空间向量与立体几何典型例题.

合集下载

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案
1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形就是( )
A.一个圆
B.一个点
C.半圆
D.平行四边形
答案:A
2.在长方体 ABCD-A₁B ₁C ₁D ₁中,下列关于AC₁的表达中错误的 一个就是( )
A. AA₁+A ₁B ₁+A ₁D ₁
B. AB+DD₁
+D ₁C ₁
C. AD+CC₁+D ₁C ₁
D.12(AB 1+CD 1)+A 1C 1
答案:B
3.若a ,b ,c 为任意向量,m ∈R ,下列等式不一定成立的就是( )
A.(a+b)+c=a+(b+c)
B.(a+b)•c=a•c+b•c
C. m(a+b)=ma+mb
D.(a·b)·c=a·(b·c)
答案:D
4.若三点A, B, C 共线,P 为空间任意一点,且PA+αPB=βPC,则α-β的值为( )
A.1
B.-1
C.12
D.-2
答案:B
5.设a=(x,4,3), b=(3,2, z),且a ∥b,则xz 等于( )
A.-4
B.9
C.-9
D.649
答案:B
6.已知非零向量 e ,e₂不共线,如果AB=e₁+e ₂ A C=2e ₂ 8e ₂AD=3e ₁3 ,则四点 A. B C (
) A.一定共圆
B.恰就是空间四边形的四个顶点心
C.一定共面
D.肯定不共面
答案:C。

高中数学立体几何与空间向量真题(解析版)

高中数学立体几何与空间向量真题(解析版)

高中数学专题16立体几何与空间向量真题1.如图,正方体的一个截面经过顶点A,C及棱EF上一点K,且将正方体分成体积比为3:1的两部分,则的值为.【答案】【解析】设.截面与FG交于J.,解得(舍去)故.2.设点P到平面的距离为3,点Q在平面上,使得直线PQ与所成角不小于30°且不大于60°,则这样的点Q所构成的区域的面积为.【答案】【解析】设点P在平面上的射影为O.由条件知,.即OQ∈[1,3],故所求的区域面积为.3.在正三棱锥中,,过AB的平面将其体积平分.则棱与平面所成角的余弦值为_____________。

【答案】【解析】设的中点分別为,则易证平面A BM即为平面由平行四边形的性质知,所以,又直线P C在平面上的射影为直线MK,由得因此,棱P C与平面所成角的余弦值为.故答案为:4.设P为一圆锥的顶点,A、B、C为其底面圆周上的三点,满足∠ABC=90°,M为AP的中点.若AB =1,AC=2,AP=,则二面角M-BC-A的大小为________.【答案】【解析】由,知AC为底面圆的直径.如图所示,设底面中心为O.于是,平面ABC.故.设H为M在底面上的射影.则H为AO的中点.在底面中作于点K.由三垂线定理知.从而,为二面角M-BC-A的平面角.由,结合得:.故二面角M-BC-A的大小为.5.四棱锥P-ABCD中,已知侧面是边长为1的正三角形,M、N分别为边AB、BC的中点.则异面直线MN与PC之间的距离为___________.【答案】【解析】如图,设底面对角线AC与BD交于点O,过点C作直线MN的垂线,与MN交于点H.由于PO为底面的垂线,故PO⊥CH.又AC⊥CH,于是,CH与平面POC垂直.从而,CH⊥PC.因此,CH为直线MN与PC的公垂线段.注意到,.故异面直线MN与PC之间的距离为.6.已知正三棱锥底面边长为1,高为.则其内切球半径为______.【答案】【解析】如图,设球心在平面与平面内的射影分别为,边的中点为,内切球半径为.则分别三点共线,,且.故.解得.7.设同底的两个正三棱锥内接于同一个球.若正三棱锥的侧面与底面所成的角为,则正三棱锥的侧面与底面所成角的正切值是______.【答案】4【解析】如图6,联结.则,垂足为正的中心,且过球心.联结并延长与交于点.则为边的中点,且.易知,分别为正三棱锥、正三棱锥的侧面与底面所成二面角的平面角. 则.由.故.8.在四面体中,已知.则四面体的外接球的半径为______.【答案】【解析】易知,为正三角形,且CA=CB.如图,设P、M分别为AB、CD的中点,联结PD、PC.则平面平面PDC.设的外心为N,四面体ABCD的外接球的球心为O.则.可求得由题意知.在中,由余弦定理得又因为D、M、O、N四点在以DO为直径的圆上所以故外接球的体积.9.已知正三棱柱的9条棱长都相等,是边的中点,二面角.则________.【答案】【解析】解法1 如图,以所在直线为轴、线段的中点为原点、所在直线为轴建立空间直角坐标系.设正三棱柱的棱长为2.则.故.设分别与平面、平面垂直的向量为.则由此可设.所以,,即.因此,.解法2如图..设交于点.则平面.又,则平面.过点在平面上作,垂足为,联结.则为二面角的平面角.设.易求得.在中,.又,则.故.1.四面体P-ABC,,则该四面体外接球的半径为________. 【答案】【解析】将四面体还原到一个长方体中,设该长方体的长、宽、高分别为a,b,c,则,所以四面体外接球的半径为.2.四面体ABCD中,有一条棱长为3,其余五条棱长皆为2,则其外接球的半径为____.【答案】【解析】解:设BC=3,AB=AC=AD=BD=CD=2,E,F分别是BC,AD的中点,D在面ABC上的射影H应是△ABC的外心,由于DH上的任一点到A,B,C等距,则外接球心O在DH上,因,所以AE=DE,于是ED为AD的中垂线是,顒球心O是DH,EF的交点,且是等腰△EAD的垂心,记球半径为r,由△DOF~△EAF,得.而,所以.3.如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为正方形,P A=AB.E、F分别为PD、BC的中点,则二面角E-FD-A的正切值为________.【答案】【解析】如图,作EH⊥AD于H,连HF.由P A⊥面ABCD,知P A⊥AD,EH∥P A,EH⊥ABCD.作HG⊥DF于G,连EG,则EG⊥FD,∠EGH为二面角E-FD-A的平面角.∵ABCD为正方形,E、F分别为PD、BC的中点,∴H为AD中点,FH⊥AD.设P A=AB=2,则,FH=2,HD=4,.∴.∴二面角E-FD-A的正切值为.4.已知正四面体内切球的半径是1,则该正四面体的体积为________.【答案】【解析】设正四面体的棱长为.则该正四面体的体积为,全面积为,所以,解得.从而正四面体的体积为.故答案为:5.正方体AC1棱长是1,点E、F是线段DD1,BC1上的动点,则三棱锥E一AA1F体积为___.【答案】【解析】因为F是BC1上的动点,所以在正方体中有,利用等体积转化有.故答案为.6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥HB,垂足为H,且P A=4,C为P A的中点,则当三棱锥O-HPC的体积最大时,OB的长为________.【答案】【解析】法一:AB⊥OB,PB⊥AB,AB⊥面POB,面P AB⊥面POB.OH⊥PB,OH⊥面P AB,OH⊥HC,OH⊥PC,又,PC⊥OC,PC⊥面OCH.PC是三棱锥P-OCH的高.PC=OC=2.而△OCH的面积在时取得最大值(斜边=2的直角三角形).当时,由,知∠OPB=30°,.法二:由C为P A中点,故,而.记则,.∴令,得,.故答案为:7.如图,在正三棱柱中,AB=2,,D、F分别是棱AB、的中点,E为棱AC 上的动点,则△DEF周长的最小值为__________.【答案】【解析】由正三棱锥可得底面ABC,所以AB,AC.在Rt△ADF中,.如图①,把底面ABC与侧面在同一个平面内展开,展开图中只有当D、E、F三点在同一条直线上时,DE+EF取得最小值.如图②,在△ADF中,,由余弦定理可得.所以△DEF周长的最小值为.8.在边长为1的长方体内部有一小球,该小球与正方体的对角线段相切,则小球半径的最大值=___________.【答案】【解析】当半径最大时,小球与正方体的三个面相切.不妨设小球与过点的三个面相切.以为原点,分别为x、y、z轴正方向,建立空间直角坐标系.设A(0,1,1),(1,0,0),小球圆心P(r,r,r),则P到的距离.再由,得.故答案为:9.正方体中,E为AB的中点,F为的中点.异面直线EF与所成角的余弦值是_____. 【答案】【解析】设正方体棱长为1,以DA为x轴,DC为y轴,为z轴建立空间直角坐标系,则.故有.所以.故答案为:10.在半径为R的球内作内接圆柱,则内接圆柱全面积的最大值是_____.【答案】【解析】设内接圆柱底面半径为,则高位,那么全面积为.其中,等号成立的条件是.故最大值为.故答案为:11.已知空间四点满足,且是三棱锥的外接球上的一个动点,则点到平面的最大距离是______.【答案】【解析】将三棱锥补全为正方体,则两者的外接球相同.球心就是正方体的中心,记为,半径为正方体对角线的一半,即为.在正方体里,可求得点到平面的距离为,则点到平面的最大距离是.12.在正四核锥中,已知二面角的正弦值为,则异面直线所成的角为______.【答案】【解析】如图,设的交点为上的射影为,则.又因为,因此,所以,则.因此即为二面角的平面角,从而.设,则.在中,.由此得,因此,解得.从而四棱锥各侧面均为正三角形,则异面直线所成的角为.13.半径分别为6、6、6、7的四个球两两外切.它们都内切于一个大球,则大球的半径是________【答案】14【解析】设四个球的球心分别为A、B、C、D,则AB=BC=CA=12,DA=DB=DC=13,即A、B、C、D两两连结可构成正三棱锥.设待求的球心为X,半径为r.,则由对称性可知DX平面ABC.也就是说,X在平面ABC上的射影是正三角形ABC的中心O.易知.设OX=x,则由于球A内切于球X,所以AX=r-6即①又DX=OD-OX=11-x,且由球D内切于球X可知DX=r-7于是②从①②两式可解得即大球的半径为14.故答案为:1414.一个棱长为6的正四面体纸盒内放一个小正四面体,若小正四面体可以在纸盒内任意转动,则小正四面体棱长的最大值为______.【答案】2【解析】因为小正四面体可以在纸盒内任意转动,所以小正四面体的棱长最大时,为大正四面体内切球的内接正四面体.记大正四面体的外接球半径为,小正四面体的外接球(大正四面体的内切球)半径为,易知,故小正四面体棱长的最大值为.15.已知棱长的正方体内部有一圆柱,此圆柱恰好以直线为轴,则该圆柱体积的最大值为_____.【答案】【解析】由题意知只需考虑圆柱的底面与正方体的表面相切的情况.由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在、AC、上.设线段上的切点为E,圆柱上底面中心为,半径.由,则圆柱的高为,由导数法或均值不等式得.。

专题1 空间向量与立体几何练习(三)

专题1 空间向量与立体几何练习(三)

专题1空间向量与立体几何练习(三)1.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒.(1)求证:1AC DB ⊥;(2)求异面直线1BD 与AC 所成角的余弦值.2.如图四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//,3AF DE DE AF =.(1)求证:AC ⊥平面BDE ;(2)若BE 与平面ABCD 所成角为60︒,求二面角F BE D --的正弦值.3.已知()1,4,2a =- ,()2,2,4b =- .(1)若12c b = ,求cos ,a c <> 的值;(2)若()()3ka b a b +-∥ ,求实数k 的值.4.如图,平行六面体1111ABCD A B C D -的底面是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,12CD CC ==.(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成的角.5.已知向量()1,1,0a = ,()1,0,b c =- ,且a b += (1)求c 的值;(2)若ka b + 与2a b - 互相垂直,求实数k 的值.6.如图,在长方体1111ABCD A B C D -中,1226AD AB AA ===,,E F 分别是1111,A D A B 的中点,CG GE = ,以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -.(1)写出1,,,C D F G 四点的坐标;(2)求1cos ,CF D G <> .7.如图所示,在棱长为2的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求:(1)EF ·BA ;(2)EF ·BD ;(3)AB ·CD .8.如图所示,在正方体1111ABCD A B C D -中,化简向量表达式:(1)AB CD BC DA +++ ;(2)1111AA B C D D ++ ;(3)1111AA B C D D CB +++ .9.已知空间三点()4,0,4A -,()2,2,4B -,()3,2,3C -,设a AB = ,b BC =r u u u r .(1)求a ,b ;(2)求a 与b 的夹角.10.如图所示,已知在三棱锥A BCD -中,向量AB a = ,AC b = ,AD c =uuu r r ,已知M 为BC 的中点,试用a 、b 、c 表示向量DM .参考答案:1.(1)证明见解析【分析】(1)根据平面向量转化基底,以及加减运算和数量积的运算性质,得到10AC DB ⋅= ,即可证得1AC DB ⊥;(2)根据平面向量转化基底,求出1BD 、AC 、1AC BD ⋅ ,再利用夹角公式即可求解.【详解】(1)证明:∵以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒,∴11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒= ,∴()()1111111()()AC DB AA A B B C AB AD AA AB AD AB AD ⋅=++⋅-=++⋅- 22110AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅-= ,∴1AC DB ⊥.(2)∵111BD AD DD AB AD AA AB ==+-+- ,AC AB BC AB AD =+=+ ,∴1BD ==||AC ==== ,()11()BD AC AD AA AB AB AD ⋅=+-⋅+ 12211111122AD AB AA AB AA AD =+⋅-++⋅=-+= ,∴111cos ,6BD AC BD AC BD AC⋅==⋅ ,∴异面直线1BD与AC 所成角的余弦值为6.2.(1)证明见解析【分析】(1)由已知可得DE AC ⊥且AC BD ⊥,由线面垂直的判定定理即可得到证明;(2)以D 为原点,DA 方向为x 轴,DC 方向为y 轴,DE 方向为z 轴建立空间直角坐标系,利用已知条件求出平面BDE 的一个法向量和平面BEF 的一个法向量,利用向量的夹角公式计算即可.【详解】(1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE AC⊥因为四边形ABCD 是正方形,所以AC BD⊥又因为BD DE D ⋂=,BD ⊂平面BDE ,DE ⊂平面BDE ,所以AC ⊥平面BDE(2)DE ⊥ 底面ABCD ,,⊂DA DC 平面ABCD ,,DE DA DE DC ∴⊥⊥,四边形ABCD 是正方形,DA DC∴⊥故DA ,DC ,DE 两两垂直,建立如图所示的空间直角坐标系D xyz -,因为BE 与平面ABCD 所成角为60 ,DE ⊥ 平面ABCD ,且垂足为D ,故60DBE ∠=,所以DE DB=又3,3AD DE AF ==,所以BD DE AF ===所以(3,0,0)A ,(3,3,0)B,F,E ,(0,3,0)C ,所以(0,,(3,0,BF EF =-=- 设平面BEF 的一个法向量(),,m x y z = ,则3030m BF y m EF x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令z =(4,m = 因为AC ⊥平面BDE ,所以CA 为平面BDE 的一个法向量,()3,3,0CA =- .所以cos ,13m CA m CA m CA ⨯+-⨯+⋅〈〉===,所以sin ,m CA〈〉=所以二面角F BE D --3.(1)42-(2)13-【分析】(1)利用空间向量夹角公式的坐标运算直接求解;(2)根据两向量的共线定理,利用坐标运算求解.【详解】(1)由已知可得()11,1,22c b ==- ,()1,4,2a =- ,∴114122cos ,42a c a c a c⨯-+⨯+-⨯⋅<>==- .(2)()2,42,24ka b k k k +=-+-+ ,()37,2,14a b -=-- ,∵()()3ka b a b +-∥ ,∴存在实数m 使得()3ka b m a b +=- ,∴27k m -=,422k m +=-,2414k m -+=-,联立解得13k =-.4.(1)1AC =(2)90°.【分析】(1)因为1,,CD CB CC 三组不共线,则可以作为一组基底,用基底表示向量1AC uuu r ,平方即求得模长.(2)求出两条直线1CA 与1DC 的方向向量,用向量夹角余弦公式即可.【详解】(1)设CD a =uu u r r ,CB b =uu r r ,1CC c =uuu r r ,{},,a b c 构成空间的一个基底.因为()11()AC CC CD CB c a b =-+=-+ ,所以()22211AC AC c a b ⎡⎤==-+⎣⎦222222c a b a c b c a b=++-⋅-⋅+⋅ 12222cos608=-⨯⨯⨯︒=,所以1AC =(2)又1CA a b c =++ ,1DC c a =- ,所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅= ∴11CA DC ⊥ ∴异面直线1CA 与1DC 所成的角为90°.5.(1)2c =±(2)75k =【分析】(1)求出()0,1,b a c += ,根据向量模长公式列出方程,求出2c =±;(2)分2c =与2c =-两种情况,根据向量垂直列出方程,求出实数k 的值.【详解】(1)()()()01,0,1,1,0,1,b c a c =-++= ,所以a b +== 2c =±;(2)当2c =时,()()()01,0,2,,1,,2k b k k k a k +=--=+ ,()()()2202,21,0,2,,23,a b -=-=-- ,因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,当2c =-时,()()()210,1,2,,0,,ka k k k b k +=-+---= ,()()()2202,21,0,2,,23,a b -=-=-- 因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,综上:75k =.6.(1)()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,393,,222G ⎛⎫ ⎪⎝⎭21【分析】(1)根据线段长度、中点坐标公式可求得点对应的坐标;(2)利用向量夹角的坐标运算可直接求得结果.【详解】(1)1226AD AB AA === ,13AB AA ∴==,则()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,()0,3,3E ,CG GE = ,G ∴为CE 中点,393,,222G ⎛⎫∴ ⎝⎭.(2)由(1)得:3,6,32CF ⎛⎫=-- ⎪⎝⎭ ,1333,,222D G ⎛⎫=-- ⎪⎝⎭,1119999424cos ,22CF D G CF D G CF D G -+-⋅∴<>=⋅⨯ .7.(1)1(2)2(3)0【分析】分别将EF ,BD ,CD 转化为AB ,AC ,AD 后根据数量积定义计算即可.【详解】(1)在正四面体ABCD 中,||||2,cos ,60BD BA BD BA ==〈〉=111||||cos ,22cos 601222EF BA BD BA BD BA BD BA ⋅=⋅=⋅〈〉=⨯⨯︒= (2)211||222EF BD BD BD BD ⋅=⋅== (3)()AB CD AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅=||||cos ,||||cos ,AB AD AB AD AB AC AB AC ⋅⋅〈〉-⋅〈〉在正四面体ABCD 中,||||||AB AD AC == ,cos ,cos ,AB AD AB AC 〈〉=〈〉故0AB CD ⋅=8.(1)0(2)AD(3)0【分析】(1)(2)(3)结合图形,根据空间向量的线性运算直接化简可得.【详解】(1)0AB CD BC DA AB BC CD DA AC CD DA AD AD +++=+++=++=-= (2)由图知,1111B C A D = 所以1111111111AA B C D D AA A D D D AD D D AD++=++=+= (3)由图知,CB DA =所以由(2)可得11110AA B C D D CB AD DA AD AD +++=+=-= 9.(1)(2)2π3【分析】(1)(2)由空间向量的坐标运算求解,【详解】(1)由题意得所以()2,2,0a AB == ,所以a == 因为()2,2,4B -,()3,2,3C -,所以()1,0,1b BC ==--r u u u r ,所以b ==r (2)由(1)可知1cos ,2a b a b a b⋅==-⋅ ,又[],0,πa b ∈ ,所以2π,3a b = ,即a 与b 的夹角为2π3.10.()122DM a b c =+- 【分析】利用空间向量的线性运算的几何表示运算即得.【详解】∵M 为BC 的中点,∴()12AM AB AC =+uuu r uu u r uuu r ,∴()()11222DM AM AD AB AC AD a b c =-=+-=+- .。

空间向量在立体几何中的应用和习题含答案

空间向量在立体几何中的应用和习题含答案

空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴//,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),=(-1,1,4),∴MN ∥EF ,=,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aa a a AC =-= 23cos 111==∴AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||,cos |sin 111 ===〉〈=⋅θθa a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<33,cos 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B)θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______. 7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=A(Ⅰ)∵,0,011==⋅⋅A A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421( 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。

高三数学空间向量及立体几何 -直线与园

高三数学空间向量及立体几何 -直线与园

直线与园考点一 圆的方程例1.圆心为(3,4),且经过坐标原点的圆的方程是( )A .22(3)(4)25x y -+-=B .22(3)(4)5x y -+-=C .22(3)(4)25x y +++=D .22(3)(4)5x y +++=例2.若圆C 的半径为1,其圆心与点(1,0)关于直线y x =对称,则圆C 的标准方程为_______.例3.若关于x ,y 的方程22240x y x y m +--+=表示圆,则实数m 的取值范围是 .例4.过点(52)(32),,,M N 且圆心在直线23y x =-上的圆的方程为 .考点二 直线与圆的位置关系例5.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为() A .-3或7 B .-2或8 B .0或10D .1或11例6.圆2240x y x +-=在点(1P 处的切线方程为( )A .20x -=B .40x -=C .40x +=D .20x +=例7.过点(22),P 的直线与圆22(1)5x y -+=相切,与直线10ax y -+=垂直,则a = .例8.若经过点(10),P -的直线与圆224230x y x y ++-+=相切,则此直线在y 轴上的截距是 .例9.圆C :222440x y x y +--+=的圆心到直线3440x y ++=的距离d =_______. 例10.若直线2x my m +=+与圆222210x y x y +--+=相交,则实数m 的取值范围是( )A .(),-∞+∞B .(0),-∞C .(0),+∞D .(0)(0),,-∞+∞例11.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 的取值范围是( )A .[31],--B .[13],-C .[31],-D .(3][1),,-∞-+∞例12.圆222440x y x y +-+-=与直线2220()tx y t t ---=∈R 的位置关系为( ) A .相交 B .相切 C .相离D .相交或相切例13.已知点(),M a b 在圆221:O x y +=外,则直线1ax by +=与圆O 的位置关系是 .例14.直线l 过点(20),-,l 与圆222x y x +=有两个交点时,斜率k 的取值范围是( )A .(-B .(C .⎛⎝⎭D .1188,⎛⎫- ⎪⎝⎭例15.若过定点(10),M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是( ) A .0k <<B .0k <C .0k <<D .05k <<例16.若直线y x m =+与曲线y =m 的取值范围.例17.圆22(3)(3)9x y -+-=上到直线34110x y +-=的距离为1的点有几个?例18.圆222430x y x y +++-=上到直线10x y ++= )A .1个B .2个C .3个D .4个例19.设直线3y ax =+与圆222410x y x y +--+=相交于,A B 两点,且||AB =,则a =_______.例20.0y +-=截圆224x y +=得的劣弧所对的圆心角为( )A .30°B .45°C .60°D .90°例21.如果一条直线经过点332,M ⎛⎫-- ⎪⎝⎭,且被圆2225x y +=截得的弦长等于8,那么这条直线的方程为( )A .3x =-B .332或x y =-=- C .34150x y ++= D .334150或x x y =-++=例22.直线L 将圆22240x y x y +--=平分,且与直线20x y +=垂直,则直线L 的方程为( )A .2y x =B .22y x =-C .1322y x =-+D .1322y x =+例23.已知(30),M 是圆2282100x y x y +--+=内一点,过M 点最长的弦所在的直线方程是( )A .30x y +-=B .30x y --=C .260x y --=D .260x y +-=例24.若点(11),P 为圆22(3)9x y -+=的弦MN 的中点,则弦MN 所在直线的方程为 .例25.圆222210x y x y +--+=上的点到直线2x y -=的距离最大值是( )A .2B .1C .1+D .1+例26.P 为圆221x y +=上的动点,则点P 到直线34100x y --=的距离的最小值为_______.例27.过点M (1,2)的直线l 将圆22(2)9x y -+=分成两段弧,当其中的劣弧最短时,直线的方程是( )A .1x =B .1y =C .10x y -+=D .230x y -+=考点三 圆与圆的位置关系例28.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系是__________. 例29.圆2220x y x +-=和圆2240x y y ++=的公切线共有________条.例30.圆22126260:C x y x y ++--=与圆2224240:C x y x y +-++=的位置关系是__________.例31.对于任意实数k ,直线(32)20k x ky +--=与圆222220x y x y +---=的位置关系是_____.例32.若圆222240x y mx m +-+-=与圆22224480x y x my m ++-+-=相切,则实数m的取值集合是_____________.例33.两圆2210x y +=和22(1)(3)20x y -+-=相交于A ,B 两点,则直线AB 方程为 .例34.若圆224x y +=与圆222600()x y ay a ++-=>的公共弦长为则a = .考点四 求切线例35.过点(21)-,作圆225x y +=的切线,其方程是( )A .240x y --=B .250x y --=C .230x y +-=D .250x y --=或240x y -+=例36.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是( )A .250x y ++=或250x y +-=B .20x y +=或20x y +=C .250x y -+=或250x y --=D .20x y -=或20x y -=例37.直角坐标平面内,过点P (21),且与圆224x y +=相切的直线( )A .有两条B .有且仅有一条C .不存在D .不能确定例38.由圆221x y +=外一点P (21),引圆的切线,切线长为( )A .B .2C .1D .4例39.由直线2y x =+上的点向圆22(2)(2)1x y -++=引切线,则切线长的最小值为( )A .B .4C .D 例40.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx ﹣y ﹣2m ﹣1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为: 。

空间向量立体几何(绝对经典)

空间向量立体几何(绝对经典)

例1:已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并标出化简结果的向量。

(如图)A BCD A 1B 1C 1D 1G1)1(AA AD AB ++1111)1(AC CC AC AA AC AA AD AB =+=+=++解M 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量推论:如果 为经过已知点A且平行已知非零向量 的直线,那么对任一点O,点P在直线 上的充要条件是存在实数t,满足等式OP=OA+t 其中向量叫做直线的方向向量.ll aaOABP a若P为A,B中点,则()12=+ OP OA OB2.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对 使, a b yx , p ,a b OM a b A B A 'Pp p xa yb =+ 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使或对空间任一点O,有=+MP xMA yMB =++ OP OM xMA yMB 注意:空间四点P 、M 、A 、B 共面⇔存在唯一实数对,,x y MP xMA yMB =+ ()使得(1)OP xOM yOA zOB x y z ⇔=++++= 其中,例1:已知m,n 是平面α内的两条相交直线,直线l 与α的交点为B ,且l ⊥m ,l ⊥n ,求证:l ⊥α。

n mg g m n αl l 证明:在α内作不与m、n重合的任一条直线g,在l、m、n、g上取非零向量l、m、n、g ,因m与n相交,得向量m、n 不平行,由共面向量定理可知,存在唯一的有序实数对(x,y),使g =x m +y n ,l ·g =x l ·m +y l ·n∵ l ·m =0,l ·n =0∴ l ·g =0∴ l⊥g∴ l⊥g这就证明了直线l垂直于平面α内的任一条直线,所以l⊥α巩固练习:利用向量知识证明三垂线定理αa A O P ().,0,,,,0,0,PA a PA a a OA a PO a PA OAy PO x PA y x OA PO OA PO a OA a OA a PO a PO PO aa ⊥⊥∴=⋅+⋅=⋅∴+==⋅∴⊥=⋅∴⊥∴⊥即使有序实数对定理可知,存在唯一的不平行,由共面向量相交,得又又而上取非零向量证明:在αPA a OAa a PA OA PA PO ⊥⊥⊂求证:且内的射影,在是的垂线,斜线,分别是平面已知:,,ααα复习:2. 向量的夹角:a bO ABabθ0a b π≤≤ ,a b ,向量 的夹角记作:a b 与a b = ||||cos ,a b a b 1.空间向量的数量积:111222(,,),(,,)a x y z b x y z == 设121212x x y y z z =++cos ||||a ba b a b =,121212222222111222++=++⋅++x x y y z z x y z x y z 5.向量的模长:2222||a a x y z ==++ (,,)a x y z = 设4.有关性质:(1)两非零向量111222(,,),(,,)a x y zb x y z == 1212120x x y y z z ++=0a b a b ⊥⇔=⇔ (2)||||||a b a b ≤ ||||,a b a b a b =⇒ 同方向||||,a b a b a b =-⇒ 反方向注意:此公式的几何意义是表示长方体的对角线的长度。

空间向量与立体几何经典例题

空间向量与立体几何经典例题

空间向量与立体几何经典例题空间向量与立体几何经典例题空间向量和立体几何是高中数学中的重要内容,它们是解决三维空间中几何问题的基础。

在此,我们将介绍一些经典的例题,帮助读者更好地理解和掌握这两个概念。

例题1:已知平面ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求平面ABCD的法向量和面积。

解答:首先,我们可以通过向量的定义求得平面ABCD的法向量。

假设向量AB为a,向量AC为b,则平面ABCD的法向量N可以表示为N = a × b,其中×表示向量的叉乘运算。

由于a = B - A = (-1,1,-6)和b = C - A = (3,-2,-1),我们可以得到N = a × b = (7,19,5)。

其次,我们可以使用向量的叉乘运算和向量的模运算求得平面ABCD 的面积。

假设向量AB为a,向量AC为b,则平面ABCD的面积可以表示为S = 1/2 * |a × b|,其中|a × b|表示向量a × b的模。

带入已知数据计算可得,S = 1/2 * |(7,19,5)| = 1/2 * √(7^2 + 19^2 + 5^2) = 1/2 * √(1255)。

因此,平面ABCD的法向量为N = (7,19,5),面积为S = 1/2 * √(1255)。

例题2:已知四面体ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求四面体ABCD的体积。

解答:首先,我们可以通过向量的定义求得四面体ABCD的体积。

假设向量AB为a,向量AC为b,向量AD为c,则四面体ABCD的体积V 可以表示为V = 1/6 * |a · (b × c)|,其中·表示向量的点乘运算,×表示向量的叉乘运算,|a · (b × c)|表示向量a · (b ×c)的模。

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。

(完整版)空间向量和立体几何典型例题

(完整版)空间向量和立体几何典型例题
∵PC 平面PCD,
∴PC⊥AB.
(Ⅱ)∵AC=BC,AP=BP,
∴△APC≌△BPC.
又PC⊥AC,
∴PC⊥BC.
又∠ACB=90°,即AC⊥BC,
且AC∩PC=C,
∴AB=BP,
∴BE⊥AP.
∵EC是BE在平面PAC内的射影,
∴CE⊥AP.
∴∠BEC是二面角B-AP-C的平面角.
在△BCE中,∠BCE=90°,BC=2,BE= ,
空间向量与立体几何典型例题
一、选择题:
1.(2008全国Ⅰ卷理)已知三棱柱 的侧棱与底面边长都相等, 在底面 内的射影为 的中心,则 与底面 所成角的正弦值等于(C)
A. B. C. D.
1.解:C.由题意知三棱锥 为正四面体,设棱长为 ,则 ,棱柱的高 (即点 到底面 的距离),故 与底面 所成角的正弦值为 .
(Ⅱ)连结BO,在直角梯形ABCD中、BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,
所以OB∥DC.
由(Ⅰ)知,PO⊥OB,∠PBO为锐角,
所以∠PBO是异面直线PB与CD所成的角.
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,
所以OB= ,
, ,
, .
是二面角 的平面角.
, , ,

二面角 的大小为 .
(Ⅲ) ,
在平面 内的射影为正 的中心 ,且 的长为点 到平面 的距离.
如(Ⅱ)建立空间直角坐标系 .

点 的坐标为 . .
点 到平面 的距离为 .
5.(2008福建文)如图,在四棱锥中,侧面PAD⊥底面ABCD,侧棱PA=PD= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥CD,AD=2AB=2BC=2,O为AD中点。(1)求证:PO⊥平面ABCD;

高中数学空间向量与立体几何经典题型与答案

高中数学空间向量与立体几何经典题型与答案

空间向量与立体几何经典题型与答案1 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90底面ABCD ,且12PA AD DC ===,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为1(0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2A B C D P M(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故(Ⅲ)解:在MC 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使14,00,.25AN MC AN MC x z λ⊥=-==只需即解得),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角30304||,||,.5552cos(,).3||||2arccos().3AN BN AN BN AN BN AN BN AN BN ===-∴==-⋅-故所求的二面角为2 如图,在四棱锥V ABCD -中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD(Ⅰ)证明:AB ⊥平面VAD ;(Ⅱ)求面VAD 与面DB 所成的二面角的大小证明:以D 为坐标原点,建立如图所示的坐标图系(Ⅰ)证明:不防设作(1,0,0)A ,则(1,1,0)B , )23,0,21(V , )23,0,21(),0,1,0(-==VA AB由,0=⋅VA AB 得AB VA ⊥,又AB AD ⊥,因而AB 与平面VAD 内两条相交直线VA ,AD 都垂直∴AB ⊥平面VAD(Ⅱ)解:设E 为DV 中点,则)43,0,41(E , ).23,0,21(),43,1,43(),43,0,43(=-=-=DV EB EA由.,,0DV EA DV EB DV EB ⊥⊥=⋅又得 因此,AEB ∠是所求二面角的平面角,,721||||),cos(=⋅⋅=EB EA EB EA EB EA 解得所求二面角的大小为.721arccos3 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PA ⊥底V面ABCD ,3AB =,1BC =,2PA =, E 为PD 的中点(Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出点N 到AB 和AP 的距离解:(Ⅰ)建立如图所示的空间直角坐标系,则,,,,,A B C D P E 的坐标为(0,0,0)A 、(3,0,0)B 、(3,1,0)C 、(0,1,0)D 、(0,0,2)P 、1(0,,1)2E ,从而).2,0,3(),0,1,3(-==PB AC 设PB AC 与的夹角为θ,则,1473723||||cos ==⋅⋅=PB AC PB AC θ ∴AC 与PB 所成角的余弦值为1473 (Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(,0,)x z ,则)1,21,(z x NE --=,由NE ⊥面PAC 可得,⎪⎩⎪⎨⎧=+-=-⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--⎪⎩⎪⎨⎧=⋅=⋅.0213,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(.0,0x z z x z x AC NE AP NE 化简得即 ∴⎪⎩⎪⎨⎧==163z x 即N 点的坐标为)1,0,63(,从而N 点到AB 和AP 的距离分别为31,64 如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截面而得到的,其中14,2,3,1AB BC CC BE ====(Ⅰ)求BF 的长; (Ⅱ)求点C 到平面1AEC F 的距离解:(I)建立如图所示的空间直角坐标系,则(0,0,0)D ,(2,4,0)B1(2,0,0),(0,4,0),(2,4,1),(0,4,3)A C E C 设(0,0,)F z∵1AEC F 为平行四边形,.62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II)设1n 为平面1AEC F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然 ⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n AE n 得由 ⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即 111),3,0,0(n CC CC 与设又=的夹角为α,则 .333341161133||||cos 1111=++⨯=⋅⋅=n CC n CC α ∴C 到平面1AEC F 的距离为.11334333343cos ||1=⨯==αCC d5 如图,在长方体1111ABCD A B C D -,中,11,2AD AA AB ===,点E 在棱AD 上移动 (1)证明:11D E A D ⊥;(2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4π 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C(1).,0)1,,1(),1,0,1(,1111E D DA x E D DA ⊥=-=所以因为(2)因为E 为AB 的中点,则(1,1,0)E ,从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD ,设平面1ACD 的法向量为),,(c b a n =,则⎪⎩⎪⎨⎧=⋅=⋅,0,01AD n AC n 也即⎩⎨⎧=+-=+-002c a b a ,得⎩⎨⎧==c a ba 2,从而)2,1,2(=n ,所以点E 到平面1ACD 的距离为.313212||||1=-+=⋅=n n E D h (3)设平面1D EC 的法向量),,(c b a n =,∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD C D x CE由⎩⎨⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅.0)2(02,0,01x b a c b CE n C D n 令1,2,2b c a x =∴==-, ∴).2,1,2(x n -= 依题意.225)2(222||||||4cos211=+-⇒=⋅⋅=x DD n DD n π∴321+=x (不合,舍去),322-=x∴23AE =-时,二面角1D EC D --的大小为4π6 如图,在三棱柱111ABC A B C -中,AB ⊥侧面11BB C C ,E 为棱1CC 上异于1,C C 的一点,1EA EB ⊥,已知112,2,1,3AB BB BC BCC π===∠=,求:(Ⅰ)异面直线AB 与1EB 的距离;(Ⅱ)二面角11A EB A --的平面角的正切值解:(I)以B 为原点,1BB 、BA 分别为,y z 轴建立空间直角坐标系ﻩ由于,112,2,1,3AB BB BC BCC π===∠=ﻩ在三棱柱111ABC A B C -中有1(0,0,0),(0,0,2),(0,2,0)B A B ,)0,23,23(),0,21,23(1C C -设即得由,0,),0,,23(11=⋅⊥EB EA EB EA a E)0,2,23()2,,23(0a a --⋅--= ,432)2(432+-=-+=a a a a .,04343)02323()0,21,23()0,21,23(),(2321,0)23)(21(11EB BE EB BE E a a a a ⊥=+-=⋅⋅-⋅=⋅===--即故舍去或即得又AB ⊥侧面11BB C C ,故AB BE ⊥ 因此BE 是异面直线1,AB EB 的公垂线,则14143||=+=BE ,故异面直线1,AB EB 的距离为1 (I I)由已知有,,1111EB A B EB EA ⊥⊥故二面角11A EB A --的平面角θ的大小为向量EA A B 与11的夹角.22tan ,32||||cos ),2,21,23(),2,0,0(111111==⋅=--===θθ即故因A B EA A B EA EA BA A B7 如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PF EC ⊥ 已知,21,2,2===AE CD PD 求(Ⅰ)异面直线PD 与EC 的距离; (Ⅱ)二面角E PC D --的大小解:(Ⅰ)以D 为原点,DA 、DC 、DP 分别为,,x y z 轴建立空间直角坐标系由已知可得(0,0,0),(0,0,2),(0,2,0)D P C则(2EF =-由0EF PC ⋅=得又由F 在PC 上得,(2222EF =-因,,EF PC DG PC ⊥⊥故E -的大小为向量EF DG 与的夹角22||||DG EF DG EF ⋅=4。

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。

习题课(一) 空间向量与立体几何

习题课(一)  空间向量与立体几何

习题课(一) 空间向量与立体几何一、选择题1.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,1),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)解析:选D 若l ∥α,则a ·n =0,只有选项D 中a ·n =0.2.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为( )A .(-2,2,0)B .(2,-2,0) C.⎝⎛⎭⎫-12,12,0 D.⎝⎛⎭⎫12,-12,0 解析:选C 由OA ―→=(-1,1,0),且点H 在直线OA 上,可设H (-λ,λ,0),则BH ―→=(-λ,λ-1,-1).又BH ⊥OA ,∴BH ―→·OA ―→=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12, ∴H ⎝⎛⎭⎫-12,12,0. 3.已知A (1,0,0),B (0,-1,1),OA ―→+λOB ―→与OB ―→的夹角为120°,则λ的值为( ) A .±66B .66C .-66D .±6解析:选C OA ―→+λOB ―→=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66. 4.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )56C .55D .22解析:选C 法一:如图,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.由题意,得A (1,0,0),D (0,0,0),D 1(0,0,3),B 1(1,1,3),∴AD 1―→=(-1,0,3),DB 1―→=(1,1,3),∴AD 1―→·DB 1―→=-1×1+0×1+(3)2=2,|AD 1―→|=2,|DB 1―→|=5,∴cos 〈AD 1―→,DB 1―→〉=AD 1―→·DB 1―→|AD 1―→|·|DB 1―→|=225=55.法二:如图,在长方体ABCD -A 1B 1C 1D 1的一侧补上一个相同的长方体EFBA -E 1F 1B 1A 1.连接B 1F ,由长方体性质可知,B 1F ∥AD 1,所以∠DB 1F 为异面直线AD 1与DB 1所成的角或其补角.连接DF ,由题意,得DF =12+(1+1)2=5,FB 1=12+(3)2=2,DB 1=12+12+(3)2= 5.在△DFB 1中,由余弦定理,得DF 2=FB 21+DB 21-2FB 1·DB 1·cos ∠DB 1F , 即5=4+5-2×2×5×cos ∠DB 1F , ∴cos ∠DB 1F =55. 5.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G .则A 1B 与平面ABD 所成角的正弦值为( )A .23B .7327解析:选A 以C 为坐标原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,CC 1所在的直线为z 轴建立空间直角坐标系,如图所示.设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2), D (0,0,1),∴E ⎝⎛⎭⎫a 2,a 2,1,G ⎝⎛⎭⎫a 3,a 3,13, GE ―→=⎝⎛⎭⎫a 6,a 6,23,BD ―→=(0,-a,1). ∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE ―→⊥平面ABD ,∴GE ―→·BD ―→=0,解得a =2. ∴GE ―→=⎝⎛⎭⎫13,13,23,BA 1―→=(2,-2,2), ∵GE ―→⊥平面ABD ,∴GE ―→为平面ABD 的一个法向量. 又cos 〈GE ―→,BA 1―→〉=GE ―→·BA 1―→|GE ―→||BA 1―→|=4363×23=23, ∴A 1B 与平面ABD 所成角的正弦值为23. 6.如图,在四棱锥P -ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP =MC .则点M 在正方形ABCD 内的轨迹为( )解析:选A 如图,以D 为原点,DA ,DC 所在的直线分别为x ,y 轴建立如图所示的空间直角坐标系.设正方形ABCD 的边长为a ,M (x ,y,0),则0≤x ≤a,0≤y ≤a ,P ⎝⎛⎭⎫a 2,0,3a 2,C (0,a,0),则|MC ―→|=x 2+(a -y )2,|MP ―→|=⎝⎛⎭⎫a 2-x 2+y 2+⎝⎛⎭⎫3a 22.由|MP ―→|=|MC ―→|,得x =2y ,所以点M 在正方形ABCD 内的轨迹为一条线段y =12x (0≤x ≤a ),故选A.二、填空题7.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1)满足条件(c -a )·2b =-2,则x =________. 解析:∵a =(1,1,x ),b =(1,2,1),c =(1,1,1), ∴c -a =(0,0,1-x ),2b =(2,4,2). ∴(c -a )·2b =2(1-x )=-2,∴x =2. 答案:28.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值等于_______. 解析:如图,连接BD 交AC 于O ,连接D 1O ,由于BB 1∥DD 1,∴DD 1与平面ACD 1所成的角就是BB 1与平面ACD 1所成的角.易知∠DD 1O 即为所求.设正方体的棱长为1,则DD 1=1,DO =22,D 1O =62, ∴cos ∠DD 1O =DD 1D 1O =26=63.∴BB 1与平面ACD 1所成角的余弦值为63. 答案:639.在三棱柱ABC -A 1B 1C 1中,底面是棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值等于________.解析:如图所示,建立空间直角坐标系,易求得点D ⎝⎛⎭⎫32,12,1,平面AA 1C 1C 的一个法向量是n =(1,0,0),所以cos 〈n ,AD ―→〉=322=64,即sin α=64.答案:64三、解答题10.如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点.求直线AD 和平面ABC 1夹角的正弦值.解:如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2), D⎝⎛⎭⎫32,-12,2.易知AB ―→=(3,1,0),AC 1―→=(0,2,2), AD ―→=⎝⎛⎭⎫32,12,2.设平面ABC 1的一个法向量为n =(x ,y ,z ), 则有⎩⎪⎨⎪⎧n ·AB ―→=3x +y =0,n ·AC 1―→=2y +2z =0,解得x =-33y ,z =-2y . 故可取n =(1,-3,6).所以cos 〈n ,AD ―→〉=n ·AD ―→|n ||AD ―→|=2310×3=105. 即直线AD 和平面ABC 1夹角的正弦值为105. 11.如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面PAC ; (2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离.解:(1)证明:∵PA ⊥底面ABCD ,BC ⊂平面ABCD , ∴PA ⊥BC ,∵∠ACB =90°,∴BC ⊥AC ,又PA ∩AC =A , ∴BC ⊥平面PAC .(2)设AP =h ,取CD 的中点E ,则AE ⊥CD ,∴AE ⊥AB .又PA ⊥底面ABCD ,∴PA ⊥AE ,PA ⊥AB ,故建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,h ),C⎝⎛⎭⎫32,12,0,D⎝⎛⎭⎫32,-12,0,B (0,2,0),PC ―→=⎝⎛⎭⎫32,12,-h ,DC ―→=(0,1,0),设平面PDC 的法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·PC ―→=0,n 1·DC ―→=0,即⎩⎪⎨⎪⎧32x 1+12y 1-hz 1=0,y 1=0,取x 1=h ,∴n 1=⎝⎛⎭⎫h ,0,32. 由(1)知平面PAC 的一个法向量为BC ―→=⎝⎛⎭⎫32,-32,0,∴|cos 〈n 1,BC ―→〉|=32h h 2+34×3=55, 解得h =3,同理可求得平面PBC 的一个法向量n 2=(3,3,2), 所以,点A 到平面PBC 的距离为 d =|AP ―→·n 2||n 2|=234=32.12.如图,在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1-BD -B 1的平面角的余弦值.解:(1)证明:设E 为BC 的中点,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE . 因为AB =AC ,所以AE ⊥BC . 故AE ⊥平面A 1BC .由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B , 从而DE ∥A 1A 且DE =A 1A ,所以A 1AED 为平行四边形.故A 1D ∥AE . 又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC .(2)以CB 的中点E 为原点,分别以射线EA ,EB 为x 轴,y 轴的正半轴,建立空间直角坐标系E -xyz ,如图所示.由题意知各点坐标如下:A 1(0,0,14),B (0,2,0),D (-2,0,14),B 1(-2,2,14).因此A 1B ―→=(0,2,-14),BD ―→=(-2,-2,14),DB 1―→=(0,2,0). 设平面A 1BD 的法向量为m =(x 1,y 1,z 1),平面B 1BD 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧m ·A 1B ―→=0,m ·BD ―→=0,即⎩⎪⎨⎪⎧2y 1-14z 1=0,-2x 1-2y 1+14z 1=0,可取m =(0,7,1).由⎩⎪⎨⎪⎧n ·DB 1―→=0,n ·BD ―→=0,即⎩⎪⎨⎪⎧2y 2=0,-2x 2-2y 2+14z 2=0.可取n =(7,0,1).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=18.由题意可知,所求二面角的平面角是钝角,故二面角A 1-BD -B 1的平面角的余弦值为-18.。

空间向量典型例题

空间向量典型例题

空间向量典型例题空间向量与立体几何一、非坐标系向量法1.已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()。

答案:(B)2/3.2.等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为1/3,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于。

答案:3/4.3.已知正四面体ABCD中,E、F分别在AB,CD上,且CF=CD,AE=AB/4,则直线DE和BF所成角的余弦值为()。

答案:(C)-13/13.4.如图,已知四棱柱ABCD-A1,CB=CD,∠C1CB=∠C1CD,证明:C1C垂直于BD;当∠C1CB的值为多少时,能使A1CB1D是菱形且A1C垂直于平面C1BD?请给出证明。

二、坐标系向量法1.如图,在直三棱柱ABCD-A1B1C1D1中,点M是AC的中点,点N是BD的中点,求异面直线AN和B1M所成角的余弦值,以及平面A1B1C1和平面ABC所成二面角的正弦值。

2.如图,在直棱柱ABCD-A1B1C1D1中,AB=BC=1,AC=BD=√2,点M是AC的中点,点N是BD的中点。

证明:(1)MN⊥平面A1B1C1D1;(2)直线MN和平面A1B1C1D1所成二面角的正弦值为1/√10.3.如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC。

求证:PC⊥AB;求二面角B-AP-C的大小。

4.如图,已知点P在正方体ABCD-A1B1C1D1的对角线BD1上,∠PDA=60°。

求(1)DP与CC1所成角的大小;(2)DP与平面A1AD1所成角的大小。

5.如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=90°,OA⊥底面ABCD,OA=2,M为OA的中点。

求(1)异面直线AB与MD所成角的大小;(2)点B到平面OCD的距离。

高考数学必做题--立体几何与空间向量 (后附参考答案与详解)

高考数学必做题--立体几何与空间向量 (后附参考答案与详解)

立体几何与空间向量-高考必做题123平行的截面,则截得的三;截得的平面图形中,面积最大的值是.4的中点,为线段上的动点,过点,,则下列命题正确的是.5与四棱锥的表面的交线,并写出作图的步骤.7是正方体棱上一点(不包括棱的端点),.,则的取值范围是.8的最大值为满足9的中点,沿将矩形折起使得分别为中点.10C.3个D.4个分别为棱,上的点. 已知下列判断:上的正投影是面积为定值的三角形;平行的直线;所成的二面角(锐角)的大小与点的位置有关,与点的位置无关.11,,,与平面所12的位置,使得平面,并证明你的13,坐标平面上的一组正投影图像如.14如图是圆的直径,垂直圆所在的平面,是圆上的点.求证:平面平面.(1)15 16 17 18椭圆的一部分 D.抛物线的一部分19 D.,所成角都相等的直线条数为所成角都相等的直线的条数为,则下面结论正确的是(20分别是棱的中点,是侧面长度的取值范围是().21D.D.③④分别是棱,的中点,过直线,,给出以下四个命题:22为正方形,,则三棱锥2324 2526 272829 30A. B.C. D.立体几何与空间向量-高考必做题123为边长为的等边三角形,面积为截得的平面图形中,正六边形如图所示分别为各边中点,边长为,面积为.故答案为;.立体几何与空间向量立体几何初步空间几何体4如图,在棱长为的正方体的中点,点在线段上.点到直线的距离的最小值为.∵,底面,∴四边形是矩形.∴,又平面,平面∴平面.∴直线上任一点到平面的距离是两条异面直线∵平面平面.5当时,为中点,此时可得截面为等腰梯形;当点向移动时,满足即可得截面为四边形,①正确;对于②,当时,如图所示,延长至,使,连接交于,连接可证,由可得故可得,∴截面对于③,由②知当此时的截面形状仍然为上图所示的五边形对于④,当时,与可证,且,可知截面故答案为:①②④.立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系6与四棱锥的表面的交线,并写出作图的步骤.为平面与四棱锥的表面的交线.分别是线段,上的,的菱形,,,,,,所以,设平面的法向量为,则由可得令因为,所以直线与平面的成角的正弦值为法1:延长,分别交,延长线于,,连接,,则四边形为平面法2:记平面与直线的交点为,设由.所以即为点.所以连接,,则四边形为平面平面向量平面向量的基本概念向量的加法与减法平面向量的数量积数量积立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间向量空间直角坐标系空间向量的应用789的最大值为满足,所以,所以.,接下来研究这个二次函数的性质可函数函数的概念与表示最值单调性对称性二次函数立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系空间中的垂直10,,则中位线且又且,所以且所以四边形是平行四边形,所以,又平面,法二:如图,延长因为且,所以为中点,所以中位线,又平面,面,所以法一:如图,因为,所以又.所以∴,∴,又∵,,∴平面,面,∴又,所以平面,又为中点,所以所以平面,,所以中,,,∴二面角的余弦值为法二:如图,∵,∴∴,∴∴,∴,,又∵,,∴平面,面,∴,又,所以平面,面,∴则,,,而是平面的一个法向量,设平面的法向量为则令,则,面的一个法向量为所以所以,二面角的余弦值为立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间直角坐标系空间向量及其运算空间向量的应用11中,,分别为棱D.4个平面,而两个平面面与面上的正投影是面积为定值的三角形,此是一个正确的结点在面上的投影到此棱的距离是定平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;所成的二面角(锐角)的大小与点的位置有关,与点的位置无关,此结论不对,与两者都有关系,可代入几个特殊点进行验证,如与重重合时的情况就不一样,故此命题不正点、直线、平面间的位置关系空间中的平行空间中的垂直12的位置,使得平面,并证明你的,∵与平面所成角为,即,∴,由,知,,则,,,∴,,设平面的法向量为,则,即,令,则,∵平面,∴为平面的法向量,∴又∵二面角为锐角,∴二面角的余弦值为.点是线段上一个动点,设,则,∵平面,∴,即,解得:,此时,点坐标为,.平面向量平面向量的基本定理及坐标表示平面向量的坐标运算用坐标表示平面向量共线的条件立体几何与空间向量立体几何初步点、直线、平面间的位置关系空间中的平行空间中的垂直空间向量空间向量及其运算空间向量的应用答案解析该几何体还原如图所示,易得体积为.立体几何与空间向量立体几何初步空间几何体体积和表面积的计算三视图14是圆的直径,垂直圆所在的平面,是圆上的点.求证:平面平面.,,,求:二面角的余弦值.(1)答案见解析.(2)答案见解析.(1)由是圆的直径,得.由平面,平面,得.在中,∵,,∴立体几何初步空间中的垂直空间向量空间向量的应用1516三角函数与解三角形解三角形立体几何与空间向量立体几何初步空间几何体点、直线、平面间的位置关系17动点从到,再到,到再回到,,则经过的最短路径为:一个半圆和一个即.立体几何与空间向量立体几何初步空间几何体18如图,三棱锥的顶点、、等边三角形,点,分别为线段体积的最大值为19椭圆的一部分 D.抛物线的一部分的交线的距离分别为和.,D.,所成角都相等的直线条数为所成角都相等的直线的条数为,则下面结论正确的是(2021D.连结,可以证明平面,所以点位于线段上,把三角形拿到平面上,则有,所以当点位于时,最大,当位于中点时,最小,此时所以,即所以线段长度的取值范围是22D.③④在正方体中,平面,∴平面平面,①正确;②连接,∵平面,四边形的对角线是固定的,要使面积最小,只需的长度最小即可,此时为棱中点,,长度最小,对应四边形②正确;③∵,∴四边形是菱形,当时,长度由大变小,当时,长度由小变大,∴函数不是单调函数,③错误;④连接,,,四棱锥分割成两个小三棱锥,以为底,分别以、为顶点,∵面积是个常数,、到平面的距离是个常数,2324函数图象的交点函数的零点三角函数与解三角形三角函数任意角与弧度制三角函数的定义立体几何与空间向量立体几何初步空间几何体解析几何曲线与方程25)成。

2024年高考真题分类汇编九 空间向量与立体几何

2024年高考真题分类汇编九 空间向量与立体几何
且 ⊥ ,以为坐标原点,, , 分别为, , 轴建立空间直角坐标系,
则 0,
可得⃗
1,0 , 1,
0,
1,
1,0 , 1,0,0 , 0,2,0 , 0,0,2 ,
2 , ⃗
1,
1,
2 , ⃗
1,0,
2 , ⃗
0,2,
2 ,
6 / 14
, , ,则
则 0,0,0 , 0,0,2 3 , 0,3 3, 0 , 3,3 3, 0 , 2,0,0 , 0,

2 3, 0 ,
因为是的中点,所以 4,2 3, 0 ,
所以⃗
3,3 3,
2 3 , ⃗
0,3 3,
2 3 , ⃗
4,2 3,
2 3 , ⃗
2,0,
1 1 0
分别取1
2
1,则1
⃗⋅⃗
|⃗|⋅|⃗|
则 cos⃗, ⃗
3、1
1、2
2 22
22 0

0,即⃗
1,3,1 、⃗
0,0,2 ,平面1 的法向量为⃗
1,3,1 ,
1 3
1 9 1⋅ 1 1
1,2
0
1,1,0 ,
2 22

11
故平面1 与平面1 1 的夹角余弦值为2 22;
设平面的法向量为⃗

1,则取
2,可得⃗
0,
2,则
则 cos⟨⃗, ⃗⟩

2,1 ,
1
5
2 0 ,
2 2 0
2,1,1 ,
1,可得⃗
⃗⋅⃗
|⃗|⋅|⃗|
0,

, , ,则 ⃗ ⋅
⃗ ⋅ ⃗

空间向量和立体几何练习题及答案

空间向量和立体几何练习题及答案

1.如图,在四棱锥P- ABCD中,底面ABCD为正方形,平■面PADL平面ABCR 点M 在线段PB上,PD//平面MAC, PA=PD*, AB=4.(1)求证:M为PB的中点;(2)求二面角B- PD- A的大小;(3)求直线MC与平面BDP所成角的正弦值.【分析】(1)设ACA BD=0,则O为BD的中点,连接OM,利用线面平行的性质证明OM // PD,再由平行线截线段成比例可得M为PB的中点;(2)取AD中点G,可得PGLAD,再由面面垂直的性质可得PGL平面ABCD则PGLAD,连接OG, WJ PGLOG,再证明OGLAD.以G为坐标原点,分别以GD G。

GP 所在直线为x、v、z轴距离空间直角坐标系,求出平■面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B-PD- A的大小;(3)求出百i的坐标,由百i与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设ACA BD=O,ABCD为正方形,二O为BD的中点,连接OM,.• PD//平面MAC, PD?平面PBD,平面PBDA 平面AMC=OM,••• PD// OM,则豆鸟,即M为PB的中点;BD BP(2)解:取AD中点G,.• PA=PD • . PGL AD,•.•平■面PAM平面ABCD 且平■面PADA平面ABCD=AD••• PGL平面ABCD WJ PGLAD,连接OG, WJ PGL OG,由G是AD的中点,O是AC的中点,可得OG// DC, WJ OGLAD.以G为坐标原点,分别以GCk GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD旅,AB=4,得 D (2, 0, 0), A ( - 2, 0, 0), P (0, 0,姬),C (2,4, 0), B (-2, 4, 0), M (- 1, 2,竺),而二(-幻 0,血),瓦二(-4, 4, 0)-取平■面PAD 的一个法向量为三二(0,1, Q ). cox 二,n > =「一 "n Mini 2X1 2.二面角B- PD- A 的大小为60°; (3)解:E-3・-2・丰),平面BDP 的一个法向量为叙1, 1,血).直线 MC 与平■面 BDP 所成角的正弦值为| cos <衣,盘〉【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,届中 档题.2. 如图,在三棱锥 P-ABC 中,PH 底面ABC, ZBAC=90.点D, E, N 分别为 棱PA PC BC 的中点,M 是线段AD 的中点,PA=AC=4 AB=2.(I )求证:MN //平面BDE;(皿)求二面角C-EM - N 的正弦值;设平■面PBD 的一个法向量为 *化 y,工),m*DP=0 "曰 卜,侍 则由仁罚 Lm*DB=0 口育气取gg —仞 mF - 11(用)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为圭,求线段AH的长.【分析】(I)取AB中点F,连接MF、NF,由已知可证MF//平■面BDE NF//平面BDE 得到平■面MFN //平■面BD巳WJ MN //平■面BDE(n)由PH底面ABC, ZBAC=90.可以A为原点,分别以AB AC、AP所在直线为x、v、z轴建立空间直角坐标系.求出平■面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C-EM- N的余弦值,进一步求得正弦值;(用)设AH=t,则H (0, 0, t),求出前、瓦的坐标,结合直线NH与直线BE 所成角的余弦值为夺列式求得线段AH的长.【解答】(I )证明:取AB中点F,连接MF、NF,.• M 为AD 中点,二MF// BD,.• BD?平面BDE, MF?平面BDE •,- MF // 平面BDE.• N 为BC中点,. . NF// AC,乂D、E分别为AP、PC的中点,二DE// AC, WJ NF// DE.. DE?平面BDE, NF?平面BDE,二NF//平面BDE.乂MFA NF=F.平面MFN//平面BDE, WJ MN//平面BDE(U)解:PH底面ABC, Z BAC=90..••以A为原点,分另U以AB、AG AP所在直线为x、v、z轴建立空间直角坐标系. PA=AC=4 AB=2,••• A (0, 0, 0), B (2, 0, 0), C (0, 4, 0), M (0, 0, 1), N (1, 2, 0), E (0, 2, 2),则福二(L 2, -1),无=(0, 2, 1),设平■面MEN 的一个法向量为y,如击 m*NN=O z 0 x+2y-z=0 w ^_Q .曰-,、 由, ___ ,侍、 A ,取z =2,侍旷(4, -L 2)・ lm-ME=O Uy+z=O由图可得平■面CME 的一个法向量为冒二(1, °, 0).cos <.••二面角C- EM - N 的余弦值为华I,则正弦值为寸亟;21 21(m )解:设 AH=t,则 H (。

空间向量解立体几何(含综合题习题)

空间向量解立体几何(含综合题习题)

空间向量解立体几何(含综合题习题)利用空间向量解立体几何问题一、基础知识1.刻画直线与平面方向的向量直线的方向向量可由直线上的两个点来确定。

例如,若有点A(2,4,6)和点B(3,0,2),则直线AB的方向向量为AB=(1,-4,-4)。

平面的法向量来刻画平面的倾斜程度。

法线的方向向量就是平面的法向量。

要求出指定平面的法向量,需要平面上的两条不平行的直线。

设平面的法向量为n=(x,y,z),若平面上所选两条直线的方向向量分别为a=(x1,y1,z1)和b=(x2,y2,z2),则可列出方程组:x1x+y1y+z1z=0和x2x+y2y+z2z=0,解出x,y,z的比值即可。

例如,若a=(1,2,0)和b=(2,1,3),求a,b所在平面的法向量,则设n=(x,y,z),有方程组:x+2y=0,2x+y+3z=0,解得:x:y:z=-2:1:1,故n=(-2,1,1)。

2.空间向量可解决的立体几何问题1)判定类线面平行:a∥b当且仅当a∥b。

线面垂直:a⊥XXX且仅当a⊥b。

面面平行:α∥β当且仅当m∥n。

面面垂直:α⊥β当且仅当m⊥n。

2)计算类两直线所成角:cosθ=cos(a,b)=(a·b)/(|a||b|)。

线面角:sinθ=sin(a,m)=(a·m)/(|a||m|)。

二面角:cosθ=cos(m,n)(法向量夹角关系而定)或cosθ=-cos(m,n)。

点到平面距离:设A为平面α外一点,P为平面α上任意一点,则A到平面α的距离为d=|AP·n|/|n|,即AP在法向量n上投影的绝对值。

3)点的存在性问题在立体几何解答题中,最后一问往往涉及点的存在性问题,即是否在某条线上存在一点,使之满足某个条件。

解决该问题时,可以先设出所求点的坐标(x,y,z),再想办法利用条件求出坐标。

为底面,以AD为高,构造平面ADE,可知平面ADE与平面ABCD- A1垂直,且平面ADE与平面EF所成角为所求角,故EF与平面ADE垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量与立体几何典型例题一、选择题:1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C )A .13BCD .231.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB,棱柱的高13AO a ==(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为113AO AB =.另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060 长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--,11AB AB AA =+ 2111126,,333OA AB a OA AB ⋅===则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅=.二、填空题:1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C ABD --M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 61. 1.答案:16.设2AB =,作CO ABDE ⊥面,OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO =⋅∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值16AN EM AN EM⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,(,,222222M N ---,则3121321(,,),(,,),,32222222AN EM AN EM AN EM ==-⋅===,故EM AN ,所成角的余弦值16AN EM AN EM ⋅=.三、解答题: 1.(2008安徽文)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点。

(Ⅰ)求异面直线AB 与MD 所成角的大小; (Ⅱ)求点B 到平面OCD 的距离。

1.方法一(综合法)(1)CD ‖AB,MDC ∠∴为异面直线AB 与MD 所成的角(或其补角) 作,AP CD P ⊥于连接MP ⊥⊥平面A BC D ,∵OA ∴CD MP,42ADP π∠=∵∴DP =MD =∵ cos ,23MDP MDC MDP MD π∠==∠=∠=∴所以 AB 与MD 所成角的大小为3π(2)AB 平面∵∴‖OCD,点A 和点B 到平面OCD 的距离相等,连接OP,过点A 作AQ OP ⊥于点Q , ,,,AP CD OA CD CD OAP ⊥⊥⊥平面∵∴ ,AQ OAP AQ CD ⊂⊥平面∵∴又 ,AQ OP AQ OCD ⊥⊥平面∵∴,线段AQ 的长就是点A 到平面OCD 的距离2OP ====∵,2APDP ==2223OA AP AQ OP ===∴,所以点B 到平面OCD 的距离为23 方法二(向量法)作AP CD ⊥于点P,如图,分别以AB,AP,AO 轴建立坐标系(0,0,0),(1,0,0),(0,((0,0,2),(0,222A B P D O M -(1)设AB 与MD 所成的角为θ,(1,0,0),(1)AB MD ==--∵ 1c o s ,23AB MD AB MDπθθ===⋅∴∴ , ∴AB 与MD 所成角的大小为3π(2) 22(0,,2),(2)222OP OD=-=--∵∴设平面OCD 的法向量为(,,)n x y z =,则0,0n OP n OD ==即202022y z x y z -=⎨⎪-+-=⎪⎩取z =解得n =设点B 到平面OCD 的距离为d ,则d 为OB 在向量n =上的投影的绝对值, (1,0,2)OB =-∵, 23OB n d n⋅==∴. 所以点B 到平面OCD 的距离为232.(2008安徽理)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点。

(Ⅰ)证明:直线MN OCD 平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。

2. 方法一(综合法)(1)取OB 中点E ,连接ME ,NEME CD ME CD ∴,‖AB,AB ‖‖又,NE OC MNE OCD ∴平面平面‖‖MN OCD ∴平面‖ (2)CD ‖AB,MDC ∠∴为异面直线AB 与MD 所成的角(或其补角) 作,AP CD P ⊥于连接MP⊥⊥平面A BC D ,∵OA ∴CD MP,42ADP π∠=∵∴DP =MD =NB1c o s,23DP MDP MDC MDP MD π∠==∠=∠=∴ 所以 AB 与MD 所成角的大小为3π(3)AB 平面∵∴‖OCD,点A 和点B 到平面OCD 的距离相等,连接OP,过点A 作AQ OP ⊥ 于点Q ,,,,AP CD OA CD CD OAP AQ CD ⊥⊥⊥⊥平面∵∴∴又 ,AQOP AQ OCD ⊥⊥平面∵∴,线段AQ 的长就是点A 到平面OCD 的距离2OP ====∵2AP DP ==22232OA AP AQ OP ===∴,所以点B到平面OCD 的距离为23方法二(向量法)作APCD ⊥于点P,如图,分别以AB,AP,AO 所在直线为,,xy z 轴建立坐标系(0,0,0),(1,0,0),((0,0,2),(0,0,1),(1A B P D O M N,(1)2222(1,,1),(0,,2),(2)MN OP OD =--=-=-- 设平面OCD 的法向量为(,,)n x yz =,则0,n OP n =即20220y z x y z -=⎪⎪⎨⎪+-=⎪⎩取z =解得n =22(1,,1)(0,4,2)044MN n =--=∵ MN OCD ∴平面‖ (2)设AB 与MD 所成的角为θ,(1,0,0),(1)AB MD ==--∵1c o s ,23AB MD AB MD πθθ===⋅∴∴ , AB 与MD 所成角的大小为3π(3)设点B 到平面OCD 的交流为d ,则d 为OB 在向量n =上的投影的绝对值, 由 (1,0,2)OB =-, 得23OB n d n⋅==.所以点B 到平面OCD 的距离为233.(2008北京文)如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC⊥AC .(Ⅰ)求证:PC ⊥AB ;(Ⅱ)求二面角B -AP -C 的大小.3.解法一:(Ⅰ)取AB 中点D ,连结PD ,CD . ∵AP =BP , ∴PD ⊥AB . ∵AC =BC . ∴CD ⊥AB . ∵PD ∩CD =D . ∴AB ⊥平面PCD . ∵PC ⊂平面PCD , ∴PC ⊥AB .(Ⅱ)∵AC =BC ,AP =BP , ∴△APC ≌△BPC . 又PC ⊥AC , ∴PC ⊥BC.又∠ACB =90°,即AC ⊥BC , 且AC ∩PC =C , ∴AB =BP , ∴BE ⊥AP .∵EC 是BE 在平面P AC 内的射影, ∴CE ⊥AP .∴∠BEC 是二面角B -AP-C 的平面角. 在△BCE 中,∠BCE =90°,BC=2,BE =623=AB , ∴sin ∠BEC =.36=BE BC ∴二面角B -AP -C 的大小为aresin.36解法二:(Ⅰ)∵AC =BC ,AP =BP , ∴△APC ≌△BPC . 又PC ⊥AC . ∴PC ⊥BC. ∵AC ∩BC =C , ∴PC ⊥平面ABC . ∵AB ⊂平面ABC , ∴PC ⊥AB .(Ⅱ)如图,以C 为原点建立空间直角坐标系C-xyz. 则C (0,0,0),A (0,2,0),B (2,0,0). 设P (0,0,t ),∵|PB |=|AB |=22,∴t =2,P (0,0,2).取AP 中点E ,连结BE ,CE .∵|AC |=|PC |,|AB |=|BP |, ∴CE ⊥AP ,BE ⊥AP .∴∠BEC 是二面角B-AP -C 的平面角. ∵E (0,1,1),),1,1,2(),1,1,0(--=--= ∴cos ∠BEC.33622=⋅=∴二面角B-AP-C 的大小为arccos.33 4.(2008北京理)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小; (Ⅲ)求点C 到平面APB 的距离.4.解法一:(Ⅰ)取AB 中点D ,连结PD CD ,.AP BP =, PD AB ∴⊥. AC BC =, CD AB ∴⊥. PD CD D =, AB ∴⊥平面PCD . PC ⊂平面PCD , PC AB ∴⊥.(Ⅱ)AC BC =,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥.又90ACB ∠=,即AC BC ⊥,且AC PC C =, BC ∴⊥平面PAC .取AP 中点E .连结BE CE ,. AB BP =,BE AP ∴⊥.EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.BEC ∴∠是二面角B AP C --的平面角. 在BCE △中,90BCE ∠=,2BC =,BE AB ==,sin BC BEC BE ∴∠==. ∴二面角B AP C --的大小为arcsin(Ⅲ)由(Ⅰ)知AB ⊥平面PCD , ∴平面APB ⊥平面PCD .过C 作CH PD ⊥,垂足为H . 平面APB 平面PCD PD =, CH ∴⊥平面APB .CH ∴的长即为点C 到平面APB 的距离.AB D PACBE P ABDPH由(Ⅰ)知PC AB ⊥,又PC AC ⊥,且AB AC A =,PC ∴⊥平面ABC . CD ⊂平面ABC , PC CD ∴⊥. 在Rt PCD △中,12CD AB ==2PD PB ==2PC ∴=. 233PC CD CH PD ∴==.∴点C 到平面APB . 解法二:(Ⅰ)AC BC =,AP BP =, APC BPC ∴△≌△. 又PC AC ⊥, PC BC ∴⊥. AC BC C =, PC ∴⊥平面ABC . AB ⊂平面ABC , PC AB ∴⊥.(Ⅱ)如图,以C 为原点建立空间直角坐标系C xyz -.则(000)(020)(200)C A B ,,,,,,,,. 设(00)P t ,,. PB AB ==,2t ∴=,(002)P ,,.取AP 中点E ,连结BE CE ,.AC PC =,AB BP =,CE AP ∴⊥,BE AP ⊥.BEC ∴∠是二面角B AP C --的平面角. (011)E ,,,(011)EC =--,,,(211)EB =--,,,cos 326EC EB BEC EC EB∴∠===. ∴二面角B AP C --的大小为arccos3. (Ⅲ)AC BC PC ==,C ∴在平面APB 内的射影为正APB △的中心H ,且CH 的长为点C 到平面APB 的距离. 如(Ⅱ)建立空间直角坐标系C xyz -.2BH HE =,∴点H 的坐标为222333⎛⎫⎪⎝⎭,,. 23CH ∴=. ∴点C 到平面APB .5. (2008福建文) 如图,在四棱锥中,侧面PAD ⊥底面ABCD,侧棱底面ABCDy为直角梯形,其中BC ∥AD,AB ⊥CD,AD=2AB=2BC=2,O 为AD 中点。

相关文档
最新文档