初一下数学不等式应用题汇总
七年级不等式试题及答案

七年级不等式试题及答案一、选择题1. 若a > b,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:A2. 若a < b < 0,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:B二、填空题1. 若x > 5,则x - 3 _______ 2。
答案:>2. 若y < -2,则-2y _______ 4。
答案:>三、解答题1. 若a > b,且a > 0,b > 0,求证:a² > b²。
证明:因为a > b,且a > 0,b > 0,所以a - b > 0,两边同时乘以a + b(a + b > 0),得到a² - b² > 0,所以a² > b²。
2. 若x > y,且x < 0,y < 0,求证:-x > -y。
证明:因为x > y,且x < 0,y < 0,所以-x < -y,两边同时乘以-1(-1 < 0),得到-x > -y。
四、应用题1. 某工厂生产的产品,若每件产品成本为c元,售价为p元,且c < p。
已知生产了n件产品,求工厂的总利润。
解:总利润 = 总售价 - 总成本= np - nc= n(p - c)因为c < p,所以p - c > 0,所以工厂的总利润为n(p - c)元。
2. 某学校有m个学生,每个学生至少需要x本练习本,现在学校有y 本练习本,且x > y/m。
问学校是否需要购买额外的练习本?解:因为每个学生至少需要x本练习本,共有m个学生,所以总共需要mx本练习本,又因为x > y/m,所以mx > y,所以学校需要购买额外的练习本。
初一不等式试题及答案

初一不等式试题及答案1. 若不等式 \(2x - 5 < 3\),求 \(x\) 的取值范围。
答案:首先将不等式 \(2x - 5 < 3\) 进行移项,得到 \(2x < 8\)。
然后将两边同时除以2,得到 \(x < 4\)。
因此,\(x\) 的取值范围是\(x < 4\)。
2. 已知 \(a > 0\),\(b < 0\),判断不等式 \(a - b > 0\) 是否成立。
答案:由于 \(a > 0\) 且 \(b < 0\),即 \(a\) 是正数,\(b\) 是负数。
根据不等式的性质,正数减去负数结果为正数,所以 \(a - b > 0\) 成立。
3. 解不等式组:\[\begin{cases}x + 2 > 0 \\3x - 4 \leq 5\end{cases}\]答案:首先解第一个不等式 \(x + 2 > 0\),得到 \(x > -2\)。
接着解第二个不等式 \(3x - 4 \leq 5\),得到 \(x \leq 3\)。
因此,不等式组的解集为 \(-2 < x \leq 3\)。
4. 若不等式 \(3x - 7 > 0\),求 \(x\) 的最小整数值。
答案:首先解不等式 \(3x - 7 > 0\),得到 \(3x > 7\)。
然后将两边同时除以3,得到 \(x > \frac{7}{3}\)。
因为 \(x\) 必须是整数,所以 \(x\) 的最小整数值是 3。
5. 已知不等式 \(5x - 2 \geq 8\),求 \(x\) 的取值范围。
答案:将不等式 \(5x - 2 \geq 8\) 进行移项,得到 \(5x \geq10\)。
然后将两边同时除以5,得到 \(x \geq 2\)。
因此,\(x\) 的取值范围是 \(x \geq 2\)。
6. 判断不等式 \(-3x + 4 > 0\) 是否有解。
七年级下册解不等式习题(总3页)

七年级下册解不等式习题(总3页)1. 解不等式x-5\geqslant7。
解:将不等式变形得x\geqslant12。
2. 解不等式3x+2<11。
解:将不等式变形得3x<9,再除以3 得x<3。
3. 解不等式-2x+3>1-x。
解:将不等式变形得-2x+x>1-3,即-x>-2。
两边同乘以-1 得x<2。
4. 解不等式4x+5\leqslant3x+10。
解:将不等式变形得x\leqslant5。
5. 解不等式2x+3>5x-2。
解:将不等式变形得-3x>-5,两边同除以-3 得x<\frac{5}{3}。
6. 解不等式0.5x+1\leqslant0.7x-2。
解:将不等式变形得-0.2x\leqslant-3,两边同除以-0.2 得x\geqslant15。
7. 解不等式-3(x+1)>6。
解:将不等式变形得-3x-3>6,再将式子两边都加上3 得-3x>9,最后两边都除以-3 得x<-3。
8. 解不等式1+(x+2)\geqslant2(x-1)。
解:将不等式变形得1+x+2\geqslant2x-2,即-x\geqslant-5,两边同时乘以-1 得x\leqslant5。
9. 解不等式\frac{5x+1}{3}\leqslant\frac{4x-3}{2}。
解:将不等式变形得10(5x+1)\leqslant12(4x-3),即50x+10\leqslant48x-36,再将式子两边都减去48x+36 得2x\leqslant-46,最后两边都除以2 得x\leqslant-23。
10. 解不等式\frac{3x-5}{2}\geqslant\frac{2x+1}{3}。
解:将不等式变形得9(3x-5)\geqslant4(2x+1),即27x-45\geqslant8x+4,再将式子两边都减去8x+45 得19x\geqslant-41,最后两边都除以19 得x\geqslant-\frac{41}{19}。
初一下不等式实际例题

初一下不等式实际例题今天咱们来一起看看不等式在生活里是怎么用的呀。
就说去商店买东西的事儿吧。
小明有50元钱,他想去买笔记本和铅笔。
一本笔记本10元,一支铅笔2元。
设他能买x本笔记本,y支铅笔。
那买笔记本花的钱就是10x元,买铅笔花的钱就是2y元。
他带的钱有限,所以10x + 2y不能超过50元,这就可以写成10x + 2y ≤ 50。
要是小明特别喜欢笔记本,他想买3本,那把x = 3代入这个式子,就变成30 + 2y ≤ 50。
这时候就可以算出2y ≤ 20,y ≤ 10。
这就意味着他最多能买10支铅笔呢。
再讲个关于分东西的故事。
老师有一堆糖果,要分给班上的同学。
班上有30个同学,设每个同学能分到x颗糖果。
但是老师知道糖果的总数不超过150颗。
那这个情况就可以用不等式30x ≤ 150来表示。
算一下,x ≤ 5。
也就是说每个同学最多能分到5颗糖果。
要是老师说至少要让每个同学分到2颗糖果呢,那又可以列出一个不等式x ≥ 2。
这样就把这个分糖果的情况用不等式都表示清楚啦。
还有搭积木的时候也会有不等式的情况哦。
有一堆小积木,要搭成一些小房子。
每个小房子需要8块积木来搭框架,12块积木来做装饰。
假设能搭成x个小房子。
那用到的积木总数就是(8 + 12)x块。
可是积木总数是有限的,比如说只有200块积木,那就有20x ≤ 200,x ≤ 10。
这就表示最多能搭10个小房子。
从这些例子里,小伙伴们能看出来吧,不等式在咱们生活里到处都有呢。
它能帮我们解决很多关于多少、能不能、最多最少这样的问题。
就像一个小管家,管着各种东西的数量关系。
当我们遇到类似的问题的时候,就可以像这样把实际情况变成不等式,然后再去找到答案。
这样是不是感觉数学也没有那么难啦,而且还特别有趣呢。
最新七年级下数学一元一次不等式组)应用题及练习含答案)

最新七年级下数学一元一次不等式组)应用题及练习含答案)例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元。
1)该校初三年级共有多少人参加春游?2)请你帮该校设计一种最省钱的租车方案。
思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”。
理解这句话,有两层不等关系。
1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数。
2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.答案与解析】解:(1)设租36座的车x辆。
36x。
736x。
42(x-2) + 30.x < 9由题意x应取8,则春游人数为:36×8=288(人)。
2)方案①:租36座车8辆的费用:8×40=3200(元)。
方案②:租42座车7辆的费用:7×440=3080(元)。
方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元)。
所以方案③:租42座车6辆和36座车1辆最省钱。
练一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有 __ 个儿童。
__ 个橘子。
解:设共有x个儿童,y个橘子。
y = 9 + 4xy = 6(x-1) + 3解得x = 21,y = 93.2.5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作。
拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区。
经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李。
人教版七年级下册数学第九章 不等式与不等式组应用题专项训练

人教版七年级下册数学第九章不等式与不等式组应用题专项训练1.已知购进1盆向日葵需10元,购进1盆扶郎花需8元,该花店这次购进向日葵和扶郎花共141盆,共花费1238元.(1)请问花店这次购进向日葵和扶郎花各多少盆?(2)结合具体的场地情况,花店老板决定用6盆向日葵和5盆扶郎花配成1个A造型,2盆向日葵和6盆扶郎花配成1个B造型,且搭配A造型和B造型共15个,有哪几种搭配方案?2.某校成立无人机兴趣小组,需要购买A型和B型两种无人机配件,据了解,购买1个A型配件比B型配件需要多支付50元;购买3个A型配件和2个B型配件需要支付650元.(1)求购买1个A型配件和1个B型配件各需要支付多少元?(2)该学校决定购买A型配件和B型配件共30个,总费用不超过3480元,则最多可以购买多少个A型配件?3.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和3辆B型车,销售额为114万元.本周已售出3辆A型车和2辆B型车,销售额为106万元.(1)求每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,通过计算说明有哪几种购车方案?4.为了更好地开展劳动实践,某校在校园内开辟了一片小菜园.初一年级组想要购进A、B两种蔬菜苗进行种植.若购进A种蔬菜苗7棵,B种蔬菜苗3棵,需要85元;若购进A种蔬菜苗3棵,B种蔬菜苗6棵,需要60元.(1)购进A、B两种蔬菜苗每棵各需多少元?(2)若初一年级组决定购进这两种蔬菜苗共100棵,且用于购买这100棵蔬菜苗的资金不超过765元,那么初一年级组最多可以购进A种蔬菜苗多少棵?5.科技改变世界,随着电子商务的高速发展,快递分拣机器人应运而生.某快递公司启用A种机器人80台,B种机器人100台,1小时共可以分拣8200件包裹;启用A,B两种机器人各50台,1小时共可以分拣4500件包裹.(1)求A,B两种机器人每台每小时各分拣多少件包裹;(2)快递公司计划再购进A,B两种机器人共200台.若要保证购进的这批机器人每小时的总分拣量不少于9000件,求最多应购进A种机器人的台数.6.我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.(1)求购买A,B两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗要多于B种树苗,且用于购买这两种树苗的总资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?哪种购买方案最省钱?7.学校准备一次性购买若干个足球和篮球.若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需要多少元?(2)如果学校计划购买足球和篮球共96个,并要求购买足球和篮球的总费用不超过5720元,那么最多可以购买多少个篮球?8.某单位计划购买甲、乙两种绿色植物美化办公环境.如果购买甲种3件,乙种2件,共需84元;如果购买甲种5件,乙种2件,共需120元.(1)求购买甲、乙两种植物每件各多少元?(2)现要购买甲、乙两种植物共60件,总费用不超过1000元,那么甲种植物最多购买多少件?9.若购买1000只N95医用防护口罩和2000只一次性医用无菌型口罩需用4800元;若购买2000只N95医用防护口罩和3000只一次性医用无菌型口罩需用9200元.(1)求每个N95医用防护口罩和每个一次性医用无菌型口罩各多少元?(2)德强学校七年级决定购买N95医用防护口罩和一次性医用无菌型口罩共10000只,总费用不超过22000元,那么最多可以购买多少只N95医用防护口罩?10.某水果店购进100千克水蜜桃和50千克苹果,苹果的进价是水蜜桃的1.2倍,本次进货共花费800元.(1)求水蜜桃和苹果的进价;(2)在销售过程中,水蜜桃有4%的损耗,若销售完这批水蜜桃利润不低于268元,求水蜜桃售价每千克至少多少元?11.某校购买了甲、乙两种消毒液进行校园环境消毒.已知学校第一次购买了甲种消毒液60瓶和乙种消毒液40瓶,共花费3600元;第二次购买了甲种消毒液40瓶和乙种消毒液60瓶,共花费3400元.(1)每瓶甲种消毒液和每瓶乙种消毒液的价格分别是多少元?(2)学校准备第三次购买这两种消毒液,其中乙种消毒液比甲种消毒液多10瓶,并且总花费不超过3500元,则最多能购买乙种消毒液多少瓶?12.某商店分别以标价的8折和9折销售A、B两种品牌的衬衫各1件,共收款364元.已知这两件衬衫标价的和为420元.(1)这两件衬衫的标价各为多少元?(2)若按标价销售这两种品牌的衬衫共10件,总收款不低于2500元,则销售B品牌的衬衫最少多少件?13.为了增强市民的环保意识,我市准备印制一批宣传册.该宣传册每本共10张彩页,由A、B两种彩页构成.已知A种彩页印刷费3元/张,B种彩页印刷费2元/张,一本宣传册印刷费共计24元.(1)每本宣传册A、B两种彩页各有多少张?(列方程组解答)(2)据了解,印刷的数量超过1 000本时,印刷费用打八折.若使印刷费不超过3.2万元,预计最多能印刷多少本?14.某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进3件甲种农机具和2件乙种农机具共需4万元,购进1件甲种农机具和4件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9万元又不超过10万元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?15.根据食堂采购的信息显示:食堂购买1袋大米和2袋面粉需要1600元,购买2袋大米和1袋面粉需要1400元.(1)求每袋大米、每袋面粉各多少元?(2)由于疫情,需要适当屯粮,计划购进大米和面粉共200袋,总费用不超过8.8万元,不低于8.7万.请你帮食堂采购计算有多少种购买方案?16.某中学计划为地理兴趣小组购买大、小两种地球仪,若购买1个大地球仪和3个小地球仪需用136元;若购买2个大地球仪和1个小地球仪需用132元.(1)求每个大地球仪和每个小地球仪各多少钱?(2)该中学决定购买以上两种地球仪共30个,总费用不超过980元,那么至少要购买多少个小地球仪?17.有大小两种货车,3辆大货车和2辆小货车一次共运货17吨,6辆大货车和3辆小货车一次共运货31.5吨.(1)求每辆大货车和每辆小货车一次分别可以运货多少吨?(2)若要安排10辆货车运输至少35吨的货物,则至少安排多少辆大货车?18.某校组织七年级学生和带队教师共650人参加一次大型公益活动,已知学生人数的一半比带队教师人数的10倍还多10人.学校计划租赁30座的A型中巴车和45座的B型中巴车共16辆(两种车都租),A 型中巴车每辆日租金900元,B型中巴车每辆日租金1200元.(1)参观活动的七年级学生和带队教师各有多少人?(2)共有几种不同的租车方案?最少的租车费用为多少元?19.某汽车专卖店销售甲、乙两种型号的新能源汽车,某月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)某公司准备向该汽车专卖店购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?从公司节约的角度考虑,你会选择哪种购车方案?20.疫情期间,小明准备用今年拿到的3000元压岁钱去药店采购一批防疫物资支援湖北武汉.他若购买4件隔离衣和1盒N95口罩共需180元;若购买5件隔离衣和2盒N95口罩共需285元.(1)求每件隔离衣、每盒N95口罩的价格分别是多少元;(2)已知小明购买N95口罩的盒数比购买隔离衣的件数多8,并且准备购买隔离衣和N95口罩的总数量不少于50,那么小明用现有压岁钱可以有哪几种购买方案?。
七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册不等式组《方案选择》专题1、为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 和B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元。
(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担。
规定若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元。
请问共有哪几种改扩建方案?解:(1)设改扩建1所A 类学校需资金x 万元,改扩建1所B 类学校需资金y 万元则依题意可得⎩⎨⎧=+=+54003780032y x y x∴⎩⎨⎧==18001200y x ∴改扩建1所A 类学校需资金1200万元,改扩建1所B 类学校需资金1800万元 (2)设改扩建A 类学校m 所,则改扩建B 类学校(10-m )所依题意可得:()()()()⎩⎨⎧≥-+≤--+-400010500300118001050018003001200m m m m∴⎩⎨⎧≥-+≤-+4000500500030011800130013000900m m m m ∴⎩⎨⎧≤≥53m m∴53≤≤m ∵m 是正整数 ∴m=3或4或5 即共有3种方案方案一:改扩建A 类学校3所,B 类学校7所 方案二:改扩建A 类学校4所,B 类学校6所 方案三:改扩建A 类学校5所,B 类学校5所2、某房地产开发公司计划建A、B两种户型的住房共80套。
该公司所筹资金不少于2090万元,但不超过2096万元。
且所筹资金全部用于建房,两种户型的建房成本和售价如下表(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司如何建房获得利润最大?解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套根据题意,得()()⎩⎨⎧≤-+≥-+20968028252090802825xxxx,解得48≤x≤50∵x取非负整数,∴x为48,49,50(2由题意知:W=5x+6(80-x)=480-x∵k=-1,W随x的增大而减小∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套当a=l时,a-1=0,三种建房方案获得利润相等当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套3、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册。
人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练1.列方程组或不等式解决问题:2022年北京冬奥会、冬残奥会已圆满结束,活泼敦厚的“冰墩墩”,喜庆祥和的“雪容融”引起广大民众的喜爱.王老师想要购买两种吉祥物作为本次冬奥会的纪念品,已知购买2件“冰墩墩”和1件“雪容融”共需150元,购买3件“冰墩墩”和2件“雪容融”共需245元.(1)求“冰墩墩”和“雪容融”的单价;(2)学校现需一次性购买上述型号的“冰墩墩”和“雪容融”纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个“冰墩墩”?2.为支援上海抗击新冠肺炎,甲地捐赠多批救援物资并联系了一家快递公司进行运送.快递公司准备安排A、B两种车型把这批物资从甲地快速送到上海.其中,从甲地到上海,A型货车1辆、B型货车1辆,一共需补贴油费1000元;A型货车10辆、B 型货车6辆,一共需补贴油费8400元.(1)从甲地到上海,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)如果需派出20辆车,并且预算油费补贴不超过9600元,那么该快递公司至多能派出几辆A型货车?3.开学前夕,某书店计划购进A、B两种笔记本共350 本.已知A种笔记本的进价为12 元/本,B种笔记本的进价为15 元/本,共计4800 元.(1)请问购进了A种笔记本多少本?(2)在销售过程中,A、B两种笔记本的标价分别为20元/本、25元/本.受疫情影响,两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折全部售出,剩余的B种笔记本按成本价清货,若两种笔记本的总利润不少于2348元,请求出m的最小值.4.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11000元,84消毒液和酒精的进价和售价如下:(1)该药房销售完这批84消毒液和酒精后共获利5400元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,结合药房实际,该药房打算用不超过6600元钱再次采购84消毒液和酒精共300瓶,已知84消毒液和酒精价格不变,则第二批最多采购84消毒液多少瓶?5.小玉计划购买A、B两种饮料,若购买8瓶A种饮料和5瓶B种饮料需用220元;若购买4瓶A种饮料和6瓶B种饮料需用152元.(1)求每瓶A种饮料和B种饮料各多少元;(2)小玉决定购买A种饮料和B种饮料共15瓶,总费用不超过260元,那么最多可以购买多少瓶A种饮料?6.小明家新买了一套住房,打算装修一下,春节前住进去.现有甲、乙两家装修公司可供选择,这两家装修公司提供的信息如下表所示:若设需要x天装修完毕,请解答下列问题:(1)请分别用含x的代数式,写出甲、乙两家公司的装修总费用;(2)当装修天数为多少时,两家公司的装修总费用一样多?(3)根据装修天数x讨论选择哪家装修公司更合算(提示:结合(2)中的结论进行分类解决问题).7.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台?8.为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.如表是某服装厂给出服装的价格表:(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.9.某电器超市销售每台进价分别为140元、100元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备用不多于6500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过2850元的目标?若能,请给出相应的采购方案:若不能,请说明理由.10.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;购进A种商品6件和B种商品8件需440元.(1)A、B两种商品每件的进价分别为多少元?(2)若该商店A种商品每件的售价为48元,B种商品每件的售价为31元,该商店准备购进A、B两种商品共50件,且这两种商品全部售出后总获利不低于344元,则至少购进多少件A种商品?11.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?12.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?13.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;若购进A种商品6件和B种商品8件需440元.(1)求A、B两种商品每件的进价分别为多少元?(2)商店准备用不超过1615元购进50件这两种商品,求购进A种商品最多是多少件?14.某超市共用24000元同时购进甲、乙两种型号书包各200个,购进甲型号书包40个比购进乙型书包30个少用100元.(1)求甲、乙两种型号书包的进价各为多少元?(2)若超市把甲、乙两种型号书包均按每个90元定价进行零售,同时为扩大销售,拿出一部分书包按零售价的8折进行优惠销售.商场在这批背包全部售完后,若总获利不低于10200元,则超市用于优惠销售的书包数量最多为多少个?15.某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.(1)求A,B两种工艺品的单价;(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?16.每年的4月22日是世界地球日.某校为响应“携手为保护地球投资”的号召计划购入,A B两种规格的分类垃圾桶,用于垃圾分类.若购买A种垃圾桶30个和B种垃圾桶20个共需1020元;若购买A种垃圾桶50个和B种垃圾桶40个共需1860元.(1),A B两种垃圾桶的单价分别是多少元?(2)若该校最多有4360元用于购买这两种规格的垃圾桶共200个,则B种垃圾桶最多可以买________个.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A,B两种商品的单价分别是多少元?(2)已知该商店购买A,B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A,B两种商品的总费用不超过276元,那么该商店有几种购买方案?18.每年一度的中考牵动着数万家长的心,为了给考生一个良好的环境,某市教委规定每个考场安排考生数是固定的人数,该市A 区的9000 名考生安排的考场数比B 区3000人安排的考场数多200个.(1)求每个考场安排固定考生的人数;(2)该市C区共有可作为考场的大小教室共300 间,由于今年疫情影响,该市教委要求大教室按原固定人数的80%安排考生,小教室按原固定人数的50%安排考生,若该市C 区共有考生6300 人,则至少需要有多少间大教室.19.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,并且购买20个冰墩墩和30个雪容融的价格相同.(1)问每个冰墩墩和雪容融的进价分别是多少元?(2)根据市场实际,供应商计划用20000元购进这两种吉祥物200个,则他本次采购时最多可以购进多少个冰墩墩?20.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.已知工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?参考答案:1.(1)“冰墩墩”和“雪容融”的单价分别为55元,40元(2)最多可以购买66个“冰墩墩”2.(1)每辆A型货车补贴油费600元,每辆B型货车补贴油费400元.(2)该快递公司至多能派出8辆A型货车.3.(1)购进了A种笔记本150本;(2)m的最小值128.4.(1)84消毒液销售了200瓶,酒精销售了300瓶;(2)120瓶5.(1)每瓶A种饮料20元,每瓶B种饮料12元(2)10瓶6.(1)甲公司的总费用为(900x+2700)元,乙公司的总费用为(960x+1500)元;(2)当装修天数为20天时,两家公司的装修总费用一样多;(3)当x<20时,乙装修公司更合算;当x=20时,两家装修公司一样;当x>20时,甲装修公司更合算.7.(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台8.(1)七年级52人,八年级40人;(2)两个年级一起买91套时最省钱;9.(1)A、B两种型号的电风扇的销售单价分别为200元和150元(2)A种型号的电风扇最多能采购37台(3)能实现利润超过2850元的目标,相应方案有两种:方案一:购买A种型号的电风扇36台,购买B种型号的电风扇14台;方案二:购买A种型号的电风扇37台,购买B种型号的电风扇13台10.(1)A种商品每件的进价为40元,B种商品每件的进价为25元(2)至少购进22件A种商品11.(1)购买1件A道具需要15元,1件B道具需要5元(2)道具A最多购买32件12.(1)一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨(2)有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.13.(1)A种商品每件进价40元,B种商品每件进价25元(2)24件14.(1)A、B两种型号书包的进货单价各为50元、70元;(2)商场用于优惠销售的书包数量为100个.15.(1)A种工艺品的单价为80元,B种工艺品的单价为120元(2)共有3种进货方案16.(1)A种垃圾桶的单价熟练掌握18元,B种垃圾桶的单价是24元.(2)12617.(1)A种商品的单价为16元、B种商品的单价为4元(2)有四种方案,方案一:购买A商品的件数为10件,购买B商品的件数为20件;方案二:购买A商品的件数为11件,购买B商品的件数为19件;方案三:购买A商品的件数为12件,购买B商品的件数为18件;方案四:购买A商品的件数为13件,购买B商品的件数为17件.18.(1)每个考场安排固定考生的人数为30人;(2)至少需要有200间大教室.19.(1)今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元(2)最多可以购进100个冰墩墩20.共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件。
人教版七年级数学下册-一元一次不等式应用题-培优练习(含答案)

人教版七年级数学下册-一元一次不等式应用题-培优练习(含答案)1.某公司要运送一批参展货物去参加2011年西安世界园艺博览会,使用几辆载重为8吨的汽车。
如果每辆汽车只装4吨,则剩下20吨货物;如果每辆汽车装满8吨,则最后一辆汽车不空也不满。
求共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,其中西红柿和西兰花的批发价和零售价如下表所示:蔬菜品种 | 批发价(元/kg) | 零售价(元/kg) |西红柿。
| 3.6.| 5.4.|西兰花。
| 8.| 14.|1)第一天该经营户批发了西红柿和西兰花两种蔬菜共300kg,用去了1520元。
这两种蔬菜当天全部售完后,一共能赚多少钱?请列方程组求解。
2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.“六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具。
若购进甲种玩具80个,乙种玩具40个,需要800元;若购进甲种玩具50个,乙种玩具30个,需要550元。
1)求益智玩具店购进甲、乙两种玩具每个需要多少元?2)若益智玩具店准备1000元全部用来购进甲、乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.XXX为学校购买运动会的奖品后,回学校向后勤XXX 老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元。
”XXX算了一下,说:“你肯定搞错了。
”1)XXX为什么说他搞错了?试用方程的知识给予解释。
2)XXX连忙拿出购物,发现的确弄错了,因为他还买了一个笔记本。
但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元。
不等式应用题大全-附答案

不等式应用题大全-附答案(共11页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元:⑴什么情况下,购会员证与不购会员证付一样的钱⑵什么情况下,购会员证比不购会员证更合算⑶什么情况下,不够会员证比购会员证更合算注意:解题过程完整,分步骤,能用方程解的用方程解80+X=3x80=2XX=40X=40,购会员证与不购会员证付一样的钱X>40购会员证比不购会员证更合算X<40不够会员证比购会员证更合算2.下列是3家公司的广告:甲公司:招聘1人,年薪3万,一年后,每年加薪2000元乙公司:招聘1人,半年薪1万,半年后按每半年20%递增.丙公司:招聘1人,月薪2000元,一年后每月加薪100元你如果应聘,打算选择哪家公司(合同期为2年)甲:3+=万乙:1++*+**=1+++=万丙:*24+++++……=+=万甲工资最高,去甲3.某风景区集体门票的收费标准是:20人以内(含20人)。
每人25元,超过20人的,超过的部分每人10元,某班51名学生该风景区浏览,购买门票要话多少钱20*25+(51-20)*10=810(元)4.某公司推销某种产品,付给推销员每月的工资有两种方案:方案一:不计推销多少都有600元底薪,每推销一件产品加付推销费2元;方案二:不付底薪,每推销一件产品,付给推销费5元;若小明一个月推销产品300件,那么他应选择哪一种工资方案比较合算为什么方案一:600+2×300=1200(元)方案二:300×5=1500(元)所以方案二合算。
5.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖出这两件衣服总的是盈利还是亏损,或是不盈不亏设其中一件衣服原价是X无,另一件是Y元,那么X(1+25%)=60,得X=40Y(1-25%)=60,得Y=80总的情况是售价-原价,40+80-60*2=0所以是不盈不亏6小明在第一次数学测验中得了82分,在第二次测验中得了96分,在第三次测验中至少得多少分。
七年级数学不等式组典型例题

七年级数学不等式组典型例题七年级数学不等式组典型例题通常涉及一元一次不等式组和二元一次不等式组。
以下是一些常见的例题:1. 某工厂生产甲、乙两种产品,每天总共生产 100 件,其中甲产品利润为每件 30 元,乙产品利润为每件 50 元,共获得 4500 元利润,如果每天生产的甲、乙产品数量比为 3:2,则甲、乙产品每件的成本分别为多少元?解:设甲、乙产品每件的成本分别为 x、y 元。
则 3x+2y=45001x+y=1002由 1 式可得 x=25,代入 2 式可得 y=75。
因此,甲、乙产品每件的成本分别为 25 元和 75 元。
2. 某班级举行课外活动,分成甲乙两个小组,甲组有 6 人,乙组有 4 人,共捐款 117 元,如果甲、乙两组各增加 2 人,则甲组比乙组多捐款 27 元,问甲、乙两组原来各有多少人?解:设甲组原来有 x 人,乙组原来有 y 人。
则 x+y=101x-y=272由 1 式可得 y=10-x,代入 2 式可得 x=8,y=2。
因此,甲组原来有 8 人,乙组原来有 2 人。
3. 不等式组 3x-2>5,4x+3<11 的解为 x<1.5,则不等式组3x+2>5,4x-3<11 的解为 x>0.5,则原不等式组的解为 x<0.5 或x>1.5。
解:由 3x-2>5,4x+3<11 可知 x<1.5 或 x>5.5。
因此,不等式组 3x+2>5,4x-3<11 的解为 x<0.5 或 x>1.5。
以上是一些常见的七年级数学不等式组典型例题,涉及到一元一次不等式组和二元一次不等式组,通过求解不等式组,可以求出不等式组的解,从而得到产品的成本、人数等数据。
解不等式例题50道

解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。
- 计算右边式子得2x>4。
- 两边同时除以2,解得x > 2。
2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。
- 即3x<9。
- 两边同时除以3,解得x<3。
3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。
- 计算得3x≤slant6。
- 两边同时除以3,解得x≤slant2。
4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。
- 即x≥slant8。
5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。
- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。
- 两边同时乘以 - 2,不等号变向,解得x < 8。
6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。
- 计算得(1)/(3)x≤slant3。
- 两边同时乘以3,解得x≤slant9。
7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。
- 移项得2x-3x>-3 - 6。
- 计算得-x>-9。
- 两边同时乘以 - 1,不等号变向,解得x < 9。
8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。
- 移项得3x-2x≤slant2+6。
- 计算得x≤slant8。
初中不等式经典例题

初中不等式经典例题一、例题11. 若不等式3x - a ≤ 0的正整数解是1、2、3,求a的取值范围。
这题啊,可有点小绕呢。
首先我们来解这个不等式3x - a ≤ 0,把它变形一下就得到x ≤ a/3。
正整数解是1、2、3,那就是说3肯定是满足这个不等式的,所以3 ≤ a/3,这就得出a ≥ 9。
但是呢,4就不满足这个不等式了,要是4满足的话正整数解就不止1、2、3了,所以4 > a/3,也就是a < 12。
所以啊,a的取值范围就是9 ≤ a < 12。
2. 已知关于x的不等式组{x - a > 0,1 - x > 0}的整数解共有3个,求a的取值范围。
先看这个不等式组,x - a > 0,那就是x > a;1 - x > 0,变形一下就是x < 1。
这个不等式组的解集就是a < x < 1。
它的整数解共有3个,那这三个整数解肯定是 - 2, - 1,0啊。
所以 - 3 ≤ a < - 2。
为什么呢?要是a < - 3的话,整数解就不止3个了,要是a ≥ - 2的话,整数解就没3个了,是不是很有趣呢?二、例题21. 解不等式2(x - 1) + 5 < 3x。
这题看着简单,可也有不少同学会犯错哦。
我们先把括号展开,2x - 2 + 5 < 3x,然后把含有x的项移到一边,常数项移到另一边,就得到2x - 3x < 2 - 5,也就是 - x < - 3。
两边同时除以 - 1,注意哦,除以一个负数的时候,不等式要变号,所以x > 3。
2. 若不等式组{x + 8 < 4x - 1,x > m}的解集是x > 3,求m 的取值范围。
先解x + 8 < 4x - 1,移项得到x - 4x < - 1 - 8, - 3x < - 9,x > 3。
这个不等式组的解集是x > 3,还有个x > m,那m肯定是小于等于3的。
7年级不等式解应用题(含答案)

七年级不等式应用题专项训练1、某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A、B两种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克,生产成本是120元;生产一件B产品需要甲种原料2.5千克,乙种原料3.5千克,生产成本是200元。
(1)该化工厂现有原料能否保证生产?若能的话,有几种生产方案?请设计出来。
(2)试分析你设计的哪种生产方案总造价最低?最低造价是多少?(1)设生产A产品m件,生产B产品n件.5m+2.5n<=2901.5m+3.5n<=212m+n=80m=34,35,36n=46,45,44共3种(2)其中一种的件数为x,另一种的件数为(80-x)若A的件数为x,则y=16000-80x若B的件数为x,则y=9600+80x因为y=16000-80x是减函数,所以x越大,值越小.所以x=36时,有最小值此时y=13120y=9600+80x是增函数,所以x越小,值越小,所以x=44时值最小,此时y=13120所以这时都是A是36件,B是44件,此时最少为131202、为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)解:(1)设购买污水处理设备A型x台,则B型(10-x)台。
由题意知,12x+10(10-x)≤105,x≥2.5∵x取非负整数,∴x可取0,1,2.∴有三种购买方案:购A型0台,B型10台;购A型1台;B型9,购A型2台,B型8台。
(2)由题意得240x+200(10-x)≥2040,x≥1,∴x为1或2当x=1时,购买资金为12×1+10×9=102(万元)当x=2时,购买资金为12×2+10×8=104(万元)∴为了节约资金,应选购A型1台,B型9台3、我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?解:设有x间住房,有y名学生住宿,则有y=5x+12,根据题意得:8x-(5x+12)>0 8x-(5x+12)<8 解得4<x<6 2/ 3 .因为x为整数,所以x可取5,6,把x的值代入y=5x+12得:y的值为37,42.答:该校可能有5间或6间住房,当有5间住房时,住宿学生有37人;当有6间住房时,住宿学生有42人.4、某园林的门票每张10,一次使用。
初一下不等式应用题(带答案)

不等式应用题提升训练1、去年某市空气质量良好的天数与全年的天数(365)之比达到60%,如果明年(365天)这样的比值要超过70 %,那么明年空气质量良好的天数要比去年至少增加多少?2、甲、乙两商场以同样价格出售同样商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90 %收费;在乙商场累计购物超过50元后,超出50元的部分按95 %收费;顾客到哪家商场购物花费少?3, 某工程队计划在10天内修路6km,施工前两天修完1.2 km以后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少?4, 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少分?5, 某商店以每辆250元的进价购入200辆自行车,并且以每辆275元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车?6, 在长跑赛中,张华跑在前面,在离终点100m时他以4m/s的速度象终点冲刺,在他身后10m的李明需以多快的速度同时开始冲刺,才能够在张华之前到达终点?7某工厂前年有员工280人,去年经过结构改革减员40人,全厂年利润增加100万元,人均创利至少增加6000元, 前年全厂年利润至少是多少?8,苹果的进价是每千克1.5元,销售中估计有5%的苹果正常损耗,商家把售价至少定为多少,就能避免亏本?9.,电脑公司销售一批计算机,第一个月以5500元/台的价格售出60台,第二个月起降价,以5000元/台的价格将这批计算机全部售出,销售款总额超过55万元。
这批计算机至少有多少台?10,老张与老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔数增加了2只,老李养兔数比买入种兔数的22倍少1只,老张养兔数不超过老李养兔数的3,—年前老张至少买了多少只种兔?1, 解:设明年空气质量良好的天数比去年增加了x 70100所以:x_372, 解:(1)当累计购物不超过 50元时,到两商场购物花费一样。
初一下数学不等式应用题汇总

初一下数学不等式应用题汇总例1、甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。
顾客怎样选择商店购物能获得更大优惠?首先考虑一下:甲商店优惠方案的起点为购物款达元后;乙商店优惠方案的起点为购物款达元后(1)现在有4个人,准备分别消费40元、80元、140元、160元,那么去哪家商店更合算?为什么?(2)如果累计购物超过100元,那么在甲店购物花费小吗?(3)累计购物超过100元而不到150元时,在哪个店购物花费小?累计购物恰好是150元时,在哪个店购物花费小?(4)根据甲乙商店的销售方案,顾客怎样选择商店购物能获得更大优惠?你能为消费者设计一套方案吗?解:设累计购物X元(X>100),如果在甲店购物花费小,则50+0.95(X-50)>100+0.9(X-100)得 X>150答:累计购物超过150元时在甲店购物花费小例2、某班同学外出春游,需拍照合影留念;若一张底片需0.57元,冲印一张需0.35元,每人预定得到一张而且出钱不超过0.45元,问参加合影的同学至少有几人?答案(不是唯一的,仅作参考)及评分标准:解:设参加合影的同学至少有X人,根据题意,得:………1分0.57 + 0.35 X ≧ 0.45X……… 2分解这个不等式,得:X≧5.7 因为参加的人数只能是整数,所以参加的人数至少是6人。
……… 1分答:参加合影的同学至少有6人。
……… 1分例3、某服装厂现有A种布料70米、B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号时装需要用A种布料0.6米、B种布料0.9米,可获利润45元,做一套N型号的时装需要用A种布料1.1米、B种布料0.4米,可获利润50元,请你设计最佳方案。
分析:我们可以将问题转化为一元一次不等式组的问题来求解。
不等式经典例题

不等式经典例题一、一元一次不等式例1:解不等式2x + 3>5x - 11. 移项- 将含有x的项移到一边,常数项移到另一边。
- 得到2x-5x > - 1 - 3。
2. 合并同类项- 计算得-3x>-4。
3. 求解x的范围- 两边同时除以-3,因为除以一个负数,不等式要变号。
- 所以x <(4)/(3)。
二、一元一次不等式组例2:解不等式组x + 3>2x - 1 2x - 1≥(1)/(2)x1. 解第一个不等式x + 3>2x - 1- 移项可得x-2x > - 1 - 3。
- 合并同类项得-x>-4。
- 两边同时除以-1,不等式变号,解得x < 4。
2. 解第二个不等式2x - 1≥(1)/(2)x- 移项得到2x-(1)/(2)x≥1。
- 合并同类项(3)/(2)x≥1。
- 两边同时乘以(2)/(3),解得x≥(2)/(3)。
3. 综合两个不等式的解- 所以不等式组的解集为(2)/(3)≤x < 4。
三、一元二次不等式例3:解不等式x^2-3x + 2>01. 因式分解- 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)>0。
2. 分析不等式的解- 要使(x - 1)(x - 2)>0成立,则有两种情况:- 情况一:x - 1>0 x - 2>0,即x>1 x>2,取交集得x>2。
- 情况二:x - 1<0 x - 2<0,即x<1 x<2,取交集得x<1。
- 所以不等式的解集为x < 1或x>2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一下数学不等式应用
题汇总
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
初一下数学不等式应用题汇总
例1、甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。
顾客怎样选择商店购物能获得更大优惠?
首先考虑一下:
甲商店优惠方案的起点为购物款达元后;
乙商店优惠方案的起点为购物款达元后
(1)现在有4个人,准备分别消费40元、80元、140元、160元,那么去哪家商店更合算为什么
(2)如果累计购物超过100元,那么在甲店购物花费小吗?
(3)累计购物超过100元而不到150元时,在哪个店购物花费小?累计购物恰好是150元时,在哪个店购物花费小?
(4)根据甲乙商店的销售方案,顾客怎样选择商店购物能获得更大优惠你能为消费者设计一套方案吗
解:设累计购物X元(X>100),如果在甲店购物花费小,则
50+0.95(X-50)>100+0.9(X-100)
得 X>150
答:累计购物超过150元时在甲店购物花费小
例2、某班同学外出春游,需拍照合影留念;若一张底片需0.57元,冲印一张需0.35元,每人预定得到一张而且出钱不超过0.45元,问参加合影的同学至少有几人?
答案(不是唯一的,仅作参考)及评分标准:
解:设参加合影的同学至少有X人,根据题意,得:……… 1分
0.57 + 0.35 X ≧ 0.45X……… 2分
解这个不等式,得:X≧5.7 因为参加的人数只能是整数,所以参加的人数至少是6人。
……… 1分
答:参加合影的同学至少有6人。
……… 1分
例3、某服装厂现有A种布料70米、B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号时装需要用A种布料0.6米、B种布料0.9米,可获利润45元,做一套N型号的时装需要用A种布料1.1米、 B种布料0.4米,可获利润50元,请你设计最佳方案。
分析:我们可以将问题转化为一元一次不等式组的问题来求解。
(参考解:设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元,根据题意
0.6(80-x)+1.1x≤70,
0.9(80-x)+0.4x≤52
∴ 40≤x≤44;
∵x的取值范围是40、41、42、43、44,又y=50x+45(80-x),即y=5x+3600。
由观察知:当x=44时,y有最大值,最大值为5x44+3600=3820,即当N型号的时装为44套时,所获利润最大,最大利润为3820元
例4、某学校需刻录一批教学用的VCD 光盘,若电脑公司刻录,每张需9元(包括空白VCD 光盘费);若学校自刻,除租用刻录机需120元外,每张还需成本4元(包括空白VCD 光盘费)。
问刻录这批VCD 光盘,到电脑公司刻录费用省,还是自刻费用省?请说明理由。
教师:同学们仍然分组讨论交流。
设需刻录x 张VCD 光盘,则到电脑公司刻录需9x 元,自刻需要(120+4x)元。
当9x>120+4x 时,即x>24时,自刻费用省。
当9x=120+4x 时,即x=24时,到电脑公司与自刻费用一样。
当9x<120+4x 时,即x<24时,到电脑公司刻录费用省。
例5、一个长方形足球场的长为xm ,宽为70m ;如果它的周长大于350m ,面积小于75602
m ,求x 的取值范围,并判断这个球场是否可以用作国际足球比赛o
(注:用于国际比赛的足球场的长在100m 到110m 之间,宽在64m 到75m 之间) 参考解:依据长方形的周长和面积公式,得 2(x+70)>350, ① 70x < 7560 ② 解:①得x>105,解②得x<108. ∴ 105<x<108.
根据国际比赛足球场的要求,该球场可以用作国际足球比赛。
例6、假如你是一位具有环境意识的企业家,决策者,你该怎么办?
为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设
(1)请你设计该企业有几种购买方案;
(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案。
分析:如果设购买A 型污水处理设备x 台,则购买B 型设备为(10-x)台,那么可以用含x 的代数式表示购买设备的资金总额为12x+10(10-x)万元。
“不高于”即为“≤”,可列出不等式来解。
解:(1)设购买A 型污水处理设备x 台,则购买B 型设备(10-x)台,由题意知 12x+10(10-x)≤105,x ≤2.5 ∵x 取非负整数,∴x 可取0、1、2.
∴有三种不同购买方案,购A 型0台,B 型10台;购A 型1台,B 型9台; 购A 型2台,购B 型8台。
(2)由题意得240x+200(10-x)≥2040. 解得 x ≥l
∵x ≥l ,∴x 取l 或2.
X=1时,购买资金为 12xl+10x9=102(万元); 当x=2时,购买资金为 12x2+10x8=104(万元)o ∴为了节约资金,应选购A 型1台,B 型9台。
1、用不等式表示: 1)b 不是正数: ; b 是非负数: ; x 的一半小于-1 : ;y 与4的和大于0.5: 。
(2)x 的2倍大于x :
(3)y 的21
与3的差是负数:
(4)3Y与7的和的四分之一小于-2
(5)a与b的差是非负数:
2、a取什么值时,代数式4a+2的值:
(1)大于1?(2)等于1?(3)小于1?
3、学校举行的“我与法”的知识竞赛中共有20道题.对于每一道题,答对了得10分,答错或不答扣5分.至少要答对几道题,其得分不少于80分
(列出算式,不要求求解)
你能解决吗?分组讨论.
根据上列分析可列出不等式为:_________________________---80.
4、一个工程队原定10天内至少要挖掘600m 3
的土方,在前两天共完成了120m
3
后,又
要求提前2天完成挖掘土方任务,问以后几天内,平均每天至少要挖掘多少土方(
列出算式,不要求求解)。
5、某园林的门票每张10,一次使用。
考虑到人们的不同需求,也为了吸收更多的少游客,该园林除保留原有的售票方法外,还推出了一种“购买个人年票”的售票方法(个人
年票从购买日起,可供持票者使用一年)。
年票分A、B、C三类:A类年票每张120元,持票者是入该园林时,无需再购买门票;B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果您只选择一种购买门票的方式,并且您计划在一年中花80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。
6.某单位计划在新年期间组织员工到某地旅游,参如旅游的的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠,该单位选择哪一家旅行社支付的旅游费用较少?
7.有10名菜农,每人种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元。
若要使菜农的总收入不低于15.6万元,则最多只能安排多少人种甲种蔬菜?
8、小兰准备用30元买钢笔和笔记本,已知一支钢笔4.5元,一本笔记本3元。
(1)她买了5本笔记本,则她最多还可以买多少支钢笔?
(2)钢笔和笔记本共8件,则她最多可以买多少支钢笔?
(3)如果她钢笔和笔记本共买了8件,则她有多少种购买方案?
9、学生若干人,住若干宿舍,如果每间住4人,那么还有18人没有宿舍住;如果每间住6人,那么有一间宿舍没住满,求该校住宿人数和宿舍间数。
10、甲.乙两家商店出售同样的茶壶和茶杯,茶壶每只定价都是20元,茶杯每只定价都是5元.两家商店的优惠办法不同:甲商店是购买1只茶壶赠送1只茶杯;乙商店是按售价的确92%收款.某顾客需购买4只茶壶.若干只(超过4只)茶杯,去哪家商店购买优惠更多
11、某工程队计划在10天内修路6千米,施工前2天修完1.2米后,计划发生变化,准备提前2天完成修路任务,以后几天平均每天至少要修路多少千米。