GPS授时精度
gps授时
GPS授时什么是GPS授时?GPS(Global Positioning System)是一种全球卫星定位系统,它通过使用一组卫星来测量接收器的位置,从而实现对全球位置的确定。
在定位的过程中,GPS还提供了非常准确的时间信息。
这使得GPS不仅仅被用来确定位置,还可以用来进行时间同步或者授时。
在GPS系统中,每颗卫星都带有高度精确的原子钟,而接收器通过接收多颗卫星发出的信号来确定自己的位置,同时它也能够接收到卫星发出的时间信息。
由于卫星上的原子钟具有非常高的精确度,因此通过GPS进行时间同步或者授时可以达到非常高的精确度。
GPS授时的应用1.通信网络同步在大规模的通信网络中,各个子系统之间需要保持时间的一致性,而GPS授时可以提供一种高度精确的时间参考,以保证各个子系统之间的通信同步。
通过将GPS接收器连接到网络设备,可以将GPS授时作为网络的一个参考时间源,用于同步网络设备的时钟。
2.金融交易金融交易对时间的要求非常高,尤其对于高频交易而言。
通过使用GPS授时,可以确保交易所在系统的时钟精确度很高,以避免时间不同步带来的交易漏洞。
3.科学研究在科学研究中,时间的精确度对于实验的可重复性和结果的准确性非常重要。
许多科学研究实验都需要精确的时间同步,以确保数据的准确性。
因此,GPS授时成为了很多科学研究中时间同步的选择。
4.网络安全在保障网络安全的过程中,时间同步也起到了重要的作用。
例如,对于网络日志的记录和事件时间戳,需要保证准确的时间同步。
此外,许多加密算法和安全协议也依赖于精确的时间信息。
因此,使用GPS授时可以确保网络安全系统中的时间同步。
GPS授时的优点和局限性优点:•高精度:GPS上的原子钟具有非常高的精确度,可以提供高度准确的时间信息。
•全球性:GPS系统遍布全球范围,因此可以在任何地方都可以接收到GPS信号。
•可靠性:由于GPS是由一组卫星组成的系统,即使某个卫星发生故障,仍然有其他卫星可以提供时间信息。
全球定位系统(GPS)术语及定义
全球定位系统(GPS)术语及定义全球定位系统(GPS)术语及定义【中华人民共和国国家标准GB/T 19391-2003 】2004-12-24 5:55:151范围本标准规定了全球定位系统(GPS)常用术语及定义。
本标准适用于GPS专业范围内的各种标准的制定、各类技术文件的编制,也适用于科研、教学等方面。
2通用术语2.1全球定位系统global positioning system(GPS)导航星navigation by satellite timing and ranging(NA VSTAR)一种卫星导航定位系统。
由空间段、地面控制段和用户段三部分组成.为伞球用户提供实时的三维位置、速度和时间信息。
包括主要为军用的精密定位服务(PPS)和民用的标准定位服务(SPS)。
2.2全球导航卫星系统global navigation satellite system(GLONASS)一种全球卫星导航定位系统:为全球用户提供实时的三维位置、速度和时间信息。
包括军用和民用两种服务。
2.3伽利略系统Galileo system一种民用全球卫星导航系统;2.4全球导航卫星系统global navigation satellite system(GNSS)由国际民航组织提出的概念。
GNSS的最终目标是由多种民用卫星导航系统组成,向全球民间提供服务。
并将由多国民间参与运行和控制的卫星导航系统。
GNSS也已经为国际海事组织(IMO)所接受。
欧洲的GNSS计划分为两个阶段,即GNSS-1和GNSS-2。
GNSS-1为EGNOS(欧洲地球静止轨道卫星导航重叠服务)系统,GNSS-2为Galileo(伽利略)系统。
2.5静地星/定位星系统Geostar/Locstar system一种卫星定位系统,利用两颗地球轨道静止卫星双程测距而实现定位功能,兼有简短报文通信能力。
2.6海军导航卫星系统navy navigation satellite system(NNSS)子午仪Transit是1960年由美国研制的卫星导航系统,为固定用户或低动态用户提供不连续定位信息。
基于GPS和北斗卫星授时的高精度时间显示系统设计
基于 GPS 和北斗卫星授时的高精度时间显示系统 设计
张鸣凤,谢家祖,吴筝,付玉,时瑞瑞,郭辉,邓帅 (天津师范大学电子与通信工程学院,天津,300387)
摘要:本论文根据目前国内通讯授时系统的情况, 结合了GPS和北斗卫星导航系统(以下简称BDS)的双模授时方法, 提出一种基于GPS和BDS 授时的高精度时间显示系统的设计方案。本文研究了一种由单片机STM32控制的基于GPS和BDS授时的高精度时间显示系统,该系统确保 在卫星数据丢失的条件下,时间显示依然精准稳定,方案中自主设计的STM32F103RCT6模块,在系统工作空间不受局限的同时,预留了 很多可增加的功能空间。 关键词:北斗卫星导航系统;授时系统;STM32处理器
图 2 信号采集模块的程序框架
处理器开机启动后通过卫星信号接收电路中的 RX1 引 脚和 TX1 引脚采集时间数据,然后将时间数据发送到本地 自守时电路,本地自守时电路根据时间推算的算法保证精确 并自动推算时间。在卫星数据丢失的时候,处理器将直接根 据本地自守时电路推算出来的时间作为当前时间,此时间与 卫星信号发送的实际时间几乎无差别。
块均正常工作 , 若任意一个卫星信号的 1PPS 信号检测不到, 和湿度数值,最后将已经获得的时间信息、温度信息和湿度
对应模块都会自动进行重复采集信号的工作。信号采集芯片 信息发送到大尺寸的 LED 数码管显示。图 3 是该系统的程
能将此信号中的时间信息,利用相应的算法原理,转换成当 序处理流程图。
LED 显示电路采用 74HC245 芯片组成的驱动数码管动
态显示电路,LED 显示电路主要用于将处理器发送过来的
时间信息、温度信息和湿度信息显示给用户。
图 1 为本系统的电路结构连接框图。
GPS静态控制测量精度于全站仪控制测量精度对比
GPS静态控制测量精度于全站仪控制测量精度对比摘要:GPS静态测量具有全天候、远距离、长时间观测、两点间不需要通视等优点,而全站仪测量技术在作业时受到距离较近、两点间通视限制,灵活性较差。
本文分别就GPS静态控制测量精度和全站仪控制测量精度及原理进行分析、精度对比,选择最优的作业方案。
关键词:GPS静态控制测量;全站仪控制测量;精度对比引言测绘科学的迅速发展和测绘技术的日新月异,要求现代测绘科技和应用仪器必须与之相适应,因此,有许多新型仪器被应用到测量工作中。
一、GPS和地面全站仪测量数据的应用(一)、GPS测量技术在测量领域的应用GPS,即授时、测距导航系统全球定位系统,自1994年投入使用以来,在众多领域得到了广泛的使用。
GPS因其具有全天候、高精度、快速实时定位,两点间不需要通视,能够得到三维坐标等优点,很快得到了测绘人的青睐,被广泛运用于各种测量项目中。
随着GPS技术的发展,其定位精度和可靠性得到很好的提高。
目前其精密单点定位最高可达到毫米级别。
除了GPS外,卫星定位导航系统还有俄罗斯的GLONASS、欧盟的GALILEO和我国的北斗卫星导航系统。
随着这些系统的投入使用和不断发展,未来空间定位导航变得更加的方便、可靠,覆盖到更广阔全球范围。
GPS定位技术,已成为大地测量和工程测量的一种重要技术手段。
在GPS的RTK和虚拟参考站CORS系统中,为快速测量提供了有力的工具。
在工程测量上,可运用GPS建立高精度的GPS控制网。
建立GPS控制网主要有几种形式:运用GPS建立新的控制网,利用地方参考坐标系的已知点和已知方位作为基准数据;对原有网,通过联测的方式,进行加密。
如城市和地方扩大控制网;将原有不同坐标系统的网,统一连接起来,将不同坐标系统下的边角网统一到统一坐标系统下。
(二)、全站仪测量技术在测量领域的应用全站仪,即全站仪电子速测仪,是集测距、测角为一体的高精度测量仪器。
最初的全站仪是光学经纬仪和光电测距仪的组合,随着电子测距技术、计算机技术、通信技术、激光技术等先进技术的发展和应用,全站仪变得越来越先进,功能越来越全面。
GPS、GALILEO、BDS、GLONASS四大卫星定位系统的论述
GPS、GALILEO、BDS、GLONASS四大卫星定位系统得论述一、基本介绍➢GPS数量:由24颗卫星组成。
轨道:高度约20200公里,分布在6条交点互隔60度得轨道面上。
精度:约为10米、用途:军民两用。
进展:1993年全部建成,正在实验第二代卫星系统,计划发射20颗。
➢GLONASS数量:24颗卫星组成;精度:10米左右;用途:军民两用;进展:目前已有17颗卫星在轨运行,计划2008年全部部署到位、➢GALILEO数量:30颗中高度圆轨道卫星组成,27颗为工作卫星,3颗为候补;轨道:高度为24126公里,位于3个倾角为56度得轨道平面内;精度:最高精度小于1米;用途:主要为民用;进展:2005年12月28日首颗实验卫星已成功发射,预计2008年前可开通定位服务。
➢BDS数量:3颗卫星组成,2颗为工作卫星,1颗为备用卫星;用途:军民两用;进展:前两颗分别于2000年与2003年发射成功。
二、系统组成❖空间部分➢GPS:GPS得空间部分就是由24颗卫星组成(21颗工作卫星;3颗备用卫星),它位于距地表20200km得上空,均匀分布在6个轨道面上(每个轨道面4 颗),轨道倾角为55°。
卫星得分布使得在全球任何地方、任何时间都可观测到4颗以上得卫星,并能在卫星中预存导航信息,GPS得卫星因为大气摩擦等问题;随着时间得推移,导航精度会逐渐降低➢GLONASS:GLONASS系统采用中高轨道得24颗卫星星座,有21颗工作星与3颗备份星,均匀分布在3个圆形轨道平面上,每轨道面有8颗,轨道高度H=19000km,运行周期T=11h15min,倾角i=64。
8°。
➢GALILEO:如下图所示,30颗中轨道卫星(MEO)组成Galileo得空间卫星星座。
卫星均匀地分布在高度约为23616km得3个轨道面上,每个轨道上有10颗,其中包括一颗备用卫星,轨道倾角为56°,卫星绕地球一周约14h22min,这样得布设可以满足全球无缝隙导航定位、卫星得设计寿命为20年,每颗卫星都将搭载导航载荷与一台搜救转发器。
GPS系统定位、授时精度有多准确?
056201207GPS系统定位、授时精度有多准确?Satellite classroom卫星课堂+ 刘天雄美国为了统一无线电导航手段,取代奥米加、罗兰C等众多地基无线电导航系统,并实现高精度、连续、三维定位与测速,美国国防部于1973年批准GPS全球定位系统计划,组织设计了GPS系统方案:卫星轨道高度为20230km;卫星数量为24颗并分布在6个轨道平面上;用户可以同时看到6~11颗卫星;有两个导航信号L1和L2,L1:1575.42MHz,L2:1227.60MHz;采用了卫星无线电导航业务RNSS(Radio Navigation Satellite Service)伪距测量原理实现位置解算。
一、定位精度、误差与偏差的概念GPS系统基于被动式采用了RNSS测距原理,即GPS 接收机测量来自GPS卫星的导航定位信号的传播时延,从而测量到GPS接收机到GPS卫星之间的距离,进而将它和GPS卫星在轨位置(动态已知点)联合解算出接收机的三维坐标。
由此可见,GPS卫星导航定位误差主要来自GPS 卫星信号的自身误差、信号的传播误差以及GPS接收机的测量误差。
对GPS卫星导航而言,精度(accuracy)定义为位置或者速度的测量值与真实值的符合程度,导航系统精度通常用系统误差的统计量度表示。
在GPS定位测量中,不仅存在测量误差(error),而且存在偏差(bias)。
例如,导航卫星的星载原子钟不仅存在时钟偏差(每一颗GPS卫星的时钟相对于GPS时间系统的差值),而且存在时钟误差(GPS卫星的星载原子钟虽然具有极其高的精度,但并不完美,总会存在一些误差。
原子钟的一项重要指标是稳定度,目前原子钟的“天稳定度”一般为1E-13,这意味着原子钟一天的误差为8.64ns,对应的测距误差为2.59m)。
再如,地球大气中的电离层和对流层会改变导航信号的传播,其影响也存在偏差和误差。
偏差为电离层和对流层效应导致的附加时延改正,一般为几米到100余米。
GPS授时精度
GPS授时系统编辑GPS授时系统是针对自动化系统中的计算机、控制装置等进行校时的高科技产品,GPS授时产品它从GPS卫星上获取标准的时间信号,将这些信息通过各种接口类型来传输给自动化系统中需要时间信息的设备(计算机、保护装置、故障录波器、事件顺序记录装置、安全自动装置、远动RTU),这样就可以达到整个系统的时间同步。
中文名GPS授时系统外文名GPS time transfer system设备计算机、保护装置机组分散控制系统(DCS)目录1前言2简介1前言编辑随着计算机和网络通信技术的飞速发展,火电厂热工自动化系统数字化、网络化的时代已经到来。
这一方面为各控制和信息系统之间的数据交换、分析和应用提供了更好的平台、另一方面对各种实时和历史数据时间标签的准确性也提出了更高的要求。
使用价格并不昂贵的GPS时钟来统一全厂各种系统的时钟,已是目前火电厂设计中采用的标准做法。
电厂内的机组分散控制系统(DCS)、辅助系统可编程控制器(PLC)、厂级监控信息系统(SIS)、电厂管理信息系统(MIS)等的主时钟通过合适的GPS时钟信号接口,得到标准的TOD(年月日时分秒)时间,然后按各自的时钟同步机制,将系统内的从时钟偏差限定在足够小的范围内,从而达到全厂的时钟同步。
2简介编辑一、GPS时钟及输出1.1 GPS时钟全球定位系统(Global Positioning System,GPS)由一组美国国防部在1978年开始陆续发射的卫星所组成,共有24颗卫星运行在6个地心轨道平面内,根据时间和地点,地球上可见的卫星数量一直在4颗至11颗之间变化。
GPS时钟是一种接受GPS卫星发射的低功率无线电信号,通过计算得出GPS时间的接受装置。
为获得准确的GPS时间,GPS时钟必须先接受到至少4颗GPS卫星的信号,计算出自己所在的三维位置。
在已经得出具体位置后,GPS时钟只要接受到1颗GPS 卫星信号就能保证时钟的走时准确性。
作为火电厂的标准时钟,我们对GPS时钟的基本要求是:至少能同时跟踪8颗卫星,有尽可能短的冷、热启动时间,配有后备电池,有高精度、可灵活配置的时钟输出信号。
—种高精度的GPS复合授时方法
GPS f o r n on —r e a l t i me o pe r a ing t s y s t e m de v i c e i s ai r s e d i n t h i s p a p e r . The mo t he d i s d e mo mt r a t e d b y a c o mp u t e r wi m W I N D OW S o pe r a i t n g s y s t e m. Th e i t me s e r v i c e a c c u ac r y o fn o n-r e a l t i me o p e ad r ng s st y e m d e v i c e i s i mp r o v e d b y he t mi x —a p p l i c a io t n o ft h e s e c o n d p u l s e s i g n a l a nd he t s e ia r l —p o r t s i g n l a o ft h e GPS t i me s e ic v e b o a r d. Th e c o mp u t e r g e t a c he a p a nd e a s y mi l l i s e c o nd ime t s e r v i c e b y t h i s mo t h用 非实 时操作 系统 的设备进行高精度授 时。 来授时 )
全球四大卫星定位系统
全球四大卫星导航系统简介一、美国的GPS系统:美国的GPS系统,由24颗(3颗为备用卫星)在轨卫星组成。
GPS的信号有两种C/A码,P码。
民用:C/A码的误差是29.3m到2.93米。
一般的接收机利用C/A码计算定位。
美国在90代中期为了自身的安全考虑,在信号上加入了SA(Selective Availability),令接收机的误差增大,到100米左右。
在2000年5月2日,SA取消,所以,咱们现在的GPS精度应该能在20米以内。
军用:P码的误差为2.93米到0.293米是C/A码的十分之一。
但是P码只能美国军方使用,AS(Anti-Spoofing),是在P码上加上的干扰信号。
二、中国的“北斗”卫星导航定位系统:“北斗”卫星导航定位系统需要发射35颗卫星,足足要比GPS多出11颗。
按照规划,“北斗”卫星导航定位系统将有5颗静止轨道卫星和30颗非静止轨道卫星组成,采用“东方红”-3号卫星平台。
30颗非静止轨道卫星又细分为27颗中轨道(MEO)卫星和3颗倾斜同步(IGSO)卫星组成,27颗MEO卫星平均分布在倾角55度的三个平面上,轨道高度21500公里。
“北斗”卫星导航定位系统将提供开放服务和授权服务。
开放服务在服务区免费提供定位,测速和授时服务,定位精度为10米,授时精度为50纳秒,测速精度为0.2米/秒。
授权服务则是军事用途的马甲,将向授权用户提供更安全与更高精度的定位,测速,授时服务,外加继承自北斗试验系统的通信服务功能,精度可以达到重点地区水平10米,高程10米,其他大部分地区水平20米,高程20米;测速精度优于0.2米/秒。
这和美国GPS的水平是差不多的。
另外,“北斗一号”还可以提供用户的双向通讯功能,用户与用户、用户与中心控制系统间均可实现双向简短数字报文通信。
通过“北斗”系统,用户一次最多可以传输120个字符【汉字】。
在国产的GPS——“北斗二号”投入使用后,会不会取代GPS呢?曹冲研究员的答案是否定的。
北斗导航系统与GPS导航系统的比较
中国北斗定位系统与美国GPS比较学院空间科学与技术学院专业空间科学与技术学生姓名杜苏学号1513122924老师张华副教授一、全球卫星定位系统介绍GPS系统概念全球定位系统(NA VSTARGPS,Navigation Satellite Timing And Ranging Global Positioning System,以下简称GPS)是一个中距离圆型轨道卫星定位系统。
该系统是由美国政府于20世纪70年代开始进行研制于1994年全面建成,原是美国国防部为了军事定时、定位与导航的目的所发展,希望以卫星导航为基础的技术可构成主要的无线电导航系统,未来并能满足下一个世纪的应用。
第一颗GPS卫星在1978年发射,首十颗卫星称为BLOCKI试验型卫星,从1989年到1993年所发射的卫星称为BLOCKII/IIA量产型卫星,第二十四颗BLOCKII/IIA卫星在1994年发射后,GPS已达到初步操作能力(Initial Operational Capability,IOC),24颗GPS卫星提供全世界24小时全天候的定位与导航信息。
美国空军太空司令部于1995年4月27号宣布GPS已达到完整操作能力(Full Operational Capability),将BLOCKI卫星加以汰换而24颗卫星全部为BLOCKII/IIA卫星,之后又发射四颗BLOCKIIA及一颗BLOCKIIR卫星,成功地满足军事实务的操作。
由于此技术的迅速发展,使得民间应用的需求与日遽增,对于传统导航方式更有革命性的影响。
全球卫星定位系统实际上是由24颗卫星所组成,其中有3颗为备用卫星,这些卫星分布于距地表20,200公里的上空,而且分属于6个轨道面;卫星轨道面倾斜角为55度﹐提供全球全天候﹐每秒一次﹐持续不断的定位讯号。
这些卫星每11小时58分环绕地球一次,即每天绕过您的头顶二次,就像是月球一样不停地绕着地球旋转,其速度约每秒1.8里。
四大卫星定位系统技术对比
四大卫星定位系统技术对比学院:物理与电子学院班级:姓名:学号:指导教师:时间:2014年11月12日如果说到汽车定位导航技术,你首先想到是什么?没错,答案就是美国佬的全球定位系统(Global Positioning System,简称GPS)。
自从GPS系统完善之后,人们对卫星定位的依赖也越来越严重,无论是民众需求还是企业需求,或者是更高级的军事与科研需求。
所以其他势力非常需要完全属于自己的卫星定位系统,经过多年的努力,终于诞生了其他三种卫星定位系统:伽利略定位系统(欧盟;2014),GLONASS全球卫星定位系统(俄罗斯;未知),北斗卫星导航系统(中国;2012之后)。
虽然A-GPS也能定位,但是它并不是卫星定位的原理。
四大卫星定位系统参数对比:我们可以在卫星数量上面看出伽利略与北斗卫星系统需要的卫星数量最多,而在轨道高度伽利略定位系统使用的卫星轨道高度最高,所以伽利略系统的覆盖面积是最大的。
在位置精度方面伽利略许诺了民用能够达到1米的误差(不过建成实际使用情况不知能否想承诺的一样)。
由于北斗系统拥有双向通信的功能,在授时精度方面要差一些,为50纳秒。
同时速度精度一样受到授时精度的影响,为0.2米/秒。
轨道高度:轨道高度是指卫星运行的轨道离地面高度,高度越高代表卫星覆盖的地球表面的面积越大,就是覆盖面越广。
授时精度:卫星发送报文时里面会存在两个内容,一是卫星自己所处的轨道坐标,二是卫星里面存储的标准时间。
授时精度就是从卫星传到地面后可能发生的误差,简单的说就是授时精度越高,定位的精度就越高。
定位原理对比:目前这三家都使用了单向、终端自定位的方案目前这三家都使用了单向、终端自定位的方案。
暨卫星发送报文,终端只负责接收,然后由终端自己解码算出自己所处的位置。
这种方式非常方便,无论身在地球何处,只要不是在天空被覆盖的地方,就能够定位,包括海洋,沙漠。
不过缺点是就不能把自己所在的位置分享出去,如果需要分享,必须要通过其他途径,比如WIFI,GPRS等等。
GPS系统的特点
1. GPS系统的特点GPS导航定位以其高精度、全天候、高效率、多功能、操作简便、应用广泛等特点著称。
1.1 定位精度高应用实践已经证明,GPS相对定位精度在50KM以内可达10-6,100-500KM可达10-7, 1000KM可达10-9。
在300-1500m工程精密定位中,1小时以上观测的解其平面其平面位置误差小于1mm,与ME-5000电磁波测距仪测定得边长比较,其边长较差最大为0.5mm, 校差中误差为0.3mm。
1.2 观测时间短随着GPS系统的不断完善,软件的不断更新,目前,20KM以内相对静态定位,仅需15-20 分钟;快速静态相对定位测量时,当每个流动站与基准站相距在15KM以内时,流动站观测时间只需1-2分钟,然后可随时定位,每站观测只需几秒钟。
1.3 测站间无须通视GPS测量不要求测站之间互相通视,只需测站上空开阔即可,因此可节省大量的造标费用。
由于无需点间通视,点位位置可根据需要,可稀可密,使选点工作甚为灵活,也可省去经典大地网中的传算点、过渡点的测量工作。
1.4 可提供三维坐标经典大地测量将平面与高程采用不同方法分别施测。
GPS可同时精确测定测站点的三维坐标。
目前GPS水准可满足四等水准测量的精度。
1.5 操作简便随着GPS接收机不断改进,自动化程度越来越高,有的已达“傻瓜化”的程度;接收机的体积越来越小,重量越来越轻,极大地减轻测量工作者的工作紧张程度和劳动强度。
使野外工作变得轻松愉快。
1.6 全天候作业目前GPS观测可在一天24小时内的任何时间进行,不受阴天黑夜、起雾刮风、下雨下雪等气候的影响。
1.7 功能多、应用广GPS系统不仅可用于测量、导航,还可用于测速、测时。
测速的精度可达0。
1M/S,测时的精度可达几十毫微秒。
其应用领域不断扩大。
2. GPS系统的应用前景当初,设计GPS系统的主要目的是用于导航,收集情报等军事目的。
但是,后来的应用开发表明,GPS系统不仅能够达到上述目的,而且用GPS卫星发来的导航定位信号能够进行厘米级甚至毫米级精度的静态相对定位,米级至亚米级精度的动态定位,亚米级至厘米级精度的速度测量和毫微秒级精度的时间测量。
GPS_百度百科
目录
GPS与相对论关系
GPS构成1.空间部分
2. 地面控制系统
3.用户设备部分
GPS术语
GPS原理
GPS定位原理
相对论为GPS提供了所需的修正
GPS前景
GPS特点
GPS功用
4.[DGPS]Differential GPS差分GPS,差分全球定位系统 5.GPS General Phonetic Symbols 捷易读注音符
编辑本段GPS原理
GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。
GPS授时精度
DCS网络上的主时钟与GPS时钟通过“硬接线”方式进行同步。一般通过DCS某站点内的时钟同步卡接受GPS时钟输出的标准时间编码、硬件。例如,如在接受端对RS-232输出的ASCII码字节的发送延迟进行补偿,或对IRIG-B编码采用码元载波周期计数或高频销相的解码卡,则主时钟与GPS时钟的同步精度可达很高的精度。
GPS授时系统编辑
GPS授时系统是针对自动化系统中的计算机、控制装置等进行校时的高科技产品,GPS授时产品它从GPS卫星上获取标准的时间信号,将这些信息通过各种接口类型来传输给自动化系统中需要时间信息的设备(计算机、保护装置、故障录波器、事件顺序记录装置、安全自动装置、远动RTU),这样就可以达到整个系统的时间同步。
中文名GPS授时系统
外文名GPStimetransfersystem
设备计算机、保护装置
机组分散控制系统(DCS)
1前言
2简介
1前言
编辑
随着计算机和网络通信技术的飞速发展,火电厂热工自动化系统数字化、网络化的时代已经到来。这一方面为各控制和信息系统之间的数据交换、分析和应用提供了更好的平台、另一方面对各种实时和历史数据时间标签的准确性也提出了更高的要求。
OM650从电厂总线上获取时间报文。在OM650内,使用Unix功能将时间传送给终端总线上的SU、OT等。通常由一个PU作为时间服务器,其他OM650设备登录为是境客户。
AS620的AP在启动后,通过调用“同步”功能块,自动与CP1430实现时钟同步。然后CP1430每隔6s与AP对时。
TXP时钟的精度如下:
四、时钟精度与SOE设计
虽然DCS的普通开关量扫描速率已达1ms,但为满足SOE分辨率≤1ms的要求,很长一段时间内,人们都一直都遵循这样的设计方法,即将所有SOE点置于一个控制器之下,将事件触发开关量信号以硬接线接入SOE模件,其原因就在于不同控制器其时钟存在着一定的误差。关于这一点,西门子在描述其TXP系统的FUNB模件分散配置的工程实际情况来看,由于时钟不能同步而无法做到1msSOE分辩率,更有甚至因时钟相差近百ms,造成SOE事件记录顺序的颠倒。
中国北斗与美国GPS真实对比
中国北斗与美国GPS真实对比1、覆盖范围:北斗导航系统是覆盖中国本土的区域导航系统。
覆盖范围东经约70°一140°,北纬5°一55°。
GPS是覆盖全球的全天候导航系统。
能够确保地球上任何地点、任何时间能同时观测到6-9颗卫星(实际上最多能观测到11颗)。
2、卫星数量和轨道特性:北斗导航系统是在地球赤道平面上设置2颗地球同步卫星颗卫星的赤道角距约60°。
GPS是在6个轨道平面上设置24颗卫星,轨道赤道倾角55°,轨道面赤道角距60°。
航卫星为准同步轨道,绕地球一周11小时58分。
3、定位原理:北斗导航系统是主动式双向测距二维导航。
地面中心控制系统解算,供用户三维定位数据。
GPS是被动式伪码单向测距三维导航。
由用户设备独立解算自己三维定位数据。
"北斗一号"的这种工作原理带来两个方面的问题,一是用户定位的同时失去了无线电隐蔽性,这在军事上相当不利,另一方面由于设备必须包含发射机,因此在体积、重量上、价格和功耗方面处于不利的地位。
4、定位精度:北斗导航系统三维定位精度约几十米,授时精度约100ns。
GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。
5、用户容量:北斗导航系统由于是主动双向测距的询问--应答系统,用户设备与地球同步卫星之间不仅要接收地面中心控制系统的询问信号,还要求用户设备向同步卫星发射应答信号,这样,系统的用户容量取决于用户允许的信道阻塞率、询问信号速率和用户的响应频率。
因此,北斗导航系统的用户设备容量是有限的。
GPS 是单向测距系统,用户设备只要接收导航卫星发出的导航电文即可进行测距定位,因此GPS的用户设备容量是无限的。
6、生存能力:和所有导航定位卫星系统一样,"北斗一号"基于中心控制系统和卫星的工作,但是"北斗一号"对中心控制系统的依赖性明显要大很多,因为定位解算在那里而不是由用户设备完成的。
中国的GPS:“北斗”卫星导航定位系统
中国的GPS:“北斗”卫星导航定位系统2003年3月20日,伊拉克战争爆发。
大批轰炸机、战斗机猛扑向伊拉克首都巴格达,用炸弹准确地将一座建筑彻底摧毁,行动代号:“斩首行动”;4月,一架B-1B“枪骑兵”轰炸机临时接到任务,用炸弹摧毁了另一座建筑。
他们的目标都是一个人:萨达姆。
侯赛因,他们所使用的炸弹都是一种:联合攻击炸弹(JDAM),这些炸弹之所以都能够精确的打击目标,是因为他们都是通过卫星定位来实现定位,提供这种定位服务的正是由24颗美国卫星组成的全球定位系统--GPS。
2003年5月25日零时34分,我国在西昌卫星发射中心用“长征三号甲”运载火箭,成功地将第三颗“北斗一号”导航定位卫星送入太空。
前两颗“北斗一号”卫星分别于2000年10月31日和12月21日发射升空,运行至今导航定位系统工作稳定,状态良好。
这次发射的是导航定位系统的备份星。
它与前两颗“北斗一号”工作星组成了完整的卫星导航定位系统,确保全天候、全天时提供卫星导航信息。
这标志着我国成为继美国全球卫星定位系统(GPS)和前苏联的全球导航卫星系统(GLONASS)后,在世界上第三个建立了完善的卫星导航系统的国家,该系统的建立对我国国民国防和经济建设将起到积极作用。
我国早在60年代末就开展了卫星导航系统的研制工作,但由于多种原因而天折。
在自行研制“子午仪”定位设备方面起步较晚,以致后来使用的大量设备中,基本上依赖进口。
70年代后期以来,国内开展了探讨适合国情的卫星导航定位系统的体制研究。
先后提出过单星、双星、三星和3-5星的区域性系统方案,以及多星的全球系统的设想,并考虑到导航定位与通信等综合运用问题,但是由于种种原因,这些方案和设想都没能够得到实现。
1982年7月由美国三位科学家提出并于12月定名的GEOSTAR系统,就是这种两颗卫星的主动式卫星定位系统。
他们在实施的过程中,由于有更优越的GPS 卫星导航系统的兴起并且发展相当迅速,使GEOSTAR系统不得不在1991年9月撤走资金,导致正在实施中的GEOSTA及系统宣告失败。
授时精度的概念
授时精度是一个相对概念,是指当前所看到的系统时间与上一级时间源(授时服务器)最少可以相差多少时间,是一个相对精度。
例如,常见的授时精度有:
民用GPS授时精度为100ns,GPS支持授时精度为10ns。
32模组5g授时精度为1.5us。
NTP授时精度为10ms,网络授时(Network Time Protocol,网络时间协议)广域网的网络延时在10 ms~500ms之间,局域网的网络延时在计时操作系统内核处理延迟的情况下通常小于1ms。
PTP:精确时钟同步协议(Precision Time Protocol)30-50ns。
北斗支持授时精度为10ns,在全球范围内,北斗系统的授时精度优于20纳秒;在亚太地区,授时精度优于10纳秒,即亿分之一秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GPS授时系统编辑GPS授时系统是针对自动化系统中的计算机、控制装置等进行校时的高科技产品,GPS授时产品它从GPS卫星上获取标准的时间信号,将这些信息通过各种接口类型来传输给自动化系统中需要时间信息的设备(计算机、保护装置、故障录波器、事件顺序记录装置、安全自动装置、远动RTU),这样就可以达到整个系统的时间同步。
中文名GPS授时系统外文名GPS time transfer system设备计算机、保护装置机组分散控制系统(DCS)目录1前言2简介1前言编辑随着计算机和网络通信技术的飞速发展,火电厂热工自动化系统数字化、网络化的时代已经到来。
这一方面为各控制和信息系统之间的数据交换、分析和应用提供了更好的平台、另一方面对各种实时和历史数据时间标签的准确性也提出了更高的要求。
使用价格并不昂贵的GPS时钟来统一全厂各种系统的时钟,已是目前火电厂设计中采用的标准做法。
电厂内的机组分散控制系统(DCS)、辅助系统可编程控制器(PLC)、厂级监控信息系统(SIS)、电厂管理信息系统(MIS)等的主时钟通过合适的GPS时钟信号接口,得到标准的TOD(年月日时分秒)时间,然后按各自的时钟同步机制,将系统内的从时钟偏差限定在足够小的范围内,从而达到全厂的时钟同步。
2简介编辑一、GPS时钟及输出1.1 GPS时钟全球定位系统(Global Positioning System,GPS)由一组美国国防部在1978年开始陆续发射的卫星所组成,共有24颗卫星运行在6个地心轨道平面内,根据时间和地点,地球上可见的卫星数量一直在4颗至11颗之间变化。
GPS时钟是一种接受GPS卫星发射的低功率无线电信号,通过计算得出GPS时间的接受装置。
为获得准确的GPS时间,GPS时钟必须先接受到至少4颗GPS卫星的信号,计算出自己所在的三维位置。
在已经得出具体位置后,GPS时钟只要接受到1颗GPS 卫星信号就能保证时钟的走时准确性。
作为火电厂的标准时钟,我们对GPS时钟的基本要求是:至少能同时跟踪8颗卫星,有尽可能短的冷、热启动时间,配有后备电池,有高精度、可灵活配置的时钟输出信号。
1.2 GPS时钟信号输出目前,电厂用到的GPS时钟输出信号主要有以下三种类型:1.2.1 1PPS/1PPM输出此格式时间信号每秒或每分时输出一个脉冲。
显然,时钟脉冲输出不含具体时间信息。
1.2.2 IRIG-B输出IRIG(美国the Inter-Range Instrumentation Group)共有A、B、D、E、G、H几种编码标准(IRIG Standard 200-98)。
其中在时钟同步应用中使用最多的是IRIG-B编码,有bc电平偏移(DC码)、1kHz正弦载波调幅(AC码)等格式。
IRIG-B信号每秒输出一帧(1fps),每帧长为一秒。
一帧共有100个码元(100pps),每个码元宽10ms,由不同正脉冲宽度的码元来代表二进制0、1和位置标志位(P),见图1.2.2-1。
为便于理解,图1.2.2-2给出了某个IRIG-B时间帧的输出例子。
其中的秒、分、时、天(自当年1月1日起天数)用BCD码表示,控制功能码(Control Functions,CF)和标准二进制当天秒数码(Straight Binary Seconds Time of Day,SBS)则以一串二进制“0”填充(CF和SBS可选用,本例未采用)。
1.2.3 RS-232/RS-422/RS-485输出此时钟输出通过EIA标准串行接口发送一串以ASCII码表示的日期和时间报文,每秒输出一次。
时间报文中可插入奇偶校验、时钟状态、诊断信息等。
此输出目前无标准格式,下图为一个用17个字节发送标准时间的实例:1.3电力自动化系统GPS时钟的应用电力自动化系统内有众多需与GPS时钟同步的系统或装置,如DCS、PLC、NCS、SIS、MIS、RTU、故障录波器、微机保护装置等。
在确定GPS时钟时应注意以下几点:时间同步(目前通常做法),则在DCS合同谈判前,就应进行专业间的配合,确定时钟信号接口的要求。
(GPS时钟一般可配置不同数量、型式的输出模块,如事先无法确定有关要求,则相应合同条款应留有可调整的余地。
)系统时钟接口配合的难易程度、系统所在地理位置等综合考虑。
各专业如对GPS时钟信号接口型式或精度要求相差较大时,可各自配置GPS时钟,这样一可减少专业间的相互牵制,二可使各系统时钟同步方案更易实现。
另外,当系统之间相距较远(例如化水处理车间、脱硫车间远离集控楼)时,为减少时钟信号长距离传送时所受的电磁干扰,也可就地单设GPS时钟。
分设GPS时钟也有利于减小时钟故障所造成的影响。
时钟同步接口可选时,可优先采用。
但要注意的是,IRIG-B只是B类编码的总称,具体按编码是否调制、有无CF和SBS等又分成多种(如IRIG-B000等),故时钟接收侧应配置相应的解码卡,否则无法达到准确的时钟同步。
时钟同步。
RS-232时间输出虽然使用得较多,但因无标准格式,设计中应特别注意确认时钟信号授、受双方时钟报文格式能否达成一致。
时钟同步信号在网络中有较大的时延,也应考虑分别各自与GPS时钟同步。
TELEPERMXP时钟同步方式这里以西门子公司的TXP系统为例,看一下DCS内部及时钟是如何同步的。
TXP的电厂总线是以CSMA/CD为基础的以太网,在总线上有二个主时钟:实时发送器(RTT)和一块AS620和CP1430通讯/时钟卡。
正常情况下,RTT作为TXP系统的主时钟,当其故约40s后,作为备用时钟的CP1430将自动予以替代(实际上在ES680上可组态2块)CP1430作为后备主时钟)。
见图2-1。
RTT可自由运行(free running),也可与外部GPS时钟通过TTY接口(20mA电流回路)同步。
与GPS时钟的同步有串行报文(长32字节、9600波特、1个启动位、8个数据位、2个停止位)和秒/分脉冲二种方式。
RTT在网络层生成并发送主时钟对时报文,每隔10s向电厂总线发送一次。
RTT发送时间报文最多等待1ms。
如在1ms之内无法将报文发到总线上,则取消本次时间报文的发送:如报文发送过程被中断,则立即生成一个当前时间的报文。
时钟报文具有一个多播地址和特殊帧头,日期为从1984.01.01至当天的天数,时间为从当天00:00:00,000h至当前的ms值,分辨率为10ms。
OM650从电厂总线上获取时间报文。
在OM650内,使用Unix功能将时间传送给终端总线上的SU、OT等。
通常由一个PU作为时间服务器,其他OM650设备登录为是境客户。
AS620的AP在启动后,通过调用“同步”功能块,自动与CP1430实现时钟同步。
然后CP1430每隔6s与AP对时。
TXP时钟的精度如下:从上述TXP时钟同步方式及时钟精度可以看出,TXP系统内各进钟采用的是主从分级同步方式,即下级时钟与上级时钟同步,越是上一级的时钟其精度越高。
三、时钟及时钟同步误差3.1时钟误差众所周知,计算机的时钟一般都采用石英晶体振荡器。
晶振体连续产生一定频率的时钟脉冲,计数器则对这些脉冲进行累计得到时间值。
由于时钟振荡器的脉冲受环境温度、匀载电容、激励电平以及晶体老化等多种不稳定性因素的影响,故时钟本身不可避免地存在着误差。
例如,某精度为±20ppm的时钟,其每小时的误差为:(1×60×60×1000ms)×(20/10.6)=72ms,一天的累计误差可达1.73s;若其工作的环境温度从额定25℃变为45℃,则还会增加±25ppm的额外误差。
可见,DCS中的时钟若不经定期同步校准,其自由运行一段时间后的误差可达到系统应用所无法忍受的程度。
随着晶振制造技术的发展,目前在要求高精度时钟的应用中,已有各种高稳定性晶振体可供选用,如TCXO(温度补偿晶振)、VCXO(压控晶振)、OCXO(恒温晶振)等。
3.2时钟同步误差如果对类似于TXP的时钟同步方式进行分析,不难发现时钟在自上而下的同步过程中产生的DCS的绝对对时误差可由以下三部分组成:3.2.1 GPS时钟与卫星发射的UTC(世界协调时)的误差这部分的误差由GPS时钟的精度所决定。
对1PPS输出,以脉冲前沿为准时沿,精度一般在几十ns至1μs之间;对IRIG-B码和RS-232串行输出,如以中科院国家授时中心的地钟产品为例,其同步精度以参考码元前沿或起始相对于1PPS前沿的偏差计,分别达0.3μs和0.2ms。
3.2.2 DCS主时钟与GPS时钟的同步误差DCS网络上的主时钟与GPS时钟通过“硬接线”方式进行同步。
一般通过DCS某站点内的时钟同步卡接受GPS时钟输出的标准时间编码、硬件。
例如,如在接受端对RS-232输出的ASCII码字节的发送延迟进行补偿,或对IRIG-B编码采用码元载波周期计数或高频销相的解码卡,则主时钟与GPS时钟的同步精度可达很高的精度。
3.2.3 DCS各站点主从时钟的同步误差DCS主时钟与各站点从时钟通过网络进行同步,其间存在着时钟报文的发送时延、传播时延、处理时延。
表现在:(1)在主时钟端生成和发送时间报文时,内核协议处理、操作系统对同步请求的调用开销、将时间报文送至网络通信接口的时间等;(2)在时间报文上网之前,还必须等待网络空闲(对以太网),遇冲突还要重发;(3)时间报文上网后,需一定时间通过DCS网络媒介从主时钟端传送到子时钟端(电磁波在光纤中的传播速度为2/3光速,对DCS局域网而言,传播时延为几百ns,可忽略不计);(4)在从时钟端的网络通信接口确认是时间报文后,接受报文、记录报文到达时间、发出中断请求、计算并校正从时钟等也需要时间。
这些时延或多或少地造成了DCS主从时钟之间、从从时钟之间的时间同步误差。
当然,不同网络类型的DCS、不同的时钟通信协议和同步算法,可使网络对时的同步精度各不相同,上述分析只是基于一般原理上探讨。
事实上,随着人们对网络时钟同步技术的不懈研究,多种复杂但又高效、高精确的时钟同步协议和算法相继出现并得到实际应用。
例如,互联网上广为采用的网络时间协议(Network Time Protocol,NTP)在DCS局域网上已能提供±1ms的对时精度(如GE的ICS分散控制系统),而基于IEEE1588的标准精确时间协议(Standard Precision Time Protocol,PTP)能使实时控制以太网上的主、从时钟进行亚微秒级同步。
四、时钟精度与SOE设计虽然DCS的普通开关量扫描速率已达1ms,但为满足SOE分辨率≤1ms的要求,很长一段时间内,人们都一直都遵循这样的设计方法,即将所有SOE点置于一个控制器之下,将事件触发开关量信号以硬接线接入SOE模件,其原因就在于不同控制器其时钟存在着一定的误差。