因式分解公式法ppt课件

合集下载

人教版八年级数学上册《因式分解-公式法》第3课时课件

人教版八年级数学上册《因式分解-公式法》第3课时课件

分析
设: + = ,
2
则原式= − 12 + 36
2
2
= −2 ∙ ∙ 6 + 6 .
探究新知

1
分解因式:
+
2
− 12 + + 36;
解:原式= +
2
2
−2∙ + ∙6+6
2
= ห้องสมุดไป่ตู้−6 .
探究新知

2
分解因式:
2
49 − 28 + + 4 + ;
2
+ 2 ∙ − 4 ∙ 4 + 4
= 2 − 4 + 4
2 2
2
2
探究新知

2
2
已知 − 4 + − 10 + 29 = 0,
2 2
求 + 2 + 1 的值.
2
2
2
− 4 + 2
2
− 10 + 5
2
= −2∙∙2 +2
2
−2∙∙+
2
2
2
− 2 ∙ − ∙ 5 + 5
2
= − − 5 .
2
探究新知

3
分解因式:

2
2
+ 10 − + 25 ;
解:原式= −
2
= −
2
方法二
+ 10 − + 25
2
+ 2 ∙ − ∙ 5 + 5

《公式法》因式分解PPT(第1课时)

《公式法》因式分解PPT(第1课时)

B.-m ²-n²的两平方项符号相同,不能用平方差公式进行因式分解;
C.-m ²+n ² 符合平方差公式的特点,能用平方差公式进行因式分解;
D. m ²-tn ²不符合平方差公式的特点,不能用平方差公式进行因式分解.
合作探究
探究点三 问题1:把下列各式分解因式: (1)9(m+n)²-(m-n)²; (2)2x³-8x. (3)x 4-1 解:(1)9(m+n)²-(m-n)²
4.3 公式法
第1课时
八年级下册
-.
学习目标 1 掌握用平方差公式分解因式的方法. 2 能综合运用提取公因式法、平方差公式法分解因式.
前置学习
1.填空
①25x²= (__5_x__)²
③0.49b²= (_0_._7_b_)²
⑤1
4
b²=
(__12_b__)²
②36a4 = (__6_a_²_)² ④64x²y²= (__8_x_y_)²
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形 式 2 .公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
课后作业
1.对于任意整数n,多项式(n+7) ²-(n-3) ²的值都能( A )
随堂检测
1.判断正误 (1)x²+y²=(x+y)(x-y); (2)x²-y²= (x+y)(x-y); (3)-x²+y²=(-x+y)(-x-y); (4)-x²-y²=-(x+y)(x-y).
(✘) ( ✔) ( ✘) ( ✘)
随堂检测
2. 某同学粗心大意,分解因式时,把等式x4-■=(x ²+4)(x+2)(x-▲)中的

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)
--因式分解的平方差公式
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2

因式分解法ppt课件

因式分解法ppt课件

(1)提公因式法:am+bm+cm= m(a+b+c)
;
( 2)公式法:a²-b²= (a+b)(a-b) ,a²±2ab+b²= (a± b)²
(3)十字相乘法 X
)(x
根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛, 那么物体经过xs 离地面的高度(单位:m) 为10-4.9x².
解 :(1) x(x-4)=2-8x
方程整理,得x²+4x=2,
配方,得x²+4x+4=6, 即(x+2)²=6 开平方,得x+2=± √6,
解得x
=-2+√6,x₂=-2-√6.
解 :(2) x²-4x=0
分解因式,得x(x-4)=0, 所以x=0 或x-4=0, 解得x=0,x₂=4.
解:(3)2 x(x+4)=1
解得
,X

解 :2(x-3)²=x²-9,
2(x-3)²=(x-3)(x+3) (x-3)[2(x-3)-(x+3)]=0 (x-3)[x-9]=0 x₁=3,x₂=9.
练习6 按要求解一元二次方程.
(1)x(x-4)=2-8x
(配方法) .
(2)x²-4x=0
(因式分解法).
(3)2x(x+4)=1 (公式法) .

先配方,再用直接开平方法降
二 配方法 次 方

适用于全部

程 公式法
直接利用求根公式
元二次方程
的 方
先使方程一边化为两个一次因

因式分解法
式乘积的形式,另一边为0,适用于部分一

《公式法》因式分解PPT课件(第2课时)

《公式法》因式分解PPT课件(第2课时)

B. + −
C. − +
D. − + +
D

课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考


(2020•眉山)已知 + = − − ,则 −
. 4

的值为


解析:由 +

+






= − − ,
− + + = ,


即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解

沪科版七年级下第8章 8.4.2 因式分解 公式法课件(15张PPT)

沪科版七年级下第8章 8.4.2  因式分解 公式法课件(15张PPT)
满足上述条件就可以用平方差公式
小试牛刀
判断下列各多项式是否可以用平方差公式进 行因式分解,如果可以,指出对应公式中的 a,b分别是什么,如果不能请说明理由。
(1)、a²-2ab+b² (2)、a²+b² (3)、-a²-b² (4)、a²-b (5)、a²-1 (6)、4a²-25b²(7)-16m²+1

3、分解因式:
(1)、4x²+4x+1 (2)、(x-2y)²+8xy
(3)、 1 x2 1 y2 (4)、(x+1)(x-1)-35
16 25
布置作业 课堂小册子
魅力数学
1、用简便方法计算:
1 1 1 1 1 1 1 1 ...1 1 4 9 16 25 10000
因式分解
引出概念
像这样运用公式进行因式分解的方法叫做公式 法
掌握运用
那么,我们如何运用公式法进行因式分解呢? 观察刚才的等式
a²+2ab+b²=(a+b)² a²-2ab+b²=(a-b)² 等式左边的多项式具有什么特点?
特征: 项数 三项式 特点 两项能够写成完全平方数,另外 一项是它们底数积的2倍。 符号 完全平方数的两项符号相同
满足刚才三点要求就可以运用完全平方公式法来 因式分解了。
判断下列各多项式可以运用完全平方法进行分解 因式吗?
(1)x²-2x+1 (2)m²+2mn+n²(3)4a²+6ab+9b² (4)(a-b)²-2(a-b)+1(5)-a²+2ab-b²(6)2a²-b (7)x²-2xy-y ² (8)a²-ab+b²(9)m²+mn+n²

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件
1
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)

8.因式分解-----公式法课件数学沪科版七年级下册

8.因式分解-----公式法课件数学沪科版七年级下册

解:(1)原式=(a+b-2a)(a+b+2a)
=(b-a)(3a+b)
(2)原式=(3m+3n-m+n)(3m+3n+m-n)
=(2m+4n)(4m+2n) =4(m+2n)(2m+n).
分解后的结果中若出现公因 式,一定要再用提公因式法 继续分解.
2.把下列多项式因式分解.
(1)x2-12x+36;
(1)ab2-ac2;
(2)3ax2+24axy+48ay2. 48a=3a×16
(1)解:ab2-ac2 =a(b2-c2) (提取公因式) =a(b+c)(b-c).(用平方差公式)
(2)解:3ax2+24axy+48ay2 =3a(x2+8xy+16y2) (提取公因式) =3a[x2+2·x·4y+(4y)2] =3a(x+4y)2. (用完全平方公式)
(2)原式=- 3(x2 -2xy +y2) =-3(x-y )2.
3.分解因式: (3)5m2a4-5m2b4; (4)a2-4b2-a-2b.
解:(3)原式=5m2(a4-b4) =5m2(a2+b2)(a2-b2) =5m2(a2+b2)(a+b)(a-b).
(4)原式=(a2-4b2)-(a+2b) =(a+2b)(a-2b)-(a+2b) =(a+2b)(a-2b-1).
整式乘法
( a + b )( a - b ) = a 2 - b 2
a 2 - b 2 = ( a + b )( a - b )
因式分解
两个数的平方差,等于这两个数的和与这两个数的差的乘积.
类比平方差公式,把整式乘法的完全平方公式 (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2

1.因式分解(公式法)PPT课件(华师大版)

1.因式分解(公式法)PPT课件(华师大版)

(2) ( a2 y2 ) 2ay 1 ( ay 1 )2
(3) 1 ( rs ) r 2s2 ( 1 rs )2
4
2
例4.分解因式
(1) x2+14x+49
(3)9a 2 6ab b2
(2)25x2+10x+1
(4) -x2-4y2+4xy
解:原式 x2 2 x 7 72 原式=(5x)2+2×5x×1+12
【点拨】a2-4ab+4b2-1 =(a-2b)2-1 =(a-2b+1)(a-2b-1)。
例5.分解因式
(1)3ax2 6axy 3ay 2 (2)x4 18 x2 81
(3() 2x y)2 (6 2x y) 9
解:(1)原式 3a(x2 2xy y 2 )
3a(x y)2
中的一个公式。
运用公式法
乘法公式 反过来 因式分解
(a+b)(a-b)=a2-b2 a2-b2=(a+b)(a-b)
(a+b)2=a2+2ab+b2 a2+2ab+b2=(a+b)2 (a-b)2=a2-2ab+b2 a2-2ab+b2=(a-b)2 逆用乘法公式把某些多项式进行因式分解。
这种分解因式的方法叫做运用公式法。
(3)112 392 6613
例7.若n是整数,试说明(2n+1)2-(2n-1)2是8的倍数。
解:原式=[(2n+1)+(2n-1)][(2n+1)-(2n-1)] =(2n+1+2n-1)(2n+1-2n+1) =4n.2 =8n
∴ (2n+1)2-(2n-1)2是8的倍数。

1因式分解第2课时公式法因式分解课件华东师大版数学八年级上册

1因式分解第2课时公式法因式分解课件华东师大版数学八年级上册

试一试:
(a+2b)·(a-2b)=____a_2_-_4_b_2 __; (a+2)·(a-2)=_____a_2-_4_____.
视察上面两个等式,可以得到: a2-4b2=( a+2b)(a-2b ); a2-4 =( a+2 )( a-2 ).
想一想:根据整式乘法和因式分解的互逆关系,你 对因式分解的方法有什么新的发现?
解: (1) 73.562-26.442 =(73.56+26.44)(73.56-26.44) =100×47.12 =4 712;
(2) 8002-2×800×799&知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
解:因为x-y=1,xy=2, 所以x3y-2x2y2+xy3 = xy(x2-2xy+y2) = xy(x-y)2 = 2×1 = 2.
➢ 完全平方公式中的字母a,b不仅可以代表数,还可以 代表单项式或多项式.
把乘法公式的等号两边互换位置, 就可以得到用于分解因式的公式, 用来把某些具有特殊情势的多项 式分解因式,这种因式分解的方 法叫做公式法.
例2 分解因式: (1) x2+4xy+4y2;
解: (1) x2+4xy+4y2 = x2+2·x ·2y + (2y)2 = (x+2y)2;
把整式乘法的平方差公式,反过来就得到因式分解 的公式:
(a+b)(a-b)
整式乘法 因式分解
a2-b2
根据a2-b2 = (a+b)(a-b)可知:
➢ 等式左边为两个数平方的差, 等式右边为两个数的和与这两个数的差的积. 即两个数的平方差等于这两个数的和与这两个数的 差的积.

《公式法》因式分解PPT课件(第1课时)

《公式法》因式分解PPT课件(第1课时)

(1)( + ) −( − )
解: (1)( + ) −( − )
= ( + )

− ( − )
多项式
= + + ( − ) + − ( − )
=( + + − )( + − + )
=( + )( + )
=4×100×7=2800.
连接中考
( −)( −)
(2020•河北)若

则 =
= × × ,

.
解析:方程两边都乘以,
得 − − = × × ,
∴ + − + − = × × ,

平方差公
式因式分
解的步骤
一找 二套 三彻底
解: 4x2+8x+11
=4(x2+2x)+11
=4(x2+2x+1-1)+11
=4(x+1)2-4+11
=4(x+1)2+7
∵4(x+1)2≥0,
∴4(x+1)2+7>0
即4x2+8x+11>0,所以小刚说得对.
课堂小结
公式
− = ( + )( − )
公式法
分解因式
(平方差公式
答:剩余部分的面积为36 cm2.
课堂检测
能力提升题
已知 = + , = + , ≠ ,则
+ + 的值为
16
.
解析:将 = + , = + 相减,

2-4《因式分解法》课件(共35张PPT)

2-4《因式分解法》课件(共35张PPT)
(1)提取公因式法: am+bm+cm=m(a+b+c).
(2)公式法:
a2-b2=(a+b)(a-b), a2±2ab+b2=(a±b)2.
(3)十字相乘法:
1 a
x2+(a+b)x+ab= (x+a)(x+b). 1 b
实际问题
根据物理学规律,如果把一 个物体从地面 10 m/s 的速度竖 直上抛,那么经过 x s 物体离地 面的高度(单位:m)为
3. 分别解两个一元一次方程,它们的根就 是原方程的根.
AB = 0
A=0或B=0
( A、B 表示两个因式)
用因式分解法解一元二次方程的步骤
1. 方程右边化为_零_____。
2. 将方程左边分解成两个__一__次___因__式__的乘积。 3. 至少_有___一__个__因式为零,得到两个一元一次
⑴ 5x2-3 2 x=0 (运用因式分解法)
⑵ 3x2-2=0
(运用直接开平方法)
⑶ x2-4x=6
(运用配方法)
⑷ 2x2-x-3=0
(运用公式法)
⑸ 2x2+7x-7=0 (运用公式法)
② 公式法虽然是万能的,对任何一元二次方程都适用, 但不一定是最简单的,因此在解方程时我们首先考虑能 否应用“直接开平方法”、“因式分解法”等简单方法, 若不行,再考虑公式法(适当也可考虑配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“头” 平方, “尾” 平方, “头” “尾”两倍中间放.
判别下列各式是不是 完全平方式
1x2 2xy y2 是 2A2 2AB B2 是 3甲2 2甲乙 乙2 是 42 2 2 是
a2 2abb2 a2 2abb2
完全平方式的特点:
1、必须是三项式
2、有两个平方的“项”
3、有这两平方“项”底数的2倍或-2
53).原—12式==a([²=72(a4-a+a+22(bba)-²+5-1c5))((=a-3-4caa)+]([2a2b+(+a1+5)cb()a)--15()a-c)]
巩固练习:
1.选择题:
1)下列各式能用平方差公式分解因式的是( D )
A. 4X²+y² B. 4 x- (-y)² C. -4 X²-y³ D. - X²+ y²
倍首2 2首尾尾2
下列各式是不是完全平方式
1 a2 b2 2ab 是
22xy x2 y 2 是 3 x2 4xy4 y 2 是 4a2 6abb2 否 5x2 x 1 是
4
6 a2 2ab 4b2 否
请补上一项,使下列多项
式成为完全平方式
1 x2 __2_x__y__ y2
完全平方公式
ab 2 a2 2abb2
ab 2 a2 2abb2
现在我们把这个公式反过来
a2 2abb2 ab2
a2 2abb2 ab2
很显然,我们可以运用以上这 个公式来分解因式了,我们把 它称为“完全平方公式”
a2 2abb2 a2 2abb2
我们把以上两个式子 叫做完全平方式
整式乘法 a²- b²= (a+b)(a-b)
平方差公式反 过来就是说: 两个数的平方 差,等于这两 个数的和与这 两个数的差的 积
因式分2) 4x²- 9y²
m²- 16= m²- 4²=( m + 4)( m - 4)
a² - b²= ( a + b)( a - b )
八年级数学(上册)
因式分解的基本方法2
运用公式法
把乘法公式反过来用,可以把符合公式 特点的多项式因式分解,这种方法叫公式法.
(1) 平方差公式: a2-b2=(a+b)(a-b) (2) 完全平方公式:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
平方差公式:
(a+b)(a-b) = a²- b²
2 4a2 9b2 ___1_2_a_b_
3 x2 _4__x_y__ 4 y2
4 a2 __a_b____ 1 b2
4
5 x4 2x2 y2 ____y_4_
a2 2abb2 ab2
a2 2abb2 ab2
我们可以通过以上公式把 “完全平方式”分解因式
我们称之为:运用完全平 方公式分解因式
4 9m2 6mn n2 原式 3m n2
5 x2 1 x
4
原式
x
1 2
2
6 4a2 12ab 9b2 原式 2a 3b2
练习题:
1、下列各式中,能用完全平方公式 分解的是( D ) A、a2+b2+ab B、a2+2ab-b2 C、a2-ab+2b2 D、-2ab+a2+b2 2、下列各式中,不能用完全平方公 式分解的是( C ) A、x2+y2-2xy B、x2+4xy+4y2 C、a2-ab+b2 D、-2ab+a2+b2
=(2x)²- (mn)²
=(2x+mn)(2x-mn)
例2.把下列各式因解式: 分解
1)( x + z )²- ( y + 4z.原)²式=[(x+y+z)+(x-y-z)]
×[(x+y+z)- (x-y-z)]
2)4解(:a + b)²- 25(a - c)=²2 x ( 2 y + 2 z) 3解):41.a原³式-==4([x(a+xy++z)2+z()y(x+-zy))][(x+z)=-(4yx+z()y] + z ) 42解.)原(:x式=+[2y(a++b)z]²)-²[5-(a(-xc)]–² y – z )²
4x²- 9y²=(2x)²-(3y)²=(2x+3y)(2x-3y)
例1.把下列各式分解因式
(1)16a²- 1
解:1)16a²-1=(4a)²- 1
( 2 ) 4x²- m²n²
=(4a+1)(4a-1)
( 3 ) —9 x²- —1 y²
25
16
( 4 ) –9x²+ 4 解:2) 4x²- m²n²
2) -4a²+1分解因式的结果应是 ( D )
A. -(4a+1)(4a-1)
B. -( 2a –1)(2a –1)
C. -(2a +1)(2a+1)
D. -(2a+1) (2a-1)
2. 把下列各式分解因式: 1)18-2b² 2) x4 –1
1)原式=2(3+b)(3-b) 2)原式=(x²+1)(x+1)(x-1)
3、下列各式中,能用完全平方公式
分解的是( D )
A、x2+2xy-y2 B、x2-xy+y2
C、1 x2 -2xy+y2 D、 1 x2 -xy+y2
4
4
4、下列各式中,不能用完全平方公
式分解的是( D )
A、x4+6x2y2+9y4 B、x2n-2xnyn+y2n
C、x6-4x3y3+4y6 D、x4+x2y2+y4
例题:把下列式子分解因式
4x2+12xy+9y2
2x2 22x3y 3y2 2x 3y2
首2 2首尾 尾2 =(首±尾)2
请运用完全平方公式把下
列各式分解因式: 1 x2 4x 4 原式 x 22
2 a2 6a 9 原式 x 32
3 4a2 4a 1 原式 2a 12
8、如果x2+mxy+9y2是一个完全平方式,
那么m的值为(
B)
A、6 B、±6
C、3 D、±3
9、把 a b2 4a b 4 分解因式得
(C )
A、a b 12 B、a b 12 C、a b 22 D、a b 22
5、把 1 x2 3xy 9 y分2 解因式得
4
( B)
A、
1 4
x
3y
2
B、
1 2
x
3
y
2
6、把
4 9
x2
y2
4 3
xy(分解因A 式得)
A、
2 3
x
y
2
B、
4 3
x
y
2
7、如果100x2+kxy+y2可以分解为
(10x-y)2,那么k的值是( B )
A、20 B、-20
C、10 D、-10
相关文档
最新文档