中国大学生数学竞赛
最新全国大学生数学竞赛简介
全国大学生数学竞赛百度简介中国大学生数学竞赛该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。
编辑本段竞赛大纲中国大学生数学竞赛竞赛大纲(2009年首届全国大学生数学竞赛)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。
(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下:Ⅰ、数学分析部分一、集合与函数1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理.2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质.二、极限与连续1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用.3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).三、一元函数微分学1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.2.微分学基本定理:Fermat定理,Rolle定理,Lagrange定理,Cauchy定理,Taylor公式(Peano余项与Lagrange余项).3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital)法则、近似计算.四、多元函数微分学1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor公式.2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).4.极值问题(必要条件与充分条件),条件极值与Lagrange乘数法.五、一元函数积分学1. 原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分:型,型.2. 定积分及其几何意义、可积条件(必要条件、充要条件:)、可积函数类.3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理.4.无限区间上的广义积分、Canchy收敛准则、绝对收敛与条件收敛、非负时的收敛性判别法(比较原则、柯西判别法)、Abel判别法、Dirichlet 判别法、无界函数广义积分概念及其收敛性判别法.5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.六、多元函数积分学1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换).2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).3.重积分的应用(体积、曲面面积、重心、转动惯量等).4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.5.第一型曲线积分、曲面积分的概念、基本性质、计算.6.第二型曲线积分概念、性质、计算;Green公式,平面曲线积分与路径无关的条件.7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke 公式,两类线积分、两类面积分之间的关系.七、无穷级数1. 数项级数级数及其敛散性,级数的和,Cauchy准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz判别法;一般项级数的绝对收敛、条件收敛性、Abel判别法、Dirichlet判别法.2. 函数项级数函数列与函数项级数的一致收敛性、Cauchy准则、一致收敛性判别法(M-判别法、Abel判别法、Dirichlet判别法)、一致收敛函数列、函数项级数的性质及其应用.3.幂级数幂级数概念、Abel定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor级数、Maclaurin级数.4.Fourier级数三角级数、三角函数系的正交性、2及2周期函数的Fourier级数展开、 Beseel不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理.Ⅱ、高等代数部分一、多项式1. 数域与一元多项式的概念2. 多项式整除、带余除法、最大公因式、辗转相除法3. 互素、不可约多项式、重因式与重根.4. 多项式函数、余数定理、多项式的根及性质.5. 代数基本定理、复系数与实系数多项式的因式分解.6. 本原多项式、Gauss引理、有理系数多项式的因式分解、Eisenstein判别法、有理数域上多项式的有理根.7. 多元多项式及对称多项式、韦达(Vieta)定理.二、行列式1. n级行列式的定义.2. n级行列式的性质.3. 行列式的计算.4. 行列式按一行(列)展开.5. 拉普拉斯(Laplace)展开定理.6. 克拉默(Cramer)法则.三、线性方程组1. 高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解.2. n维向量的运算与向量组.3. 向量的线性组合、线性相关与线性无关、两个向量组的等价.4. 向量组的极大无关组、向量组的秩.5. 矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.6. 线性方程组有解判别定理、线性方程组解的结构.7. 齐次线性方程组的基础解系、解空间及其维数四、矩阵1. 矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.2. 矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系.3. 矩阵的逆、伴随矩阵、矩阵可逆的条件.4. 分块矩阵及其运算与性质.5. 初等矩阵、初等变换、矩阵的等价标准形.6. 分块初等矩阵、分块初等变换.五、双线性函数与二次型1. 双线性函数、对偶空间2. 二次型及其矩阵表示.3. 二次型的标准形、化二次型为标准形的配方法、初等变换法、正交变换法.4. 复数域和实数域上二次型的规范形的唯一性、惯性定理.5. 正定、半正定、负定二次型及正定、半正定矩阵六、线性空间1. 线性空间的定义与简单性质.2. 维数,基与坐标.3. 基变换与坐标变换.4. 线性子空间.5. 子空间的交与和、维数公式、子空间的直和.七、线性变换1. 线性变换的定义、线性变换的运算、线性变换的矩阵.2. 特征值与特征向量、可对角化的线性变换.3. 相似矩阵、相似不变量、哈密尔顿-凯莱定理.4. 线性变换的值域与核、不变子空间.八、若当标准形1.矩阵.2. 行列式因子、不变因子、初等因子、矩阵相似的条件.3. 若当标准形.九、欧氏空间1. 内积和欧氏空间、向量的长度、夹角与正交、度量矩阵.2. 标准正交基、正交矩阵、施密特(Schmidt)正交化方法.3. 欧氏空间的同构.4. 正交变换、子空间的正交补.5. 对称变换、实对称矩阵的标准形.6. 主轴定理、用正交变换化实二次型或实对称矩阵为标准形.7. 酉空间.Ⅲ、解析几何部分一、向量与坐标1. 向量的定义、表示、向量的线性运算、向量的分解、几何运算.2. 坐标系的概念、向量与点的坐标及向量的代数运算.3. 向量在轴上的射影及其性质、方向余弦、向量的夹角.4. 向量的数量积、向量积和混合积的定义、几何意义、运算性质、计算方法及应用.5. 应用向量求解一些几何、三角问题.二、轨迹与方程1.曲面方程的定义:普通方程、参数方程(向量式与坐标式之间的互化)及其关系.2.空间曲线方程的普通形式和参数方程形式及其关系.3.建立空间曲面和曲线方程的一般方法、应用向量建立简单曲面、曲线的方程.4.球面的标准方程和一般方程、母线平行于坐标轴的柱面方程.三、平面与空间直线1.平面方程、直线方程的各种形式,方程中各有关字母的意义.2.从决定平面和直线的几何条件出发,选用适当方法建立平面、直线方程.3.根据平面和直线的方程,判定平面与平面、直线与直线、平面与直线间的位置关系.4. 根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程.四、二次曲面1.柱面、锥面、旋转曲面的定义,求柱面、锥面、旋转曲面的方程.2.椭球面、双曲面与抛物面的标准方程和主要性质,根据不同条件建立二次曲面的标准方程.3.单叶双曲面、双曲抛物面的直纹性及求单叶双曲面、双曲抛物面的直母线的方法.4.根据给定直线族求出它表示的直纹面方程,求动直线和动曲线的轨迹问题.五、二次曲线的一般理论1.二次曲线的渐进方向、中心、渐近线.2.二次曲线的切线、二次曲线的正常点与奇异点.3.二次曲线的直径、共轭方向与共轭直径.4.二次曲线的主轴、主方向,特征方程、特征根.5.化简二次曲线方程并画出曲线在坐标系的位置草图.(二)中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: .4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler)方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2. 几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3. 任意项级数的绝对收敛与条件收敛.4. 函数项级数的收敛域与和函数的概念.5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7. 初等函数的幂级数展开式.8. 函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数关于举办第三届全国大学生数学竞赛的通知(这是10年的通知,今年的第四届大学生数学竞赛通知还没有下达,可借鉴的看一看)各省、市、自治区数学会、解放军院校协作中心数学联席会:为了培养人才、服务教学、促进高等学校数学课程的改革和建设,增加大学生学习数学的兴趣,培养分析、解决问题的能力,发现和选拔数学创新人才,为青年学子提供一个展示基础知识和思维能力的舞台,经中国数学会批准,第三届全国大学生数学竞赛由上海同济大学承办。
前三届全国大学生高等数学竞赛真题及答案大纲非数学类
中国大学生数学竞赛竞赛大纲为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。
中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n 阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L ’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用. 9. 弧微分、曲率、曲率半径. 三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y = ),,(y x f y '='' ),(y y f y '=''. 4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler)方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1.多元函数的概念、二元函数的几何意义.2.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4.多元复合函数、隐函数的求导法.5.二阶偏导数、方向导数和梯度.6.空间曲线的切线和法平面、曲面的切平面和法线.7.二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
全国大学生数学竞赛大纲(非专业组)
中国大学生数学竞赛竞赛大纲(初稿)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,鼓励大学生学习数学的爱好,发觉和选拔数学创新人材,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:鼓励大学生学习数学的爱好,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发觉和选拔数学创新人材。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
二、竞赛的内容中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、持续1.函数的概念及表示法、简单应用问题的函数关系的成立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、大体初等函数的性质及其图形、初等函数.4.数列极限与函数极限的概念及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的持续性(含左持续与右持续)、函数中断点的类型.8.持续函数的性质和初等函数的持续性.9.闭区间上持续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与持续性之间的关系、平面曲线的切线和法线.2. 大体初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数和参数方程所确信的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n 阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L ’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的刻画.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的大体性质、大体积分公式.3. 定积分的概念和大体性质、定积分中值定理、变上限定积分确信的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1. 常微分方程的大体概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y = ),,(y x f y '=''y')f=''.,(yy4.线性微分方程解的性质及解的结构定理.5.二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6.简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,和它们的和与积7.欧拉(Euler)方程.8.微分方程的简单应用五、向量代数和空间解析几何1.向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2.两向量垂直、平行的条件、两向量的夹角.3.向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4.曲面方程和空间曲线方程的概念、平面方程、直线方程.5.平面与平面、平面与直线、直线与直线的夹角和平行、垂直的条件、点到平面和点到直线的距离.6.球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、经常使用的二次曲面方程及其图形.7.空间曲线的参数方程和一样方程、空间曲线在座标面上的投影曲线方程.六、多元函数微分学1.多元函数的概念、二元函数的几何意义.2.二元函数的极限和持续的概念、有界闭区域上多元持续函数的性质.3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4.多元复合函数、隐函数的求导法.5.二阶偏导数、方向导数和梯度.6.空间曲线的切线和法平面、曲面的切平面和法线.7.二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的大体性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交织级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幂级数在其收敛区间内的大体性质(和函数的持续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数。
全国大学生数学竞赛由中国数学会主办每举办一次分为预赛和
:一、专业竞赛类:1、数学类(1)大学生数学竞赛全国大学生数学竞赛由数学会主办,每年举办一次,分为预赛和决赛两个阶段,并分设数学类与非数学类,预赛在每年10月举行,决赛在次年春季举办,参赛对象为大学本科二年级及以上在校大学生,竞赛内容以本科教学大纲规定的数学内容为准,比赛形式采用笔试,(数学类考试科目为:数分、高代、解析几何等;非数学类考试科目:高等数学)目前已成为全国影响最大、参加人数最多的大学生基础数学学科竞赛。
我校每年都在全国决赛中获得优异成绩.(2)数学建模大赛我校建模比年由张更生等老师组织。
2、计算机类(1)大赛程序设计大赛是大学级别最高的脑力竞赛,素来被冠以”程序设计的奥林匹克”的尊称。
大赛自1970年开始至今已有30年历史,是世界范围内历史最悠久、规模最大的程序设计竞赛.比赛形式是:经过校级和地区级选拔的参赛组,于指定的时间、地点参加世界级的决赛,由3个成员组成的小组应用一台计算机解决6到8个生活中的实际问题。
(2)全国信息技术应用水平大赛个人赛科目:(1)计算机应用技术模块。
办公自动化高级应用、C语言程序设计、程序设计、平面设计、动画设计、3 三维设计.(2)计算机辅助技术模块。
二维建筑设计、二维机械设计、三维设计.(3)电子信息技术模块。
单片机开发与应用、嵌入式开发与应用.(4)移动互联技术模块。
(5)3G移动通信技术、移动互联设计。
团体赛科目:电子系统设计、应用开发.3、师范大学师范专业理科师范生教学技能创新大赛组织的,需学校牵头组织参加(共数学、物理、化学三个学科)。
二、科技创新类:1、师范大学2021年大学生科技创新项目面向对象:我校在册除毕业班之外的全日制本、专科生和研究生,自然科学类学术项目的申报者只限于本、专科生。
课题包括:自然科学类学术项目、哲学科学类和学术项目、科技发明以及创业计划项目四大类,研究内容为:(1)基于XX学科(或交叉学科)的学生自主创新性项目研究.(2)一定规模的研究性调查.(3)国内影响较大的学科竞赛引申出的研究课题.(4)促进青年创新人才成长、推动经济的创业计划项目。
中国大学生数学竞赛
获奖名单
获奖名单
第一届全国大学生数学竞赛决赛获奖名单
谢谢观看
中国大学生数学竞赛
全国性高水平学科竞赛
01 竞赛简介
03 竞赛组委会 05 竞赛大纲
目录
02 历届情况 04 竞赛用书 06 获奖名单
基本信息
2009年,第一届全国大学生数学竞赛[The Chinese Mathematics Competitions (简称CMC)]开始举办。 作为一项面向本科生的全国性高水平学科竞赛,CMC为青年学子提供了一个展示数学基本功和数学思维的舞台, 为发现和选拔优秀数学人才并进一步促进高等学校数学课程建设的改革和发展积累了调研素材。由中国数学会承 办,也是全国高中数学竞赛在大学里的良好接力。
竞赛简介
竞赛简介
2009年,中国大学生数学竞赛(通称为“全国大学生数学竞赛”)开始举办,第一届CMC由中国数学会主办、 国防科学技术大学承办。此后CMC每年举办一次,由中国各大高校承办。
中国大学生数学竞赛活动图册(9张)CMC的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学 课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。中国大学生数学竞赛的参赛对象 为大学本科二年级及二年级以上的在校大学生。
第七届
2015年10月24日举办第七届全国大学生数学竞赛预赛,2016年3月27在由福建师范大学举办第七届全国大学 生数学竞赛决赛,来自清华大学、北京大学等著名高校的284位(数学类94人,非数学类190人)学生参加了决赛。
第八届
第八届全国大学生数学竞赛由北京科技大学承办,2016年10月22日各省统一时间举办第八届大学生数学竞 赛初赛,2017年3月18将在北京科技大学举办第八届全国大学生数学竞赛决赛。
十四届中国大学生数学竞赛获奖名单
十四届中国大学生数学竞赛获奖名单一、全国一等奖1.康宁,辽宁大学;2.陈思涛,北京大学;3.杨睿,清华大学;4.张浩然,复旦大学;5.林易,浙江大学;6.郑泽南,南京大学;7.郑浩,西安交通大学;8.郑文杰,武汉大学;9.蒋一帆,中南大学;10.熊昷,厦门大学;11.郑立灿,南开大学;12.贺雨桐,东南大学;13.马翔宇,太原理工大学;14.王云瀚,同济大学;15.李晗,电子科技大学;16.刘宇凡,中山大学;17. 郑小平,重庆邮电大学。
二、全国二等奖1.童维,西北工业大学;2.付新,西安电子科技大学;3.谭羽佳,南京航空航天大学;4.张涛,中国农业大学;5.杨汉龙,东北大学;6.谢嘉玮,上海交通大学;7.王峥然,中国科学技术大学;8.刘钰,哈尔滨工业大学;9.沈明雄,华东师范大学;10.孙名字,华中科技大学;11.许亮,南京农业大学;12.杨瑞昊,浙江师范大学;13.陶炜龙,合肥工业大学;14.张璇,北京师范大学;15.黄晓渝,中央民族大学;16.魏琪,苏州大学;17.周杨,北京交通大学;18.黄珩庆,中国人民大学;19.赵士卿,山东大学;20.李新,吉林大学。
三、全国三等奖1.马跃,北京航空航天大学;2.范苓,南京理工大学;3.张迪,湖南大学;4.罗家乐,深圳大学;5.李洋,大连理工大学;6.马艳秋,山东大学威海分校;7.丁耀,广西大学;8.王敏,安徽大学;9.马超,湖北大学;10.金鑫,西南大学;11.张俊宁,西安理工大学;12.马茹,西安科技大学;13.黄莎莎,中国矿业大学徐州校区;14.陈志伟,四川大学;15.孙健,武汉理工大学;16.赵洋,兰州大学;17.刘憬,深圳大学;18.李健,东北林业大学;19.崔传洁,河北工业大学;20.李益,北京科技大学。
四、特别奖1.郑凡,华南师范大学;2.刘磊,山西大学;3.张轩,西南民族大学;4.邓昊,四川师范大学;5.范妍,河南师范大学;6.李楠,江苏大学;7.丁晨,宁夏大学;8.陈江萁,云南大学;9.庞宗涛,福建师范大学;10.张志萍,山西农业大学;11.朱洋,西北农林科技大学;12.庞俊涛,浙江财经大学;13.张玉梅,青海大学;14.白赫,新疆师范大学;15.马昕,云南师范大学;16.刘浩,湖北中医药大学;17.曹舒,四川农业大学;18.李林,大连科技学院;19.张定祥,青岛大学;20.高雪琪,中国地质大学(武汉)。
首届中国大学生数学竞赛赛区赛试卷解答
专业:线年级:封所在院校: 密身份证号: 姓名:首届中国大学生数学竞赛赛区赛试卷解答(非数学类,2009)考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.题 号 一 二 三 四 五 六 七 八 总分满 分 20 5 15 15 10 10 15 10 100 得 分注意:1、所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2、密封线左边请勿答题,密封线外不得有姓名及相关标记.一、 填空题(每小题5分,共20分).(1)计算 dxdy yx x y y x D∫∫−−⎟⎠⎞⎜⎝⎛++11ln )(=_____________,其中区域D 由直线1=+y x 与两坐标轴所围三角形区域.(2)设 ()f x 是连续函数,满足 220()3()2f x x f x dx =−−∫,则()f x =___________________. (3) 曲面2222x z y =+− 平行平面 220x y z +−= 的切平面方程是________________________.(4)设函数 ()y y x =由方程 ()ln 29f y y xee =确定,其中f 具有二阶导数,且 1f ′≠,则22d ydx =____________________.答案:1615 ,21033x −, 2250x y z +−−=,223[1()]()[1()]f y f y x f y ′′′−−−′−.得 分评阅人二、(5分)求极限 20lim()ex x nx x x e e e n→+++ ,其中 n 是给定的正整数.解:原式20lim exp{ln()}x x nxx e e e e x n→+++=20(ln()ln )exp{lim}x x nx x e e e e n x →+++−= ………………….….…(2分) 其中大括号内的极限是型未定式,由 L Hospital ′法则,有 20(ln()ln )lim x x nx x e e e e n x →+++− 20(2)limx x nx x x nxx e e e ne e e e →+++=+++ (12)1(2e n n e n ++++==于是 原式=1()2n e e+ . ……………………………………..…………..…(5分)三、(15分)设函数 ()f x 连续,1()()g x f xt dt =∫,且()limx f x A x→= ,A 为常数,求 ()g x ′并讨论()g x ′ 在0x =处的连续性.解:由题设,知 (0)0f =,(0)0g =. …………….…………...…(2分)令u xt =,得0()()xf u dug x x=∫ (0)x ≠,……………………………………..……(5分)从而 02()()()x xf x f u dug x x−′=∫ (0)x ≠…………………………………….……(8分)由导数定义有20()()(0)limlim22xx x f u du f x Ag x x →→′===∫ ……………………………………….……(11分) 由于 022000()()()()lim ()limlim lim (0)22xxx x x x xf x f u duf u du f x A Ag x A g xx x →→→→−′′==−=−==∫∫, 从而知 ()g x ′ 在 0x =处连续. …………………………………………….……….(15分)得 分评阅人得 分评阅人专业:线年级:封所在院校: 密身份证号: 姓名:四、(15分)已知平面区域 {(,)|0,0}D x y x y ππ=≤≤≤≤ ,L 为D 的正向边界,试证:(1)sin sin sin sin yx y xLLxedy ye dx xe dy ye dx −−−=−∫∫; (2)sin sin 252yx Lxedy ye dx π−−≥∫ . 证法一:由于区域D 为一正方形,可以直接用对坐标曲线积分的计算法计算.(1) 左边0sin sin sin sin 00()yxx x edy edx e e dx ππππππ−−=−=+∫∫∫ , ...…(4分)右边0sin sin sin sin 0()yxx x edy edx e e dx ππππππ−−=−=+∫∫∫ ,……..…(8分)所以 sin sin sin sin y x y x LLxe dy ye dx xe dy ye dx −−−=−∫∫. ……………………………(10分) (2) 由于 sin sin 22sin xx ee x −+≥+ , …….…………………….…...(12分)sin sin sin sin 205()2yxx x Lxedy yedx e e dx πππ−−−=+≥∫∫ . ……..…….…(15分)证法二:(1)根据 Green 公式,将曲线积分化为区域D 上的二重积分sin sin sin sin ()y x y x LDxe dy ye dx e e d δ−−−=+∫∫∫ ……………………………...… (4分) sin sin sin sin ()yx y x LDxedy ye dx e e d δ−−−=+∫∫∫ ………………………………(8分)因为 关于 y x = 对称,所以sin sin sin sin ()()yx y x DDee d e e d δδ−−+=+∫∫∫∫ ,故sin sin sin sin y x y x LLxe dy ye dx xe dy ye dx −−−=−∫∫ . ………………….…… (10分) (2) 由 22022(2)!nttn t e e t n ∞−=+=≥+∑ sin sin sin sin sin sin 25()()2y x y x x xL D Dxe dy ye dx e e d e e d δδπ−−−−=+=+≥∫∫∫∫∫ . …….……….……(15分)得 分评阅人五、(10分)已知 21x xy xe e =+ ,2x x y xe e −=+ ,23x x x y xe e e −=+−是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解:根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知:2x e 与 xe −是相应齐次方程两个线性无关的解,且 xxe 是非齐次的一个特解.因此可以用下述两种解法 ………………………………………………………….…...……(6分)解法一: 故此方程式 2()y y y f x ′′′−−= ………………….……..……..……(8分)将xy xe = 代入上式,得()()()2222x x x x x x x x x x f x xe xe xe e xe e xe xe e xe ′′′=−−=+−−−=− ,因此所求方程为22x xy y y e xe ′′′−−=− . ……………………………………… …(10分)解法二:故 212x x xy xe c e c e −=++ ,是所求方程的通解,……………………(8分) 由2122x x x x y e xe c e c e −′=++− ,21224x x x xy e xe c e c e −′′=+++ ,消去 12,c c 得所求方程为 22x xy y y e xe ′′′−−=−. ……………………………………………………....…(10分)六、(10分)设抛物线 22ln y ax bx c =++过原点,当 01x ≤≤时,0y ≥,又已知该抛物线与x 轴及直线 1x =所围图形的面积为 13. 试确定,,,a b c 使此图形绕 x 轴旋转一周而成的旋转体的体积V 最小.解: 因抛物线过原点,故 1c =由题设有 1201()323a b ax bx dx +=+=∫.即 2(1)3b a =− ,………..………….…(2分) 而 122220111()[]523V ax bx dx a ab b ππ=+=++∫ 221114[(1)(1)]5339a a a a π=+−+⋅−. …………………….…………….…(5分)令 2128[(1)]053327dv a a a da π=+−−−=, 得 54a =− ,代入 b 的表达式 得 32b =. 所以0y ≥, ……………..…………(8分)得 分评阅人得 分评阅人专业:线年级:封所在院校: 密身份证号: 姓名:又因 25242284|[]05327135a d v da ππ=−=−+=> 及实际情况,当53,,142a b c =−== 时,体积最小. ………….……….…(10分)七、(15分)已知 ()n u x 满足1()()n x n nu x u x x e −′=+(n 为正整数), 且(1)n e u n=,求函数项级数1()n n u x ∞=∑之和.解:先解一阶常系数微分方程,求出()n u x 的表达式,然后再求1()n n u x ∞=∑ 的和.由已知条件可知 1()()n xn n u x u x x e −′−= 是关于 ()n u x 的一个一阶常系数线性微分方程,故其通解为1()()()ndx dx n x x n xu x e x e e dx c e c n−−∫∫=+=+∫ , ……………..…..(6分)由条件 (1)n e u n =,得0c =,故()n xn x e u x n=,从而 111()n x n xn n n n x e x u x e n n∞∞∞=====∑∑∑. …………….……..……...…(8分) 1()nn x s x n ∞==∑,其收敛域为 [1,1)−,当 (1,1)x ∈−时,有111()1n n s x x x∞−=′==−∑ ,………………………..…………………….….(10分) 故 01()ln(1)1xs x dt x t==−−−∫ . ………………..…………………(12分) 当1x =−时,11()ln 2n n u x e∞−==−∑. …………………………...…(13分)于是,当 11x −≤<时,有1()ln(1)xn n u x ex ∞==−−∑. ……….…..…(15分)得 分评阅人八、(10分)求1x →− 时,与20n n x ∞=∑等价的无穷大量.解:2221t n t n x dt x x dt ∞+∞+∞=≤≤+∑∫∫, ………………….…………….….….…(3分)221lnt t xx dt edt −+∞+∞=∫∫………………….…….………….....….(7分)=∼……………………….…...(10分)得 分评阅人第二届中国大学生数学竞赛预赛试卷参考答案及评分标准 (非数学类,2010)一(本题共5小题,每小题5分,共25分)、计算下列各题(要求写出重要步骤). (1) 设2(1)(1)(1)nn 2x a a a =+⋅++ ,其中1<|a |,求.n n x ∞→lim 解 将n x 恒等变形221(1)(1)(1)(1)1nn x a a a a a =−+⋅++− 2221(1)(1)(1)1n a a a a=−⋅++− 4421(1)(1)(1)1na a a a =−⋅++− 1211n a a+−=−,由于,可知1<|a |2lim 0nn a →∞=,从而ax n n −=∞→11lim . (2) 求lim x x x e x −→∞⎛⎞+⎜⎟⎝⎠211.解 lim x x x e x −→∞⎛⎞+⎜⎟⎝⎠211=11lim 1xx x e x −→∞⎡⎤⎛⎞+⎢⎥⎜⎟⎝⎠⎢⎥⎣⎦=1exp lim ln 11x x x x →∞⎛⎞⎡⎤⎛⎞+−⎜⎟⎢⎥⎜⎟⎜⎟⎝⎠⎢⎥⎣⎦⎝⎠=1exp lim ln 11x x x x →∞⎛⎞⎡⎤⎛⎞+−⎜⎟⎜⎟⎢⎥⎝⎠⎣⎦⎝⎠=22111exp lim ()12x x x x xx ο→∞⎛⎞⎡⎤⎛⎞−+−⎜⎟⎜⎟⎢⎥⎝⎠⎣⎦⎝⎠=21−e .(3) 设,求0s >0sx n n I e x dx +∞−=∫(1,2,n )= .解 因为时,0s >lim 0sx n x e x −→+∞=,所以,100011n sx n sx sx n n n n I x de x e e dx I s s +∞+∞+∞−−−s −⎡⎤=−=−−=⎢⎥⎣⎦∫∫ 由此得到,12011!n n n n n n n n n n I I I I s s s s s−−!+−==⋅===(4) 设函数f ( t )有二阶连续的导数,r =1(,)(g x y f r=,求2222.g g x y ∂∂+∂∂ 解 因为,r x r yx r y r∂∂==∂∂,所以 31()g x f x r r ∂′=−∂,2222265121(().g x x y f f x r r r r ∂−′′′=+∂ 利用对称性,2222431111()()g g f f x y r r r r∂∂′′′+=+∂∂(5) 求直线10:0x y l z −=⎧⎨=⎩与直线221:42x y z l 31−−−==−−的距离.解 直线的对称式方程为1l 1:110x y zl ==. 记两直线的方向向量分别为,,两直线上的定点分别为和,.1(10)l = a P ==,1,12P 2(4,2,1)l =−−(2,1,3)1(0,0,0)P 2(2,1,3)P 12(1,1,6)l l ×=−−.由向量的性质可知,两直线的距离1212()a l l d l l ⋅×====×二(本题共15分)、 设函数在)(x f )(+∞−∞,上具有二阶导数,并且()0,f x ′′>lim ()0x f x α→+∞′=>,lim x ()f x 0β→−∞′=<,且存在一点,使得.0x 0)(0<x f 证明:方程0)(=x f 在恰有两个实根.)(+∞−∞,证1. 由lim ()0x f x α→−∞′=>必有一个充分大的,使得0x a >()0f a ′>.()0f x ′′>知是凹函数,从而()y f x =()()()()()f x f a f a x a x a ′>+−>当x →+∞时,()()()f f a x a ′+∞+−→+∞. 故存在,使得a b > ……………… (6分)()()()()0f b f a f a b a ′>+−>同样,由lim ()0x f x β→−∞′=<,必有0c x <,使得()0f c ′<.()0f x ′′>知是凹函数,从而()y f x =()()()()()f x f c f c x c x c ′>+−<当x →−∞时,()()()f f c x c ′−∞+−→+∞. 故存在d ,使得c < …………………… (10分)()()()()0f d f c f c d c ′>+−>在0[,]x b 和利用零点定理,0[,]d x 10(,)x x b ∃∈,2(,)0x d x ∈使得 ……………………… (12分) 1()2)0==(f x f x 下面证明方程在0)(=x f )(+∞−∞,只有两个实根.用反证法. 假设方程0)(=x f 在)(+∞−∞,]232x ,x 内有三个实根,不妨设为,且. 对在区间[和[]上分别应用洛尔定理,则各至少存在一点(321x ,x ,x 321x x x <<1ξ)(x f 1x ξ<1,x 2x 1x <)和(2ξ322x ξx <<),使得=)(1ξf'(ξη00=)2ξ<)(2ξf'1η<. 再将在区间[上使用洛尔定理,则至少存在一点,使. 此与条件矛盾. 从而方程)(x 0)(=ηf'f"]2ξ′′1,ξ()0f x >)(=x f 在)+∞,(−∞不能多于两个根. ……………………(15分)证2. 先证方程至少有两个实根.0)(=x f 由lim ()0x f x α→+∞′=>,必有一个充分大的,使得0x a >()0f a ′>.因在)(x f )(+∞−∞,上具有二阶导数,故()f x ′及()f x ′′在)(+∞−∞,均连续. 由拉格朗日中值定理,对于a x > 有()[()()()]f x f a f a x a ′−+−=()()()()]f x f a f a x a ′−−−=()()()()f x a f a x a ξ′′−−−=[()()]()f f a x a ξ′′−− =()()()f a x a ηξ′′−−.其中x ηa ,x ξa <<<<. 注意到()0f η′′>(因为()0f x ′′>),则()()()()()f x f a f a x a x a ′>+−>又因 故存在,使得()0,f a ′>a b > ()()()()0f b f a f a b a ′>+−> …………………(6分)又已知,由连续函数的中间值定理,至少存在一点 使得0)(0<x f )(101b x x x <<0)(1=x f . 即方程在0)(=x f )(0+∞,x 上至少有一个根 ………………(7分)1x 同理可证方程在0)x (=f )(0x ,−∞上至少有一个根2x . ………………(12分) 下面证明方程在0)(=x f )(+∞−∞,只有两个实根.(以下同证1).……(15分)三(本题共15分)、设函数()y f x =由参数方程22()x t t y t ψ⎧=+⎨=⎩(t >−1)所确定. 且2234(1)d y dx t =+,其中()t ψ具有二阶导数,曲线)(t y ψ=与21t ∫2u y e d −=+32u e在处相切. 求函数1=t (t )ψ.解 因为()22dy t dx t ψ′=+,()22231(22)()2()(1)()()224(1)22d y t t t t t t dx t t t ψψψψ′′′′′′+−+−=⋅=+++, ………………(3分)由题设2234(1)d y dx t =+,故3(1)()()34(1)4(1)t t t t t ψψ′′′+−=++,从而,即 2(1)()()3(1)t t t t ψψ′′′+−=+1()()3(1).1t t tt ψψ′′′−=++ 设()u t ψ′=,则有13(1)1u u t′−=++t , 11111113(1)(1)3(1)(1)(1)(3).dt dt t t u e t e dt C t t t dt C t t C −−++⎡⎤∫∫⎡⎤=++=++++=+⎢⎥⎣⎦⎣⎦∫∫1+ …………(9分)由曲线)(t y ψ=与22132t u y edu e−=+∫在1=t 处相切知3(1)2e ψ=,2(1)eψ′=. ………………(11分)所以12(1)t ue ψ=′==,知311−=eC . ∫∫++++=+++=++=21213112123))3(3()3)(1()(C t C t C t dt C t C t dt C t t t ψ,由e23)1(=ψ,知,于是22=C 3211()(3)2(1)2t t t t t e e ψ=++−+>−.…(15分)四(本题共15分)、设10,nn n k a S =>=k a ∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛; (2)当1α≤,且(n )时,级数n S →∞→∞1nn na S α+∞=∑发散. 证明 令11(),[,]n n f x x x S S α−−=∈. 将()f x 在区间上用拉格朗日中值定理,1[,n n S S −])存在1(,n n S S ξ−∈11()()()()n n n n f S f S f S S ξ−−′−=−即 ………………(5分) 111(1)n n S S ααααξ−−−−−=−n a (1)当1α>时,11111(1)(1)nnn na a S S S n αααααξ−−−−=−≥−α. 显然11111n n S S αα−−−⎧⎫−⎨⎬⎩⎭的前n 项和有界,从而收敛,所以级数1nn na S α+∞=∑收敛. ……………(8分) (2)当1α=时,因为,单调递增,所以0n a >n S 1111n pn pn p nk nk k n k n kn p n pn S S a S a S S S S +++=+=+p+++−≥==−∑∑因为对任意n ,当n S →+∞p ∈12n n p S S +<,从而112n pk k n ka S +=+≥∑. 所以级数1nnn a S α+∞=∑发散. ………………(12分) 当1α<时,n n n a a S S α≥n. 由1n n n a S +∞=∑发散及比较判别法,1n n na S α+∞=∑发散.………(15分)五(本题共15分)、设l 是过原点,方向为(,(其中)的直线,均匀椭球,)αβγ2221αβγ++=2222221x y z a b c ++≤(其中0 < c < b < a ,密度为1)绕l 旋转.(1) 求其转动惯量;(2) 求其转动惯量关于方向(,的最大值和最小值. ,)αβγ解 (1) 设旋转轴l 的方向向量为,椭球内任意一点P(x,y,z )的径向量为,则点P 到旋转轴l 的距离的平方为(,,)αβγ=l r ()222222222(1)(1)(1)222d x y z xy yz xz αβγαββγα=−⋅=−+−+−−−−r r l γ 由积分区域的对称性可知(222)0xy yz xz dxdydz αββγαγΩ++=∫∫∫,其中222222(,,)1x y z x y z a b c ⎧⎫⎪⎪⎪⎪Ω=++≤⎨⎬⎪⎪⎪⎪⎩⎭………………(2分)而22222223222214115aay z x b c a a ax a bc x dxdydz x dx dydz x bc dx a ππ+≤−Ω−−⎛⎞⎟⎜⎟==⋅−=⎜⎟⎜⎟⎝⎠∫∫∫∫∫∫∫ (或2132222220004sin cos sin 15a bc x dxdydz d d a r abcr dr πππθϕϕθϕΩ=⋅=∫∫∫∫∫∫) 32415ab c y dxdydz πΩ=∫∫∫,32415abc z dxdydz πΩ=∫∫∫……………(5分)由转到惯量的定义()222224(1)(1)(1)15l abc J d dxdydz a b c παβγΩ==−+−+−∫∫∫22c ……………(6分)(2) 考虑目标函数 在约束 下的条件极值. 222222(,,)(1)(1)(1)V a b αβγαβγ=−+−+−2221αβγ++=设拉格朗日函数为222222222(,,,)(1)(1)(1)(1)L a b c αβγλαβγλαβγ=−+−+−+++−…………………(8分)令,,,22()0L a ααλ=−=22()0L b ββλ=−=22()0L c γγλ=−=22210L λαβγ=++−=解得极值点为,, .……(12分) 21(1,0,0,)Q a ±22(0,1,0,)Q b ±23(0,0,1,)Q ±c 比较可知,绕z 轴(短轴)的转动惯量最大,为()22max 415abc J a π=+b ;绕x 轴(长轴)的转动惯量最小,为(22min 415abc J b π=)c +. ………(15分)六(本题共15分)、设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422(C)xydx x dyx yϕ++∫v1的值为常数. (1) 设为正向闭曲线. 证明: L 22(2)x y −+=422()0Lxydx x dyx y ϕ+=+∫v ;(2) 求函数()x ϕ;(3) 设C 是围绕原点的光滑简单正向闭曲线,求422(C)xydx x dyx y ϕ++∫v.解 (1) 设422()Lxydx x dyI x yϕ+=+∫v,闭曲线L 由,1,i L i 2=组成. 设0L 为不经过原点的光滑曲线,使得01L L −∪(其中1L −为1L 的反向曲线)和02L L ∪分别组成围绕原点的分段光滑闭曲线,C i 1,2i =. 由曲线积分的性质和题设条件12214242422()2()2(LL L L L L L)xydx x dy xydx x dy xydx x dyx y x y x y ϕϕ−++=+=+−−++∫∫∫∫∫∫∫v ϕ++12422()0C C xydx x dyI I x y ϕ+=+=−=+∫∫v v……………(5分) (2) 设4242((,),(,)2)xy x P x y Q x y x y x ϕ==++y .令Q P x y ∂∂=∂∂,即 4235422422()()4()22()(2)x x y x x x xy x y x y ϕϕ′+−−=++,解得2()x x ϕ=− ……………………(10分)(3) 设D 为正向闭曲线所围区域,由(1)42:a C x y +=1242422()2aCCxydx x dy xydx x dyx y x y ϕ+−=++∫∫v v…………………(12分) 利用Green 公式和对称性,2422()24aaC C Dxydx x dyxydx x dy x dxdy x y (ϕ+=−=−=+∫∫∫∫v v )0…………………(15分)第三届全国大学生数学竞赛预赛试卷参考答案及评分标准 (非数学类,2011)一、(本题共4小题,每题6分,共24分)计算题1. 220(1)(1ln(1))lim .xx x e x x →+--+解:因为 22(1)(1ln(1))xx e x x+--+=2ln(1)2(1ln(1)),x xe e x x+--+220ln(1)lim ,x e x e x →+= ………………………………………………3分 22ln(1)ln(1)222001lim lim x x xxx x e e e e x x ++-→→--==202ln(1)2lim x x x e x→+- =22220011ln(1)12lim 2lim ,2x x x x x e e e x x→→-+-+==- ………………5分 所以220(1)(1ln(1))lim xx x e x x→+--+=0. ………………………………6分 2. 设2cos cos cos ,222n n a θθθ=⋅⋅⋅ 求lim .n n a →∞解:若0,θ=则lim 1.n n a →∞= ……………………1分若0θ≠,则当n 充分大,使得2||nk >时,2cos cos cos 222n n a θθθ=⋅⋅⋅ =21cos cos cos sin 2222sin 2n n nθθθθθ⋅⋅⋅⋅⋅=21111cos cos cos sin 22222sin 2n n n θθθθθ--⋅⋅⋅⋅⋅ . ………………………4分=222211cos cos cos sin 22222sin 2n n nθθθθθ--⋅⋅⋅⋅⋅ =sin 2sin 2n n θθ这时, lim n n a →∞=lim n →∞sin sin 2sin 2nnθθθθ=. ………………………6分3. 求sgn(1)Dxy dxdy -⎰⎰,其中{(,)|02,02}D x y x y =≤≤≤≤解:设 11{(,)|0,02}2D x y x y =≤≤≤≤ 211{(,)|2,0}2D x y x y x =≤≤≤≤311{(,)|2,2}2D x y x y x =≤≤≤≤. ……………………………2分12212112ln 2D D dxdxdy x ⋃=+=+⎰⎰⎰,332ln 2D dxdy =-⎰⎰. ………………………4分 323sgn(1)24ln 2DD D D xy dxdy dxdy dxdy ⋃-=-=-⎰⎰⎰⎰⎰⎰. ………………………6分4. 求幂级数221212n nn n x ∞-=-∑的和函数,并求级数211212n n n ∞-=-∑的和. 解:令22121()2n nn n S x x ∞-=-=∑,则其的定义区间为(.(x ∀∈, 12122221110021()22222n xxn n n n n n n n x x x xS t dt t dt x --∞∞∞-===⎛⎫-====⎪-⎝⎭∑∑∑⎰⎰. …………………2分 于是,22222()2(2)x x S x x x '+⎛⎫== ⎪--⎝⎭,(x ∈. (4)分 222111212110229n n n n n n n S -∞∞-==--===∑∑. ………………………………6分二、(本题2两问,每问8分,共16分)设0{}n n a ∞=为数列,,a λ为有限数,求证: 1. 如果lim n n a a →∞=,则12limnn a a a a n→∞+++= ;2. 如果存在正整数p ,使得lim()n p n n a a λ+→∞-=,则 limn n a n pλ→∞=.证明:1. 由lim n n a a →∞=,0M ∃>使得||n a M ≤,且10,N ε∀>∃∈ ,当n > N 1 时,||2n a a ε-<. ……………………………………4分因为21N N ∃>,当n > N 2 时,1(||)2N M a n ε+<.于是,111(||)()22n a a N M a n N a n n n εεε+++--≤+< ,所以, 12limnn a a a a n→∞+++= . …………………………………………8分2.对于0,1,,1i p =- ,令()(1)i n n p i np i A a a +++=-,易知(){}i n A 为{}n p n a a +-的子列.由lim()n p n n a a λ+→∞-=,知()lim i nn A λ→∞=,从而()()()12lim i i i nn A A A nλ→∞+++= .而()()()12(1)i i i n n p i p i A A A a a ++++++=- .所以,(1)limn p i p in a a nλ+++→∞-=.由lim0p i n a n+→∞=.知(1)limn p in a nλ++→∞=. ………………………………………12分从而(1)(1)limlim (1)(1)n p in p i n n a a nn p i n p i n pλ++++→∞→∞=⋅=++++ ,,,m n p i ∀∈∃∈ ,(01)i p ≤≤-,使得m np i =+,且当m →∞时,n →∞.所以,lim m m a m pλ→∞=. …………………………………………………………16分三、(15分)设函数()f x 在闭区间-[1,1]上具有连续的三阶导数,且10f -=(),11f =(),00f '=().求证:在开区间()-1,1内至少存在一点0x ,使得03f x '''=() 证. 由马克劳林公式,得 311(0)23f x f f x f x η'''''=++2()(0)()!!,η介于0与x 之间,[]1,1x ∈-…3分 在上式中分别取1x =和1x =-, 得111111(0),0123f f f f ηη'''''==++<<()(0)()!!. ………………………5分 221101(0)(0),1023f f f f ηη'''''=-=+--<<()()!!. ………………………7分 两式相减,得 12()6f f ηη''''''+=(). ………………………10分 由于()f x ''在闭区间[1,1]-上连续,因此()f x '''在闭区间[21,ηη]上有最大值M 最小值m ,从而121()())2m f f M ηη''''''≤+≤( …………………………………13分 再由连续函数的介值定理,至少存在一点0x ,ηη∈⊂-21[](1,1),使得0121()32f x f f ηη'''''''''=+=()(()). ………………………15分四、(15分)在平面上, 有一条从点)0,(a 向右的射线,线密度为ρ. 在点),0(h 处(其中h > 0)有一质量为m 的质点. 求射线对该质点的引力.解:在x 轴的x 处取一小段dx , 其质量是dx ρ,到质点的距离为22x h +, 这一小段与质点的引力是22Gm dxdF h xρ=+(其中G 为引力常数). …………………5分 这个引力在水平方向的分量为2232()x Gm xdxdF h x ρ=+. 从而 222/1222/32222/322)()()(2)(a h Gm x h Gm x h x d Gm x h xdx Gm F aa ax +=+-=+=+=⎰⎰+∞∞+-+∞ρρρρ……10分而dF 在竖直方向的分量为2232()y Gm hdxdF h x ρ=+, 故 ⎪⎭⎫⎝⎛-===+=⎰⎰⎰+∞h a h Gm tdt h Gm t h dt h Gm x h hdxGm F hahaay arctan sin 1cos sec sec )(2/arctan2/arctan33222/322ρρρρππ 所求引力向量为(,)x y F F =F . …………………………15分五、(15分)设z = z (x,y ) 是由方程11(,)0F z z x y+-=确定的隐函数,且具有连续的二阶偏导数.求证:220z z xy x y ∂∂+=∂∂ 和 2223322()0z z z x xy x y y x x y y ∂∂∂+++=∂∂∂∂ 解:对方程两边求导,1221()0z z F F x x x ∂∂-+=∂∂,1221()0z z F F y y y∂∂++=∂∂. ……5分 由此解得,22121211,()()z z x y x F F y F F ∂∂-==∂∂++ 所以,220z z xy x y∂∂+=∂∂ …………………………10分 将上式再求导,222222z z z xy x y x x x ∂∂∂+=-∂∂∂∂,222222z z z x y y x y y y ∂∂∂+=-∂∂∂∂ 相加得到,2223322()0z z z x xy x y y x x y y∂∂∂+++=∂∂∂∂ …………………………15分六、(15分)设函数)(x f 连续,c b a ,,为常数,∑是单位球面 1222=++z y x . 记第一型曲面积分⎰⎰∑++=dS cz by ax f I )(. 求证:⎰-++=11222)(2du u c b a f I π解:由∑的面积为π4可见:当 c b a ,,都为零时,等式成立. …………………2分 当它们不全为零时, 可知:原点到平面 0=+++d cz by ax 的距离是222||cb a d ++. …………………………5分设平面222:cb a cz by ax u P u ++++=,其中u 固定. 则 ||u 是原点到平面u P 的距离,从而11≤≤-u . …………………………8分两平面 u P 和du u P +截单位球 ∑ 的截下的部分上, 被积函数取值为()u c b af222++. …………………………10分这部分摊开可以看成一个细长条. 这个细长条的长是212u -π, 宽是21udu -,它的面积是du π2, 故我们得证. …………………………15分第四届全国大学生数学竞赛预赛试题 (非数学类)参考答案及评分标准一、(本题共5小题,每小题各6分,共30分)解答下列各题(要求写出重要步骤).(1) 求极限21lim(!)n n n →∞;(2) 求通过直线232:55430x y z L x y z 0+−+=⎧⎨+−+=⎩的两个相互垂直的平面1π和2π,使其中一个平面过点;(4,3,1)−(3) 已知函数,且(,)ax byz u x y e+=20,ux y∂=∂∂ 确定常数a 和,使函数满足方程 b (,)z z x y =20z z zz x y x y∂∂∂−−+=∂∂∂∂; (4) 设函数连续可微, , 且()u u x =(2)1u =3(2)()Lx y udx x u udy +++∫在右半平面上与路径无关,求; ()u x(5) 求极限 1limx xx +.解(1) 因为 2211ln(!)(!)n nn n e= ……………………………………(1分)而211ln1ln 2ln ln(!)12n n n n ⎛⎞≤+++⎜n ⎝⎠"⎟,且 ln lim 0n nn →∞= ………………………(3分) 所以 1ln1ln 2ln lim012n n n n →∞⎛⎞+++=⎜⎟⎝⎠", 即 21lim ln(!)0n n n →∞=, 故 21lim(!)n n n →∞=1 ……………………………………(2分)(2)过直线L 的平面束为(232)(5543)x y z x y z 0λμ+−+++−+=即 (25)(5)(34)(23)x y z 0λμλμλμλμ+++−+++= ,…………………………(2分) 若平面1π过点(4,代入得,3,1)−0λμ+=,即μλ=−,从而1π的方程为, ……………………………………(2分) 3410x y z +−+=若平面束中的平面2π与1π垂直,则3(25)4(5)1(34)0λμλμλμ⋅++⋅++⋅+=解得3λμ=−,从而平面2π的方程为253x y z 0−−+= ,………………………………(2分) (3)(),y ax by z u e au x x x +∂∂⎡⎤=++⎢⎥∂∂⎣⎦(),ax by zu e bu x y y y +⎡⎤∂∂=++ ………………(2分) ⎢⎥∂∂⎣⎦2(,).ax by z u ue b a abu x y x y x y +⎡⎤∂∂∂=++⎢⎥∂∂∂∂⎣⎦ ……………………………………(2分) 2z z z z x y x y ∂∂∂−−+=∂∂∂∂(1)(1)(1)(,)ax by u ue b a ab a b u x y x y +,⎡⎤∂∂−+−+−−+⎢⎥∂∂⎣⎦若使20,z z zz x y x y∂∂∂−−+=∂∂∂∂ 只有 (1)(1)(1)(,u ub a ab a b u x y x y∂∂−+−+−−+∂∂)=0, 即 1a b ==. ………………(2分) (4)由()()u y x y u x u x )2(][3+∂∂=+∂∂得()u u u x =+'43, 即241u x u du dx =−…… .(2分) 方程通解为 ()()()Cu u C udu u C du eu ex uu+=+=+=∫∫−2ln 2ln 244 . …………………(3分)由得1)2(=u 0=C , 故 3/12⎟⎠⎞⎜⎝⎛=x u . ……………………………………(1分)(5)因为当x >1时,1x x+≤ ………………………………(3分)≤=0()x →→∞, …………………(2分)所以 1x xx +=0。
中国大学生数学竞赛大纲
中国大学生数学竞赛大纲为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。
中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1. 函数的概念及表示法、简单应用问题的函数关系的建立.2. 函数的性质:有界性、单调性、周期性和奇偶性.3. 复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4. 数列极限与函数极限的定义及其性质、函数的左极限与右极限.5. 无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6. 极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7. 函数的连续性(含左连续与右连续)、函数间断点的类型.8. 连续函数的性质和初等函数的连续性.9. 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n 阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L ’Hospital )法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz )公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli )方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y = ),,(y x f y '='' ),(y y f y '=''.4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler )方程.8. 微分方程的简单应用五、向量代数和空间解析几何1.向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2.两向量垂直、平行的条件、两向量的夹角.3.向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4.曲面方程和空间曲线方程的概念、平面方程、直线方程.5.平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6.球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1.多元函数的概念、二元函数的几何意义.2.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4.多元复合函数、隐函数的求导法.5.二阶偏导数、方向导数和梯度.6.空间曲线的切线和法平面、曲面的切平面和法线.7.二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数。
中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理
中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1.原函数和不定积分的概念.2.不定积分的基本性质、基本积分公式.3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4.不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli )方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y = ),,(y x f y '='' ),(y y f y '=''.4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler )方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数。
全国大学生数学竞赛考试时间
全国大学生数学竞赛考试时间全国大学生数学竞赛考试是中国为推动数学发展和提高学生数学学习素质而设置的一项系统性竞赛,旨在拓宽我国大学生数学视野,锻炼学生数学思路,提高学生数学水平,扩大学生国际竞争力。
全国大学生数学竞赛考试的时间一般为每年4月份至11月份,具体日期由每年的参赛单位统一安排。
参赛单位包括高等院校、中学院校和社会组织(如全国研究所等)。
主办单位是教育部主管的数学教育中心。
参加全国大学生数学竞赛考试的主要考生是就读于高等院校、中学院校和社会组织的学生。
考试内容具有创新性,涉及到求解一类数学问题的功能,使得学生能够更加系统地深入地掌握数学知识。
考试形式一般分为定量题(综合型)和定性题(综合型)两种,其中定量题主要考察学生在给定数学问题中做出准确的答案,定性题主要考察学生在解决这类问题上的观察、分析、推理、思考能力和综合素质。
全国大学生数学竞赛考试的最重要也是最宝贵的是,参赛单位在面对复杂多变的现实情况时,可以为参赛者提供一个宽松、良好的学习、思考和表达的空间。
总之,全国大学生数学竞赛考试的出现不仅有利于促进数学教育的健康发展,提高学生的数学思维能力,更是通过竞赛激发学生学习热情,进一步推广数学教育的重要一环。
全国大学生数学竞赛
第十一届“全国大学生数学竞赛”简介全国大学生数学竞赛是由中国数学会主办的大学生专业技能竞赛活动,旨在进一步推动和促进高等学校数学的教学改革和课程建设,激发和培养广大学生学习数学的兴趣,发现和选拔数学创新人才,为青年学子提供一个展示自我的舞台。
一、竞赛的方式与时间安排第十一届全国大学生数学竞赛分初赛和决赛两个阶段。
分区初赛于2019年10月下旬在四川赛区进行,竞赛委员会负责统一命题,各赛区数学会组织考试。
全国决赛于2020年3月举行。
二、奖项的设立:设初赛(以省、市、自治区作为赛区)奖与决赛奖。
预赛奖:每个赛区的获奖总名额不超过总参赛人数的25%(其中一等奖、二等奖、三等奖分别占各类获奖总人数的20%、30%、50%)。
颁发“第八届全国大学生数学竞赛预赛*等奖”证书。
决赛奖:参加全国决赛的总人数不超过300人。
每个赛区参加决赛的名额不少于3名,由各赛区在赛区一等奖获得者中推选。
最后入选名单由竞赛工作小组批准。
决赛阶段的评奖等级按绝对分数评奖。
颁发“第八届全国大学生数学竞赛决赛*等奖”证书。
预赛奖和决赛奖证书均加盖“中国数学会普及工作委员会”的公章,获奖证书由承办单位统一印制。
三、全国竞赛内容:省级预赛只考高等数学内容。
全国决赛时在预赛的基础上增加线性代数内容。
(考分约占总分的15%--20%)。
四、全国大学生数学竞赛官网全国大学生数学竞赛网站/中国大学生数学竞赛(非数学专业类)竞赛内容一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立。
2.函数的性质:有界性、单调性、周期性和奇偶性。
3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数。
4.数列极限与函数极限的定义及其性质、函数的左极限与右极限。
5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较。
6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限。
7.函数的连续性(含左连续与右连续)、函数间断点的类型。
全国大学生数学竞赛赛试题(1-9届)
全国大学生数学竞赛赛试题(19届)一、试题概述全国大学生数学竞赛是由中国数学会主办的一项面向全国高校本科生的数学竞赛。
自2009年首届竞赛举办以来,已成功举办九届。
竞赛旨在激发大学生对数学的兴趣,提高他们的数学素养和综合能力,同时选拔优秀数学人才。
每届竞赛均设有预赛和决赛两个阶段,预赛为全国范围内的统一考试,决赛则在全国范围内选拔出的优秀选手中进行。
二、竞赛内容全国大学生数学竞赛的试题内容主要包括高等数学、线性代数、概率论与数理统计等基础数学知识。
试题难度适中,既考查参赛选手的基础知识掌握程度,又注重考查他们的综合应用能力和创新思维能力。
三、竞赛特点1. 公平公正:竞赛试题由全国数学教育专家命题,确保试题质量,保证竞赛的公平公正。
2. 注重基础:竞赛试题主要考查参赛选手对基础数学知识的掌握程度,有利于引导大学生重视基础数学学习。
3. 综合应用:试题设计注重考查参赛选手的综合应用能力,培养他们的创新思维和实践能力。
4. 激发兴趣:竞赛通过丰富多样的试题形式,激发大学生对数学的兴趣,培养他们的数学素养。
四、竞赛组织全国大学生数学竞赛由各省、市、自治区数学会负责组织本地区的预赛,中国数学会负责全国范围内的决赛。
竞赛组织工作包括试题命制、竞赛宣传、选手选拔、竞赛监督等环节,确保竞赛的顺利进行。
五、竞赛影响全国大学生数学竞赛自举办以来,受到了广大高校和数学爱好者的广泛关注和热情参与。
竞赛不仅为优秀数学人才提供了展示才华的舞台,也为全国高校数学教育提供了有益的借鉴和启示。
通过竞赛,大学生们不仅提高了自己的数学水平,还结识了许多志同道合的朋友,拓宽了视野,激发了学习热情。
六、竞赛历程自2009年首届全国大学生数学竞赛举办以来,竞赛规模逐年扩大,影响力不断提升。
参赛选手涵盖了全国各大高校的本科生,包括综合性大学、理工科院校、师范院校等。
随着竞赛的普及,越来越多的学生开始关注并参与其中,竞赛逐渐成为衡量高校数学教育水平和学生数学素养的重要标志。
全国大学生数学竞赛
全国大学生数学竞赛全国大学生数学竞赛是中国教育部主办的一项重要赛事,旨在提高大学生数学素质、培养数学科技创新人才,促进数学教育改革与发展。
该竞赛覆盖全国各高校,参赛学生的数学知识和解题能力都会得到锻炼和提高。
数学竞赛是一种评价学生数学水平的有效方式,既能激发学生学习数学的兴趣,又能展现学生的数学才华。
全国大学生数学竞赛不仅考察学生的基本数学知识,还倾向于培养学生的数学思维能力和解决复杂问题的能力。
竞赛的内容涉及到数学的各个领域,包括数论、代数、几何、概率与统计等。
题目不仅要求学生具备熟练的计算能力,还要求学生具备分析问题、拓展思路、创新解题等能力。
竞赛题目通常具有一定的难度,能够增强学生的自学能力和解决问题的能力。
全国大学生数学竞赛的选拔过程分为校内选拔和校外选拔两个阶段。
在校内选拔中,各高校会组织内部数学竞赛,评选出表现优异的学生参加校外选拔。
校外选拔是在全国范围内进行的,参赛学生需要经过一系列的层层选拔,直至获得最终的名次。
参加全国大学生数学竞赛对于学生来说是一次重要的机会,不仅可以与全国各地的优秀学生交流学习,还能获得奖金和荣誉。
优秀的成绩还可以作为申请研究生、出国留学等方面的加分项,对于学生未来的发展具有重要意义。
然而,要在全国大学生数学竞赛中取得好成绩并不容易。
首先,需要具备扎实的数学基础知识和分析思维能力。
其次,要有充分的备考时间,进行系统的复习和实战训练。
此外,还需要学会合理规划时间,合理安排每道题目的解答时间,从而在有限的时间内完成尽可能多的题目。
在备考期间,可以参加学校组织的数学竞赛培训班,或者参加一些数学竞赛的辅导课程,从中获取宝贵的经验和解题技巧。
同时,多做一些历年真题,熟悉竞赛的题型和难度,对于备考有很大的帮助。
总之,全国大学生数学竞赛是提高大学生数学素质、培养数学人才的一项重要赛事。
参加竞赛不仅可以锻炼学生的数学能力,还可以为个人发展增添亮点。
希望广大学生能够充分利用这个机会,努力备战,取得优异的成绩。
全国大学生数学竞赛大纲(数学专业组)
中国大学生数学竞赛竞赛大纲(数学专业组)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。
(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分一、集合与函数1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理.2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广.3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质.二、极限与连续1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)nn e n →∞+=及其应用.3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin10lim 1,lim(1)x x x x x x e →→∞=+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).三、一元函数微分学1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项).3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital )法则、近似计算.四、多元函数微分学1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式.2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).4.极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法.五、一元函数积分学1. 原函数与不定积分、换元法、分部积分法)、有理函数积分:(cos ,sin )R x x dx ⎰型,()R x dx ⎰型.2. 定积分及其几何意义、可积条件(必要条件、充要条件:i i x ωε∆<∑)、可积函数类.3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L 公式及定积分计算、定积分第二中值定理.4.无限区间上的广义积分、Canchy 收敛准则、绝对收敛与条件收敛、()f x 非负时()a f x dx +∞⎰的收敛性判别法(比较原则、柯西判别法)、Abel 判别法、Dirichlet 判别法、无界函数广义积分概念及其收敛性判别法.5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.六、多元函数积分学1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换).2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).3.重积分的应用(体积、曲面面积、重心、转动惯量等).4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.5.第一型曲线积分、曲面积分的概念、基本性质、计算.6.第二型曲线积分概念、性质、计算;Green 公式,平面曲线积分与路径无关的条件.7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke 公式,两类线积分、两类面积分之间的关系.七、无穷级数1. 数项级数级数及其敛散性,级数的和,Cauchy 准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz 判别法;一般项级数的绝对收敛、条件收敛性、Abel 判别法、Dirichlet 判别法.2. 函数项级数函数列与函数项级数的一致收敛性、Cauchy 准则、一致收敛性判别法(M-判别法、Abel 判别法、Dirichlet 判别法)、一致收敛函数列、函数项级数的性质及其应用.3.幂级数幂级数概念、Abel定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor级数、Maclaurin级数.4.Fourier级数三角级数、三角函数系的正交性、2 及2l周期函数的Fourier级数展开、Beseel不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理.Ⅱ、高等代数部分一、多项式1.数域与一元多项式的概念2.多项式整除、带余除法、最大公因式、辗转相除法3.互素、不可约多项式、重因式与重根.4.多项式函数、余数定理、多项式的根及性质.5.代数基本定理、复系数与实系数多项式的因式分解.6.本原多项式、Gauss引理、有理系数多项式的因式分解、Eisenstein判别法、有理数域上多项式的有理根.7.多元多项式及对称多项式、韦达(Vieta)定理.二、行列式1.n级行列式的定义.2.n级行列式的性质.3.行列式的计算.4.行列式按一行(列)展开.5.拉普拉斯(Laplace)展开定理.6.克拉默(Cramer)法则.三、线性方程组1. 高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解.2. n维向量的运算与向量组.3. 向量的线性组合、线性相关与线性无关、两个向量组的等价.4. 向量组的极大无关组、向量组的秩.5. 矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.6. 线性方程组有解判别定理、线性方程组解的结构.7. 齐次线性方程组的基础解系、解空间及其维数四、矩阵1. 矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.2. 矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系.3. 矩阵的逆、伴随矩阵、矩阵可逆的条件.4. 分块矩阵及其运算与性质.5. 初等矩阵、初等变换、矩阵的等价标准形.6. 分块初等矩阵、分块初等变换.五、双线性函数与二次型1.双线性函数、对偶空间2.二次型及其矩阵表示.3.二次型的标准形、化二次型为标准形的配方法、初等变换法、正交变换法.4.复数域和实数域上二次型的规范形的唯一性、惯性定理.5.正定、半正定、负定二次型及正定、半正定矩阵六、线性空间1.线性空间的定义与简单性质.2.维数,基与坐标.3.基变换与坐标变换.4.线性子空间.5.子空间的交与和、维数公式、子空间的直和.七、线性变换1.线性变换的定义、线性变换的运算、线性变换的矩阵.2.特征值与特征向量、可对角化的线性变换.3.相似矩阵、相似不变量、哈密尔顿-凯莱定理.4.线性变换的值域与核、不变子空间.八、若当标准形λ矩阵.1.-2. 行列式因子、不变因子、初等因子、矩阵相似的条件.3. 若当标准形.九、欧氏空间1.内积和欧氏空间、向量的长度、夹角与正交、度量矩阵.2.标准正交基、正交矩阵、施密特(Schmidt)正交化方法.3.欧氏空间的同构.4.正交变换、子空间的正交补.5.对称变换、实对称矩阵的标准形.6.主轴定理、用正交变换化实二次型或实对称矩阵为标准形.7.酉空间.Ⅲ、解析几何部分一、向量与坐标1. 向量的定义、表示、向量的线性运算、向量的分解、几何运算.2. 坐标系的概念、向量与点的坐标及向量的代数运算.3. 向量在轴上的射影及其性质、方向余弦、向量的夹角.4. 向量的数量积、向量积和混合积的定义、几何意义、运算性质、计算方法及应用.5. 应用向量求解一些几何、三角问题.二、轨迹与方程1.曲面方程的定义:普通方程、参数方程(向量式与坐标式之间的互化)及其关系.2.空间曲线方程的普通形式和参数方程形式及其关系.3.建立空间曲面和曲线方程的一般方法、应用向量建立简单曲面、曲线的方程.4.球面的标准方程和一般方程、母线平行于坐标轴的柱面方程.三、平面与空间直线1.平面方程、直线方程的各种形式,方程中各有关字母的意义.2.从决定平面和直线的几何条件出发,选用适当方法建立平面、直线方程.3.根据平面和直线的方程,判定平面与平面、直线与直线、平面与直线间的位置关系.4. 根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程.四、二次曲面1.柱面、锥面、旋转曲面的定义,求柱面、锥面、旋转曲面的方程.2.椭球面、双曲面与抛物面的标准方程和主要性质,根据不同条件建立二次曲面的标准方程.3.单叶双曲面、双曲抛物面的直纹性及求单叶双曲面、双曲抛物面的直母线的方法.4.根据给定直线族求出它表示的直纹面方程,求动直线和动曲线的轨迹问题.五、二次曲线的一般理论1.二次曲线的渐进方向、中心、渐近线.2.二次曲线的切线、二次曲线的正常点与奇异点.3.二次曲线的直径、共轭方向与共轭直径.4.二次曲线的主轴、主方向,特征方程、特征根.5.化简二次曲线方程并画出曲线在坐标系的位置草图.。
全国大学生数学竞赛大纲(非数学专业类)
全国大学生数学竞赛大纲(非数学专业类)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
二、竞赛的内容中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:.4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler)方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2. 几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3. 任意项级数的绝对收敛与条件收敛.4. 函数项级数的收敛域与和函数的概念.5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7. 初等函数的幂级数展开式.8. 函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国大学生数学竞赛
附件:
中国大学生数学竞赛(非数学专业类)竞赛内容
一、函数、极限、连续
1.函数的概念及表示法、简单应用问题的函数关系的建立。
2.函数的性质:有界性、单调性、周期性和奇偶性。
3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初
等函数。
4.数列极限与函数极限的定义及其性质、函数的左极限与右极限。
5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较。
6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限。
7.函数的连续性(含左连续与右连续)、函数间断点的类型。
8.连续函数的性质和初等函数的连续性。
9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。
二、一元函数微分学
1. 导数和微分的概念、导数的几何意义和物理意义、函数的
可导性与连续性之
间的关系、平面曲线的切线和法线。
2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式
的不变性。
3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法。
4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数。
5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西
中值定理和泰勒定理。
6. 洛必达(L’Hospital)法则与求未定式极限。
7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐
近线(水平、铅直和斜渐近线)、函数图形的描绘。
8. 函数最大值和最小值及其简单应用。
9. 弧微分、曲率、曲率半径。
三、一元函数积分学
1. 原函数和不定积分的概念。
2. 不定积分的基本性质、基本积分公式。
3. 定积分的概念和基本性质、定积分中值定理、变上限定积
分确定的函数及其导数、牛顿-莱布尼茨
(Newton-Leibniz)公式。
4. 不定积分和定积分的换元积分法与分部积分法。
5. 有理函数、三角函数的有理式和简单无理函数的积分。
6. 广义积分。
7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转
体的体积及侧面积、平行截面面积为已知的立体体积、功、
引力、压力及函数的平均值。
中国大学生数学竞赛报名表
姓名专业年级电话QQ 备注。