小学六年级数学培优专题训练含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学培优专题训练含详细答案
一、培优题易错题
1.有、、三种盐水,按与数量之比为混合,得到浓度为的盐水;按与数量之比为混合,得到浓度为的盐水.如果、、数量之比为,混合成的盐水浓度为,问盐水的浓度是多少?
【答案】解:B盐水浓度:
(14%×6-13%×3)÷(4-1)
=(0.84-0.39)÷3
=0.45÷3
=15%
A盐水浓度:14%×3-15×2=12%
C盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3
=(0.51-0.27)÷3
=0.24÷3
=8%
答:盐水C的浓度为8%。

【解析】【分析】与按数量之比为2:4混合时,浓度仍为14%,而这样的混合溶液也相当于A与B按数量之比为2:1混合后再混入(4-1)份B盐水,这样就能求出B盐水的浓度。

然后求出A盐水的浓度,再根据混合盐水的浓度计算C盐水的浓度即可。

2.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?
【答案】解:设丙缸酒精溶液的重量为千克,则乙缸为千克。

根据纯酒精的量可列方程:
所以丙缸中纯酒精的量是:(千克)。

答:丙缸中纯酒精的量是12千克。

【解析】【分析】根据三缸酒精溶液的容量和与倍数关系可知,甲缸共有50千克,乙和丙共有50千克。

等量关系:甲缸纯酒精量+乙缸纯酒精量+丙缸纯酒精量=混合后纯酒精量,先设出未知数,再根据等量关系列出方程,解方程求出丙缸酒精溶液的量,进而求出丙缸中纯酒精的量。

3.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为的盐水毫升;乙容器中有清水毫升;丙容器中有浓度为的盐水毫升.先把甲、丙两容器中的盐水各一半倒入乙容器搅匀后,再把乙容器中的盐水毫升倒入甲容器,毫升倒入丙容器.这时甲、乙、丙容器中盐水的浓度各是多少?
【答案】解:列表如下:
甲乙
浓度溶液浓度溶液开始
第一次
第二次

浓度溶液
开始
第一次
第二次
答:这时甲容器盐水浓度是27.5%,乙容器中浓度为15%,丙容器中浓度为17.5%。

【解析】【分析】在做有关浓度的应用题时,为了弄清楚溶质质量、溶液质量的变化,尤其是变化多次的,常用列表的方法,使它们之间的关系一目了然。

浓度=盐的质量÷盐水质量×100%,盐的质量=盐水质量×浓度。

4.蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需小时;排光一池水,单开排水管需小时.现在池内有半池水,如果按进水,排水,进水,排水……的顺序轮流各开小时.问:多长时间后水池的水刚好排完?(精确到分钟)
【答案】解:小时排水比1小时进水多,
各开3小时后还有的水量:,
再开1小时进水管后的水量:,
拍完这些水需要:(小时)=54(分),
共需要:3×2+1+=(小时)=7小时54分。

答:7小时54分后水池的水刚好排完。

【解析】【分析】进水管每小时进水量为,排水管每小时排水量为,这样就可以计算出1小时排水比进水多的分率。

假设两个水管各开了3小时(实际共6小时),用1小时排水比进水多的分率乘3求出排水量,用原有水量减去排水量即可求出剩下的水量。

此时
该开进水管了,每小时进水后实际还有剩下的水量加上。

然后开排水管,用此时的水量除以每小时的排水量即可求出剩下的水需要的时间。

然后把总时间相加即可求出刚好排完的时间。

5.一件工程甲单独做小时完成,乙单独做小时完成.现在甲先做小时,然后乙做小时,再由甲做小时,接着乙做小时……两人如此交替工作,完成任务共需多少小时?
【答案】解:假设两队交替做4次,甲的工作量:,
乙的工作量:,
还剩下的工作量:,
甲还要做:(小时),
总时间:(1+3+5+7)+(2+4+6+8)+=(小时)。

答:完成任务共要小时。

【解析】【分析】交替4次,甲工作的时间是1、3、5、7小时,乙工作的时间是2、4、6、8小时。

用每队的工作效率乘各自的工作时间求出各自完成的工作量,用1减去两队分别完成的工作量即可求出剩下的工作量。

剩下的工作量该甲做了,因此用剩下的工作量除以甲的工作效率就是甲还需要做的时间。

然后把两队工作的总时间相加即可求出共需要的时间。

6.甲、乙、丙3队要完成A,B两项工程.B工程的工作量比A工程的工作量多.甲、
乙、丙3队单独完成A工程所需时间分别是20天、24天、30天.为了同时完成这两项工程,先派甲队做A工程,乙、丙两队共同做B工程;经过几天后,又调丙队与甲队共同完成A工程.那么,丙队与乙队合作了多少天?
【答案】解:总工作量:,
三队合做完成总工作量的时间:(天),
乙完成的工作量:,
B工程中丙完成的时间:(天)。

答:丙队与乙队合作了15天。

【解析】【分析】三队是同时开工,同时完成工程,实际就是三队合做完成了两项工程。

设A项工程的工程总量为“1”,那么B工程的工作量为(1+)。

用两项工程的工作总量除以三队的工作效率和即可求出三队合作完成的时间。

用乙队的工作效率乘合作完成的时间即可求出B工程中乙队做的工作量,剩下的工作量就是由丙来做的,这样用剩下的工作量除以丙的工作效率即可求出丙在B工程工作的时间,也就是丙和乙合作的时间。

7.一份文件,如果甲抄10小时,乙抄10小时可以抄完;如果甲抄8小时,乙抄13小时也可以抄完.现在甲先抄2小时,剩下的甲、乙合作,还需要几小时才能完成?
【答案】解:乙的工作效率:==,
甲的工作效率:,
还需要的时间:(小时)。

答:还需要小时才能完成。

【解析】【分析】甲、乙合作的效率为;将甲抄8小时,乙抄13小时,转化为甲乙和抄8小时,乙单独抄5小时。

用工作效率和乘8求出8小时完成的工作量,用1减去8小时完成的工作量即可求出乙5小时的工作量,用这个工作量除以5即可求出乙的工作效率,进而求出甲的工作效率。

用1减去甲2小时的工作量求出剩下的工作量,用剩下的工作量除以两人的工作效率和即可求出还需要的时间。

8.有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天.现在让3个队合修,但中途甲队撤出去到另外工地,结果用了6天才把这条公路修完.当甲队撤出后,
乙、丙两队又共同合修了多少天才完成?
【答案】解:
=
=
=1(天)
6-1=5(天)
答:当甲队撤出后,乙、丙两队又共同合修了5天。

【解析】【分析】甲队撤出,乙和丙一直修了6天,用两队的工作效率乘6求出乙、丙合修的工作量,用1减去乙、丙合修的工作量求出甲完成的工作量,用甲完成的工作量除以甲的工作效率即可求出甲的工作时间,用6减去甲的工作时间即可求出甲撤出后乙丙合修的时间。

9.甲、乙两项工程分别由一、二队来完成.在晴天,一队完成甲工程要12天,二队完成乙工程要15天;在雨天,一队的工作效率要下降,二队的工作效率要下降.结果两队同时完成工作,问工作时间内下了多少天雨?
【答案】解:原来一队比二队的工作效率高:,
提高后的工作效率二队比一队高:
=
=
,则3个晴天5个雨天,两队的工作进度相同,共完成:

5÷=10(天)
答:工作时间内下了10天雨。

【解析】【分析】先表示出原来两队的工作效率,然后计算出工作效率下降后两人的工作效率,写出前后工作效率差的比,化简后确定3个晴天和5个雨天的工作进度是相同的,
然后计算出3个雨天与5个晴天完成的工作量,再求出下雨的天数即可。

10.搬运一个仓库的货物,甲需小时,乙需小时,丙需小时.有同样的仓库和,甲在仓库,乙在仓库同时开始搬运货物,丙开始帮甲搬运,中途又转向帮乙搬运,最后同时搬完两个仓库的货物.丙帮助甲、乙各搬运了几小时?
【答案】解:甲、乙、丙搬完两个仓库共用了:(小时),
丙帮助甲搬运了:(小时),
丙帮助乙搬运了:(小时)。

答:丙帮助甲搬运了3小时,帮助乙搬运了5小时。

【解析】【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束,共搬运了两个仓库的货物,用工作量2除以三人的工作效率和求出共同完成工作量需要的时间。

在这段时间内,甲、乙各自在某一个仓库内搬运,丙则在两个仓库都搬运过。

用甲的工作效率乘共同完成的时间即可求出甲完成的工作量,用1减去甲完成的工作量即可求出丙帮甲完成的工作量,用这个工作量除以丙的工作效率即可求出丙帮甲的时间,进而求出丙帮乙的时间即可。

相关文档
最新文档