电力电子技术 整流电路

合集下载

电力电子技术——单相整流电路

电力电子技术——单相整流电路
电镀等。
• 变压器起变换 电压和隔离的 作用,其一次 侧和二次侧电 压瞬时值分别 用 u1 和 u2 表 示 , 有效值分别用 U1和U2表示。
Goback
• 原理分析:
➢ 在u2正半周,VT承受正向阳极电压,wt1时刻给VT门极
加触发脉冲。
➢ 在t1刻之前,SCR处于正向阻断状态,电路中无电流, 负载电阻两端电压为零,u2全部施加于VT两端。
习题: 2-1,2
转波形
§2.2 单相桥式全控整流电路
Single Phase Bridge Controlled Rectifier
1. 电阻性负载
• 在u2正半周,ua>ub ,若4只管均未触发导通,则 输 出 id=0 , ud=0 , VT1 、 VT4 承 受 正 向 电 压 , 各 承受u2 的一半。
➢ uR随着id而变化,当 uR=u2时did/dt=0, id到达峰值 u2/Rd( L中贮能达最大)。
➢ u2由正变负过零,力图使SCR关断,但L的自感电 势总是反抗其电流的减小,使SCR延续导通。L大
则延续时间长。
转波形
Goback
➢在u2过零点处,id尚处于减小的过程中,能量尚在释 放。 u2=0,但SCR仍正偏,因为did/dt<0,下正上负 的自感电势使SCR正偏而继续导通。此自感电势的极 性表明,L往外供出能量,一方面供给电阻消耗,另 一方面供给变压器副边吸收能量,反送给交流电源。
R2
I T
1 (a
2U 2
sin
wt)2
d(wt)
U 2
2 R
2R
1 sin 2a a
2
• 变压器副边电流有效值I2与输出电流有效值相等:
II 2

第三章_电力电子技术—整流电路_li(第一次课)

第三章_电力电子技术—整流电路_li(第一次课)

变压器二次侧电流有效值i2与输出电流有效值i相等
I I2 1



(
2U 2 U sin t )2 d( t ) 2 R R
1 I 2
1 sin 2 2
I dVT
VT可能承受的最大正向电压为 VT可能承受的最大反向电压为
2 U2 2 2U 2
3.1单相可控整流电路
相控方式——通过控制触发脉冲的相位来控制直流输出 电压大小的方式
3.1单相可控整流电路
3.1.1 单相半波可控整流电路——阻感负载
阻感负载的特点:
电感对电流变化有抗拒作用,使得流过 电感的电流不能发生突变,因此负载的电流 波形与电压波形不相同。
3.1单相可控整流电路
3.1.1 单相半波可控整流电路——阻感负载
ud O i1 O

t
t
b)
3.1单相可控整流电路
3.1.3 单相全波可控整流电路
单相全波与单相桥式全控比较
单相全波只用2个VT,比单相全控桥少2个,相应地, 门极驱动电路也少2个 单相全波导电回路只含1个VT,比单相桥少1个,因而 管压降也少1个 VT承受最大正向电压 2U2,最大反向电压为 2 2U 2 , 是单相全控桥的2倍 单相全波中变压器结构较复杂,材料的消耗多
结构简单,但输出脉动大,变压器二次侧电
流中含直流分量,造成变压器铁芯直流磁化
实际上很少应用此种电路
分析该电路的主要目的在于利用其简单易学
的特点,建立起整流电路的基本概念
3.1单相可控整流电路
3.1.2 单相桥式全控整流电路——电阻负载
电路结构 VT1和VT4组成一对桥臂 VT2和VT3组成另一对桥臂

第3章 整流电路part1

第3章 整流电路part1

可得到 I S
PAC PAC VS PF VS cos1
8
《电力电子技术》
第3章 整流电路
3.1 单相可控整流电路
3.1.1单相半波可控整流电路 3.1.2单相桥式全控整流电路
3.1.3单相全波可控整流电路
3.1.4单相桥式半控整流电路
9
《电力电子技术》
第3章 整流电路
3.1.1 单相半波可控整流电路
《电力电子技术》
第3章 整流电路
第3章
整流电路
3.1 单相可控整流电路
3.2三相可控整流电路
3.3 变压器漏感对整流电路的影响
3.4 电容滤波的不可控整流电路
3.5 整流电路的谐波和功率因数
3.6大功率可控整流电路
3.7整流电路的有源逆变工作状态 3.8整流电路相位控制的实现
1
《电力电子技术》
第3章 整流电路
wt
wt
e)
晶闸管的电流有效值IVT
I VT 1 p 2 p a I a I d d (wt ) 2p 2p d
O i VD f) O u VT g) O
R
wt
wt
wt
20
《电力电子技术》
u2
第3章 整流电路
(3)续流二极管的电流平均值 IdVDR与续流二极管的 电流有效值IVDR w w
22
《电力电子技术》
第3章 整流电路
3.1.2 单相桥式全控整流电路
单相桥式全控整流电路(Single Phase
Bridge Contrelled Rectifier)
1) 带电阻负载的工作情况
电路结构
a)
晶闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对 桥臂。在实际的电路中,一般都采用这种标注方法,即 上面为1、3,下面为2、4。请同学们注意。

电力电子技术整流电路总结

电力电子技术整流电路总结

电力电子技术整流电路总结篇一:电力电子技术常见的整流电路特点总结电力电子技术常见的整流电路特点总结篇二:电力电子技术重要公式总结单相半波可控整流带电阻负载的工作情况:au1iRdbcde电阻负载的特点:电压与电流成正比,两者波形相同。

触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。

导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示。

直流输出电压平均值:1Ud????2U21?cos?2U2sin?td(?t)?(1?cos?)?0.45U22?2(3-1)VT的a移相范围为180?通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式简称相控方式。

带阻感负载的工作情况:bcdef阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不发生突变。

续流二极管数量关系:idVT????id2?(3-5)(3-6)(3-7)iVT?idVdR?????id(?t)?2?id?2d????id2?12?iVdR???2??????id(?t)?id(3-8)2?2dabcdifgV单相半波可控整流电路的特点:1.VT的a移相范围为180?。

2.简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。

3.实际上很少应用此种电路。

4.分析该电路的主要目的建立起整流电路的基本概念。

单相桥式全控整流电路带电阻负载的工作情况:bucdV图3-5单相全控桥式带电阻负载时的电路及波形数量关系:1?22U21?cos?1?cos?Ud??2U(:电力电子技术整流电路总结)2sin?td(?t)??0.9U2???22a角的移相范围为180?。

向负载输出的平均电流值为:(3-9)Ud22U21?cos?U21?cos?id???0.9R?R2R2流过晶闸管的电流平均值只有输出直流平均值的一半,即:(3-11)idVT1U21?cos??id?0.452R2(3-10)流过晶闸管的电流有效值:iVT1?2???1?(2U2U1???sin?t)2d(?t)?2sin2??R?2R2?(3-12)变压器二次测电流有效值i2与输出直流电流i有效值相等:2U2U22?1???。

电力电子单相桥式全控整流电路

电力电子单相桥式全控整流电路

目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。

整流电路通常由主电路、滤波器和变压器组成。

20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。

滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。

变压器设置与否视具体情况而定。

变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。

可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。

电力电子技术-脉冲整流电路

电力电子技术-脉冲整流电路

T1
I N LN
D1
A
uN
us
T2
T3
D3
L2
B
T4
C2
D2
D4
图7.6 单相电压型PWM整流器的主电路图
+
Cd u d
-
• 单相电压型脉冲变流器主电路结构(GTO)
一、主要方程式及相量图
1、相量方程
假定电网电压是纯正弦电压,对于基波分 量,在忽略线路电阻的条件下



U U I N
s1 jNLN N1
负 载
图7.27 用IGBT实现的三相电流型PWM整流器
章内容
7.1 脉冲变流器的原理及分类 7.2 电压型脉冲变流器 7.3 电流型脉冲变流器
7.4 电流型脉冲变流器与电压型脉冲变流 器的性能特点比较
7.5 脉冲变流器的应用
7 . 4电流型脉冲变流器与电压型脉冲变流 器的性能特点比较
• 相同之处:
➢ 两者的交流侧输出特性基本相同; ➢ 都能 实现四象限运行; ➢ 与晶闸管相控整流电路相比都能 提高功率因数; ➢ 都能减少谐波,减少对电网的污染 。
7 . 4电流型脉冲变流器与电压型脉冲变流 器的性能特点比较(续)
• 不同之处:
电压型
电流型
(1) Id方向可变,Ud方向不 可变;
(1) Id方向不可变,Ud方向 可变;
7 . 5 脉冲变流器的应用(续)
• 在电力机车上 的应用
L N T1
u
us
T2
D1 T3 A
D3 L2
B
D2
T4 D4 C2
Id
+
Cd Ud
-
图7.29 GTO实现的电压型脉冲整流器主电路

电力电子技术第3章-整流电路课件

电力电子技术第3章-整流电路课件
■整流电路的分类 ◆按组成的器件可分为不可控、半控、全控三种。 ◆按电路结构可分为桥式电路和零式电路。 ◆按交流输入相数分为单相电路和多相电路。 ◆按变压器二次侧电流的方向是单向或双向,分 为单拍电路和双拍电路。
3.1 单相可控整流电路
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.3 单相全波可控整流电路 3.1.4 单相桥式半控整流电路
(3-5) (3-6) (3-7)
I DR
1
2p
2p a p
I
2 d
d
(wt
)
p a 2p I d
(3-8)
√其移相范围为180,其承受的最大正反向电压均为u2的峰值即 2U。2 续流二极管承受的电压为-ud,其最大反向电压为 2U2,亦为u2的峰值。
■单相半波可控整流电路的特点是简单,但输出脉动大,变压器二次侧电流 中含直流分量,造成变压器铁芯直流磁化。为使变压器铁芯不饱和,需增 大铁芯截面积,增大了设备的容量。
3.1.2 单相桥式全控整流电路
u
☞为了克服此缺点,一般在主电
d
a
q =p
路中直流输出侧串联一个平波 E
电抗器。
0
p
wt
☞电感量足够大使电流连续,晶
闸管每次导通180,这时整流 i d
电压ud的波形和负载电流id的 O
wt
波形与电感负载电流连续时的
图3-8 单相桥式全控整流电路
波形相同,ud的计算公式亦一样。
(3-10)
3.1.2 单相桥式全控整流电路
☞流过晶闸管的电流平均值 :
IdT
1 2
Id
0.45U2 R
1 cosa
2

电力电子技术第二章整流电路答案

电力电子技术第二章整流电路答案

21. 单相半波可控整流电路对电感负载供电, L =20mH , U 2=100V ,求当 α=0 和 60 时的负载电流 I d ,并画出 u d 与 i d 波形。

解: α=0 时,在电源电压 u 2 的正半周期晶闸管导通时,负载电感 导通时刻,负载电流为零。

在电源电压u 2 的负半周期,负载电感导通。

因此,在电源电压 u 2 的一个周期里,以下方程均成立:L di d 2U 2 sin tdt2考虑到初始条件:当 t =0时 i d =0可解方程得:2U 2 i d(1 cos t)L1 2 2U 22(1 cos t)d( t) L2U 2=2u d 与 i d 的波形如下图:量在 u 2负半周期180 ~300 期间释放,因此在 u 2 一个周期中 60 ~300 期间以下微分方程成 立: L d d itd2U 2 sin t其平均值为此时 u d 与 i d 的波形如下图:α = 60 °时, L 储能, 电感 L 储藏的能L 储能,在晶闸管开始 L 释放能量,晶闸管继续I d考虑初始条件:当t = 60 时 i d = 0 可解方程得:i d2U 2 L 1( cos t)I d52U 2 1 33 2U L 2 (12 cos t)d( t) =2U 22L =11.25(A)2.图2-9 为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为2 2U2 ;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。

答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。

因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。

以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。

①以晶闸管VT 2为例。

电力电子技术三相桥式全控整流及有源逆变电路实验报告

电力电子技术三相桥式全控整流及有源逆变电路实验报告

一、实验背景整流是指将交流电变换为直流电的变换,而将交流电变换为直流电的电路称为整流电路。

整流电路是四种变换电路中最基本的变换电路,应用非常广泛。

对于整流电路,当其带不同负载情况下,电路的工作情况不同。

此外,可控整流电路不仅可以工作在整流状态,即将交流电能变换为直流电能,还可以工作在逆变状态,即将直流电能变换为交流电能,称为有源逆变。

在工业中,应用最为广泛的是三相桥式全控整流电路(Three Phase Full Bridge Converter),它是由两个三相半波可控整流电路发展而来。

该次试验即是针对三相桥式全控整流电路而展开的一些较为简单的学习与研究。

二、实验原理三相桥式全控整流及有源逆变该次实验连接电路图如下图所示整流有源逆变控制信号初始化约定:,,整流,,逆变,,临界注意事项:在接主电路过程中,晶闸管接入双刀双闸开关时一定要注意正负极必须正确匹配。

电容器用于吸收感性电流引起的干扰,使得示波器显示的波形更加标准、清晰。

双刀双掷开关在切换时主回路必须断电,否则很可能因切换时拉出电弧而损坏设备。

(一)整流电路1、整流的概念把交流电变换为直流电的变换称为整流(Rectifier),又叫AC-DC变换(AC-DC Converter)。

整流电路是一种把交流电源电压转换成所需的直流电压的电路。

AC-DC变换的功率流向是双向的,功率流向由交流电源流向负载的变换称之为“整流”,功率流向由负载流向交流电源的变换称之为“有源逆变”。

采用晶闸管作为整流电路的主控器件,通过对晶闸管触发相位的控制从而达到控制输出直流电压的目的,这样的电路称之为相控整流电路。

2、整流电路的分类(1)按电路结构分类①半波整流电路:半波整流电路中每根电源进线流过单方向电流,又称为零式整流电路或单拍整流电路。

②全波整流电路:全波整流电路中每根电源进线流过双方向电流,又称为桥式整流电路或双拍整流电路。

(2)按电源相数分类①单相整流电路:又分为单脉波整流电路和双脉波整流电路。

电力电子技术第二章整流电路答案

电力电子技术第二章整流电路答案

1. 单相半波可控整流电路对电感负载供电,L =20mH ,U 2=100V ,求当α=0︒和60︒时的负载电流I d ,并画出u d 与i d 波形。

解:α=0︒时,在电源电压u 2的正半周期晶闸管导通时,负载电感L 储能,在晶闸管开始导通时刻,负载电流为零。

在电源电压u 2的负半周期,负载电感L 释放能量,晶闸管继续导通。

因此,在电源电压u 2的一个周期里,以下方程均成立:t U ti Lωsin 2d d 2d= 考虑到初始条件:当ωt =0时i d =0可解方程得:)cos 1(22d t L U i ωω-= ⎰-=πωωωπ202d )(d )cos 1(221t t L U I =LU ω22=22.51(A)u d 与i d 的波形如下图:当α=60°时,在u 2正半周期60︒~180︒期间晶闸管导通使电感L 储能,电感L 储藏的能量在u 2负半周期180︒~300︒期间释放,因此在u 2一个周期中60︒~300︒期间以下微分方程成立:t U ti Lωsin 2d d 2d= 考虑初始条件:当ωt =60︒时i d =0可解方程得:)cos 21(22d t L U i ωω-=其平均值为)(d )cos 21(2213532d t t L U I ωωωπππ-=⎰=L U ω222=11.25(A)此时u d 与i d 的波形如下图:2.图2-9为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化2U;②当负载是电阻或电感时,其问题吗?试说明:①晶闸管承受的最大反向电压为22输出电压和电流的波形与单相全控桥时相同。

答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。

因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。

以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。

电力电子技术第章--相控整流电路-课件 (一)

电力电子技术第章--相控整流电路-课件 (一)

电力电子技术第章--相控整流电路-课件 (一)
电力电子技术是当今最重要的技术之一,它的应用范围非常广泛,可
以用于发电、输电、配电、用电以及各种电子设备的控制等领域。


电力电子技术的课程中,相控整流电路是其中的一个重要章节。

相控整流电路是一种可以将交流电转化为直流电的电路,它可以应用
于各种场合,比如直流电动机控制、电池充电以及电子变压器控制等。

相控整流电路的工作原理是利用正弦波的相位差来控制桥式整流电路
中的各种开关,从而实现了对电路的控制。

相控整流电路可以分为两种类型:单相控整流电路和三相控整流电路。

其中,单相控整流电路是利用单相电网的交流电源来驱动电机或者电
子变压器的电路;而三相控整流电路则是利用三相电网的交流电源来
驱动电机或者变压器的电路。

无论是单相控整流电路还是三相控整流
电路,它们的工作原理都是一样的,只不过是利用不同的电源来驱动
电路而已。

相控整流电路具有许多优点,比如它可以控制交流电源的输出电压,
可以抑制电网的谐波污染,可以实现功率因数的校正,可以提高电路
的效率等等。

在实际应用中,相控整流电路已经被广泛地应用于各种
领域,比如电机控制、电池充电、UPS电源、铁路牵引、风力发电等等。

总之,相控整流电路是电力电子技术中的一个重要章节,它具有广泛
的应用价值和良好的技术前景。

对于学习电力电子技术的学生来说,
掌握相控整流电路的基本原理和应用技巧是非常重要的,只有在深入
理解了它的工作原理和掌握了相关的实验技能之后,才能够在实际工
作中充分发挥出它的优势和特点,为电力电子技术的发展做出更大的
贡献。

电力电子技术-三相桥式全控整流电路

电力电子技术-三相桥式全控整流电路

交流-直流变换器(5)
(3)定量分析
当整流输出电压连续时(即带阻感负载时,或带电阻负载α
≤60°时)的平均值为:
∫ U d
=
1
π
2π +α 3 π +α
3
3
6U 2 sin ω td (ω t ) = 2 .34U 2 cos α(5-26)
带电阻负载且α >60°时,整流电压平均值为:
∫ U d
R= 3
ωC
a
a
O
ωt O
ωt
id
id
O a)
ωt O
ωt
b)
电容滤波的三相桥式整流电路当ωRC等于和小于 3 时的电流波形 a)ωRC = 3 b)ωRC < 3
交流-直流变换器(5)
考虑实际电路中存在的交流侧电感以及为抑制冲击电流而串联的电感 时的工作情况:
电流波形的前沿平缓了许多,有利于电路的正常工作。 随着负载的加重,电流波形与电阻负载时的交流侧电流波形逐渐 接近。
(5-51)
与单相电路情况一样,电容电流iC平均值为零,
因此:
Id =IR
(5-52)
二极管电流平均值为Id的1/3,即:
ID = Id / 3=IR/ 3
(5-53)
二极管承受的最大反向电压为线电压的峰值: 6U2
交流-直流变换器(5)
本讲总结
本讲学习了: 5.3 三相可控整流电路 5.3.1 三相半波可控整流电路 5.3.2 三相桥式全控整流电路 5.3.3 电容滤波的三相不可控整流电路
ia
O
ωt
b) ia
O
ωt
c)
考虑电感时电容滤波的三相桥式整流电路及其波形

电力电子技术第三章整流电路的答案

电力电子技术第三章整流电路的答案
世纪50年代初期就获得 ■电力二极管(Power Diode)自20世纪 年代初期就获得 电力二极管( ) 世纪 应用,但其结构和原理简单,工作可靠, 应用,但其结构和原理简单,工作可靠,直到现在电力二 极管仍然大量应用于许多电气设备当中。 极管仍然大量应用于许多电气设备当中。 ■在采用全控型器件的电路中电力二极管往往是不可缺少 的,特别是开通和关断速度很快的快恢复二极管和肖特基 特别是开通和关断速度很快的快恢复二极管和 快恢复二极管 二极管,具有不可替代的地位。 二极管,具有不可替代的地位。
2/89
2.1 电力电子器件概述
2.1.1 电力电子器件的概念和特征 2.1.2 应用电力电子器件的系统组成 2.1.3 电力电子器件的分类 2.1.4 本章内容和学习要点
3/89
2.1.1 电力电子器件的概念和特征
■电力电子器件的概念 电力电子器件( ◆电力电子器件(Power Electronic Device)是 ) 指可直接用于处理电能的主电路 主电路中 指可直接用于处理电能的主电路中,实现电能的 变换或控制的电子器件 电子器件。 变换或控制的电子器件。 主电路:在电气设备或电力系统中, ☞主电路:在电气设备或电力系统中,直接 承担电能的变换或控制任务的电路。 承担电能的变换或控制任务的电路。 ☞广义上电力电子器件可分为电真空器件和 半导体器件两类,目前往往专指电力半导体器件。 半导体器件两类,目前往往专指电力半导体器件。
A
K A I P J b) N K
K A a)
A
K c)
电力二极管的外形、 图2-2 电力二极管的外形、结构和电气图形符号 a) 外形 b) 基本结构 c) 电气图形符号
14/89
2.2.1 PN结与电力二极管的工作原理 结与电力二极管的工作原理

电力电子技术-第三章--单相整流讲解

电力电子技术-第三章--单相整流讲解

3.1.1 单相半波可控整流电路
(Single Phase Half Wave Controlled Rectifier)
1. 电阻负载的工作情况
在工业生产中,某些负载基本上是电阻性的, 如电阻加热炉、电解和电镀等。
电阻性负载的特点是电压与电流成正比,波形 相同并且同相位,电流可以突变。 • 1. 工作原理 • 首先假设以下几点: • (1) 开关元件是理想的,即开关元件(晶闸管)导通 时,通态压降为零,关断时电阻为无穷大; • 一般认为晶闸管的开通与关断过程瞬时完成。 • (2) 变压器是理想的,即变压器漏抗为零,绕组的 电阻为零、励磁电流为零。
id 的连续波形每周期分为两 段:u2过零前一段流经SCR, 时宽为π-α;之后一段流经 VDR ,时宽为π+α。由两器 件电流拼合而成。
若近似认为id为一条水平线,恒为Id,则有
SCR 平均值: I a I
dVT
2 d
(2-5)
SCR 有效值:
IVT
1
2
a
I
d2d
(t
在ωt=0到α期间,晶闸管uAK大于零, 但门极没有触发信号,处于正向关断状
态,输出电压、电流都等于零。
在ωt=α时,门极有触发信号,晶闸管 被触发导通,负载电压ud= u2。 在ωt1时刻,触发VT使其开通,u2加 于负载两端,id从0开始增加。这时,交 流电源一方面供给电阻R消耗的能量, 另一方面供给电感L吸收的磁场能量。
)

a 2
I
(2-6)
d
VDR 平均值: VDR 有效值:
a IdVDR 2 Id
(2-7)
IVDR
1
2
2 a

电力电子技术三相桥式全控整流及有源逆变电路实验报告

电力电子技术三相桥式全控整流及有源逆变电路实验报告

纯阻性:
α
30°
U2
139.7
Id
0.66
Ud(记录值)
305
ቤተ መጻሕፍቲ ባይዱ
Ud(计算值)
283.1
60° 141.2 0.42 195 165.7
90° 142.2 0.12
55 44.6
七、 实验结果与分析 1.纯阻性 Ud=f(a)的相位图片:
三相桥式全控整流电路带纯电阻负载时的移相范围为 0~120°,当α>60°时,阻感性 质负载时的电压出现负值,但是纯阻性负载的电压 Ud 不会出现负值(而是断续),纯电阻 负载时和阻感性负载时的负载电流有差异,这是因为电感的平波作用导致的,电感越大, 对电流的平直作用越强,输出的 Id 越接近于水平的直线。
关 S2 拨到接地位置(即 Uct=0),调节 PE-11 上的偏移电压电位器 RP,用数字存储示波
器同时观察 A 相同步电压信号和“双脉冲观察孔” VT1 的输出波形,使α=170°。
适当增加给定 Ug 的正电压输出,观测 PE-11 上“脉冲观察孔”的波形,此时应观测到
双窄触发脉冲
用 20 芯的扁平电缆,将 PE-11 的“触发脉冲输出”端与“触发脉冲输入”端相连,并
150°范围内调节,同时,根据需要不断调整负载电阻 R,使得负载电流 Id 保持在 0.6A 左右
注意 Id 不得超过 0.82A、。用示波器观察并记录α=30°、60°及 90°时的整流电压 Ud 和
晶闸管两端电压 Uvt 的波形,并记录相应的 Ud 数值。
3、三相桥式有源逆变电路
六、 实验记录与处理
在三相桥式有源逆变电路中,电阻将并联形式改为串联形式、电感的取值与整流的完全 一致,而三相不控整流及心式变压器均在电源控制屏上,其中心式变压器用作升压变压器, 逆变输出的电压接心式变压器的中压端 Am、Bm、Cm,返回电网的电压从高压端 A、B、C 输出,变压器接成 Y/Y 接法。

电力电子技术第2章 三相相控整流电路

电力电子技术第2章  三相相控整流电路
第2章 三相相控整流电路
1
第2章 三相相控整流电路
2.1 三相半波相控整流电路 2.2 三相全控桥式整流电路 2.3 三相半控桥式整流电路 2.4 变压器漏电抗对整流电路的影响 2.5 三相整流电路应用实例分析
第2章 三相相控整流电路
2
2.1 三相半波相控整流电路
三相半波相控整流电路是最基本的三相可控整流形式, 其余的三相可控整流电路都可看做是由三相半波相控整流电 路以不同方式串联或并联组成的。
(2-2)
第2章 三相相控整流电路
(3) 负载电流的平均值为
流过每个晶闸管的平均电流为
12 (2-3) (2-4)
第2章 三相相控整流电路
流过每个晶闸管电流的有效值为
13 (2-5)
(2-6)
第2章 三相相控整流电路
14
(4) 从图2-1(f)可看出,晶闸管所承受的最大反向电压为
电源线电压的峰值,即
第2章 三相相控整流电路
3
2.1.1 电阻性负载的整流过程
三相半波(又称三相零式)可控整流电路如图2-1(a)所示。 图中T是整流变压器,也可直接由三相四线电源供电。 三只晶闸管的阴极连在一起,称为共阴极接法。共阴极接法
在触发电路中有公共线时,连接比较方便,所以得到了广泛
应用。
第2章 三相相控整流电路
30
图2-7 三相全控桥式整流电路
第2章 三相相控整流电路
31
2.2.1 控制角α=0°时的整流过程
1. 电路整流过程
图2-8所示是控制角α=0°时三相全控桥式整流电路中的 主要波形。为分析方便,把一个周期分为六段(即图2-8(a)中 (1)~(6)段),每段相隔60°。
第2章 三相相控整流电路

电气类 第3章__相控整流电路(《电力电子技术》课件)

电气类 第3章__相控整流电路(《电力电子技术》课件)

图3.5 并联续流二极管的单相桥式半控整流电路及其波形
3.1.2 单相桥式半控整流电路
并联续流二极管的输出电压平均值
1 π 2 1 cos U d 2U 2 sin td( t ) U 2 (1 cos ) 0.9U 2 π π 2
输出电压有效值
U
晶闸管电流平均值和有效值分别为
u2
o
ud

t
Tr
T1 i2
T3
id R L E ud
o
id

t
u1
u2
o
id
反电动势-电阻性负载
t
T2
T4
o
反电动势-电感性负载
t
图3.8 带反电动势负载的单相桥式全控整流电路及其波形
3.2 三相相控整流电路
3.2.1 三相半波相控整流电路
3.2.2 三相桥式全控整流电路 3.2.3 三相桥式半控整流电路
3.1.3 单相桥式全控整流电路
整流输出电压平均值为
1 cos Ud 0.9U2 2
输出电流的平均值和有效值分别为
晶闸管电流平均值为
IdT Ud U 2 1 cos U U2 Id 0.9 I R R 2 R R U 2 1 cos 1 Id 0.45 2 R 2
2. 电感性负载 在电源正半周,晶闸管T1和T4同时 承受正向电压。若在 t 时同时 触发T1和T4导通,则电源电压通过 T1和T4加至负载上。当电源电压过 零变负时,由于大电感的存在,T1 和T4仍继续导通。 在电源负半周,晶闸管T2和T3同时 承受正向电压。在 t π 时同 时触发T2和T3导通,T1和T4承受 反向电压而关断,负载电流由T1和 T4换流至T2和T3,电源电压通过 T2和T3施加到负载端。当电源电压 过零变正时,电感的储能使T2和T3 维持继续导通,直至下一个周期T1 和T4被触发导通为止。

电力电子技术 第3章 整流电路0-2

电力电子技术 第3章  整流电路0-2

平衡电抗器Lp 承担了n1 、 n2 间的 电位差,它补偿了ub′ 和ua 的电动 势差,使得ub′ 和ua 两相的晶闸管 能同时导电。 在流经LP时,LP上要感应一电动势 up,其方向是要阻止电流增大。可 导出Lp两端电压、整流输出电压的 数学表达式如下:
up ud2 ud1
a)
t O w1 u p ° 60
u d1 ua ub uc
O ia 1I 2 d
wt
1I 6 d u c' u a'
' ub
O u d2
u c'
wt
O i a' 1I 2 d
wt
1I 6 d
O
wt
图3-36 双反星形电路, =0时两组整流电压、电流波形
三峡大学电气与新能源学院
3-5
3.6.1带平衡电抗器的双反星形可控整流电路
除铁芯的直流磁化。
平衡电抗器是为保证两组三相 半波整流电路能同时导电。
与三相桥式电路相比,双反星
形电路的输出电流可大一倍。
图3-35 带平衡电抗器的 双反星形可控整流电路 3-4
三峡大学电气与新能源学院
3.6.1带平衡电抗器的双反星形可控整流电路
绕组的极性相反的目的:消除直流磁通势
如图可知,虽然两组相电流的瞬时值不同,但是平均电流相 等而绕组的极性相反,所以直流安匝互相抵消。
平衡电抗器的作用:
使得两组三相半波整流电路同时导电。
对平衡电抗器作用的理解是掌握双反星形电路 原理的关键。
三峡大学电气与新能源学院
3-7
3.6.1带平衡电抗器的双反星形可控整流电路
平衡电抗器使得两组三相半波整流电路同时导电的 u ,u u u u u u u u 原理分析:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
■整流电路(Rectifier)是电力电子电路中出现最早 的一种,它的作用是将交流电能变为直流电能供给直 流用电设备。
■整流电路的分类 ◆按组成的器件可分为不可控、半控、全控三种。 ◆按电路结构可分为桥式电路和零式电路。 ◆按交流输入相数分为单相电路和多相电路。 ◆按变压器二次侧电流的方向是单向或双向,分为单 拍电路和双拍电路。
1
cos
2
(3-1)
直流输出电压平均值为:
Ud
1
2
2U2 sintd(t)
2U 2
2
(1
cos )
0.45U 2
1
cos
2
(3-1)
只要改变控制角α,即可改变整流输出电压的平均值,达到 可控整流的目的。
整流输出电压的平均值从最大值变化到零时所对应的α的变 化范围,称为移相范围。图3-1所示电路的移相范围为π 。
0 t1
2
t
ug
① 在电源的正半周,晶闸管VT
0
t 承受正向电压。在被触发导通
ud
前,晶闸管处于正向阻断状态,
0
t 电源电压全部加在晶闸管上,
uVT
负载上的电压为零,流过负载
的电流也为零。负载的工作情况
VT
T
u1
u2
uVT ud
id R
a)
u2
0 t1
2
t
ug
0
t
ud
0
t
这种通过控制触发脉冲的相位来控制直流输出电压大小的方 式称为相控方式。
整流输出电压有效值为:
U
1
2
2
2U2 sin t d (t) U2
1 sin 2
4
2
u2
整流输出电流平均值:
0 t1
ug
2
t
I dVT
Ud R
0.45U2 R
1 cos
2
0
t 整流输出电流有效值:
ud
0
0
t 这期间,VT1、VT4均承受反
i2
向电压而处于阻断状态。当u2
0
t 过零变正时,VT2、VT3关断,
负载电压和电流也降至零。
图3-5 单相桥式全控整流带电阻负载时的电路及波形
整流输出电压平均值为:
Ud
1
2U2 sin td(t) 2
2U2 1 cos
2
0.9U
2
1
cos
2
(3-9)
当α=0 时,整流输出电压Ud =0.9U2 ,为最大值;α= π 时, Ud=0 。所以α的移相范围为0°~180°。
uVT
0
t
b)
② t 时刻给晶闸管施加
触发脉冲ug,则晶闸管导通。 晶闸管导通期间,电源电压
u2全部加到负载上,负载电压 ud=u2。
③ t ,电压u2过零,电流
下降至小于晶闸管的维持电流, 晶闸管关断,此时,ud、id均为 零。
④ 在u2负半周,晶闸管承受反 向电压,处于反向截止状态, u2全部加在晶闸管两端,负载 上的电压为零。至此,电路完 成一个工作周期,
uVT
t
I2
IVT
I
U R
U2 R
1 sin 2
4
2
0
t
电源侧的输入功率为: S S2 U2I2
电源供给的有功功率为: P I 2R UI 2
功率因数为:
cos P IR 1 sin 2
S U2 4
2
当 0时,cos 0.707, 时,cos 0。
尽管是电阻负载,电源功率因数也不为1,这是单相半波电路 的缺陷。
0
t
uVT1,4
0
t
i2
0
t
图3-5 单相桥式全控整流带电阻负载时的电路及波形
VT1、VT4和VT2、VT3 组成两个桥臂。
① 当交流电源电压进入正 半周时,a点电位高于b点 电位,两个晶闸管VT1、 VT4同时承受正向电压。
如果此时门极无触发信号, 则两个晶闸管处于正向阻 断状态,电源电压u2将全 部加在VT1、VT4上,两个 晶闸管各自承受电源电压 u2的一半,负载电压ud为 零。
2.重点:波形分析和基本电量计算方法。
波形分析和计算:
① 输出侧的电压、电流; ② 晶闸管的电压、电流; ③ 输入侧的电流。
1)带电阻负载的工作情况
VT
T
u1
u2
uVT ud
id R
分析时认为晶闸管为理想器件。 晶闸管开通关断条件。
T为整流变压器,其二次电压为:
a)
u2
u2 2U 2 sin t
单相半波可控整流电路的特点是简单,但输出脉动大,变压器 二次侧电流中含直流分量,造成变压器铁芯直流磁化。为使变压 器铁芯不饱和,需增大铁芯截面积,增大了设备的容量。
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
1.带电阻负载的工作情况
ud id
基本数量关系
首先,引入两个重要的基本概念: 触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发
脉冲止的电角度,用a表示,也称触发角或控制角。 导通角:晶闸管在一个电源周期中处于通态的电角度,用θ
表示 。
直流输出电压平均值为:
U d
1
2
2U2 sintd(t)
2U 2
2
(1
cos )
0.45U 2
t
图3-5 单相桥式全控整流带电阻负载时的电路及波形
③ 在u2的负半周,b点电位高于 a点电位,晶闸管VT2、VT3同时 承受正向电压。
ud id
0
uVT1,4
在t 时触发VT2、VT3,
VT2、VT3导通,电流从b端流 t 出经VT3、R、VT2回到电源a
端,负载获得与u2正半周相同 的整流电压和电流波形,
3.1 单相可控整流电路 3.2 三相可控整流电路 3.3 变压器漏感对整流电路的影响 3.7 整流电路的有源逆变工作状态
3.1 单相可控整流电路 3.2 三相可控整流电路 3.3 变压器漏感对整流电路的影响 3.7 整流电路的有源逆变工作状态
3.1.1 单相半波可控整流电路 3.1.2 单相桥式全控整流电路 3.1.4 单相桥式半控整流电路
② 在 t 时,给VT1、VT4同
时施加触发脉冲,VT1、VT4 即 时导通,电源电压通过VT1、VT4 加在负载上。
ud id
0
uVT1,4
0
i2
0
当电源电压下降至零时,负 载电流id也降至零,VT1、 t VT4自然关断。
在电源电压的正半周,晶闸 t 管VT2、VT3始终承受反向电
压而处于截止状态。
在研究可控整流电路的工作原理时,所采用 的基本方法是根据整流元件的特性和负载的性 质,分析各元件的导通、关断的物理过程,从 而得到各元件的电压和电流波形,在此基础上 得出有关电量与移相控制角的关系,重点掌握 波形分析法。
基本要求
1.理解和掌握单相桥式、三相半波、三相桥式等整流 电路的电路结构、工作原理、工作波形、电气性能、 分析方法和参数计算。
相关文档
最新文档