,剪力表达式)(41)(a x q qa x Q --=;D )CB 段,弯矩表达式)(2141)(a x q qax x M --=。
3、简支梁受集中力偶作用,如图所示,以下结论错误的是( )A )AC 段,剪力表达式l m x Q =)(; B )AC 段,弯矩表达式x l mx M =)(;C )CB 段,剪力表达式l mx Q =)(;D )CB 段,弯矩表达式m x lmx M +=)(。
4、外伸梁受均布载荷作用,如图所示,以下结论错误的是( )A )AB 段,剪力表达式qx x Q -=)(; B )AB段,弯矩表达式221)(qx x M -=;C )BC 段,剪力表达式l qa x Q 2)(2=;D )BC 段,弯矩表达式)(2)(2x l lqa x M --=。
5、悬臂梁受载荷的情况如图所示,以下结论错的是( )A )qa Q 3max =;B )在a x a 43<<处,0=Q ;C )2max6qa M=; D )在a x 2=处,0=M 。
6、弱梁的载荷和支承情况对称于C 截面,图示,则下列结论中错误的是( )A )剪力图、弯矩图均对称,0=c Q ;B )剪力图对称,弯矩图反对称,0=c M ;C )剪力图反对称,弯矩图对称,0=c M ;D )剪力图反对称,弯矩图对称,0=c Q 。
7、右端固定的悬臂梁,长4m ,其弯矩如图所示,则梁的受载情况是( )A )在m x 1=,有一个顺钟向的力偶作用;B )在m x 1=,有一个逆钟向的力偶作用;C )在m x 1=,有一个向下的集中力作用;D )在m x 41<<处,有向下的均布力作用。
2016工程力学(高教第3版)习题解答:第8章弯曲内力
第8章 弯曲内力 习题解答题8 – 1 试计算下列各梁指定横截面的剪力和弯矩。
a )解:(1)求截面内力1-1截面:qa qa qa F S 21=+= 21qa a qa M -=⨯-=2-2截面:qa F S =222qa a qa M -=⨯-= b )解:(1)求支反力∑=0B M 02322=-⨯+⨯-qa a qa a F A qa F A 41= ∑=0y F 0=+-BA F qa F qa FB 43= (2)求截面内力1-1截面:qa F S 431-= 2214143qa a qa qa M -=⨯+-= 2-2截面:qa F S 432-=B B2(a)(d)(e) (f)题8 – 1图224343qa a qa M =⨯= c )解:(1)求截面内力1-1截面:qa F S =12212qa a qa qa M -=⨯--=2-2截面:qa F S =2022=⨯-=a qa qa M3-3截面:qa F S =323qa a qa M -=⨯-= d )解:(1)求截面内力1-1截面:01=-=qa qa F S212qa a qa a qa M -=⨯-⨯-=2-2截面:02=-=qa qa F S22qa a qa M =⨯=3-3截面:qa F S =323qa a qa M -=⨯-=4-4截面:qa F S -=404=M5-5截面:05=S F05=M e )解:(1)求支反力∑=0B M ()0=-+⨯Fb b a F A b a FbF A +=∑=0y F 0=+-BA F F F ba Fa F B += (2)求截面内力1-1截面:ba Fbb a Fa F F S +=+-=1b a F a bb b a Fa b F M B +=⨯+=⨯=1 2-2截面:b a FaF F B S +-=-=2ba F a bb b a Fa b F M B +=⨯+=⨯=2 f )(1)求支反力∑=0BM 022=-⨯+⨯-qa a qa a F A 0=A F∑=0yF0=+-B A F qa F qa F B =(2)求截面内力 1-1截面:01=S F01=M (取AC 段为研究对象)2-2截面:qa F S -=20222=⨯+-=⨯+-=a qa qa a F qa M B3-3截面:qa F S -=323qa M -=题8 – 2 试列出下列各梁的剪力及弯矩方程,作剪力图及弯矩图并求出maxSF 及maxM。
材料力学中国建筑工业出版社第四章弯曲内力答案
解:分别先后用1-1、2-2、3-3截面将杆切开,取右边部分研究,整个构件是平衡的,则脱离体也应该平衡。
受力如图(b)、(c)、(d)所示。
内力一定要表标成正方向,剪力绕脱离体内任一点有顺时转动趋势;而表弯矩时,可视杆内任点为固定,使下侧纤维受拉的变矩为正。
如图(b ):如图(c ):如图(d ):4-1c 求指定截面的剪力和弯矩。
4-2cfh 写出下列各梁的剪力方程、弯矩方程,并作剪力图和弯矩图。
题4-2cV MkN ·题4-2f·题4-2h230q l 27(a )(b )M P 111110000()0O Y V qa V qa M qa M M F ⎧=-==⎧⎧⎪→→⎨⎨⎨-⋅∆===⎩⎩⎪⎩∑∑2(e )M (d )a(c )a333233000()0O Y V qa V qa M qa a M qa M F ⎧==-=⎧⎧⎪⎪→→⎨⎨⎨+⋅==-=⎪⎩⎩⎪⎩∑∑222220000()0O Y V qa V qa M M qa a M M F ⎧=-==⎧⎧⎪→→⎨⎨⎨--⋅===⎩⎩⎪⎩∑∑4-3dfgh 用微分关系作下列各梁的剪力图和弯矩图4kN ·m+题4-3d10.25MkN ·m)VkN)--1243.5-10.25-+322+-题4-3fM 图85Pl 83Pl 16Pl P/4-43.5--12MkN ·m)V kN)24++-26.257.57.5题4-3g5P/4+P=15kN+-24313.875313.875qaM 图V 图2qa +-2+-2+-qa2qa题4-3hMkN ·V kN)3.1254-6 起吊一根自重为q (N/m )的等截面钢筋混凝土梁,问起吊点的合理位置x 应为多少(令梁在吊点处和中点处的最大正负弯矩的绝对值相等)MkN ·m)V kN)题4-6+2ql(l-2x)/4-q l /8qx/22qx/2qx ql/2-qx ql/2-qxqx--+--+q22qx/8qx/82题4-74-7天车梁上小车轮距为c ,起重量为P ,问小车走到什么位置时,梁弯矩最大?并求出最大弯矩。
弯曲时的内力和应力
第七章 弯曲时的内力和应力※ 说明:本文档仅限练习。
与考试无任何联系。
如答案有误请自行修改。
如仍有疑问咨询相关教师。
Q群125207914一、填空题:1、梁产生弯曲变形时的受力特点,是梁在过轴线的平面内受到外力偶的作用或者受到和梁轴线相___________的外力的作用。
3、矩形截面梁弯曲时,其横截面上的剪力作用线必然________于外力并通过截面________。
5、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对________力矩的代数和。
7、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为______。
9、将一悬臂梁的自重简化为均布载荷,设其载荷集度为q,梁长为L,由此可知在距固定端L/2处的横截面上的剪力为_________,固定端处横截面上的弯矩为__________。
10、在梁的集中力偶左、右两侧无限接近的横截面上,剪力相等,而弯矩则发生_______,_________值等于梁上集中力偶的力偶矩。
11、剪力图和弯矩图是通过________和___________的函数图象表示的。
18、在梁的某一段内,若无分布载荷q(X)的作用,则剪力图是__________于X轴的直线。
19、在梁的弯矩图上,某一横截面上的弯矩有极值(极大值或极小值),该极值必发生在对应于剪力___________的横截面上。
21、梁在发生弯曲变形的同时伴有剪切变形,这种平面弯曲称为__________弯曲。
24、梁在弯曲时的中性轴,就是梁的___________与横截面的交线。
28、梁弯曲时,横截面中性轴上各点的正应力等于零,而距中性轴________处的各正应力为最大。
29、梁弯曲变形后,以中性层为界,靠__________边的一侧纵向纤维受压力作用,而靠__________边的一侧纵向纤维受拉应力作用。
31、等截面梁内的最大正应力总是出现在最大___________所在的横截面上。
弯曲的内力与强度计算 习题
弯曲的内力与强度计算一、判断题1.如图1示截面上,弯矩M和剪力Q的符号是:M为正,Q为负。
()图12.取不同的坐标系时,弯曲内力的符号情况是M不同,Q相同。
()3、在集中力作用的截面处,Q图有突变,M连续但不光滑。
()4、梁在集中力偶作用截面处,M图有突变,Q图无变化。
()5.梁在某截面处,若剪力Q=0,则该截面的M值一定为零值。
()6.在梁的某一段上,若无荷载作用,则该梁段上的剪力为常数。
()7.梁的内力图通常与横截面面积有关。
()8.应用理论力学中的外力定理,将梁的横向集中力左右平移时,梁的Q图,M图都不变。
()9.将梁上集中力偶左右平移时,梁的Q图不变,M图变化。
()10.图2所示简支梁跨中截面上的内力为M≠0,Q=0。
()图 2 图 311.梁的剪力图如图3所示,则梁的BC段有均布荷载,AB段没有。
()12.上题中,作用于B处的集中力大小为6KN,方向向上。
()13.右端固定的悬臂梁,长为4m,M图如图示,则在x=2m处,既有集中力又有集中力偶。
()图 4 图 514.上题中,作用在x=2m处的集中力偶大小为6KN·m,转向为顺时针。
()15.图5所示梁中,AB跨间剪力为零。
()16.中性轴是中性层与横截面的交线。
()17.梁任意截面上的剪力,在数值上等于截面一侧所有外力的代数和。
()18.弯矩图表示梁的各横截面上弯矩沿轴线变化的情况,是分析梁的危险截面的依据之一。
()19.梁上某段无荷载作用,即q=0,此段剪力图为平行x的直线;弯矩图也为平行x轴的直线。
()20.梁上某段有均布荷载作用,即q=常数,故剪力图为斜直线;弯矩图为二次抛物线。
()21.极值弯矩一定是梁上最大的弯矩。
()22.最大弯矩Mmax只可能发生在集中力F作用处,因此只需校核此截面强度是否满足梁的强度条件。
()23.截面积相等,抗弯截面模量必相等,截面积不等,抗弯截面模量必不相等。
()24.大多数梁都只进行弯曲正应力强度核算,而不作弯曲剪应力核算,这是因为它们横截面上只有正应力存在。
第四章弯曲内力习题及答案
q 2qa a a a
A C
D
B
第四章 弯曲内力习题
一、填空题
1、如果一段梁内各横截面上的剪力Q 为零,而弯矩M 为常量,则该段梁的弯曲称为 ;如果该梁各横截面上同时存在剪力Q 和弯矩M ,则这种弯曲为 。
二、计算题
1、作下列两梁的弯矩图。
求出支座处的约束反力、弯矩的最大绝对值,并把该值标注在弯矩图上。
2、作下列梁的弯矩图。
求出支座处的约束反力、弯矩的最大绝对值,并把该值标注在弯矩图上。
3、下列梁的弯矩图。
第四章 弯曲内力习题答案
一、填空题
1 纯弯曲 横力弯曲(或剪切弯曲)
二、计算题
1、 图4.2.2 图4.2.4.1 图4.2.4.2
图4.2.4.3 Pa
25
6q a 22
3q a
2、
3、
22m ax 22B B ql R ql M ql M === 15.75kN 20.25kN 41kN.m
A D m ax R =R =M =m ax A
B R R P M P a
===⨯2m ax 716656A B R qa R qa M qa ==-
= 22q l。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲内力
1. 长l的梁用绳向上吊起,如图所示。
钢绳绑扎处离梁端部的
距离为x。
梁内由自重引起的最大弯矩|M|max为最小时的x值为:
(A) /2
l; (B) /6
l;
(C…) 1)/2
l。
l; (D) 1)/2
2. 多跨静定梁的两种受载情况如图(a)、(b)所示。
下列结论中哪个是正确的?
(A) 两者的剪力图相同,弯矩图也相同;
(B) 两者的剪力图相同,弯矩图不同;
(C) 两者的剪力图不同,弯矩图相同;
(D….) 两者的剪力图不同,弯矩图也不同。
3. 图示(a)、(b)两根梁,它们的
(A) 剪力图、弯矩图都相同;
(B…) 剪力图相同,弯矩图不同;
(C) 剪力图不同,弯矩图相同;
(D) 剪力图、弯矩图都不同。
4. 图示梁,当力偶M e的位置改变时,有下列结论:
(A) 剪力图、弯矩图都改变;
(B…) 剪力图不变,只弯矩图改变;
(C) 弯矩图不变,只剪力图改变;
(D) 剪力图、弯矩图都不变。
5. 图示梁C截面弯矩M C = ;为使M C =0,则M e= ;为使全梁不出现正弯矩,则M e≥。
6. 图示梁,已知F、l、a。
使梁的最大弯矩为最小时,梁端重量P= 。
7. 图示梁受分布力偶作用,其值沿轴线按线性规律分布,则B端支反力为,弯矩
图为 次曲线,|M |max 发生在 处。
8. 图示梁,m (x )为沿梁长每单位长度上的力偶矩值,m (x )、q (x )、F S (x )和M (x )之间的微分关系为:
S d ();d F x x = d ()
d M x
x = 。
9. 外伸梁受载如图,欲使AB 中点的弯矩等于零时,需在B 端加多大的集中力偶矩(将大小和方向标在图上)。
10. 简支梁受载如图,欲使A 截面弯矩等于零时,则=e21e /M M 。
1-10题答案:1. C 2. D 3. B 4. B 5. 28e
2
M ql -;42
ql ;22
ql 6. ⎪⎭⎫
⎝⎛-a l a F 24 7. m 0/2;二;l /2 8.
q (x );F S (x )+
m (x )
9. 10. 1/2
11-60题. 作图示梁的剪力图和弯矩图。
解:
解:解:解:
解:解:解:
解:解:解:
解:解:解:
解:解:解:
解:解:解:
解:
61. 图示结构,作梁ABC的剪力图和弯矩图。
解:
62. 作图示刚架的轴力、剪力和弯矩图。
63. 作图示刚架的轴力、剪力和弯矩图。
解:
64. 作图示刚架的轴力、剪力和弯矩图。
65. 作图示刚架的轴力、剪力和弯矩图。
66. 作图示刚架的轴力、剪力和弯矩图。
解:
67. 作图示刚架的轴力、剪力和弯矩图。
解:
68. 作图示刚架的轴力、剪力和弯矩图。
解:
69-70. 梁的剪力图如图所示,作弯矩图及载荷图。
已知梁上没有作用集中力偶。
解:
71-72. 梁的剪力图如图所示,作弯矩图及载荷图。
已知梁上B截面作用一集中力偶。
解:
73-74. 已知梁的弯矩图如图所示,作梁的载荷图和剪力图。
解:
75-76. 已知梁的弯矩图如图所示,作梁的载荷图和剪力图。
解:
77. 处于xy 平面内的开口圆环,半径为R ,A 端固定,
C 端受F x =F 、F z =F (垂直纸面向里)力作用,则B
截面的扭矩T = ;弯矩M x = ,
M z = 。
(z 轴垂直纸面向里)
答:FR ;FR ;-FR 。
78. 一结构由直杆AB 和曲杆BC 在B 点刚结而
成,支承和受载如图所示。
作结构的剪力图和弯
矩图。
对于曲杆段要求先写出剪力方程和弯矩方
程,然后作图。
解:BC 段剪力方程和弯矩方程分别为
S ()sin ;()(1cos )22
F Fa F M ϕϕϕϕ=-
=--
79. 写出图示曲杆的内力方程,并作内力图(轴力、剪力、弯矩图)。
解:N (1cos )cos F qR ϕϕ=-;
S (1cos )sin F qR ϕϕ=-;
2
2(1cos )2
qR M ϕ=-。
80. 图示梁上,作用有集度为q =q (x )的分布载荷及m =m (x )的分布力偶。
试建立力偶矩集度m (x )、分布载荷集度q (x )、剪力F S (x )和弯矩M (x )间的微分关系。
解:
微段d x 的平衡方程为
S S S 0,()()d [()d ()]0y F F x q x x F x F x ∑=+-+= (a)
S d 0,()d ()()d ()d ()()d 02
C x M M x M x q x x F x x M x m x x ∑=+----= (b) 由式(a)得
S d ()()d F x q x x = 由式(b)并略去二阶微量,得 S d ()()()d M x F x m x x =+。