高三数学一轮复习不等式性质及证明教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式性质及证明

点评:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力。该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值。 题型4:不等式证明的应用

例7.已知函数f (x)=x 3+ x 3,数列|x n |(x n >0)的第一项x n =1,以后各项按如下方式取定:曲线x=f (x)在))(,(11++n n x f x 处的切线与经过(0,0)和(x n ,f (x n ))两点的直线平行(如图)

.

求证:当n *N ∈时,(Ⅰ)x ;231212+++=+n n n n x x x (Ⅱ)21

)2

1()21

(--≤≤n n n x 。

证明:(I )因为'2

()32,f x x x =+

所以曲线()y f x =在11(,())n n x f x ++处的切线斜率12

1132.n n n k x x +++=+ 因为过(0,0)和(,())n n x f x 两点的直线斜率是2

,n n x x + 所以22

1132n n n n x x x x +++=+.

(II )因为函数2

()h x x x =+当0x >时单调递增,

而221132n n n n x x x x +++=+2

1142n n x x ++≤+211(2)2n n x x ++=+,

所以12n n x x +≤,即

11

,2

n n x x +≥ 因此1121211().2

n n n n n n x x x x x x x ----=

⋅⋅⋅⋅⋅⋅≥

相关文档
最新文档