专题02 曲线的切线问题探究
专题02 曲线的切线方程(解析版)
专题02 曲线的切线方程(解析版)曲线的切线方程(解析版)切线是解析几何中的重要概念,用于描述曲线上某一点处的变化趋势。
在本专题中,我们将重点探讨曲线的切线方程的求解方法,并应用于具体的实例中。
本文将以清晰的语言和整洁的排版,详细介绍曲线的切线方程的推导过程和应用要点,让读者更好地理解和掌握该知识点。
一、切线的定义与性质在开始讨论曲线的切线方程之前,首先需要了解切线的定义与性质。
切线是指曲线上一点处切线与曲线相切的直线。
切线具有以下几个性质:1. 切线与曲线相切于切点,切点的坐标可以通过求解方程组得到;2. 切线的斜率等于曲线在切点处的导数值;3. 切线与曲线的切点处的曲线方程相同。
了解了切线的定义与性质后,我们可以进一步推导切线方程的求解方法。
二、切线方程的求解方法求解曲线的切线方程有几种不同的方法,如点斜式、两点式和一般式。
在本文中,我们将着重介绍点斜式和两点式这两种方法。
1. 点斜式点斜式是一种简单、直观的求解切线方程的方法。
设曲线的方程为y = f(x),切点坐标为(x0, y0),曲线在切点处的斜率为k。
则切线的方程可以表示为:y - y0 = k(x - x0)其中,k可以通过求解曲线的导数得到。
通过代入切点的坐标和斜率的值,即可得到切线方程。
2. 两点式两点式是另一种常用的求解切线方程的方法。
设曲线上两点坐标分别为(x1, y1)和(x2, y2),则切线的方程可以表示为:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)通过代入曲线上已知的两点坐标,即可得到切线方程。
三、切线方程的应用切线方程作为解析几何中的重要工具,在数学和实际应用中有着广泛的应用。
以下是几个常见的应用场景:1. 切线与法线切线和法线是曲线上两条最基本的直线。
切线与曲线在切点处相切,而法线与切线垂直。
根据切线方程的求解方法,我们可以进一步得到法线的方程。
2. 最大和最小值对于一个函数,其最大值和最小值通常出现在函数曲线的切线与x轴相交的点处。
曲线的切线(详解)
曲线的切线(详解)曲线的切线一、基础知识:1、切线的定义:设P是曲线上的一点,Q是曲线上与P邻近的一点。
当点Q沿着曲线无限接近点P时,如果割线PQ有一个极限位置PT,那么直线PT就叫做曲线在点P处的切线。
2、函数y=f(x)在x=x0处可导,则曲线y=f(x)在点P处的切线方程是:y-f(x0)=f'(x0)(x-x0)3、关于切线的几个问题:(1)曲线的切线和曲线可以有几个交点?(答:可以有无数个交点)(2)直线y=kx+b在其上一点P处有切线吗?(答:有,切线与直线重合)二、例题选讲:例1 下列曲线在点x=0处没有切线的是()(A)y=x3+sinx (B)y=x+cosx (C)y=xx+1 (D)y=|x|答:选D,因为它在x=0处没有导数且不符合切线定义。
问1:(B)中函数在x=0处也没有导数,它有切线吗?答:有,切线为直线x=0。
小结:f(x)在x0处可导⇒f(x)在x0处有切线,反之不成立f(x)在x0处不可导≠>f(x)在x0处没有切线。
问2:既然不能从可导不可导来判定是否存在切线,那么怎么来判定呢?答:围绕定义。
小结:要深入体会运动变化思想:两个不同的公共点→两公共点无限接近→两公共点重合(切点),从而割线→切线。
3例2 已知曲线y=。
x+33(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程。
解:(1)所求切线斜率k=4,故所求切线方程为y-4=4(x-2),即4x-y-4=04(2)设曲线与过点P的切线相切于点A(x0,1),则切线的斜率k=y'|x=x0=x0,x0+∴切线方程为y-(, 3x0+3)=x0(x-x0)3232∵点P(2,4)在切线上,∴4-( 3x0+3)=x0(2-x0)32解得x0=2或-1,故所求的切线方程为:4x-y-4=0或x-y+2=0。
变式:从点(-1,1)向曲线y=x+1引切线,试求切线的方程。
切线问题的疑惑与探究
人教 版全 日制普通高级 中学 《 数学》 第三册 ( 选 修 2在 P 18 ) .1 处给出: P和 Q是 曲线 上邻 设
四、有关曲线切线方程的典型例题 及解答
例1 已知曲线Y +等 =寺 .
一
数学教学
・
21年第 4 01 期
.
() 1 求曲线在点 P(,) 24处的切线方程; () 2 求曲线过点 P(,) 24的切线方程. 分析: 过点 P的切线中, P不一定是切点, 点 点P也不一定在 已知 曲线上; 而在点 P处的切线,
/
pI
PI ,/ o \ 詈) 2 处的切线方程是1x 3 一1 =0但 2一 6 ,
/ ^ .\
该 线 线 有 个 共点(4 警 )它 切 与曲 还 一 公 一, . 一
们共有两个公共点, 一个是切点, 一个不是切点.
又如正弦曲线Y=s X i 在点PI , ) n 1 处的切线
一
() 1 若原点是切点, 惫 2 则 = ,
() 2 若原 点不是切 点, 设切点为 0 0(o , )
≠0, ) 则k= Y _ o
.
等 t , 方程9 ) 只 个相异实 ,=0即 ( :0 有两 £ 根.
由(O o在曲线一知Y = —33 Z. X, ) Y k o 8 +2o
o
这是课堂里的一段真实情境, 课堂气氛顿时
活跃了许 多. 这两个同学所持意见发人深思, 值 得探究. 我要的就是这个效果 !
二、 相关知识的链接 义务教育课程标准实验教科书 《 数学》 九年 级下册 P 1 3 给出:直线 与圆有 唯一公共点 .2 处 ( 即直 线 和 圆相 切) 时, 这条 直 线 叫做 圆 的 切
导数的应用曲线的切线和法线问题
导数的应用曲线的切线和法线问题在微积分中,导数是一个重要的概念,它描述了函数在某一点上的变化率。
除了用来求函数的极值和变化趋势外,导数还可以应用于曲线的切线和法线问题。
本文将探讨导数在曲线切线和法线问题上的应用。
一、曲线的切线问题对于给定的曲线,我们可以通过求取该曲线上某一点的导数来确定该点处的切线。
具体的步骤如下:1. 确定曲线上的某一点P(x₀, y₀)。
2. 求取该点的导数dy/dx。
3. 使用点斜式或一般式求取与该点所在切线平行的直线方程。
4. 得到切线的方程。
举例来说,如果我们有一个曲线的方程为y = 2x² + 3x - 4,那么可以依次进行如下步骤来求取曲线在某一点上的切线:1. 确定点P(x₀, y₀)的坐标,假设为P(2, 7)。
2. 求取该点的导数dy/dx,对于曲线y = 2x² + 3x - 4,求导得到dy/dx = 4x + 3。
3. 使用点斜式求取切线的方程,将点P的坐标和导数dy/dx的值代入点斜式方程y - y₀ = m(x - x₀),得到y - 7 = (4(2) + 3)(x - 2)。
4. 化简方程,得到切线的方程y = 8x - 9。
通过这个例子可以看出,求取曲线切线的关键是求取点的导数,然后利用切线方程将导数与点的坐标结合,得到切线的方程。
二、曲线的法线问题曲线的法线是与该曲线在某一点处相切,垂直于切线的直线。
求取曲线的法线同样可以通过求取该点的导数来完成。
具体的步骤如下:1. 确定曲线上的某一点P(x₀, y₀)。
2. 求取该点的导数dy/dx,并计算其倒数k。
3. 求取法线的斜率nk = -1/k。
4. 使用点斜式求取法线方程。
5. 得到法线的方程。
和曲线的切线问题类似,求取曲线的法线也需要先求取点的导数,然后计算导数的倒数作为法线的斜率。
三、综合案例考虑一个具体的综合案例,假设我们有一个函数f(x) = x³ + 2x²- 3x + 1,我们希望求取该函数在 x = 2 处的切线和法线。
曲线中的切线问题探究课件(3)
曲线中的切线问题探究
单击此处添加副标题
如何正确理解曲线的切线?
切线圆视角导数视角
定义
与曲线公共点个数
对应区域划分
一 、概念辨析
探究2 若过点s可以作曲线=的两条切线,则( )A.<B.<
C.0<<D.0<<
探究4 (多选)已知函数gg=e K1+ln,则过点 s g恰能作曲线=gg的两条切线的充分条件可以是( )
A.=2−1>1B.=2−1<1
C.2−1<<gg D.<2−1⩽−1
三、 小结提升
切线问题两条路,几何代数皆可行。
大题重在形化数,小题尽量数转形。
切线条数有规律,线内线外要看清。
渐近线来再分区,凸凹反转要分形。
数形结合好本领,勤思苦练可修成。
四、 目标检测
谢谢观看单击此处添加副标题。
妙用通法,解答曲线的切线方程问题
曲线的切线问题属于一类综合问题,不仅考查了导数知识,还考查了曲线的方程.曲线的切线问题一般主要分为两类:求曲线上一点处的切线方程以及求过曲线上一点的切线方程.如果同学们不能正确区分这两类问题,便很难得到正确的答案.下面我们结合实例来探讨解答曲线的切线方程问题的通法.一、求曲线上一点处的切线方程求曲线上一点处的切线方程,需从切线的斜率入手.一般地,该点即为切点,且该点处的导数即为切线的斜率,可由此来求出该曲线的切线的方程.其具体解题步骤如下:1.根据已知条件求出点P 的坐标()x 0,f (x 0);2.求出函数在点x 0处的导数,进而确定切线的斜率;3.利用直线的斜截式方程求出所求切线的方程.例1.已知曲线的方程为y =x2x -1,求在点(1,1)处的切线方程.解:对曲线的方程y =x2x -1求导可得y ′=1()2x -12,则f ′()1=-1,即切线的斜率为-1,所以切线的方程为x +y -2=0.求曲线上一点处的切线方程的思路较为简单,只要根据导数的几何意义对曲线的方程求导便可快速求得切线的斜率,再根据直线的斜截式方程即可求得切线的方程.二、求过曲线上一点的切线方程对于求过曲线上一点的切线方程问题,我们需先明确,这一点是否为切点,一般情况下该点不为切点,因此需先设出切点的坐标Q (x 0,y 0),如此便可求出过点P (m ,n )的切线的方程y -n =f ′()x 0(x -m ),继而根据切点同时在曲线和切线上的性质,将切点的坐标分别代入方程中,可得方程组ìíîy 0=f ()x 0,y 0-n =f ′()x 0(x -m ),解方程组求得切点Q 的横坐标x 0,便可确定切线的斜率f ′()x 0,再用直线的点斜式方程求出切线的方程.例2.已知曲线的方程为f ()x =23x 3-8x ,求过点P (3,-6)并与函数图象相切的直线的方程.解:设切点为Q (x 0,y 0),对f ()x =23x 3-8x 求导可得f ′()x 0=2x 20-8,所以过点P (3,-6)的切线方程为y +6=(2x 20-8)⋅(x -3).又因为切点同时在曲线和切线上,故ìíîïïy 0+6=()2x 20-8()x 0-3,y 0=23x 30-8x 0,解得ìíîïïx 0=3,x 0=32,则所求直线的方程为10x -y -36=0或7x +2y -9=0.我们先设出切点,然后对曲线的方程求导,再根据切点同时在曲线和切线上建立方程组,通过解方程求得切点的横坐标,进而得到切线的斜率和方程.例3.已知函数f ()x =x 3-2x 2+1,求经过点P (2,1),且与曲线y =f ()x 相切的直线的方程.解:由于点P 在曲线上,所以存在两种情况:(1)若点P 为切点.对f ()x 求导可得f ′()2=3x 2-4x |x =2=4,所以在点P 处的切线为4x -y -7=0.(2)若切线经过点P ,设切点为(x 0,y 0),则切点同时在曲线和切线上,所以ìíîy 0=x 30-2x 20+1,1-y 0=()3x 20-4x 0()2-x 0,解得{x 0=0,y 0=1,或{x 0=2,y 0=1,即k =0或k =4.故所求切线的方程为4x -y -7=0或y =1.本题较为特殊,由于点P 在曲线上,所以需分点P 为切点和切线经过点P 两种情况进行讨论.通过上述分析,同学们便能熟练掌握求解曲线的切线的方程的通法.在解答此类问题时,同学们要注意根据已知条件正确辨别所求问题的类型,然后找到与之相应的方法和思路进行求解.(作者单位:福建省泉州第十七中学)学考方略王国顺52。
五种方法解二次曲线的切线问题,理解应用这些公式你离学霸不远了
五种方法解二次曲线的切线问题,理解应用这些公式你离学霸
不远了
学霸数学
专注中小学考试信息及题型分析总结
关注
题型:已知焦点在x轴上的椭圆与直线2x+3y-10=0相切,且离心率为√3/2,求此椭圆方程
这里给出五种方法求解,几乎每种都代表着不同的方法,这些方法中蕴含着丰富的知识,同学们好好研究一下,对你们的学习非常有帮助呢!
解法一:(判别式法)
初等数学中,二次曲线的切线问题源于判别式,且利用判别式还可得出有关切线的某些性质、公式或定理。
解法二:。
专题02 曲线的切线问题探究【解析版】
第一章 函数与导数专题02 曲线的切线问题探究【压轴综述】纵观近几年的高考命题,对曲线的切线问题的考查,主要与导数相结合,涉及切线的斜率、倾斜角、切线方程等问题,题目的难度有难有易.利用导数的几何意义解题,主要题目类型有求切线方程、求切点坐标、求参数值(范围)等.与导数几何意义有关问题的常见类型及解题策略有: 1.已知斜率求切点.已知斜率k ,求切点()()11,x f x ,即解方程()f x k '=.2.求切线方程:注意区分曲线在某点处的切线和曲线过某点的切线.即注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.(1)已知切点求切线方程:①求出函数()y f x =在点0x x =处的导数,即曲线()y f x =在点()()00,x f x 处切线的斜率;②由点斜式求得切线方程为()()000y y f x x x '-=-. (2)求过点P 的曲线的切线方程的步骤为: 第一步,设出切点坐标P ′(x 1,f(x 1));第二步,写出过P ′(x 1,f(x 1))的切线方程为y-f(x 1)=f ′(x 1)(x-x 1); 第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步,将x 1的值代入方程y-f(x 1)=f ′(x 1)(x-x 1)可得过点P(x 0,y 0)的切线方程.3.求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.4.根据导数的几何意义求参数的值(范围)时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.5.已知两条曲线有公切线,求参数值(范围).6.导数几何意义相关的综合问题.【压轴典例】例1.(2019·江苏高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 【答案】(e, 1). 【解析】设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 代入点(),1e --,得001ln 1ex x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =, 故点A 的坐标为(),1A e .例2.(2019·全国高考真题(理)) 已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)证明见解析. 【解析】(1)函数()f x 的定义域为(0,1)(1,)⋃+∞,2211()ln ()1(1)x x f x x f x x x x ++'=-⇒=--,因为函数()f x 的定义域为(0,1)(1,)⋃+∞,所以()0f x '>,因此函数()f x 在(0,1)和(1,)+∞上是单调增函数;当(0,1)x ∈,时,0,x y →→-∞,而11112()ln 0111e f e e e e+=-=>--,显然当(0,1)x ∈,函数()f x 有零点,而函数()f x 在(0,1)x ∈上单调递增,故当(0,1)x ∈时,函数()f x 有唯一的零点;当(1,)x ∈+∞时,2222221213()ln 0,()ln 01111e e ef e e f e e e e e e +-+-=-=<=-=>----,因为2()()0f e f e ⋅<,所以函数()f x 在2(,)e e 必有一零点,而函数()f x 在(1,)+∞上是单调递增,故当(1,)x ∈+∞时,函数()f x 有唯一的零点综上所述,函数()f x 的定义域(0,1)(1,)⋃+∞内有2个零点; (2)因为0x 是()f x 的一个零点,所以000000011()ln 0ln 11x x f x x x x x ++=-=⇒=-- 1ln y x y x'=⇒=,所以曲线ln y x =在00A(,ln )x x 处的切线l 的斜率01k x =,故曲线ln y x =在00A(,ln )x x 处的切线l 的方程为:0001ln ()y x x x x -=-而0001ln 1x x x +=-,所以l 的方程为0021x y x x =+-,它在纵轴的截距为021x -.设曲线xy e =的切点为11(,)x B x e ,过切点为11(,)x B x e 切线'l ,x x y e y e '=⇒=,所以在11(,)x B x e 处的切线'l 的斜率为1x e ,因此切线'l 的方程为111(1)x xy e x e x =+-,当切线'l 的斜率11xk e =等于直线l 的斜率01k x =时,即11001(ln )x e x x x =⇒=-, 切线'l 在纵轴的截距为01ln 110001(1)(1ln )(1ln )x xb e x ex x x -=-=+=+,而0001ln 1x x x +=-,所以01000112(1)11x b x x x +=+=--,直线',l l 的斜率相等,在纵轴上的截距也相等,因此直线',l l 重合,故曲线ln y x =在00A(,ln )x x 处的切线也是曲线x y e =的切线.例3. (2019·湖北高考模拟(理))已知函数2()1f x x ax =-+,()ln ()g x x a a R =+∈. (1)讨论函数()()()h x f x g x =+的单调性;(2)若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围.【答案】(1)见解析;(2)(],1-∞ 【解析】(1)函数()h x 的定义域为()0,∞+,()()()2h x f x g x x ax lnx a 1(x 0)=+=-+++>,所以()212x ax 1x 2x a x xh -+=-+='所以当2Δa 80=-≤即a -≤≤()'x 0h >,()h x 在()0,∞+上单调递增;当2Δa 80=->即a a ><-当a <-()'x 0h >,()h x 在()0,∞+上单调递增;当a >时,令()'x 0h =得x =综上:当a ≤时,()h x 在()0,∞+上单调递增;当a >时()h x 在⎛ ⎝⎭,∞⎫+⎪⎪⎝⎭单调递增,在⎝⎭单调递减.(2)设函数()f x 在点()()11x ,f x 与函数()g x 在点()()22x ,g x 处切线相同,()()111x 2,x f x a g x''=-=,则()()()()121212f x g x x x x x f g -==-'',由1212x a x -=,得121a x 2x 2=+,再由()2112212x ax 1lnx a 1x x x -+-+=- 得2121122x x x ax 1lnx a x -=-+--,把121a x 2x 2=+代入上式得()222221a a lnx a 20*4x 2x 4++++-= 设()221a a F x lnx a 24x 2x 4=++++-(∵x 2>0,∴x ∈(0,+∞)), 则()23231a 12x ax 1x 2x 2x x 2xF --=--+=' 不妨设20002x ax 10(x 0)--=>. 当00x x <<时,()x 0F '<,当0x x >时,()x 0F '>所以()F x 在区间()00,x 上单调递减,在区间()0x ,∞+上单调递增, 把001a=2x x -代入可得:()()20000min1F x F x x 2x lnx 2x ==+-+- 设()21G x x 2x lnx 2x =+-+-,则()211x 2x 20x xG =+++>'对x 0>恒成立, 所以()G x 在区间()0,∞+上单调递增,又()G 1=0所以当0x 1<≤时()G x 0≤,即当00x 1<≤时()0F x 0≤,又当2ax e -=时,()22a 42a 2a 1a a F x lne a 24e 2e 4---=-+++- 22a 11a 04e -⎛⎫=+≥ ⎪⎝⎭因此当00x 1<≤时,函数()F x 必有零点;即当00x 1<≤时,必存在2x 使得()*成立; 即存在12x ,x 使得函数()f x 在点()()11x ,f x 与函数()g x 在点()()22x ,g x 处切线相同. 又由()1y 2x 0,1x=-在单调递增得,因此(]0001a=2x ,x 0,1x -∈所以实数a 的取值范围是(],1-∞. 【总结提升】(1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程;(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. 例4.(2019·山东高考模拟(文))已知函数ln 1()x f x x+=. (Ⅰ)证明:2()f x e x e ≤-; (Ⅱ)若直线(0)yax b a =+>为函数()f x 的切线,求b a的最小值.【答案】(1)见解析.(2) 1e-.【解析】(Ⅰ)证明:整理2()f x e x e ≤-得22ln 10(0)x e x ex x -++≤>令22()ln 1g x x e x ex =-++,2221(1)(21)()e x ex ex ex g x x x-++-+'==-当10,x e ⎛⎫∈ ⎪⎝⎭,()0g x '>,所以()g x 在1(0,)e上单调递增;当1,x e ⎛⎫∈+∞ ⎪⎝⎭,()0g x '<,所以()g x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,所以1()0g x g e ⎛⎫≤= ⎪⎝⎭,不等式得证.(Ⅱ)221(ln 1)ln ()x xf x x x-+-'==,设切点为()()00,x f x , 则02ln x a x -=,函数()f x 在()()00,x f x 点处的切线方程为()()()000y f x f x x x '-=- ()000200ln 1ln x x y x x x x +-=--,令0x =,解得002ln 1x b x +=, 所以()0002ln 1ln x x ba x +=-,令()()00002ln 1ln x x h x x +=-, 因为0a >,02ln 0x x ->,所以100<<x , ()()()()20000000022202ln 3ln 2ln 12ln 1ln 12ln ln 1ln ln ln x x x x x x x h x x x x +---++-'=-=-=-,当010,x e ⎛⎫∈ ⎪⎝⎭,()00h x '<,所以()h x 在10,e ⎛⎫⎪⎝⎭上单调递减;当1,1x e ⎛⎫∈ ⎪⎝⎭,()00h x '<,所以()h x 在1,1e ⎛⎫⎪⎝⎭上单调递增,因为100<<x ,()011h x h e e⎛⎫≥=- ⎪⎝⎭. 【思路点拨】(1)由2()f x e x e ≤-即为22ln 10(0)x e x ex x -++≤>,令22()ln 1g x x e x ex =-++,利用导数求得函数()g x 的单调性与最值,即可得到结论; (2)求得函数()f x 的导数,设出切点,可得020ln x a x -=的值和切线方程,令0x =,求得002ln 1x b x +=,令()()00002ln 1ln x x h x x +=-,利用导数求得函数()0h x 的单调性与最小值.对于恒成立问题,往往要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题. 例5.(2014·北京高考真题(文))已知函数3()23f x x x =-. (1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论) 【答案】 【解析】(1)由3()23f x x x =-得2'()63f x x =-,令'()0f x =,得x =或2x =, 因为(2)10f -=-,(2f -=()2f -=(1)1f =-, 所以()f x 在区间[2,1]-上的最大值为(f =(2)设过点P (1,t )的直线与曲线()y f x =相切于点00(,)x y ,则300023y x x =-,且切线斜率为2063k x =-,所以切线方程为2000(63)()y y x x x -=--,因此2000(63)(1)t y x x -=--,整理得:32004630x x t -++=,设()g x =32463x x t -++,则“过点(1,)P t 存在3条直线与曲线()y f x =相切”等价于“()g x 有3个不同零点”,()g x '=21212x x -=12(1)x x -,()g x 与()g x '的情况如下:所以,31t -<<-是()g x 的极大值,31t -<<-是()g x 的极小值, 当,即1t ≥-时,此时()g x 在区间(,0)-∞和(1,)+∞上分别至多有1个零点,所以()g x 至多有2个零点,当,(1,)P t 时,此时()g x 在区间(,0)-∞和(,0)-∞上分别至多有1个零点,所以()g x 至多有2个零点.当且(3,1)--,即时,因为,,所以()g x 分别为区间和()g x 上恰有1个零点,由于()g x 在区间(,0)-∞和(1,)+∞上单调,所以()g x 分别在区间(,0)-∞和上恰有1个零点.综上可知,当过点(1,)P t 存在3条直线与曲线()y f x =相切时,t 的取值范围是.(3)过点A (-1,2)存在3条直线与曲线()y f x =相切; 过点B (2,10)存在2条直线与曲线()y f x =相切; 过点C (0,2)存在1条直线与曲线()y f x =相切.例6. (2018·天津高考真题(理))已知函数()xf x a =, ()log a g x x =,其中a >1.(I )求函数()()ln h x f x x a =-的单调区间;(II )若曲线()y f x =在点()()11,x f x 处的切线与曲线()y g x =在点()()22,x g x 处的切线平行,证明()122lnln ln ax g x a+=-; (III )证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 【答案】(Ⅰ)单调递减区间(),0-∞,单调递增区间为()0,+∞;(Ⅱ)证明见解析;(Ⅲ)证明见解析. 【解析】(I )由已知, ()xh x a xlna =-,有()xh x a lna lna ='-.令()0h x '=,解得x =0.由a >1,可知当x 变化时, ()h x ', ()h x 的变化情况如下表:所以函数()h x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞.(II )由()x f x a lna '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1xa lna .由()1g x xlna=',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21x lna .因为这两条切线平行,故有121xa lna x lna=,即()1221x x a lna =. 两边取以a 为底的对数,得21220a log x x log lna ++=,所以()122lnlnax g x lna+=-. (III )曲线()y f x =在点()11,x x a 处的切线l 1: ()111xxy a a lna x x -=⋅-.曲线()y g x =在点()22,a x log x 处的切线l 2: ()2221a y log x x x x lna-=⋅-. 要证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线, 只需证明当1ea e ≥时,存在()1,x ∈-∞+∞, ()20,x ∈+∞,使得l 1和l 2重合.即只需证明当1ea e ≥时,方程组1112121{1x x x a a lna x lnaa x a lna log x lna=-=-①②有解,由①得()1221x x a lna =,代入②,得1111120x x lnlna a x a lna x lna lna-+++=. ③ 因此,只需证明当1ea e ≥时,关于x 1的方程③存在实数解. 设函数()12x x lnlnau x a xa lna x lna lna=-+++, 即要证明当1ea e ≥时,函数()y u x =存在零点.()()21x u x lna xa '=-,可知(),0x ∈-∞时, ()0u x '>;()0,x ∈+∞时, ()u x '单调递减,又()010u '=>, ()()212110lna u a lna ⎡⎤=-<⎢⎥⎥'⎢⎣⎦, 故存在唯一的x 0,且x 0>0,使得()00u x '=,即()02010x lna x a-=.由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减.()u x 在0x x =处取得极大值()0u x .因为1ea e ≥,故()1ln lna ≥-, 所以()()000000201212220xxlnlna lnlna lnlna u x a x a lna x x lna lna lna lna x lna +=-+++=++≥≥. 下面证明存在实数t ,使得()0u t <.由(I )可得1xa xlna ≥+,当1x lna>时, 有()()()1211lnlnau x xlna xlna x lna lna≤+-+++()22121lnlna lna x x lna lna=-++++, 所以存在实数t ,使得()0u t <因此,当1e a e ≥时,存在()1,x ∈-∞+∞,使得()10u x =.所以,当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 例7.(2015·广东高考真题(理))(14分)(2015•广东)设a >1,函数f (x )=(1+x 2)e x﹣a . (1)求f (x )的单调区间;(2)证明f (x )在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行,(O 是坐标原点),证明:m≤﹣1.【答案】(1)f (x )=(1+x 2)e x﹣a 在(﹣∞,+∞)上为增函数. (2)见解析 (3)见解析 【解析】(1)f'(x )=e x(x 2+2x+1)=e x(x+1)2∴f′(x )≥0,∴f(x )=(1+x 2)e x﹣a 在(﹣∞,+∞)上为增函数. (2)证明:由(1)问可知函数在(﹣∞,+∞)上为增函数. 又f (0)=1﹣a , ∵a>1.∴1﹣a <0∴f(0)<0.当x→+∞时,f (x )>0成立. ∴f(x )在(﹣∞,+∞)上有且只有一个零点 (3)证明:f'(x )=e x(x+1)2,设点P (x 0,y 0)则)f'(x )=e x0(x 0+1)2,∵y=f(x )在点P 处的切线与x 轴平行,∴f'(x 0)=0,即:e x0(x 0+1)2=0, ∴x 0=﹣1将x 0=﹣1代入y=f (x )得y 0=.∴,∴…10分令;g (m )=e m﹣(m+1)g (m )=e m﹣(m+1), 则g'(m )=e m﹣1,由g'(m )=0得m=0. 当m∈(0,+∞)时,g'(m )>0 当m∈(﹣∞,0)时,g'(m )<0 ∴g(m )的最小值为g (0)=0…12分 ∴g(m )=e m ﹣(m+1)≥0 ∴e m≥m+1∴e m(m+1)2≥(m+1)3即: ∴m≤…14分例8.(2019·四川棠湖中学高考模拟(文))已知抛物线2:4C x y = ,M 为直线:1l y =-上任意一点,过点M 作抛物线C 的两条切线MA,MB ,切点分别为A,B.(1)当M 的坐标为(0,-1)时,求过M,A,B 三点的圆的方程; (2)证明:以AB 为直径的圆恒过点M. 【答案】(1)22(1)4x y +-=(2)见证明 【解析】(1)解:当M 的坐标为(0,1)-时,设过M 点的切线方程为1y kx =-,由24,1,x y y kx ⎧=⎨=-⎩消y 得2440x kx -+=. (1) 令2(4)440k ∆=-⨯=,解得1k =±. 代入方程(1),解得A(2,1),B(-2,1).设圆心P 的坐标为(0,)a ,由PM PB =,得12a +=,解得1a =. 故过,,M A B 三点的圆的方程为22(1)4x y +-=.(2)证明:设0(,1)M x -,由已知得24x y =,12y x '=,设切点分别为211(,)4x A x ,222(,)4x B x ,所以12MA x k =,22MB xk =, 切线MA 的方程为2111()42x x y x x -=-即2111124y x x x =-,切线MB 的方程为2222()42x x y x x -=-即2221124y x x x =-.又因为切线MA 过点0(,1)M x -,所以得201111124x x x -=-. ① 又因为切线MB 也过点0(,1)M x -,所以得202211124x x x -=-. ②所以1x ,2x 是方程2011124x x x -=-的两实根,由韦达定理得1202,x x x +=124x x =-.因为2110(,1)4x MA x x =-+uuu r ,2220(,1)4x MB x x =-+uuu r ,所以22121020()()(1)(1)44x x MA MB x x x x ⋅=--+++uuu r uuu r22221212012012121()()21164x x x x x x x x x x x x ⎡⎤=-+++++-+⎣⎦. 将1202,x x x +=124x x =-代入,得0MA MB ⋅=. 所以以AB 为直径的圆恒过点M .【压轴训练】1.(2019·湖南高考模拟(理))过抛物线()220x py p =>上两点,A B 分别作抛物线的切线,若两切线垂直且交于点()12P -,,则直线AB 的方程为( ) A .122y x =+ B .134y x =+ C .132y x =+ D .124y x =+ 【答案】D 【解析】由22x py =,得22x y p=,∴'x y p =.设()()1122,,,A x y B x y ,则1212','x x x x x x y y p p====,抛物线在点A 处的切线方程为2112x x y x p p=-, 点B 处的切线方程为2222x x y x p p=-, 由21122222x x y x p px x y x p p⎧=-⎪⎪⎨⎪=-⎪⎩,解得121222x x x x x y p +⎧=⎪⎪⎨⎪=⎪⎩, 又两切线交于点()1,2P -,∴12121222x x x x p+⎧=⎪⎪⎨⎪=-⎪⎩,故得12122,4x x x x p +==- (*). ∵过,A B 两点的切线垂直,∴121x x p p⋅=-, 故212x x p =-,∴4p =,故得抛物线的方程为28x y =.由题意得直线AB 的斜率存在,可设直线方程为y kx b =+, 由28y kx bx y=+⎧⎨=⎩消去y 整理得2880x kx b --=, ∴12128,8x x k x x b +==- (**),由(*)和(**)可得14k =且2b =, ∴直线AB 的方程为124y x =+.故选:D .2.(2019·山东高考模拟(文))设函数的图象上任意一点处的切线为,若函数的图象上总存在一点,使得在该点处的切线满足,则的取值范围是__________.【答案】【解析】,即又,即本题正确结果:3.(2019·山东高考模拟(理))已知函数()2f x x 2ax =+,()2g x 4a lnx b =+,设两曲线()y f x =,()y g x =有公共点P ,且在P 点处的切线相同,当()a 0,∞∈+时,实数b 的最大值是______.【答案】【解析】 设()00,P x y ,()'22f x x a =+,()24'a g x x=.由题意知,()()00f x g x =,()()00''f x g x =,即2200024x ax a lnx b +=+,①200422a x a x +=,②解②得0x a =或02(x a =-舍),代入①得:2234b a a lna =-,()0,a ∞∈+,()'684214b a alna a a lna =--=-,当140,a e ⎛⎫∈ ⎪⎝⎭时,'0b >,当14,a e ∞⎛⎫∈+ ⎪⎝⎭时,'0b <.∴实数b的最大值是1144b e elne ⎛⎫== ⎪⎝⎭.故答案为:4.(2013·北京高考真题(理))设l 为曲线C :在点(1,0)处的切线.(I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方 【答案】(I)(II)见解析【解析】 (1)设f(x)=,则f′(x)=所以f′(1)=1,所以L 的方程为y =x -1.(2)证明:令g(x)=x -1-f(x),则除切点之外,曲线C 在直线L 的下方等价于g(x)>0(∀x>0,x≠1). g(x)满足g(1)=0,且g′(x)=1-f′(x)=.当0<x <1时,x 2-1<0,ln x <0,所以g′(x)<0,故g(x)单调递减; 当x>1时,x 2-1>0,ln x>0,所以g′(x)>0,故g(x)单调递增. 所以,g(x)>g(1)=0(∀x>0,x≠1). 所以除切点之外,曲线C 在直线L 的下方.5.(2015·天津高考真题(文))已知函数(Ⅰ)求的单调区间;(Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;(Ⅲ)若方程有两个正实数根且,求证:.【答案】(Ⅰ)的单调递增区间是,单调递减区间是;(Ⅱ)见试题解析;(Ⅲ)见试题解析.【解析】(Ⅰ)由,可得的单调递增区间是,单调递减区间是;(Ⅱ),,证明在单调递增,在单调递减,所以对任意的实数x,,对于任意的正实数,都有;(Ⅲ)设方程的根为,可得,由在单调递减,得,所以.设曲线在原点处的切线为方程的根为,可得,由在在单调递增,且,可得所以.试题解析:(Ⅰ)由,可得,当,即时,函数单调递增;当,即时,函数单调递减.所以函数的单调递增区间是,单调递减区间是.(Ⅱ)设,则,曲线在点P处的切线方程为,即,令即则.由于在单调递减,故在单调递减,又因为,所以当时,,所以当时,,所以在单调递增,在单调递减,所以对任意的实数x,,对于任意的正实数,都有.(Ⅲ)由(Ⅱ)知,设方程的根为,可得,因为在单调递减,又由(Ⅱ)知,所以.类似的,设曲线在原点处的切线为可得,对任意的,有即.设方程的根为,可得,因为在单调递增,且,因此,所以.6.(2013·福建高考真题(文))已知函数(为自然对数的底数)(Ⅰ)若曲线在点处的切线平行于轴,求的值;(Ⅱ)求函数的极值;(Ⅲ)当时,若直线与曲线没有公共点,求的最大值.【答案】(Ⅰ)(Ⅱ)当时,函数无极小值;当,在处取得极小值,无极大值(Ⅲ)的最大值为【解析】(1)由,得.又曲线在点处的切线平行于轴,得,即,解得.(2),①当时,,为上的增函数,所以函数无极值.②当时,令,得,.,;,.所以在上单调递减,在上单调递增,故在处取得极小值,且极小值为,无极大值.综上,当时,函数无极小值当,在处取得极小值,无极大值.(3)当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解.假设,此时,,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.又时,,知方程在上没有实数解.所以的最大值为.解法二:(1)(2)同解法一.(3)当时,.直线:与曲线没有公共点,等价于关于的方程在上没有实数解,即关于的方程:(*)在上没有实数解.①当时,方程(*)可化为,在上没有实数解.②当时,方程(*)化为.令,则有.令,得,当变化时,的变化情况如下表:当时,,同时当趋于时,趋于,从而的取值范围为.所以当时,方程(*)无实数解, 解得的取值范围是.综上,得的最大值为.7.(2013·北京高考真题(文))已知函数f (x )=x 2+x sin x +cos x . (1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围.【答案】(Ⅰ)求两个参数,需要建立两个方程.切点在切线上建立一个,利用导数的几何意义建立另一个,联立求解.(Ⅱ)利用导数分析曲线的走势,数形结合求解.【解析】由f(x)=x 2+xsin x +cos x ,得f′(x)=2x +sin x +x(sin x)′-sin x =x(2+cos x).(1)因为曲线y =f(x)在点(a ,f(a))处与直线y =b 相切,所以f′(a)=a(2+cos a)=0,b =f(a). 解得a =0,b =f(0)=1. (5分) (2)设g(x)=f(x)-b =x 2+xsin x +cos x -b. 令g′(x)=f′(x)-0=x(2+cos x)=0,得x =0. 当x 变化时,g′(x),g(x)的变化情况如下表:所以函数g(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,且g(x)的最小值为g(0)=1-b.①当1-b≥0时,即b≤1时,g(x)=0至多有一个实根,曲线y =f(x)与y =b 最多有一个交点,不合题意. ②当1-b<0时,即b>1时,有g(0)=1-b<0, g(2b)=4b 2+2bsin 2b +cos 2b -b>4b -2b -1-b>0. ∴y=g(x)在(0,2b)内存在零点,又y =g(x)在R 上是偶函数,且g(x)在(0,+∞)上单调递增, ∴y=g(x)在(0,+∞)上有唯一零点,在(-∞,0)也有唯一零点. 故当b>1时,y =g(x)在R 上有两个零点, 则曲线y =f(x)与直线y =b 有两个不同交点.综上可知,如果曲线y =f(x)与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).(12分)8.(2019·北京高考模拟(文))已知函数32()f x x ax =-.(Ⅰ)当3a =时,求函数()f x 在区间]2,0[上的最小值;(Ⅱ)当3a >时,求证:过点(1,(1))P f 恰有2条直线与曲线()y f x =相切. 【答案】(I )4-.(Ⅱ)见解析. 【解析】(Ⅰ)当a =3时,f (x )=x 3﹣3x 2,f '(x )=3x 2﹣6x =3x (x ﹣2). 当x ∈[0,2]时,f '(x )≤0, 所以f (x )在区间[0,2]上单调递减.所以f (x )在区间[0,2]上的最小值为f (2)=﹣4.(Ⅱ)设过点P (1,f (1))的曲线y =f (x )的切线切点为(x 0,y 0),f '(x )=3x 2﹣2ax ,f (1)=1﹣a ,所以()()()32000200001321y x ax y a x ax x ⎧=-⎪⎨--=--⎪⎩,.所以()3200023210x a x ax a -+++-=.令g (x )=2x 3﹣(a +3)x 2+2ax +1﹣a ,则g '(x )=6x 2﹣2(a +3)x +2a =(x ﹣1)(6x ﹣2a ), 令g '(x )=0得x =1或3ax =, 因为a >3,所以1a >.∴g (x )的极大值为g (1)=0,g (x )的极小值为()103a g g ⎛⎫=⎪⎝⎭<, 所以g (x )在3a ,⎛⎫-∞ ⎪⎝⎭上有且只有一个零点x =1.因为g (a )=2a 3﹣(a +3)a 2+2a 2+1﹣a =(a ﹣1)2(a +1)>0,所以g (x )在3a ⎛⎫+∞ ⎪⎝⎭,上有且只有一个零点. 所以g (x )在R 上有且只有两个零点.即方程()3200023210x a x ax a -+++-=有且只有两个不相等实根,所以过点P (1,f (1))恰有2条直线与曲线y =f (x )相切. 9.(2019·四川高考模拟(理))已知函数,.(1)若,求函数在区间(其中,是自然对数的底数)上的最小值;(2)若存在与函数,的图象都相切的直线,求实数的取值范围.【答案】(1)见解析;(2).【解析】 (1)由题意,可得,,令,得. ①当时,在上单调递减,∴.②当时,在上单调递减,在上单调递增,∴.综上,当时,,当时,.(2)设函数在点处与函数在点处有相同的切线,则,∴,∴,代入得.∴问题转化为:关于的方程有解,设,则函数有零点,∵,当时,,∴. ∴问题转化为:的最小值小于或等于0.,设,则当时,,当时,.∴在上单调递减,在上单调递增,∴的最小值为.由知,故.设,则,故在上单调递增,∵,∴当时,,∴的最小值等价于.又∵函数在上单调递增,∴.10.(2019·湖南高考模拟(理))设函数()()()22,42x f x e ax g x x x =+=++.(Ⅰ)讨论()y f x =的极值;(Ⅱ)若曲线()y f x =和曲线()y g x =在点()0,2P 处有相同的切线,且当2x ≥-时,()()mf x g x ≥,求m 的取值范围 .【答案】(Ⅰ)见解析;(Ⅱ)21,e ⎡⎤⎣⎦.【解析】 (Ⅰ)∵()()2xf x eax =+,∴()()2xf x e ax a '=++.①当0a =时,()20xf x e '=>恒成立,所以()f x 在R 上单调递增,无极值.②当0a >时,由()0f x '=得2a x a+=-, 且当2a x a +<-时,()0,()f x f x '<单调递减;当2a x a+>-时,()0,()f x f x '>单调递增. 所以当2a x a+=-时,()f x 有极小值,且()2=a a f x ae +--极小值,无极大值. ③当0a <时,由()0f x '=得2a x a+=-,且当2a x a +<-时,()0,()f x f x '>单调递增;当2a x a+>-时,()0,()f x f x '<单调递减.所以当2a x a+=-时,()f x 有极大值,且()2=a a f x ae +--极大值,无极小值. 综上所述,当0a =时,()f x 无极值; 当0a >时,()2=a af x ae +--极小值,无极大值; 当0a <时, ()2=a af x ae +--极大值,无极小值.(Ⅱ)由题意得()2+4g x x '=,∵()y f x =和()y g x =在点()0,2P 处有相同的切线, ∴(0)(0)f g ='',即24a +=,解得2a =, ∴()()22xf x ex =+.令()()()()222(42)xF x mf x g x me x x x =-=+-++,则()()()124xF x me x '=-+,由题意可得()0220F m =-≥,解得1m ≥. 由()0F x '=得12ln ,2x m x =-=-.①当ln 2m ->-,即21m e ≤<时,则120x -<≤,∴当()12,x x ∈-时,()0,()F x F x '<单调递减;当()1,x x ∈+∞时,()0,()F x F x '>单调递增, ∴()()2,F x -+∞在上的最小值为()()2112111224220F x x x x x x =+---=-+≥,∴()()mf x g x ≥恒成立.②当ln 2m -=-,即2m e =时,则()()2()124x F x ex +'=-+,∴当2x ≥-时,()0,()F x F x '≥在()2,-+∞上单调递增, 又(2)0F -=,∴当2x ≥-时,()0F x ≥,即()()mf x g x ≥恒成立. ③当ln 2m -<-,即2m e >时, 则有()222(2)2220F me em e --=-=--+<-,从而当2x ≥-时,()()g x mf x ≤不可能恒成立.综上所述m 的取值范围为21,e ⎡⎤⎣⎦.11.(2019·天津高考模拟(理))已知函数()()()()21ln f x x x x a a R =---∈.(1)若()f x 在()0,∞+上单调递减,求a 的取值范围;(2)若()f x 在1x =处取得极值,判断当(]0,2x ∈时,存在几条切线与直线2y x =-平行,请说明理由; (3)若()f x 有两个极值点12,x x ,求证:1254x x +>. 【答案】(Ⅰ)(],1-∞;(Ⅱ)答案见解析;(Ⅲ)证明见解析. 【解析】(Ⅰ)由已知,()()11ln 2ln 2120x f x x x a x x a x x-=+--=--++≤'恒成立 令()1ln 212g x x x a x=--++,则()()()222221111212(0)x x x x g x x x x x x-+--++='=+-=>, ()210x -+<,令()'0g x >,解得:01x <<,令()'0g x <,解得:1x >,故()g x 在()0,1递增,在()1,+∞递减,()()max 122g x g a ∴==-,由()'0f x ≤恒成立可得1a ≤.即当()f x 在()0,+∞上单调递减时,a 的取值范围是(],1-∞. (Ⅱ)()f x 在1x =处取得极值,则()’10f =,可得1a =. 令()1ln 232f x x x x -'=-+=-,即 1ln 250x x x--+=. 设()1ln 25h x x x x =--+,则()()()222221111212x x x x h x x x x x-+--++='=+-=. 故()h x 在()0,1上单调递增,在()1,2上单调递减, 注意到()55520h eee --=--<,()()112,2ln202h h ==+>, 则方程1ln 250x x x--+=在(]0,2内只有一个实数根, 即当(]0,2x ∈时,只有一条斜率为2-且与函数()f x 图像相切的直线. 但事实上,若1a =,则()1'ln 23f x x x x=--+, ()()()2121''x x f x x--+=,故函数()'f x 在区间()0,1上单调递增,在区间()1,2上单调递减, 且()'101230f =--+=,故函数()'0f x ≤在区间(]0,2上恒成立, 函数()f x 在区间(]0,2上单调递减,即函数不存在极值点, 即不存在满足题意的实数a ,也不存在满足题意的切线. (Ⅲ)若函数有两个极值点12,x x ,不妨设120x x <<, 由(Ⅰ)可知1a >,且:()11111ln 212f x x x a x -+'=-+①, ()22221ln 212f x x x a x -+'=-+②, 由①-②得:()()112112122121221211ln20,2ln 0,2x x x x x x x x x x x x x x x x ⎛⎫-+--=∴--=->∴< ⎪⎝⎭, 即12112x x e>> , 由①+②得:()()12121212ln 2240x x x x x x a x x ++--++=, ()121212ln 24124512242x x a x x x x ++-++∴+=>=++. 12.(2019·辽宁高考模拟(理))已知a R ∈,函数()()2ln ,0,6.f x a x x x =+∈()I 讨论()f x 的单调性;()II 若2x -是()f x 的极值点,且曲线()y f x =在两点()()()()1122,,,P x f x Q x f x ()12xx <处的切线相互平行,这两条切线在y 轴上的截距分别为12,b b ,求12b b -的取值范围 【答案】()I 当13a ≤时,()f x 在()0,6上单调递减,无单调递增区间;当13a >时,()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫ ⎪⎝⎭上单调递增;()II 2ln 2,03⎛⎫- ⎪⎝⎭.【解析】(Ⅰ)()2222a ax f x x x x-'=-+=.()0,6x ∈Q ∴ ①当0a ≤时,()0f x '<在()0,6x ∈上恒成立. ∴ ()f x 在()0,6上单调递减,无单调递增区间;②当0a >,且26a≥,即103≤a <时,()0f x '<在()0,6x ∈上恒成立.∴ ()f x 在()0,6上单调递减,无单调递增区间;③当0a >,且26a <,即13a >时,在20,x a ⎛⎫∈ ⎪⎝⎭上,()0f x '<,在2,6x a ⎛⎫∈ ⎪⎝⎭上,()0f x '>,∴ ()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫ ⎪⎝⎭上单调递增.综上,当13a ≤时,()f x 在()0,6上单调递减,无单调递增区间;当13a >时,()f x 在20,a ⎛⎫⎪⎝⎭上单调递减,2,6a ⎛⎫⎪⎝⎭上单调递增. (Ⅱ)2x =是()f x 的极值点,∴由()1可知22,1a a=∴= 设在()()11.P x f x 处的切线方程为()112111221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭在()()22,Q x f x 处的切线方程为()222222221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭ ∴若这两条切线互相平行,则2211222121x x x x -+=-+,121112x x ∴+= 令0x =,则1114ln 1b x x =+-,同理,2224ln 1b x x =+- 【解法一】211112x x =-Q121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭ 111211114ln ln 22x x x ⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭设()182ln ln 2g x x x x ⎛⎫=--+-⎪⎝⎭,11,43x ⎛⎫∈ ⎪⎝⎭()2211168180122x x g x x x x x-+'∴=--=<--,()g x ∴在区间11,43⎛⎫ ⎪⎝⎭上单调递减,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭即12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭【解法二】12122x x x =-Q 121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭1182ln 12x x ⎛⎫-+- ⎪⎝⎭令()1182ln 12x g x x ⎛⎫=-+- ⎪⎝⎭,其中()3,4x ∈ ()()2228181622x x g x x x x x -+'∴=-+=-- ()()22402x x x -=>-∴函数()g x 在区间()3,4上单调递增,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭.∴ 12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭【解法三】()12122x x x x =+Q g121212114ln ln b b x x x x ⎛⎫∴-=-+-= ⎪⎝⎭ ()2111224ln ·x x x x x x -+ ()2112122ln x x x x x x -=++ 12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭=++设()()21ln 1x g x x x-=++,则()()()()22214111x g x x x x x --'=+=++ 11211,122x x x ⎛⎫=-∈ ⎪⎝⎭Q,()0g x ∴'>,∴函数()g x 在区间1,12⎛⎫ ⎪⎝⎭上单调递增,()2ln2,03g x ⎛⎫∴∈- ⎪⎝⎭∴ 12b b -的取值范围是2ln2,03⎛⎫- ⎪⎝⎭.13.(2019·安徽高考模拟(文))已知函数()ln x f x x =+,直线l :21y kx =-.(Ⅰ)设(,)P x y 是()y f x =图象上一点,O 为原点,直线OP 的斜率()k g x =,若()g x 在(,1)x m m ∈+(0)m >上存在极值,求m 的取值范围;(Ⅱ)是否存在实数k ,使得直线l 是曲线()y f x =的切线?若存在,求出k 的值;若不存在,说明理由; (Ⅲ)试确定曲线()y f x =与直线l 的交点个数,并说明理由. 【答案】11e m e k -<<=Ⅰ,(Ⅱ),(Ⅲ)见解析 【解析】 (Ⅰ)∵()ln (0)y x x g x x x x +==>,∴()1ln 0xg x x='-=,解得x e =. 由题意得: 01m e m <<<+,解得1e m e -<<.(Ⅱ)假设存在实数k ,使得直线是曲线()y f x =的切线,令切点()00,P x y , ∴切线的斜率0121k x =+. ∴切线的方程为()()00001ln 1y x x x x x ⎛⎫-+=+- ⎪⎝⎭,又∵切线过(0,-1)点,∴()()000011ln 10x x x x ⎛⎫--+=+- ⎪⎝⎭.解得01x =,∴22k =, ∴1k =.(Ⅲ)由题意,令ln 21x x kx +=-, 得 ln 12x x k x++=.令()ln 1(0)2x x h x x x ++=>, ∴()2ln 2xh x x-=',由()0h x '=,解得1x =. ∴()h x 在(0,1)上单调递增,在()1,+∞上单调递减,∴()()max 11h x h ==,又0x →时,()h x →-∞;x →+∞时,()1ln 11222x h x x +=+→, {}1,12k ⎛⎤∴∈-∞⋃ ⎥⎝⎦时,只有一个交点;1,12k ⎛⎫∈ ⎪⎝⎭时,有两个交点;()1,k ∈+∞时,没有交点.14. (2019·河北高考模拟(理))已知函数()xf x e =,()g x alnx(a 0)=>. ()1当x 0>时,()g x x ≤,求实数a 的取值范围;()2当a 1=时,曲线()y f x =和曲线()y g x =是否存在公共切线?并说明理由.【答案】(1)(]0,e ;(2)存在公共切线,理由详见解析.【解析】()1令()()ln m x g x x a x x =-=-,则()1a a x m x x x-=-='. 若0x a <<,则()0m x '>,若x a >,则()0m x '<.所以()m x 在()0,a 上是增函数,在(),a +∞上是减函数.所以x a =是()m x 的极大值点,也是()m x 的最大值点,即()max ln m x a a a =-.若()g x x ≤恒成立,则只需()max ln 0m x a a a =-≤,解得0a e <≤.所以实数a 的取值范围是(]0,e . ()2假设存在这样的直线l 且与曲线()y f x =和曲线()y g x =分别相切与点()()1122,,,ln x A x e B x x . 由()x f x e =,得()xf x e '=. 曲线()y f x =在点A 处的切线方程为()111x x y e e x x -=-,即()1111x xy e x x e =+-. 同理可得,曲线()y g x =在点B 处的切线方程为()2121ln y x x x x -=-,即221ln 1y x x x =+-. 所以()11212111x x e x x e lnx ⎧=⎪⎨⎪-=-⎩则()1111lne 1x x x e --=-,即()111110x x e x -++= 构造函数()()x11,h x x e x =-++ x R ∈ 存在直线l 与曲线()y f x =和曲线()y g x =相切,等价于函数()()x11h x x e x =-++在R 上有零点对于()1xh x xe ='-. 当0x ≤时,()0h x '>,()h x 在上单调递增.当0x >时,因为()()()'10x h x x e +'=-<,所以()h x '在()0,+∞上是减函数.又()()010,110h h e ''=>=-<,,所以存在()00,1x ∈,使得()00010x h x x e'=-=,即001x e x =. 且当()000,x x ∈,()0h x '>时,当()00,x x ∈+∞时,()0h x '<.综上,()h x 在()00,x 上是增函数,在()0,x +∞上是减函数.所以()0h x 是()h x 的极大值,也是最大值,且()()()()0000000max 0011111?10x h x h x x e x x x x x x ==-++=-++=+>. 又()22310h e --=-<,()2230h e =-+<,所以()h x 在()02,x -内和()0,2x 内各有一个零点. 故假设成立,即曲线()y f x =和曲线()y g x =存在公共切线.15.(2019·广西高考模拟(理))已知函数1()ln f x x mx x =--在区间(0,1)上为增函数,m R ∈.(1)求实数m 的取值范围; (2)当m 取最大值时,若直线l :y ax b =+是函数()()2F x f x x =+的图像的切线,且,a b ∈R ,求+a b 的最小值.【答案】(1)2m ≤;(2)+a b 的最小值为-1.【解析】(1)∵()1ln f x x mx x =--, ∴()211f x m x x=+-'. 又函数()f x 在区间()0,1上为增函数,∴()2110f x m x x =-'+≥在()0,1上恒成立, ∴()221111124m t x x x x ⎛⎫≤+=+-= ⎪⎝⎭在()0,1上恒成立.令()()2211111,0,124t x x x x x ⎛⎫=+=+-∈ ⎪⎝⎭, 则当1x =时,()t x 取得最小值,且()2min t x =,∴2m ≤,∴实数m 的取值范围为(],2∞-.(2)由题意的()11ln 22ln F x x x x x x x ⎛⎫=--+=- ⎪⎝⎭,则()211F x x x +'=, 设切点坐标为0001,ln x x x ⎛⎫- ⎪⎝⎭, 则切线的斜率()020011a f x x x ==+', 又0001ln x ax b x -=+, ∴002ln 1b x x =--, ∴020011ln 1a b x x x +=+--. 令()211ln 1(0)h x x x x x=+-->, 则()()()23233211212x x x x h x x x x x x'+-+-=-+==, 故当()0,1x ∈时,()()0,h x h x '<单调递减;当()1,x ∈+∞时,()()0,h x h x '>单调递增. ∴当1x =时,()h x 有最小值,且()()11min h x h ==-,∴a b +的最小值为1-.16.(2019·四川高考模拟(理))已知函数()ln x a f x x e +=-.(1)若曲线()f x 在点()()1,1f 处的切线与x 轴正半轴有公共点,求a 的取值范围;(2)求证:11a e>-时,()1f x e <--.【答案】(1)1a <-;(2)证明见解析.【解析】(1)函数f (x )=lnx ﹣e x +a 的导数为f ′(x )=1x ﹣e x +a .曲线f (x )在点(1,f (1))处的切线斜率为1﹣e 1+a ,切点为(1,﹣e 1+a ),可得切线方程为y +e 1+a =(1﹣e 1+a )(x ﹣1), 可令y =0可得x =111a e +-,由题意可得111a e+->0, 可得e 1+a <1,解得a <﹣1; (2)证明:f ′(x )=1x ﹣e x +a .设g (x )=f ′(x )=1x ﹣e x +a . 可得g ′(x )=﹣(21x +e x +a ),当x >0时,g ′(x )<0,g (x )递减; 由a >1﹣1e ,e x +a >e x .若e x >1x ,g (x )<1x﹣e x <0, 当0<x <1时,e x +a <e 1+a .若e 1+a <1x,即x <e ﹣1﹣a , 故当0<x <e ﹣1﹣a 时,g (x )>0,即g (x )=f ′(x )有零点x 0, 当0<x <x 0时,f ′(x )>0,f (x )递增;当x >x 0时,f ′(x )<0,f (x )递减, 可得f (x )≤f (x 0),又f (x 0)=lnx 0﹣e x 0+a ,又e x 0+a =01x , 可得f (x 0)=lnx 0﹣01x ,在x 0>0递增, 又a =ln 01x ﹣x 0=﹣(lnx 0+x 0), a >1﹣1e ⇔﹣(lnx 0+x 0)>1﹣1e =﹣(ln 1e +1e), 所以lnx 0+x 0<ln 1e +1e,由于lnx 0+x 0递增, 可得0<x 0<1e ,故f (x )≤f (x 0)<f (1e )=﹣1﹣e .。
两曲线的公切线问题解题方法
两曲线的公切线问题解题方法
1. 嘿,先找到两条曲线的导数呀!就像找宝藏先确定地图一样。
比如说曲线 y=x^2 和 y=x^3,它们的导数能帮我们找到切线的斜率呢。
通过求导,我们就能知道在哪些地方可能存在公切线哦。
2. 接下来,假设公切线存在呀!这就像是假设我们能找到宝藏一样。
还是用刚才那两个例子,设出公切线的方程,然后带入到两条曲线中去看看是否满足呀。
这一步是不是很有趣呢?
3. 然后呢,建立方程组呀!这就好像搭积木一样,一块块把条件凑起来。
根据公切线与两条曲线的关系列出等式,通过解方程来确定公切线的具体情况呢。
比如求解上面的例子,不就能知道公切线到底存不存在啦!
4. 还要注意特殊情况呢!千万可别漏了呀,这就像是注意路上的小坑一样重要。
有时候可能会有一些不太明显的情况,得仔细想想,像一些渐近线之类的地方。
哎呀,可别掉进坑里啦!比如有的曲线在某个点看起来像是有公切线,但实际上不是哦。
5. 别忘了检验答案呀!就像检查作业一样仔细。
看看求出的公切线是不是真的满足条件,可不能马虎呢。
一旦不小心,就可能出错呀!
6. 嘿嘿,不断练习才是王道呀!就像练功一样,多练才能厉害。
多找些题目来做做,熟练掌握方法,以后遇到任何两曲线的公切线问题都能轻松搞定啦!就像大侠闯荡江湖一样轻松!总之呢,只要按照这些办法去做,两曲线的公切线问题就不再难啦!。
曲线的切线与切点的求解
曲线的切线与切点的求解曲线是数学中一个重要的概念,它在几何学、物理学、工程学等领域都有广泛的应用。
在研究曲线的性质时,我们常常需要求解曲线的切线与切点,这对于理解曲线的特性和应用都具有重要意义。
一、曲线的切线在数学中,曲线的切线是指与曲线在某一点相切且方向与曲线在该点的切线方向一致的直线。
求解曲线的切线可以通过求解曲线的导数来实现。
曲线的导数表示了曲线在某一点的斜率,而切线的斜率与曲线在该点的斜率相等。
以一条平面曲线为例,设曲线的方程为y=f(x),其中f(x)为曲线的函数表达式。
要求解曲线在点(x0, y0)处的切线,首先需要计算曲线在该点的导数f'(x0)。
导数表示了曲线在该点的斜率,即切线的斜率。
求解导数的方法有很多,最常见的是使用微分法。
通过对函数f(x)进行微分,可以得到导函数f'(x)。
然后将x0代入导函数,即可得到曲线在点(x0, y0)处的切线的斜率。
得到切线的斜率后,我们还需要确定切线的截距。
通过将切线的斜率和切点的坐标代入直线的一般方程y-y0=k(x-x0),可以求解出切线的方程。
二、曲线的切点切点是指曲线与其切线的交点。
求解曲线的切点可以通过联立曲线方程和切线方程来实现。
设曲线的方程为y=f(x),切线的方程为y=kx+b。
联立这两个方程,即可求解切点的坐标。
将切线的方程中的k和b代入曲线的方程,可以得到一个关于x的方程。
通过解这个方程,可以得到切点的x坐标。
将切点的x坐标代入切线的方程,即可得到切点的y坐标。
需要注意的是,有些曲线可能存在多个切点。
在求解切点时,需要考虑曲线的性质和切线的方向,以确定所求的切点是否符合要求。
三、应用举例曲线的切线与切点的求解在实际应用中有着广泛的应用。
下面以两个具体的例子来说明。
1. 物理学中的应用在物理学中,曲线的切线与切点的求解经常用于描述物体的运动轨迹。
例如,当我们研究一个自由落体运动的物体时,可以通过求解其运动轨迹的切线和切点,来分析物体在不同时刻的速度和加速度。
高考数学复习点拨运用导数探究曲线的切线问题.doc
运用导数探究曲线的切线问题导数与曲线的切线有缘,因为.厂Go)的儿何意义是曲线y二f(x)在点(X。
,Axo))处的切线斜率,其物理意义通常指物体运动时的瞬时速度。
曲线的切线反映了曲线的变化情况, 体现了微积分中重要的思想方法一一以直代曲。
因此,利用导数求解曲线的问题,儿乎是新课程高考每年必考的内容。
在这类问题屮,导数所肩负的任务是求切线的斜率,这类问题的核心部分是考査函数的思想方法和解析儿何的基本思想方法,真正体现出函数、导数既是研究的对象乂是研究的工具。
举例说明。
例1已知函数/(x) = x + -(r>0)和点P(1,O),过点F作曲线y = /(x)的两条切线xPM、PN ,切点分别为M、N .(1)设= 试求函数g(f)的表达式;(2)是否存在/,使得M、N与4(0,1)三点共线.若存在,求出孑的值;若不存在,请说明理由.分析:由题意点戶在曲线外,故求切线PM、PN的方程,须设岀M、N两点的横坐标,目的是借助导数求直线的斜率;第二问属探索性问题,往往是先假设存在,看是否能求得符合条件的t或导岀矛盾。
解:(1)设M、N两点的横处标分别为旺、兀2, I 广⑴=1一厶,・•・切线的方程为:y-(x} +—) = (1—-)(兀—旺),又・・•切线PM过点P(1,O) , .•.有0-(%. +—) = (1 一- )(1 一西),即xJ + 2体—/ = 0,同理,由切线PN也过点P(1,O), x\x/由(1). (2),可得“,兀2是方程X2 +2tx-t = 0的两根,%! + — _2/, 尢]•尢2 = _/ •MN\二(旺_兀+匕+ _ _花__尸=(歼_勺尸[i+(i —)2]V X, x2V X]尢2[(X1+X2)2-4X1X2][1+(1----------- 戸,“2把(* )式代入,得MN = 720r2+20r,因此,函数g⑴的表达式为g(/)=血斥+20f (r > 0).(2)当点M 、N 与人共线时,k MA = k NA•/ 兀]工兀2, •:'(兀2 + *1)= X 2X\ •.•・存在f,使得点A/、N 与A 三点共线,H f =丄.2点评:本题以函数为载体,综合考查了函数与导数的有关问题。
高中数学解曲线切线问题解题技巧
高中数学解曲线切线问题解题技巧在高中数学中,曲线切线问题是一个常见的考点,也是数学解题中的一大难点。
解曲线切线问题需要掌握一定的解题技巧,下面我将为大家介绍一些常见的解题方法和技巧。
一、求曲线切线的斜率要求曲线在某一点的切线斜率,首先需要求出该点的导数。
导数表示了曲线在某一点的变化率,也就是切线的斜率。
例如,求曲线$y=x^2$在点$(2,4)$处的切线斜率。
首先,我们需要求出曲线$y=x^2$的导函数。
根据求导法则,$y'=2x$。
然后,将$x=2$代入导函数中,得到$y'=2\times2=4$。
所以曲线$y=x^2$在点$(2,4)$处的切线斜率为4。
二、求曲线切线的方程已知切线斜率后,我们可以利用点斜式或斜截式等方法求出曲线切线的方程。
1. 利用点斜式点斜式是求直线方程的一种常用方法,它利用直线上一点和直线的斜率来表示直线方程。
例如,已知曲线$y=x^2$在点$(2,4)$处的切线斜率为4,我们可以利用点斜式求出切线的方程。
根据点斜式,切线的方程为$y-4=4(x-2)$,化简得$y=4x-4$。
2. 利用斜截式斜截式是求直线方程的另一种常用方法,它利用直线的斜率和截距来表示直线方程。
例如,已知曲线$y=x^2$在点$(2,4)$处的切线斜率为4,我们可以利用斜截式求出切线的方程。
根据斜截式,切线的方程为$y=4x+b$,其中$b$为截距。
将点$(2,4)$代入方程,得到$4=4\times2+b$,解方程得到$b=-4$。
所以切线的方程为$y=4x-4$。
三、举一反三掌握了求曲线切线的斜率和方程的方法后,我们可以通过举一反三的方法拓展解题技巧。
举例来说,已知曲线$y=x^3$在点$(1,1)$处的切线斜率为3,我们可以利用之前的方法求出切线的方程为$y=3x-2$。
然后,我们可以进一步求出曲线$y=x^3$在点$(1,1)$处的切线与曲线的交点。
将切线方程$y=3x-2$代入曲线方程$y=x^3$中,得到$x^3=3x-2$。
曲线的切线与切点的求解
曲线的切线与切点的求解曲线是数学中一个重要的概念,它描述了一个点在平面或空间中的运动轨迹。
在曲线上的每一个点,都存在一个与其切线相切的直线。
切线是曲线在该点处的局部近似,它与曲线有着相同的斜率。
而切点则是切线与曲线相交的点。
在本文中,我们将探讨曲线的切线与切点的求解方法。
首先,我们来考虑一条平面曲线。
对于给定的曲线方程,我们可以通过求导来求解曲线上任意一点处的切线斜率。
假设曲线的方程为y=f(x),其中f(x)是一个可导函数。
那么曲线上某一点(x0, y0)处的切线斜率可以通过求解f'(x0)得到。
这是因为f'(x0)表示了函数f(x)在x=x0处的导数,即切线的斜率。
知道了切线斜率,我们还需要确定切点的坐标。
对于平面曲线而言,切点的坐标可以通过将切线方程与曲线方程联立求解得到。
设切点的坐标为(x1, y1),切线方程为y=k(x-x0)+y0,其中k为切线斜率。
将切线方程代入曲线方程,得到f(x1)=k(x1-x0)+y0。
通过解这个方程组,我们可以求解出切点的坐标(x1, y1)。
接下来,我们考虑一条空间曲线。
与平面曲线类似,我们也可以通过求导来求解曲线上任意一点处的切线斜率。
假设曲线的参数方程为x=f(t),y=g(t),z=h(t),其中f(t),g(t),h(t)都是可导函数。
那么曲线上某一点(t0, x0, y0, z0)处的切线斜率可以通过求解f'(t0)/g'(t0)/h'(t0)得到。
同样地,我们还需要确定切点的坐标。
对于空间曲线而言,切点的坐标可以通过将切线方程与曲线方程联立求解得到。
设切点的坐标为(t1, x1, y1, z1),切线方程为x=x0+kf'(t0),y=y0+kg'(t0),z=z0+kh'(t0),其中k为切线斜率。
将切线方程代入曲线方程,得到f(t1)=x0+kf'(t0),g(t1)=y0+kg'(t0),h(t1)=z0+kh'(t0)。
运用导数探究曲线的切线问题
运用导数探究曲线的切线问题曲线的切线反映了曲线的变化情况,体现了微积分中重要的思想方法——以直代曲。
因此,利用导数求解曲线的问题,几乎是新课程高考每年必考的内容。
在这类问题中,导数所肩负的任务是求切线的斜率,这类问题的核心部分是考查函数的思想方法和解析几何的基本思想方法,真正体现出函数、导数既是研究的对象又是研究的工具。
【注意】(1)过某一点的切线,则该点不一定为切点;(2)直线与曲线相切,并不一定只有一个公共点,当曲线是二次曲线时,由解析几何知,直线与曲线相切,有且只有一个公共点,即切点;(3)导数不存在,切线也不一定不存在,只能说切线的斜率不存在。
求曲线的切线方程有以下几种常见的类型:类型一:已知切点,求曲线在此处的切线方程类型二:求过某点的切线方程求过某点的切线时,无论此点是否在曲线上,都应先设切点,再求切点,即用待定切点法.类型三:两曲线的公切线问题【点睛】本题主要考查导数的几何意义、导数与函数的单调性以及函数的极值与最值,考查学生的逻辑推理能力与数学运算能力,考查的核心素养是逻辑推理、直观想象、数学运算,是难题.类型四:切线的应用在导数题目特别是在求参数取值范围时,往往作为邻界线使用。
【点睛】本题考查函数解析式的求法、函数的图像、方程的解与函数图像的关系,需要结合基本运算能力,推理能力,数形结合思想,转化与化归思想,对考生核心的数学素养要求较高.【点睛】本小题主要考查利用导数研究函数的零点,考查化归与转化的数学思想方法,考查数形结合的数学思想方法.【点睛】本题考查函数与方程的零点,考查数形结合思想,考查切线方程,准确转化题意是关键,是中档题,注意临界位置的开闭,是易错题。
【点睛】本题主要考查函数极值的应用,利用数形结合以及参数分离法进行转化,求函数的导数研究函数的单调性极值,利用数形结合是解决本题的关键.。
曲线的切线问题的探究
解 决这类 问题 , 常用 到拉格朗 日中值 定理. 拉格 朗 日中值 定理 的内容 是 , 对 于连续可导 函数 , 其定义
令g ( )=一 2 x + 3 一 3 ,
可得 g ( x ) 极 小 值=g ( 0 ) =一 3 , g ( x ) 极 大 值= g ( 1 )=一 2, 画出草图知 , 当 一3<m< 一2时 , m= 一2 x 。+
A. Y=2 x一1 B. Y=
切线, 求 n的值.
解 设切点 为( ‰, Y o ) , Y =3 x - 6 x+口 ,
C . Y 3 x一2
D. Y 一2 x+3
f
①
变式 2 ( 2 0 0 9年 安 徽卷 ) 点 P( 。 , Y o ) 在椭 圆
高 中 数 学 教 与 学
2 0 1 0 . 1
曲线 的切线 问题 的探 究
吴成 强
曲线的切线 问题 , 是研究 曲线性质 的重要方 面 ,
解 厂( )=3 a x +2 b x一3 , 依题 意厂 (一1 )= 厂( 1 )= 0 ,
所以E , l =1 , b= 0 ,
求 出切点坐标 或求 出曲线 中的有关 参 数 , 进而 可 以
研 究曲线 的其他 性质. 例 3 已知直线 Y = 是 曲线 Y = 。 一3 x + 似 的
上满 足f( )=2 f ( 2一 )一 +8 一8, 则 曲线 Y= , ( ) 在点( 1 1 ) ) 处的切线方程 是 ( A)
将A ( O, l 6 ) 代人 得 。 =一 2,
所 以切点 为 (一 2 , 一 2 ) ( 。 )= 9 , 故切线方 程为 9 — Y+1 6=0 .
曲线的切线问题的探究
z 一± 1 切线平 行 于 轴 , 处 过点 A( ,6 作 曲 01) 线 一 ( ) z 的切 线 , 此切线 方程. 求
解 f ( )一 3 + 2x 一 3 依 题 意 ( 甜 b , 一
1 )一 f( )一 0 1 ,
例 4 求 曲线 一. 一 r 专在 点 (( ,)处的切 线方程 . )0 0
D. 一 一 2 + 3
决 问题 的方 法是先设 切点 , 再用 导数方法 求解. 变式 (0 9年全 国卷( )已知直线 y— 20 I)
+ 1 曲 线 y— l( + n 相 切 , a的值 为 ( ) 与 n. r ) 则 B
A. B.2 c.2 D. 4
易 知 A 点 不 在 曲线 上 , 切 点 为 M ( , ) 设 。 。 ,
的切线 方程 为 一 0 即 轴 ) ( .
20 0 9年 第 4期 评 注
中 学数 学教 学
3 9
幂 函 数 Y 一 ( 0< "< 1 n∈ Q) , ,
( )的极值点 . z
过 点 O( , ) o 0 的切 线均 为 y , 生对这 类 问题往 轴 学
2 已知切 线 的方 程或 斜 率 。 求有 关 参数 或
切 点
已知 切 线 的方 程 或 斜 率 , 可 以 用 导 数 的 方 就
法求 出切点 坐标或 求 出曲线 中 的有关 参 数 , 进而
可 以 研 究 曲 线 的其 他 性 质 . 例 3 已 知 直 线 一 z是 曲线 一 一3 +n r的 切 线 , a的 值 . 求 解 设 切 点 为 ( , 0 , 一 3 6 。Y ) z 一 + a ,
) 'Байду номын сангаас
高中数学专题研究-导数-曲线的切线
第一章 曲线的切线第一节 求曲线的切线一、利用导数定义求斜率【例】求曲线y=x 2+1x在点(1,2)的切线方程. 解:因为21(1)(1)((1))2(2)11x y f x f x x x x x∆∆=+∆-=+∆+-=+∆∆-+∆+∆ 所以1(2)1y x x x∆=+∆-∆+∆ 所以0lim 1x y x ∆→∆=∆ 所以曲线y=x 2+1x在点(1,2)的切线斜率为1, 由点斜式得,曲线y=x 2+1x在点(1,2)的切线方程为x -y +1=0 【例】求抛物线y =x 2过点(3,5)的切线方程.解:因为点(3,5)不在曲线y =x 2上,所以(3,5)不是切点设切点坐标为(x 0,x 02),y ′=lim Δx →0Δy Δx =lim Δx →0 (x +Δx )2-x 2Δx=2x 所以在(x 0,x 02)的切线斜率为2 x 0因为切线过(3,5)和(x 0,x 02),所以 2x 0=x 20-5x 0-3解得x 0=1,或x 0=5,所以k =2,或k =10所以切线方程为y -5=2(x -3),或y -5=10(x -3).即2x -y -1=0,或10x -y -25=0二、利用导数公式求斜率【例】求曲线y =在(1,1)处的切线方程.解:因为221133322()'33x x x --===所以曲线y =(1,1)处的切线斜率为23由点斜式得,曲线y =1,1)的切线方程为2x -3y +1=0三、过一点的切线有三条【例】求曲线y =2x 3-3x 过点(1,-2)的切线的切点的横坐标.解:因为点(1,-2)不在曲线y =2x 3-3x 上,所以(1,-2)不是切点设切点坐标为(x 0,y 0),y ′=6x 2-3所以在(x 0,y 0)的切线斜率为6x 02-3因为切线过(1,-2)和(x 0,y 0),所以 220000(23)(2)631x x x x ----=-解得0111,222x =-+, 四、三次函数上的切线问题三次函数是高考中最常见的一类函数,也是高二同步学习中最常用的函数,常见的题目类型时求出三次函数在某点处的切线方程,但是这里有个误区,如果一个点是三次函数图像上的点,那么过此点的切线有几条?很多同学都会直接误认为只有一条,但事实并非如此,条数可能是一条或两条或三条。
总结曲线的切线与极值问题
总结曲线的切线与极值问题曲线的切线与极值问题经常出现在数学的学习和应用中。
对于这个问题,我们可以通过求导和解方程的方法来求解。
在本文中,我将总结曲线的切线和极值问题,并提供相应的解题思路和步骤。
一、曲线的切线问题曲线的切线是指曲线上某一点处的切线,切线与曲线在该点处有且仅有一个公共点。
求解曲线的切线通常需要考虑以下几个步骤:1. 确定曲线的方程:首先,我们需要确定给定曲线的方程。
曲线可以用函数关系进行描述,例如,y = f(x)。
根据实际情况,我们可以通过观察、已知条件或者实验数据来确定曲线的具体方程。
2. 求解曲线的导数:为了确定切线的斜率,我们需要求解曲线的导数。
导数表示曲线在某一点处的瞬时变化率,也可以理解为切线的斜率。
对于函数y = f(x),其导数可以表示为dy/dx或f'(x)。
3. 确定切点:切线与曲线在切点处相切。
为了确定切点,我们需要选取曲线上一个点,将该点的坐标代入曲线方程中求得。
例如,若选取曲线上的点(x₀, y₀),则该点处的导数即为切线的斜率。
此时,我们可以使用点斜式或者斜截式方程来表示切线。
4. 求解切线方程:通过已知切点和斜率,我们可以求解切线的方程。
如果已知切点坐标为(x₀, y₀),切线斜率为k,则切线方程可以表示为y - y₀ = k(x - x₀)。
二、曲线的极值问题曲线的极值问题主要涉及到寻找函数的最大值和最小值。
求解曲线的极值通常需要考虑以下几个步骤:1. 确定函数的定义域:在解决极值问题之前,我们需要确定函数的定义域。
在定义域内,我们寻找函数的极值。
2. 求解函数的导数:为了判断函数的极值点,我们需要求解函数的导数。
导数可以表示函数的斜率,极值点处的导数为零或不存在。
3. 确定极值点:在导数为零或不存在的点处可能存在函数的极值。
通过求解导数方程,我们可以得到这些极值点。
需要注意的是,极值点可以是局部极值或者全局极值。
4. 判断极值类型:通过二阶导数的正负性判断函数的极值类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数与导数专题02 曲线的切线问题探究【压轴综述】纵观近几年的高考命题,对曲线的切线问题的考查,主要与导数相结合,涉及切线的斜率、倾斜角、切线方程等问题,题目的难度有难有易.利用导数的几何意义解题,主要题目类型有求切线方程、求切点坐标、求参数值(范围)等.与导数几何意义有关问题的常见类型及解题策略有: 1.已知斜率求切点.已知斜率k ,求切点()()11,x f x ,即解方程()f x k '=.2.求切线方程:注意区分曲线在某点处的切线和曲线过某点的切线.即注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.(1)已知切点求切线方程:①求出函数()y f x =在点0x x =处的导数,即曲线()y f x =在点()()00,x f x 处切线的斜率;②由点斜式求得切线方程为()()000y y f x x x '-=-. (2)求过点P 的曲线的切线方程的步骤为: 第一步,设出切点坐标P ′(x 1,f(x 1));第二步,写出过P ′(x 1,f(x 1))的切线方程为y-f(x 1)=f ′(x 1)(x-x 1); 第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步,将x 1的值代入方程y-f(x 1)=f ′(x 1)(x-x 1)可得过点P(x 0,y 0)的切线方程.3.求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.4.根据导数的几何意义求参数的值(范围)时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.5.已知两条曲线有公切线,求参数值(范围).6.导数几何意义相关的综合问题.【压轴典例】例1.(2019·江苏高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____. 例2.(2019·全国高考真题(理)) 已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线. 例3. (2019·湖北高考模拟(理))已知函数2()1f x x ax =-+,()ln ()g x x a a R =+∈. (1)讨论函数()()()h x f x g x =+的单调性;(2)若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围. 例4.(2019·山东高考模拟(文))已知函数ln 1()x f x x+=. (Ⅰ)证明:2()f x e x e ≤-; (Ⅱ)若直线(0)yax b a =+>为函数()f x 的切线,求b a的最小值.例5.(2014·北京高考真题(文))已知函数3()23f x x x =-. (1)求()f x 在区间[2,1]-上的最大值;(2)若过点(1,)P t 存在3条直线与曲线()y f x =相切,求t 的取值范围;(3)问过点(1,2),(2,10),(0,2)A B C -分别存在几条直线与曲线()y f x =相切?(只需写出结论) 例6. (2018·天津高考真题(理))已知函数()xf x a =, ()log a g x x =,其中a >1.(I )求函数()()ln h x f x x a =-的单调区间;(II )若曲线()y f x =在点()()11,x f x 处的切线与曲线()y g x =在点()()22,x g x 处的切线平行,证明()122lnln ln ax g x a+=-; (III )证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 例7.(2015·广东高考真题(理))(14分)(2015•广东)设a >1,函数f (x )=(1+x 2)e x﹣a . (1)求f (x )的单调区间;(2)证明f (x )在(﹣∞,+∞)上仅有一个零点;(3)若曲线y=f (x )在点P 处的切线与x 轴平行,且在点M (m ,n )处的切线与直线OP 平行,(O 是坐标原点),证明:m≤﹣1.例8.(2019·四川棠湖中学高考模拟(文))已知抛物线2:4C x y = ,M 为直线:1l y =-上任意一点,过点M 作抛物线C 的两条切线MA,MB ,切点分别为A,B.(1)当M 的坐标为(0,-1)时,求过M,A,B 三点的圆的方程;(2)证明:以AB 为直径的圆恒过点M.【压轴训练】1.(2019·湖南高考模拟(理))过抛物线()220x py p =>上两点,A B 分别作抛物线的切线,若两切线垂直且交于点()12P -,,则直线AB 的方程为( ) A .122y x =+ B .134y x =+ C .132y x =+ D .124y x =+ 2.(2019·山东高考模拟(文))设函数的图象上任意一点处的切线为,若函数的图象上总存在一点,使得在该点处的切线满足,则的取值范围是__________.3. (2019·山东高考模拟(理))已知函数()2f x x 2ax =+,()2g x 4a lnx b =+,设两曲线()y f x =,()y g x =有公共点P ,且在P 点处的切线相同,当()a 0,∞∈+时,实数b 的最大值是______.4.(2013·北京高考真题(理))设l 为曲线C :在点(1,0)处的切线.(I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方 5.(2015·天津高考真题(文))已知函数(Ⅰ)求的单调区间;(Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P 处的切线方程为,求证:对于任意的正实数,都有;(Ⅲ)若方程有两个正实数根且,求证:.6.(2013·福建高考真题(文))已知函数(为自然对数的底数)(Ⅰ)若曲线在点处的切线平行于轴,求的值;(Ⅱ)求函数的极值; (Ⅲ)当时,若直线与曲线没有公共点,求的最大值.7. (2013·北京高考真题(文))已知函数f (x )=x 2+x sin x +cos x . (1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围.8.(2019·北京高考模拟(文))已知函数32()f x x ax =-.(Ⅰ)当3a =时,求函数()f x 在区间]2,0[上的最小值;(Ⅱ)当3a >时,求证:过点(1,(1))P f 恰有2条直线与曲线()y f x =相切. 9.(2019·四川高考模拟(理))已知函数,.(1)若,求函数在区间(其中,是自然对数的底数)上的最小值;(2)若存在与函数,的图象都相切的直线,求实数的取值范围.10. (2019·湖南高考模拟(理))设函数()()()22,42xf x e axg x x x =+=++.(Ⅰ)讨论()y f x =的极值;(Ⅱ)若曲线()y f x =和曲线()y g x =在点()0,2P 处有相同的切线,且当2x ≥-时,()()mf x g x ≥,求m 的取值范围 .11. (2019·天津高考模拟(理))已知函数()()()()21ln f x x x x a a R =---∈.(1)若()f x 在()0,∞+上单调递减,求a 的取值范围;(2)若()f x 在1x =处取得极值,判断当(]0,2x ∈时,存在几条切线与直线2y x =-平行,请说明理由; (3)若()f x 有两个极值点12,x x ,求证:1254x x +>. 12. (2019·辽宁高考模拟(理))已知a R ∈,函数()()2ln ,0,6.f x a x x x=+∈ ()I 讨论()f x 的单调性;()II 若2x -是()f x 的极值点,且曲线()y f x =在两点()()()()1122,,,P x f x Q x f x ()12xx <处的切线相互平行,这两条切线在y 轴上的截距分别为12,b b ,求12b b -的取值范围13.(2019·安徽高考模拟(文))已知函数()ln x f x x =+,直线l :21y kx =-.(Ⅰ)设(,)P x y 是()y f x =图象上一点,O 为原点,直线OP 的斜率()k g x =,若()g x 在(,1)x m m ∈+(0)m >上存在极值,求m 的取值范围;(Ⅱ)是否存在实数k ,使得直线l 是曲线()y f x =的切线?若存在,求出k 的值;若不存在,说明理由; (Ⅲ)试确定曲线()y f x =与直线l 的交点个数,并说明理由.14. (2019·河北高考模拟(理))已知函数()xf x e =,()g x alnx(a 0)=>.()1当x 0>时,()g x x ≤,求实数a 的取值范围;()2当a 1=时,曲线()y f x =和曲线()y g x =是否存在公共切线?并说明理由.15.(2019·广西高考模拟(理))已知函数1()ln f x x mx x=--在区间(0,1)上为增函数,m R ∈. (1)求实数m 的取值范围;(2)当m 取最大值时,若直线l :y ax b =+是函数()()2F x f x x =+的图像的切线,且,a b ∈R ,求+a b 的最小值.16.(2019·四川高考模拟(理))已知函数()ln x af x x e+=-.(1)若曲线()f x 在点()()1,1f 处的切线与x 轴正半轴有公共点,求a 的取值范围; (2)求证:11a e>-时,()1f x e <--.。