纤维结构主要包括高分子链的结构和高分子的凝聚态结构

合集下载

高分子物理复习资料归纳

高分子物理复习资料归纳

高物第一章习题1.测量数均分子量,不可以选择以下哪种方法:(B)。

A.气相渗透法B.光散射法C.渗透压法D.端基滴定法2.对于三大合成材料来说,要恰当选择分子量,在满足加工要求的前提下,尽量( B )分子量。

A.降低B.提高C.保持D.调节3.凝胶色谱法(GPC)分离不同分子量的样品时,最先流出的是分子量(大)的部分,是依据(体积排除)机理进行分离的。

4.测量重均分子量可以选择以下哪种方法:(D)A.粘度法B.端基滴定法C.渗透压法D.光散射法5. 下列相同分子量的聚合物,在相同条件下用稀溶液粘度法测得的特性粘数最大的为( D )(A)高支化度聚合物(B)中支化度聚合物(C)低支化度聚合物(D)线性聚合物6. 内聚能密度:定义克服分子间作用力,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分子间作用力的强弱。

7. 同样都是高分子材料,在具体用途分类中为什么有的是纤维,有的是塑料,有的是橡胶?同样是纯的塑料薄膜,为什么有的是全透明的,有的是半透明的?答:(1)塑料橡胶的分类主要是取决于使用温度和弹性大小。

塑料的使用温度要控制在玻璃化温度以下且比Tg室温低很多。

而橡胶的使用温度控制在玻璃化温度以上且Tg比室温高很多,否则的话,塑料就软化了,或者橡胶硬化变脆了,都无法正常使用。

玻璃化温度你可以理解为高分子材料由软变硬的一个临界温度。

塑料拉伸率很小,而有的橡胶可以拉伸10倍以上。

纤维是指长径比大于100以上的高分子材料,纤维常用PA(聚酰胺)等材料,这类材料有分子间和分子内氢键,结晶度大,所以模量和拉伸强度都很高,不容易拉断。

(2)结晶的高聚物常不透明,非结晶高聚物通常透明。

不同的塑料其结晶性是不同的。

加工条件不同对大分空间构型有影响,对结晶有影响,这些都能导致透明性不同。

大多数聚合物是晶区和非晶区并存的,因而是半透明的。

8. 在用凝胶渗透色谱方法测定聚合物分子量时,假如没有该聚合物的标样,但是有其它聚合物的标样,如何对所测聚合物的分子量进行普适标定?需要知道哪些参数?参考答案:可以用其它聚合物标样来标定所测聚合物的分子量。

高聚物结构包括

高聚物结构包括

二、填空1、高聚物结构包括 高分子的链结构 和高分子的聚集态结构,高分子的聚集态结构又包括 晶态结构 、 非晶态结构 、 取向态结构 和 液晶态结构以及织态结构 。

2、高分子链结构单元的化学组成有 碳链高分子 、 杂链高分子 、元素高分子和 梯形和双螺旋型高分子,元素高分子有 有机元素高分子 和 无机元素高分子 。

3、高分子的结晶形态有 折叠链片晶 、 串晶 、 伸直链片晶 和 纤维状晶 。

4、高聚物的晶态结构模型主要有 缨状胶束模型(或两相模型)、 折叠链结构模型 、 隧道-折叠链模型 、 插线板模型 ;高聚物的非晶态结构模型主要有 无规线团模型 和 折叠链缨状胶束粒子模型(或两相球粒模型) 。

5、测定分子量的方法有 端基分析法 、 气相渗透法 、 膜渗透法 、 光散射法 、 粘度法 和 凝胶色谱法 。

6、提高高分子材料耐热性的途径主要有 增加链刚性 、增加分子间作用力 、 结晶。

7、线性高聚物在溶液中通常为 无规线团 构象,在晶区通常为 伸直链 或 折叠链 现象。

8、高聚物稀溶液冷却结晶易生成 单晶 ,熔体冷却结晶通常生成 球晶 。

熔体在应力作用下冷却结晶常常形成 串晶 。

9、测定高聚物M n 、M w 、M η的方法分别有 膜渗透法 、 光散射法 、和 粘度法 。

测定高聚物相对分子质量分布的方法有 沉淀分级法 和 GPC ;其基本原理分别为 溶解度 和 体积排除 。

10、高聚物的熔体一般属于 假塑性 流体,其特性是 粘度随剪切速率增加而减小 。

高聚物悬浮体系、高填充体系、PVC 糊属于 胀塑性 流体,其特征是 粘度随剪切速率增加而增加 。

11、对于聚乙烯自由旋转链,均方末端距与链长的关系是 222nl h 。

12、当温度T= θ 时,第二维里系数A 2= 0 ,此时高分子溶液符合理想溶液性质。

13、测定PS 重均相对分子质量采用的方法可以是 光散射法 。

14、均相成核生长成为三维球晶时,A vranmi 指数n 为 4 。

高聚物结构-问答计算题

高聚物结构-问答计算题

1.简述聚合物的结构层次。

答聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构和远程结构。

一级结构包括化学组成,结构单元链接方式,构型,支化与交联。

二级结构包括高分子链大小和分子链形态。

三级结构属于凝聚态结构,包括晶态结构,非态结构,取向态结构和织态结构。

2.高密度聚乙烯,低密度聚乙烯和线形低密度聚乙烯在分子链上的主要差异是什么?答高密度聚乙烯为线形结构,低密度聚乙烯为具有长链的聚乙烯,而线形低密度聚乙烯的支链是短支链,由乙烯和高级的a–烯烃如丁烯,己烯或辛烯共聚合而生成。

共聚过程生成的线形低密度聚乙烯比一般低密度聚乙烯具有更窄的相对分子质量分布。

高密度聚乙烯易于结晶,故在密度,熔点,结晶度和硬度等方面都高于低密度聚乙烯。

3.假假设聚丙烯的等规度不高,能不能用改变构象的方法提高等规度?答不能,提高聚丙烯的等规度须改变构型,而改变构型与构象的方法根本不同。

构象是围绕单键内旋转所引起的分子链形态的变化,改变构象只需克服单键内旋转位垒即可实现;而改变够型必须经过化学键的断裂才能实现。

4.试从分子结构分析比较以下各组聚合物分子的柔顺性的大小:〔1〕聚乙烯,聚丙烯,聚丙烯腈;〔2〕聚氯乙烯,1,4-聚2-氯丁二烯,1,4-聚丁二烯;〔3〕聚苯,聚苯醚,聚环氧戊烷;〔4〕聚氯乙烯,聚偏二氯乙烯。

答〔1〕的柔顺性从大到小排列顺序为:聚乙烯>聚丙烯>聚丙烯腈;〔2〕的柔顺性从大到小排列顺序为:1,4-聚丁二烯>1,4-聚2-氯丁二烯>聚氯乙烯〔3〕的柔顺性从大到小排列顺序为:聚环氧戊烷聚苯醚聚苯〔4〕的柔顺性从大到小排列顺序为:聚偏二氯乙>烯聚氯乙烯5.请排出以下高聚物分子间的作用力的顺序,并指出理由:〔1〕顺1,4-聚丁二烯,聚氯乙烯,聚丙烯腈;〔2〕聚乙烯,聚苯乙烯,聚对苯二甲酸乙二酯,尼龙66。

答〔1〕分子间作用力从大到小的顺序为:聚丙烯腈>聚氯乙烯>顺1,4-聚丁二烯聚丙烯腈含有强极性基团,所以分子间作用力大;聚氯乙烯含有极性基团,分子间作用力较大;顺序1,4-聚丁二烯是非极性分子,不含庞大的侧基,所以分子间力作用小。

高分子物理全章节

高分子物理全章节

《高分子物理》电子教案绪言一、高分子科学的发展●高分子(Macromolecular,Polymer)概念的形成和高分子科学的出现始于20世纪20年代。

●1920年德国Staudinger提出高分子长链结构的概念。

●此前1839年美国人Goodyear发明了天然橡胶的硫化。

●1855年英国人Parks制得赛璐璐塑料(硝化纤维+樟脑)。

●1883年法国人de Chardonnet发明了人造丝。

从1920年提出高分子概念后,才开始了合成高分子科学的时代,相继合成了尼龙(聚酰胺)、氯丁橡胶、丁苯橡胶、PS、PVC、PMMA等高分子材料,形成了高分子化学研究领域。

随着大批新合成高分子的出现,解决对这些聚合物的性能表征,以及了解其结构对性能的影响等问题也随之变得必要了,从20世纪50年代,随时物理学家、化学家的投入,形成了高分子物理研究领域;同时高分子材料制品已向人们生活各个领域迅速扩展,高分子材料的成型加工原理,反应工程的研究日渐产生,形成了“高分子工程”研究领域。

●至今与高分子有关的诺贝尔奖获得者:配位聚合:Ziegler(德国)、Natta(意大利),flory(美),导电高分子Heeger,MacDiarmid(美),白川英树(日本),de Gennes(法国)。

●我国高分子研究起步于50年代初,唐敖庆于1951年,发表了首篇高分子科学论文(高分子统计理论):●长春应化所1950年开始合成橡胶工作(王佛松,沈之荃);●冯新德50年代在北大开设高分子化学专业。

●何炳林50年代中期在南开大学开展了离子交换树脂的研究。

●钱人元于1952年在应化所建立了高分子物理研究组,开展了高分子溶液性质研究。

●钱保功50年代初在应化所开始了高聚物粘弹性和辐射化学的研究。

●徐僖先生50年初成都工学院(四川大学)开创了塑料工程专业。

●王葆仁先生1952年上海有机所建立了PMMA、PA6研究组。

我国在高分子化合物高分子领域的研究不断发展壮大。

高分子物理名词解释1

高分子物理名词解释1

一、概念与名词第一章高分子链的结构高聚物的结构指组成高分子的不同尺度的结构单元在空间相对排列,包括高分子的链结构和聚集态结构。

高分子链结构表明一个高分子链中原子或基团的几何排列情况。

聚集态结构指高分子整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。

近程结构指单个大分子内一个或几个结构单元的化学结构和立体化学结构。

远程结构指单个高分子的大小和在空间所存在的各种形状称为远程结构化学结构除非通过化学键的断裂和生成新的化学键才能改变的分子结构为化学结构。

物理结构而一个分子或其基团对另一个分子的相互作用构型分子中各原子在空间的相对位置和排列叫做构型,这种化学结构不经过键的破坏或生成是不能改变的。

旋光异构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三中键接方式,即全同、间同、无规立构,此即为旋光异构。

全同立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的异构体是相同的,此即为全同立构。

间同立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是交替出现的,此即为间同立构。

无规立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是无规则出现的,此即为无规立构。

有规立构全同和间同立构高分子统称为有规立构。

等规度全同立构高分子或全同立构高分子和间同立构高分子在高聚物中的百分含量。

几何异构当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。

顺反异构当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。

高分子物理聚合物的结构(计算题:均方末端距与结晶度)

高分子物理聚合物的结构(计算题:均方末端距与结晶度)

聚合物的结构(计算题:均方末端距与结晶度)1.简述聚合物的层次结构。

答:聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构(一级结构)和远程结构(二级结构)。

一级结构包括化学组成、结构单元链接方式、构型、支化与交联。

二级结构包括高分子链大小(相对分子质量、均方末端距、均方半径)和分子链形态(构象、柔顺性)。

三级结构属于凝聚态结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。

构型:是指分子中由化学键所固定的原子在空间的几何排列。

(要改变构型,必须经过化学键的断裂和重组。

)高分子链的构型有旋光异构和几何异构两种类型。

旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。

)。

全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。

构象:原子或原子基团围绕单键内旋转而产生的空间分布。

链段:把若干个键组成的一段链作为一个独立运动的单元链节(又称为重复单元):聚合物中组成和结构相同的最小单位高分子可以分为线性、支化和交联三种类型。

其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。

但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。

交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。

高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。

单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。

《材料科学与工程导论》考试大纲

《材料科学与工程导论》考试大纲

题号:923《材料科学与工程导论》考试大纲下面大纲是按专业方向列出的,考生可任选其中一个方向的大纲复习,考试按专业方向命题,学生选做其中一组即可。

1、金属材料及热处理内容要求:(1)金属固态相变的概论:金属固态相变的平衡转变和不平衡转变,固态相变的均匀形核和非均匀形核。

新相长大机制和新相长大速度。

(2)钢的热处理:钢的热处理的基本概念,钢的加热转变、冷却转变。

钢的退火与正火,钢的淬火和回火。

钢的表面热处理。

(3)钢铁中的合金元素:合金元素在钢中的作用,合金元素对铁碳相图的影响,合金元素对钢的相变和热处理的影响,合金元素对钢的性能的影响。

(4)合金结构钢:对结构钢的基本要求,结构钢的合金化,结构钢的含碳量与热处理,结构钢的淬透性,常用的合金结构钢:包括调质钢、超高强度钢、渗碳钢、弹簧钢和轴承钢。

(5)工具钢:碳素和低合金工具钢,高速工具钢,冷作摸具钢和热作摸具钢等,包括合金元素的作用、热处理特点。

(6)不锈钢:金属腐蚀的基本概念,合金元素在不锈钢中的作用,不锈钢的组织、不锈钢的腐蚀特性,不锈钢的强化与脆化。

(7)有色金属及其合金:铝及铝合金:铝合金中的合金元素,铝合金的热处理原理,时效过程中组织和性能变化,时效硬化的原因。

变形铝合金与铸造铝合金的成分、组织、热处理工艺和性能。

镁合金的基本特性、分类和编号。

镁合金中的合金元素,镁合金中的强化相,变形镁合金和铸造镁合金。

铜合金:铜的合金化二元黄铜组织和性能、多元黄铜。

青铜种类及其应用,白铜合电工白铜。

钛合金:钛的特性及钛的冶金基础,合金元素在钛合金中的作用,钛合金的分类、热处理和强韧化基础。

参考书目:(1) 吴承建等,金属材料学,北京:冶金工业出版社,2001年(2) 胡光立,钢的热处理原理与工艺,西安:西北工业大学出版社,1993年(3) 朱张校,工程材料(第三版),北京:清华大学出版社,2001年(4) 王晓敏,工程材料学,哈尔滨:哈尔滨工业大学出版社,1998年2、高分子材料内容要求:(1)高分子材料的合成原理及方法:聚合反应及其分类,单体的聚合选择性,自由基聚合反应、阳离子型聚合反应、阴离子型聚合反应和共聚反应。

纤维结构基础知识

纤维结构基础知识
按主链构成的化学组成,纤维大分子可以分为以下三种:
第一节
纤维大分子结构
1、均链大分子(homochain polymer) 主链均由一种原子以共价键组成的大分子链,通常是以碳-碳共价键 相连而成,这类大分子一般由加聚反应制得。 该类纤维品种如聚丙烯纤维、聚氯乙烯纤维等。
第一节
纤维大分子结构
2、杂链高分子(heterochain polymer)
键 能 2.1-23.0 (kJ/mol)
作用距离 (nm)
5.4-42.7
125.6-209.3
209.3-837.4
31.0-48.6
0.3-0.5
0.23-0.32
0.09-0.27
0.09-0.19
0.44-0.49
范德华力(Van der Waal’s force)
范德华力(Van der Waal’s force):范德华力包括静电力、诱导力 和色散力三种作用形式,其特点是普遍存在于大分子之间,没有方向 性和饱和性。
氢键:是氢原子与其他电负性很强的原子之间形成的一种较强的相互 作用,具有方向性和饱和性。
氢键的作用能强度与其他原子的电负性和原子半径有关,电负性越大, 原子半径越小,则氢键的作用强度越强。
一些分子中含有极性基团(如羧基、羟基等)的纤维如聚酰胺、纤维 素、蛋白质纤维中都可形成分子间的氢键。
诱导力主要存在于极性分子与非极性分子之间,是由极性分子的永久 偶极与其他分子的诱导偶极之间的相互作用,其大小与分子偶极距的 平方和极化率的乘积成正比,与分子间距离的六次方成反比。
色散力是由于分子间的瞬间偶极引起的相互作用,其作用能大小与两 种分子的电离能、分子极化率和分子间的距离有关。
氢键

高分子的凝聚态和聚集态

高分子的凝聚态和聚集态

高分子的凝聚态和聚集态引言高分子是由成千上万个重复单元组成的大分子化合物,其分子量往往非常大。

高分子材料在现代科技和工业中扮演着重要的角色。

在不同的条件下,高分子可以出现不同的凝聚态和聚集态。

本文将介绍高分子的凝聚态和聚集态的概念、特点以及相关的应用。

一、高分子的凝聚态高分子的凝聚态是指高分子在无外界作用力下,在固定温度下保持稳定的结构状态。

在凝聚态下,高分子分子间保持着一定的有序性和排列规律。

1.晶体态晶体态是高分子的一种凝聚态,其特点是高分子链在立体空间有规则地排列,形成高度有序的晶体结构。

高分子晶体具有高度结晶度、透明度和硬度等特点,广泛应用于塑料、纤维和电子材料领域。

2.玻璃态玻璃态是高分子的另一种凝聚态,其特点是高分子链呈无规则排列,形成非晶态结构。

高分子玻璃具有高强度、耐高温等优点,在包装、建筑和航空航天等领域有广泛的应用。

二、高分子的聚集态高分子的聚集态是指高分子在外界作用力下,分子间呈现出聚集、堆积的状态。

在聚集态下,高分子分子间相互作用较强。

1.胶体态胶体态是高分子的一种聚集态,其特点是分散相微粒的大小在1~1000纳米之间。

高分子胶体具有分散性好、介电常数大等特点,广泛应用于涂料、纸张和医药等领域。

2.凝胶态凝胶态是高分子的另一种聚集态,其特点是高分子在某种溶剂中形成三维网络结构,并具有可逆的溶胀性。

高分子凝胶具有大孔结构、储存能力强等特点,在制备人工器官和药物控释等方面具有重要应用价值。

三、高分子的应用高分子材料的凝聚态和聚集态在众多领域中都具有广泛的应用。

1.材料领域高分子晶体被广泛应用于塑料、纤维和电子材料领域。

高分子玻璃在包装、建筑和航空航天等领域具有重要应用。

高分子胶体被用于涂料、纸张和医药等领域。

高分子凝胶在制备人工器官和药物控释等方面具有重要作用。

2.生物医学领域高分子凝胶在生物医学领域中具有广泛的应用,如用于人工器官的制备、药物控释系统的设计以及组织工程领域的研究。

第1章纤维结构的基础知识(纺织材料学)

第1章纤维结构的基础知识(纺织材料学)

l α
α 转动锥角
β 键角
l
βlΒιβλιοθήκη 链段长分子的内旋转示意图14
8. 纤维大分子链的内旋性、构象及柔曲性
2、构象:由于单键内旋转而产生的分子在空间的不同形态 称为构象(或内旋转异构体)
构象与构型的根本区别在于,构象通过单键内旋转可以改变, 而构型无法通过内旋转改变。
15
蛋白质的两种二次结构(构象)
单基的定义:构成纤维大分子主链的基本结构单元称为“单
基”。
侧基的定义:分布在大分子主链两侧并通过化学键与主链连接的化学基团。 端基的定义:指大分子主链两端的结构单元,且与主链单基结构有很大差别的基团。
8
单基的化学结构、官能团的种类决定了该材料的最基本的物质属 性,即耐酸、耐碱、耐光以及染色等化学性能。
第一章 纤维结构基础知识
1
一、 纤维大分子链的化学组成及连接方式 二、纤维高分子材料的聚集态结构 三.线型非晶态高聚物的物理形态
2
一、 纤维大分子链的化学组成及连接方式
1. 纤维大分子结构
3
一、 纤维大分子链的化学组成及连接方式
2. 纤维大分子链的支化、构型:
纤维大分子是由许多结构相同或相近的结构单元(单基)以化学健的 方式连接而成的线型长链分子。由于纤维材料的分子量很大,约在一万以 上,因而被称为“大分子”或“高分子”。
侧基的结构、性能对于大分子的柔顺性、凝聚态和功能化都具有 重要影响。
端基对于纤维的热、光学的稳定能等性能具有重要影响。
聚合度对于聚合物的加工型、最终纤维的性能等都具有较大 的影响,棉、麻的聚合度高,成千上万;羊毛576;蚕丝400;粘 胶300-600;化学纤维聚合度不宜过高。同时一根纤维中各个大 分子的n不尽相同,具有一定的分布。

高分子物理名词解释(期末复习)

高分子物理名词解释(期末复习)
制备条件:熔体中无应力结晶,或从浓溶液中缓慢析出结晶。 结构特征:折叠连晶片的聚集体,分子链垂直于半径方向。 光学性质:a.特征的 黑十字消光;b.沿球晶径向周期性变化的 黑色同心圆环。 形态取决于晶核的形成和生长过程。 球晶非景区的主要构成部分:球晶片晶间连接链。 球晶的力学性质:依赖与球晶的形态及片晶间连接链。
合物的聚合度。测定方法:密度法、x射线衍射法、红外光谱法、DSC法等。
Scherrer 谢勒公式:
晶粒尺寸
高分子液晶和取向
1.高分子液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表现出流
动性,但结构上仍保持一维或二维有序性,形成兼具晶体和液体性质的过渡 状态,这种中间状态就称为液晶态。
2.液晶:兼具晶体的光学性质和流体流动性的一类物质。 3.形成液晶态的结构因素:刚性的分子结构、棒状或近似棒状的构象、
第九章 聚合物的流变性 牛顿流体:流动过程中其切应力与流速梯度成正比的流体。 非牛顿流体:假塑性流体、胀塑性流体、塑性流体。 假塑性流体:粘度随剪切速率的增加而减小,即剪切变稀,大多高分子属此类。 胀塑性流体:粘度随剪切速率的增加而升高,即剪切变稠,如高聚物悬浮液、 乳胶、高聚物-填料体系等。 熔融指数:在一定温度下,熔融状态的高聚物在一定负荷下,十分钟内从规定 直径和长度的标准毛细管中流出的重量。 橡胶:分子量达数十万,分布较宽,考虑弹性;纤维:分子量数万或稍低,分 布较窄,考虑纤维的纺丝性能;塑料:分子量介于两者之间,分布较窄。 韦森堡效应:当高聚物熔体或浓溶液在搅拌时,受到旋转剪切力作用,流体沿 内筒壁或轴上升,发生包轴或爬杆现象。 离模膨胀(巴斯拉效应):当高聚物熔体从小孔、毛细管或缝隙中挤出时,挤 出物的直径或风厚度明显大于模口的尺寸的现象。
几何不 对称性(分子的长宽比>4),另外还需具有在液态下维持分子某种有 序结构排列所必须的凝聚力(如强极性基团、氢键等)

第一章 纤维结构基础

第一章  纤维结构基础
第一章 纤维结构基础知识
1
纺织纤维的分子都很大,常由数百至数万原子 组成,称为大分子或高分子,纺织纤维则由成千 上万个大分子组成。 纤维的结构,即纤维的大分子的组成、大分子 的排列方式等影响了纤维的性能。 纤维结构主要包括高分子链的结构和高分子的 凝聚态结构(又称聚集态结构、超分子结构)及 其形态结构。
在分子间作用力下,纤维内大分子间的排列和 堆砌结构称为纤维的凝聚态结构,也称为超分子 结构。 纤维凝聚态结构(与大分子结构、生产工艺有 关)影响纤维的使用性能。
11
一、纤维大分子间的作用力 纤维大分子间的作用力使纤维中的大分子形成 一种较稳定的相对位置,或较牢固的结合,使纤维 具有一定的物理机械性质。 大分子间的作用力:范德华力、氢键、盐式键、 化学键 结合力的能量大小:化学键>盐式键>氢键>范 德华力
17
4.纤维的原纤结构 纤维中包含了大分子、基原纤、微原纤、巨 原纤、细胞、纤维等层次结构。 (1)基原纤:通常由几根或几十根直线链状大 分子,按照一定的空间位置排列,相对稳定地形 成结晶态的大分子束。 (2)微原纤:由若干根基原纤平行排列结合在 一起的大分子束。 (3)原纤:由若干根基原纤或微原纤基本平行 排列结合在一起形成更粗大些的大分子束。
9
四、相对分子质量及其分布
单基
聚合度n可由大分子相对分子质量和单基相对 分子质量的比值求得。
大分子相对分子质量可用很多方法测得,但 其不是一个定值,而是呈现一个分布,因此其相 对分子质量是一个统计平均值。 纤维大分子相对质量的大小,对纤维的拉伸、 弯曲、冲击强度等有很大影响。
10
第二节
纤维的凝聚态结构
2
第一节
纤维大分子结构
一、纤维大分子主链的化学组成 纤维大分子主链是由某个结构单元以化学键 的方式重复连接而成的线型长链分子。主要由碳 和氢两元素构成,还可有氧、氮、硫等。

高分子物理简答题

高分子物理简答题

第二章高分子的链结构1.聚合物的层次结构聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构一级结构和远程结构二级结构;一级结构包括化学组成,结构单元连接方式,构型,支化于交联;二级结构包括高分子链大小相对分子质量,均方末端距,均方半径和分子链形态构象,柔顺性;三级结构属于凝聚态结构,包括晶态结构,非晶态结构,取向态结构,液晶态结构和织态结构; 2.结构单元的键接方式,许多实验证明自由基或离子型聚合产物中大多数是头—尾键接的,链接方式对聚合物的性能有比较明显的影响;例1:纤维要求分子链中单体单元排列规整,结晶性能好,强度高,便于抽丝和拉伸例2:维尼纶纤维缩水性较大的根本原因:聚乙烯醇PVA做维尼纶只有头—尾键接才能使之与甲醛缩合生成聚乙烯醇缩甲醛;如果是头—头键接额,羟基就不易缩醛化,是产物中保留一部分羟基,羟基的数量太多会使纤维的强度下降;3.聚合物的空间构型概念:结构单元为—CH2—CHR—型的高分子,在每一个结构单元中都有一个手性碳原子,这样,每一个链节就有两种旋光异构体,高分子全部由一种旋光异构体键接而成称为全同立构,由两种旋光异构单元交替键接,称为间同立构,两种旋光异构单元完全无规键接时,则称为无规立构全同立构和间同立构的高聚物有时统称为等规高聚物高聚物中含有全同立构和间同立构的总的百分数是指等规度由于内双键的基团在双键两侧排列的方向不同而有顺式构型与反式构型之分,他们称为几何异构体例:几何构型对聚合物的影响聚丁二烯1,2-加成的全同立构或间同立构的聚丁二烯PB,由于结构规整,容易结晶,弹性很差,只能作为塑料使用;顺式1,4-聚丁二烯链的结构也比较规整,容易结晶,在室温下是一种弹性很好的橡胶,反式1,4-聚丁二烯分子链的结构也比较规整,容易结晶,在室温下是弹性很差的塑料;4. 高分子共聚物共聚物的序列结构常用参数平均序列长度L和嵌段数R;当R=100时表明是交替共聚,R=0时表明是嵌段共聚物例1:聚甲基丙烯酸甲酯PMMA分子带有极性酯基是分子间作用力比聚苯乙稀PS大,因此在高温的流动性差,不宜采取注塑成型法加工;需将PMMA和少量PS共聚可以改善树脂的高温流动性,适用于注塑成型ps. 和少量的丙烯晴AN共聚后,其冲击强度,耐热性,耐化学腐蚀性都有所提高,可供制造耐油的机械零件例2:ABS树脂在结构组成制备工艺上可提高产品的力学性能的方法ABS树脂是丙烯晴,丁二烯和苯乙烯的三元共聚物;其中丙烯晴有CN基,能使聚合物耐化学腐蚀,提高制品的抗张强度和硬度;丁二烯使聚合物呈现橡胶状韧性,这是材料抗冲击强度增高的主要因素;苯乙烯的高分流动性能好,便与加工成型,而且可以改善制品表面光洁度.,ps. ABS是一类性能优良的热塑性塑料例3:SBS在结构和组成上的特点及加工方法概述用阴离子聚合法制得的苯乙烯与丁二烯的嵌段共聚物SBS树脂;丁二烯常温是一种橡胶,而聚苯乙烯是硬性塑料,两者不相容,因此SBS具有两项结构;聚丁二烯段形成连续的橡胶相,聚苯乙烯是热塑性的,聚苯乙烯起交联作用高温下可以破坏也可以重组,所以SBS是一种可以注塑方法进行加工而不需要硫化的橡胶;聚氨酯与其相似,统称热塑性弹性体;5.高分子链的支化例:为什么高压聚乙烯的冲击强度好于低压聚乙烯的冲击强度支化对物理性能的影响有时相当显著,高压聚乙烯低密度聚乙烯LDPE由于支化破坏了分子的规整性,使其结晶度大大降低,低压聚乙烯高密度聚乙烯HDPE是线型分子,易于结晶,故在密度,熔点,结晶度和硬度方面都高于强者;分子链支化程度增加,分子间的距离增加,分子间的作用力减小,因而使拉伸强度降低,但冲击强度会提高;6.高分子链的交联支化高分子能够溶解,交联高分子不熔不熔,只有交联度不大的时候能在溶剂中溶胀;热固性塑料和硫化橡胶都是交联高分子例:硫化橡胶未经硫化交联的橡胶分子之间容易滑动,受力后会产生永久变形,不能回复原状,经硫化的橡胶分子间不能滑移,才有大的可逆弹性变形,所以橡胶一定要经过硫化变成交联结构后才能使用;交联度小的橡胶含硫5%一下弹性较好,交联度大的橡胶含硫20%~30%弹性就差,交联度再增加,机械强度和硬度都将增加,最终失去弹性而变脆;7.高分子链的构象概念:构象:单间内旋转而产生的分子在空间的不同排列形态,由于热运动分子的构象在时刻改变,因此高分子的键的构象是统计性的,由此可知,这种构象是不固定的;构型:大分子链中由化学键所固定的原子在空间的几何排列,这种排列是稳定的要改变构型必经过化学键的断裂和重组;构型包括单体单元的键合顺序,空间构型的规整性,支化度,交联度以及共聚物的组成及序列结构;无规线团:单键内旋转是导致分子链呈蜷曲构象的原因,内旋转愈自由,蜷曲的趋势越大,我们称这种不规则的蜷曲高分子链的构象为无规线团;理想链理想柔性链,自由链接链:高分子键的一种理想化的简单模型,假定高分子的主链由足够多的不占体积的化学键自有链接而成,这些键的取向不受键角以及相邻旋转交的限制,没有位垒的障碍,在空间上的取向几率都相等;自由旋转链:每个链都能在键角限制范围内自由旋转,不考虑空间位阻影响,有足够多的不占体积的化学键自有链接而成,这些键的取向受键角及相邻旋转交的限制,没有位垒障碍;受阻旋转链:同自由旋转链,除不能自由旋转;末端距:对于线性高分子,分子链的一端至另一端的直线距离即为末端距;均方末端距:末端距的平方的平均值,通常用来表征高分子链的尺寸;高斯链:把真实的高分子末端距模型化的一种由n个长度为l的统计单元组成,他的末端距大小分布符合高斯统计函数,这种假想链叫做高斯链Ps.末端距的计算见附录例1. 自由连接链和高斯链的区别1.高斯链的统计单元为链段,自由链接链的链接单元为化学键2.高斯链可以产生链段的回转和取向,自有链接连不能产生化学链的旋转和取向3.高斯链是实际存在的,自有链接连是不存在的4.高斯链研究高分子链的共性,自有链接链是理想化的;例2.聚丙烯是否可以通过单键的内旋转由全同立构变成间同立构,为什么答:不可以;因为全同立构和间同立构是属于构型的范畴,构型是指分子中有化学键所固定的原子在空间的排列;单键的内旋转只会改变构象,而改变构型必须经过化学键的断裂才能实现;例3.为什么只有柔性高分子链才适合做橡胶答:橡胶具有高弹性,弹性模量很小,形变量很大的特点;只有处于蜷曲状态的长链分子才能在外力的作用下产生大形变,才能作为橡胶;蜷曲程度与柔性是相对应的,蜷曲程度越高,柔性越好,所以适合做香蕉的高分子必须具备相当程度的柔性;例4.试述近程相互作用和远程相互作用的含义以及它们对高分子链构象以及柔性的影响答:所谓“近程”和“远程”是根据沿大分子链的走向来区分的,并非为三维空间上的远和近;事实上,即使是沿高分子长链很远的枝节也会由于主链单间内旋转而在三维空间上相互靠的很近;近程相互排斥作用的存在使得实际高分子的内旋转受阻,是指在空间可能有的构象数远远小于自由内旋转的情况,受阻程度越大构象数就越少,高分子链的柔性就越小;远程相互作用可为斥力,也可称为引力;当大分子链中相距较远的原子或原子团由于单键的内旋转,可是其间的距离小于范德瓦尔斯半径而表现为斥力,大于范德瓦尔斯半径为引力,五轮哪种力都使单间内旋转受阻构象数减小,柔性下降,末端距变大;例5. 分子链柔顺性大小顺序聚乙烯PE,聚丙烯PP,聚丙烯晴PAN,聚氯乙烯PVC取代基极性越大,取代基之间的相互作用就越强,高分子链内旋转越困难,柔性越小;取代基的极性顺序为—CN>—CL—CH3—H,所以PE>PP>PVC>PAN例6.请排出分子间作用力的大小聚苯乙烯,聚对苯二甲酸乙二酯和尼龙66,聚乙烯尼龙66>据对苯甲酸乙二酯>聚苯乙烯>聚乙烯尼龙66分子间能形成氢键,因此分子间作用力最大;聚对苯二甲酸乙二酯含有强极性基团,分子间作用力比较大,聚苯乙烯含有侧基,连段运动较困难,分子间作用力较小,聚乙烯是非极性分子,又不含侧基,分子间作用力最小;例7. 请排出结晶难易程度的排序1聚对苯二甲酸乙二酯和聚间苯二甲酸乙二酯,聚乙二酸乙二酯2尼龙66,尼龙1010聚己二酸乙二酯>聚对苯二甲酸乙二酯>聚间苯二甲酸乙二酯,这是由于聚己二酸乙二酯的柔顺性好,聚间苯二甲酸乙二酯对称性不高,尼龙66>尼龙1010尼龙66中氢键密度大于尼龙1010第三章高分子溶液1.聚合物溶解过程和溶剂选择概念:内聚能密度:内聚能是将一摩尔液体或固体分子汽化时所需要的能量,单位体积的内聚能即为内聚能密度;δ溶度参数:溶度参数是内聚能密度的平方根;溶质与溶剂的溶度参数越接近越可能相互溶解;冻胶:是由范德瓦尓斯力交联而成的,加热可以拆散范德瓦尓斯力的交联,使冻胶溶解;凝胶:是高分子链之间以化学键形成的交联结构的溶胀体;例1.聚合物的溶解过程答:聚合物的溶解过程分为两个阶段,先是溶剂分子深入聚合物内部,是聚合物体积膨胀,称为溶胀,然后才是高分子均匀分散在溶剂中形成完全溶解的分子分散的均相体系,对于交联聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联分子拆散,只能停留在溶胀阶段,不会溶解;例2.聚合物的溶解度与分子量的关系:溶解度与聚合物的分子量有关,分子量大的溶解度小,分子量小的溶解度大,对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大;例3.非晶聚合物和结晶聚合物对溶解的影响非晶聚合物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入聚合物内部使之溶胀和溶解;静态聚合物由于分析排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子深入聚合物内部非常困难,因此晶态聚合物的溶解比非晶态聚合物困难得多;溶液的热力学性质溶解过程的自发需要满足△Fm=△Hm-T△Sm<0对于极性聚合物在极性溶剂中,由于高分子溶剂强烈相互作用,分子排列趋于混乱所以△Sm增加溶解时放热△Hm<0且使体系△Fm降低所以溶解过程能自发进行非极性聚合物,溶解过程一般是吸热的△Hm>0,故只有在升高温度T或者减小混合热△Hm才能使体系自发溶解;非极性溶液的混合热△Hm的大小取决于溶度参数,如果两种液体溶度参数接近,则混合热越小,两种液体越能互相溶解;Ps.聚丙烯腈不能溶解在溶度参数与他相接近的乙醇,甲醇,苯酚;乙二醇等溶剂中,这是因为这些溶剂的极性太弱了,只有二甲基甲酰胺,二甲基乙酰胺,乙腈,二甲基亚砜,丙二腈才能使其溶解;丙酮不能溶解聚苯乙烯是丙酮极性太强而聚苯乙烯是弱极性的;可以得出结论,极性聚合物,不但要求它与溶剂的溶度参数中的非极性部分接近,还要求极性部分也接近才能溶解;注:如果溶质与溶剂间能形成结晶性非极性聚合物的溶剂选择最困难,它的溶解包括两个过程:其一是结晶部分的熔融;其二是高分子与溶剂的混合,两者都是吸热的过程,所以要提高温度;除非生成氢键,因为氢键的生成是放热反应;例1.溶剂的选择原则:1)极性相近,要求溶剂的极性和高聚物极性相近,极性高聚物选择极性相当的溶剂;2)溶度参数相近原则,参数越接近,溶解可能性越大,非晶态—非极性比较合适,对于晶态的非极性高聚物需加外界条件,对晶态极性不适用;3)溶剂化原则基团的相互作用溶剂分子与高分子链之间相互吸引作用是高分子链与链之间相互分离导致高分子溶解于溶剂形成溶液;理想溶液概念:理想溶液:是指溶液中溶质分子间溶剂分子间和溶质分子间的相互作用能都相等,溶解过程没有体积变化也没有焓的变化;Huggins参数:是表示高分子溶液混合时相互作用能的变化θ温度:是高分子溶液的一个参数,当T=θ时高分子溶液中的过量化学位为零,与理想溶液中溶剂的化学位没有偏差θ条件:通过选择溶剂和温度使高分子溶液中溶剂的过量化学位为零的条件,这种条件称为θ条件或θ状态;无扰状态:高分子在稀溶液中,一个高分子很难进入另一个高分子所占的区域,即每个高分子都有一个排斥体积;如果高分子链段和溶剂分子相互作用能大于高分子链段与高分子链段的相互作用能,则高分子被溶剂化而扩张,使高分子不能彼此接近,高分子的排斥体积就很大;如果高分子链段与溶剂分子相互作用能等于高分子链段与高分子链段的相互作用能;高分子与高分子可以与溶剂分子一样彼此接近,互相贯穿,这样排斥体积为零,相当于高分子处于无扰状态;这种状态的尺寸就称为无扰尺寸;扩张因子:高分子在良溶剂中,由于溶剂化的作用,是卷曲的高分子链伸展,高分子的均方末端距和均方旋转半径扩大;扩张因子α是指高分子链的均方末端距或均方旋转半径与高分子链在θ状态下的均方末端距或均方旋转半径之比,它表示高分子链的扩张程度;溶胀比:交联高聚物在溶胀平衡时的体积与溶胀前的体积之比例1. 根据高分子的混合自由能,推导出其中溶剂的化学位变化,并讨论在什么条件下高分子溶液中溶剂的化学位变化,等与理想溶液中溶剂的化学位变化答:见附录例2. 高分子溶液在什么情况下与理想溶液的一些热力学性质相近当T=θ时;高分子溶液中溶剂的过量化学位为零;χ1=1/2,高分子处于θ状态,此时高分子溶液与理想溶液的一些热力学性质相近;例3. 什么是θ温度当高于,低于或等于θ温度时,大分子的自然构象有何不同为什么θ温度是高分子溶液的一个参数;当T=θ时,高分子溶液中溶剂△μ=0与理想溶液中的溶剂化学位没有偏差;当T>θ时,溶剂为高分子良溶剂,在良溶剂中,高分子链由于溶剂化而扩张,高分子线团伸展,当T<θ时,溶剂为高分子的不良溶剂,在不良溶剂中,高分子链由于溶剂化作用很弱,高分子链紧缩;当T=θ时,溶剂为高分子的θ溶剂,在θ溶剂中,高分子链段与高分子链段的相互作用能等于高分子链段与溶剂的相互作用能,高分子与高分子可以与溶剂分子一样彼此接近,互相贯穿,这样高分子链的排斥体积为零,相当与高分子链处于无干扰的无规线团;例4.试举出可判定聚合物溶解性好坏的三种热力学参数,并讨论当它们分别为何值时,溶剂是良溶剂,θ溶剂,劣溶剂:过量化学位△μ₁,Huggins参数χ₁,第二维利系数A₂可以判定聚合物溶解性的好坏的三种热力学参数,△μ₁<0,χ₁<1/2,A₂>0时为良溶剂;△μ₁=0,χ₁=1/2,,A₂=0时为θ溶剂;μ₁>0,χ₁>1/2,A₂<0时为劣溶剂;Ps.θ状态与真正的理想溶液还是有区别的,真正的理想溶液没有热效应,任何温度下都呈现理想行为,而在θ温度时的高分子稀溶液只是过量化学位等于0而已;偏摩尔混合热和偏摩尔混合熵都不是理想值,只是两者的非理想效应近似相互抵消;例5.临界共溶温度:是聚合物溶解曲线极大处的温度就是Tc;溶质的分子量越大,溶液的临界共溶温度越高;当温度降至Tc一下某一定值时,就会分离成稀相和浓相,当体系分成两相最终达到相平衡时,每种组分在两相间扩散达到动态平衡,这就要求每种组分在两相间的化学未达到相等;相分离的起始点就是临界点,在临界点,两个相浓度相等;简述荣章法测定聚合物的δ的原理和方法溶胀法可以测定交联聚合物的平衡溶胀比,及交联聚合物达到溶胀平衡时的体积与溶胀前的体积之比;若交联聚合物与溶剂的溶度参数越接近,高分子与溶剂的相互作用愈大,及高分子溶剂化程度愈大,交联网链愈能充分伸展,是交联聚合物的平衡溶胀比增大,若用若干种不同溶度参数的溶剂溶胀聚合物,用溶胀法分别测定聚合物在这些溶剂中的平衡溶胀比,以平衡溶胀比对溶剂的溶度参数作图,找出平衡溶胀比极大值所对应的溶度参数,此溶度参数可作为交联聚合物的溶度参数;Ps.增塑剂为了改善聚合物材料的成型加工性能和使用性能,通常在聚合物树脂中加入高沸点,低挥发性的小分子液体或低沸点固体,以降低玻璃化转变温度和粘流温度,改善树脂流动性,降低粘度石制品有较好的柔韧性,和耐寒性;第四章高分子的多组分体系高分子的相容性概念高温临界共溶温度UCST:高温互容低温分相;低温临界共溶温度LCST:低温互容高温分相;曲线分析见附录临界胶束浓度:将嵌段共聚物溶解在小分子溶剂中,如果溶剂溶解共聚物前段时没有很强的选择性,那么嵌段共聚物的溶液性质与一般均聚物的溶液性质没有和大的差别;但如果溶剂对其中的某一嵌段具有很强的相互吸引作用,在固定温度改变浓度或固定浓度改变温度两种条件下,嵌段共聚物类似于小分子的表面活性剂,与溶剂作用强的嵌段倾向于与溶剂混合,而另一嵌段就倾向于与其它链的相似嵌段聚集在一起,形成胶束,形成胶束的临界条件被称为临界胶束浓度,和临界胶束温度;进一步增加浓度,这些胶束逐渐发生交叠,形成物理凝胶几乎不能流动,形成凝胶的临界浓度称为临界胶束浓度静态光散射通过测定溶液中形成结构的平均分子量来估算是否形成了胶束Ps.UCST,LCST曲线见附录第五章聚合物的非晶态非晶态聚合物的结构模型概念无规线团模型:在非晶态聚合物本体中,分子链的构象与在溶液中的一样,成无规线团状,线团的尺寸在θ状态下高分子的尺寸相当,线团分子之间是任意相互贯穿和无规缠结的,前端的堆砌不存在任何有序的结构,因而非晶态聚合物在凝聚态结构上是均相的;玻璃化转变:玻璃态和高弹态之间的转变称为玻璃化转变,对应的转变温度即玻璃化转变温度;玻璃态:当非晶聚合物在较低的温度下受外力时,有与链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,聚合物形变是很小的,形变与受力的大小成正比,当外力除去后,形变能立刻回复;这种力学性质称虎克型弹性体,又称普弹体,非晶态聚合物处于具有普弹性的状态,称为玻璃态;玻璃化温度:高聚物分子链开始运动或冻结的温度;它是非晶态高聚物作为塑料使用的最高温度,橡胶使用的最低温度;高弹态:在聚合物受到外力时,分子链可以通过单键的内旋转和链段的改变构象以适应外力的作用,由于这种变形是外力作用促使聚合物主链发生内旋转的过程,它需要的外力显然比聚合物在玻璃态时变形所需外力要小得多,而变形量却大得多,这种性质叫做高弹性,它是非晶态聚合物处在高弹态下特有的力学特征;粘流态:整个分子链运动,松弛时间缩短,在外力作用下发生粘性流动,它是整个分子链互相滑动的宏观表现;形变不可逆外力除去后,形变不能再自发回复自由体积理论:Fox和Flory提出,认为液体或固体物质,其体积由两部分组成:一部分是被分子占据的体积;另一部分是未被占据的自由体积;后者以“孔穴”的形式分散于整个物质之中,正是由于自由体积的存在,分子链才可能发生运动;自由体积理论认为,当聚合物冷却时,起先自由体积逐渐减少,到某一温度时,自由体积达到一最低值,这是聚合物进入玻璃态;在玻璃态下,有与链段运动被冻结,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及分布也将基本上维持固定;因此对任何聚合物,玻璃化温度就是自由体积达到某一临界值的温度,在这临界值一下,已经没有足够的空间进行分子链构象的调整了;因而聚合物的玻璃态可视为等自由体积状态;不管什么聚合物,发生玻璃化转变时,自由体积分数都等于2.5%;Ps. WLF方程见附录例1::无规线团模型的实验证据1.橡胶的弹性理论完全是建立在无规线团模型基础上的,而且实验证明,橡胶的弹性模量和应力-温度系数关系并不随稀释剂的加入而有反常的改变,说明在非晶态下,分子链是完全无序的,并不存在可被进一步溶解或拆散的局部有序结构2.在非晶聚合物的本体和溶液中,分别用高能辐射是高分子发生交联,实验结果并未发现本体体系中发生分子内教练的倾向比溶液中更大,说明本体中并不存在诸如紧缩的线团或折叠连那些局部有序的结构;3用X光小角散射的实验结果,提别有力的支持了无规线团;.对于分子量相同的聚甲基丙烯酸甲酯试样,用不同的方法光散射,X光散射和中子散射,不同条件下本体或溶液中,测得分子的回转半径相近;并且本体的数据与θ溶剂氯代正丁烷的数据以及所得指向的斜率更为一致,证明非晶态本体中,分子的形态与它在θ溶剂中一样,它们的尺寸都是无扰尺寸例2.两相球粒模型1模型包含了一个无序的粒间相,从而能为橡胶弹性变形的回缩力提供必要的构象熵,因而可以解释橡胶的弹性回缩力;2实验测得许多聚合物的非晶和结晶密度比按分子链成无规线团形态的完全无序的模型计算的密度高,说明有序的粒子相与无序的粒间相并存,两相中由于嵌段的堆砌情况有差别,导致了密度的差别;3模型例子中嵌段的有序堆砌,为洁净的迅速发展准备了条件,这就不难解释许多聚合物结晶速度很快的事实;4某些非晶态聚合物缓慢冷却或热处理后密度增加,电镜下还观察到球粒的增大,这可以用粒子相有序程度的增加和粒子相的扩大来解释;例3.非晶态聚合物形变-温度曲线如果取一块非晶聚合物试样,对它施加一恒定的力,观察试样发生的形变与温度的关系,我们将所得到的曲线称为形变-温度曲线或热机械曲线;当温度较低时,试样呈刚性固体状,在外力作用下只发生非常小的形变;温度升到某一范围后,式样的形变明显的增加,并随后,并在随后的温度区间达到一相对稳定的形变,在这一个区域中,试样变成柔软的弹性体,温度继续升高,形变基本上保持不变;温度再进一步升高,则形变量又逐渐加大,试样最后完全变成粘性流体; Ps.形变温度曲线见附录例4.试用分子运动的观点说明非晶聚合物的三种力学状态和两种转变在玻璃态下,由于温度较低,分子运动的能量很低,不足以克服主链内旋转的位垒,因此不足以激发起链段的运动,链段处于被冻结的状态,只有那些较小的运动单元,如侧基,支链和小链节能运动,当收到外力时,由于链段处于冻结状态,只能使主链的键长和键角有微小的改变,形变很小,当外力除去后形变能立刻回复;随着温度的升高,分子热运动的能量增加,当达到某一温度Tg时,链段运动被激发,聚合物进入高弹态,在高弹态下,链段可以通过单键的内旋转和链段的运动不断地改变构象,但整个分子仍然不能运动;当受到外力时,分子链可以从蜷曲状态变为伸直状态,因而可发生较大形变;温度继续升高,整个分子链也开始运动,聚合物进入粘流态,这时高聚物在外力作用下便发生粘性流动,它是整个分子链互相滑动的宏观表现,外力去除后,形变不能自发回复;玻璃化转变就是链段有运动到冻结的转变,流动转变使整个分子链由冻结到运动的转变;例5.为什么聚合物通常有一份相对确定的玻璃化温度,却没有一个确定的粘流温度随着相对分子量的增加,玻璃化温度会升高,特别是在较低的相对分子质量范围内,这种影响较为明显,但是当相对分子质量增加到一定程度后,玻璃化温度随着相对分子质量的变化很小;而聚合物的粘流温度是整个分子链开始运动的温度,相对分子质量对粘流温度的影响比较明。

高分子物理第二章 高分子的凝聚态结构

高分子物理第二章 高分子的凝聚态结构

范德华力
诱导力:极性分子的永久偶极与它在邻近分子上引起的诱导 偶极之间的相互作用力。6~13KJ/mol
色散力:是分子瞬间偶极之间的相互作用。是一切分子中, 电子在诸原子周围不停的旋转着,原子核也不停的振动着, 在某一瞬间,分子的正负电荷中心不相重合,便产生了瞬间 的偶极。色散力存在于一切分子中,是范德华力最普遍的一 种。0.8~8KJ/mol
立方晶系
六方晶系
四方晶系
三方晶系
正交晶系
单斜晶系
三斜晶系
第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
(3)晶面和晶面指数
结晶格子内所有的格子点全部集中在相互平行的等间 距的平面群上,这些平面叫做晶面
第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
晶面指数 从不同的角度去观察某一晶体,将会见到不同的晶面, 所以需要标记,一般常以晶面指数(Miller指数)来 标记某个晶面
2.1.1 晶体结构的基本概念
(1)空间格子(空间点阵):把组成晶体的质点抽象成 几何点,有这些等同的几何点的集合所形成的格子, 点阵中每个质点代表的具体内容为晶体的结构单元。
晶体结构
= 空间点阵 + 结构基元(重复单元) 第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
(2)晶胞和晶系
第二章 高分子的凝聚态结构
高分子的结构
高分子的结构
高分子链的结构
近程结构 (一次结构)
化 学 组 成 分 子 构 造
共 聚 物 序 列 结 构
远程结构 (二次结构)
构 型
大 小
柔 顺 性
高 分( 子三 聚次 集结 态构 结) 构
第二章 高分子的凝聚态结构
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.纤维结构主要包括高分子链的结构和高分子的凝聚态结构(又称聚集态结构、超分子结构)及其形态结构。

2.单基(链节):构成纤维大分子的基本化学结构单元。

3.聚合度n :构成纤维大分子的单基的数目,或一个大分子中的单基重复的次数。

1.结晶度:纤维内部结晶区体积占纤维总体积的百分率。

结晶度对纤维性能的影响:结晶度↑: 纤维的拉伸强度、初始模量、硬度、尺寸稳定性、密度↑;纤维的吸湿性、染料吸着性、润胀性、柔软性、化学活泼性↓。

结晶度↓:纤维的吸湿性、染色性↑;拉伸强度较小,变形较大,纤维较柔软,耐冲击性,弹性有所改善,密度较小,化学反应性比较活泼。

2.取向度--大分子排列方向与纤维轴平行(或符合)的程度。

取向度与纤维性能间的关系:取向度大时,大分子可能承受的轴向拉力也大,纤维拉伸强度较大,伸长较小,模量较高,各向异性明显。

3.结晶度大的取向度不一定高。

4.(3)锯齿棉:用锯齿轧花机加工的皮棉(利用高速旋转的圆盘锯片通过肋条间隙钩拉棉花纤维,使之与棉子分离的机械。

)纺纱用棉多为锯齿棉。

5.天然转曲使棉纤维具有一定的抱合力,有利于纺纱工艺的进行和成纱质量的提高。

6.②主体长度Lm:一批棉样中含量最多的纤维的长度,Lm ≈Lh。

根数Lm:纤维中根数最多的那部分纤维的长度重量Lm:纤维中重量最重的那部分纤维的长度(即主体长度落在重量最大的一组中)。

常采用重量主体长度。

7.棉不耐酸,利用该性质可生产涤棉烂花布。

涤棉烂花布:涤棉包芯纱织物通过与有花纹的酸滚筒接触后制得的半透明织物。

8.木棉纤维是目前天然生态纤维中最轻(木棉0.29g/cm3,棉1.53 g/cm3)、中空度最高、最保暖的纤维材质。

它的细度仅有棉纤维的1/2,中空率却达到86%以上,是一般棉纤维的2-3倍。

9.羊毛粗有髓质层细无10.丝鸣干燥的精炼长丝(或丝织物)相互摩擦时所发出的清晰的声音。

它是蚕丝特有的音响,使蚕丝产品具有高贵感,经醋酸或酒处理后,可增加它的丝鸣效果。

11.绢纺把养蚕、制丝、丝织中产生的疵茧、废丝加工成纱线的纺纱工艺过程。

12.(1)变形丝:使平直的长丝获得二维或三维的卷曲,常称为变形加工。

主要的变形方法有填塞箱法、刀刃卷曲变形法、假捻变形法、空气变形法等。

(2)异形纤维:是相对圆形而言,采用非圆形喷丝孔加工的非圆形截面形状的纤维。

目的是改善合成纤维的手感、光泽、抗起毛起球性、蓬松性等特性。

(3)复合纤维在纤维的横截面上有两种或两种以上的不相混合的组分或成分的纤维。

常用的为双组分复合纤维,有并列型、皮芯型和海岛型等。

13.碱减量处理(涤纶仿真丝):在较高的温度下利用浓碱腐蚀涤纶表面,纤维细度变细,织物重量减轻(失重20%~25%),光泽柔和,重量减轻,从而形成真丝绸的外观和手感的工艺过程。

14.氨纶(莱卡)原液着色(聚丙烯切片中加入色母粒共熔)15.丙纶的应用编织绳人工草坪16.腈纶2)热学性质具有热弹性。

在热的状态下进行拉伸,再在张紧状态下进行冷却,纤维在具有较大内应力的情况下固定下来,这种纤维潜伏着受热后的收缩性。

利用这一性质可生产腈纶膨体纱。

17.未经处理的聚乙烯醇纤维溶于水,用甲醛或硫酸钛处理后可提高其耐热水性。

18.维纶吸湿性合成纤维中最好(W=5.0%)。

19.玉米聚乳酸纤维以其低原料能源取胜于合成纤维,并且在生物降解方面获得极高评价。

20.包芯纱短纤维包覆在长丝纱芯上,如棉/氨包芯纱、涤/棉包芯纱(生产烂花布)。

21.纱线的细度均匀度是指沿纱线长度方向粗细的变化程度。

测长称重法(切断称重法)切取若干个等长的纱线片段,分别称重,然后按规定计算。

条干均匀度仪条干均匀度仪分为电容式和光电式两种。

黑板条干检验法将纱线均匀的绕在黑板上(彩色纱线用白板),在规定条件下与标准样照目测对比,评判该纱的均匀度级别。

22.纱线因为加捻而引起的长度缩短,称捻缩。

23.纱线加捻的方向,有S捻和Z捻。

24.环锭纱中纤维的径向转移这种纤维由外向内、由内向外的转移称作纱中纤维的径向转移或内外转移。

25.混纺织物:以单一混纺纱线形成的织物,如经纬纱均用涤/棉纱织成的织物;经纬均用真丝/ 涤纶丝复合丝织成的织物;26.交织织物:经、纬纱用不同纤维原料的纱线织成的机织物;或不同原料的纱线并合(或间隔)制成的针织物或编结物。

27.按印染加工和后整理方法分(5)色纺织物纤维染色→纺纱→织布(6)色织织物(色织物)纺纱→染纱→织布28.组织点(浮点):经纬纱线的交织点。

29.经组织点(经浮点)-经纱浮于纬纱之上,以▉或表示。

30.纬组织点(纬浮点)-纬纱浮于经纱之上,用表示。

31.纬编针织物的基本组织纬平、罗纹、双反面和双罗纹等32.机织物密度33.织物经(纬)向单位长度内的纬(经)纱根数。

经密:经纱根数/10厘米纬密:纬纱根数/10厘米34.同种纤维在一定的大气温湿度条件下,从放湿达到平衡的回潮率大于从吸湿达到的平衡回潮率,这一性能称为纤维的吸湿滞后性8.试述加捻作用对纱线的影响。

答:作用对纱线的影响如下:(1)对纱线长度的影响加捻后,纤维倾斜,使纱线的长度缩短,产生捻缩。

(2)对纱线密度和直径当捻系数大时,纱内纤维密集,纤维间空隙减少,使纱的密度增加,而直径减小。

当捻系数增加到一定程度后,纱的可压缩性减少,密度和直径变化不大,相反由于纤维过度倾斜可使纤维稍稍变粗。

(3)对纱线强力影响对于单纱,当捻系数较小时,纱的强度随捻系数增加而增加;但当捻系数增加到某一临界值,再增加捻系数,纱线强力反而下降。

对于股线,股线捻系数对强度的影响因素除与单纱相同外,还受捻幅影响,分布均匀的捻幅可使纤维强力均匀。

(4)对纱线断裂伸长率影响对于单纱,在一般采用的捻系数范围内,随着捻系数的增加细纱断裂伸长率有所增加;对于股线,同向加捻,股线断裂伸长率随捻系数增加有所增加,反向加捻,股线断裂伸长率随捻系数增加有所下降。

(5)纱的捻系数较大时,纤维倾斜角较大,光泽较差,手感较硬。

17.什么是羊毛的毡缩性?引起羊毛毡缩性的原因?常见的防缩整理方法有哪些?(7分) 这种性能有何利弊?缩绒性的大小与哪些因素有关?答:在湿热或化学试剂条件下,羊毛纤维或织物鳞片会张开,如同时加以反复摩擦挤压,由于定向摩擦效应,使纤维保持指根性运动,纤维纠缠按一定方向慢慢蠕动。

羊毛纤维啮合成毡,羊毛织物收缩紧密,这一性质成为羊毛的缩绒性。

产生原因: (1)纤维本身原因(或称内因)羊毛表皮是鳞片层,由于鳞片存在,使逆鳞片方向的摩擦系数大于顺鳞片方向的摩擦系数,称为定向摩擦效应。

羊毛纤维具有良好的伸长能力、弹性回复性、天然卷曲使纤维易于纠缠。

(2)在湿热或化学试剂条件下,如同时加以反复摩擦挤压,由于定向摩擦效应,使纤维保持指根性运动,纤维纠缠按一定方向慢慢蠕动穿插。

防缩绒方法:采用化学药剂破坏羊毛鳞片,或涂以树脂使鳞片失去作用,以达到防缩绒的目的。

利用羊毛缩绒性可以织制丰厚柔软、保暖性好的织物;但缩绒性影响洗涤后的尺寸稳定性,并对织纹要求清晰的薄型织物不利。

缩绒性大小与羊毛品质、外界条件(湿热、机械外力)有关。

1.哪些因素影响纺织纤维的回潮率,如何影响?答:影响纤维回潮率的原因有内因和外因两方面。

内因:(1)亲水基团的作用纤维分子中,亲水基的多少和亲水性的强弱均能影响其吸湿性能的大小。

亲水基团越多,亲水性越强,吸湿性越好;大分子聚合度低的纤维,若大分子端基是亲水基团,吸湿性较强。

(2)纤维的结晶度结晶度越低,吸湿能力越强。

(3)比表面积和空隙纤维比表面积越大,表面吸附能力越强,吸湿能力越好;纤维内孔隙越多,吸湿能力越强。

(4)伴生物和杂质不同伴生物和杂质影响不同。

棉纤维中棉蜡,毛纤维中油脂使吸湿能力减弱;麻纤维的果胶和蚕丝的丝胶使吸湿能力增强。

外因:(1)相对湿度在一定温度条件下,相对湿度越大,纤维吸湿性越好。

(2)温度影响一般情况,随空气和纤维材料温度的升高,纤维的平衡回潮率将会下降。

(3)空气流速空气流速快时,纤维的平衡回潮率将会下降。

一、名词解释1、丝光丝光:通常指棉制品(纱、布)在张紧状态下浸泡于碱液(NaOH或液氨)中,棉纤维截面变圆,天然转曲消失,棉制品有丝一样光泽的处理过程。

2、皮辊棉(4)皮辊棉:用皮辊轧花机加工的皮棉(橡胶辊将棉纤维扯下来,通过一片固定的刀片来分离纤维与棉籽。

)3、马克隆值用马克隆气流仪测得的综合表达棉纤维细度与成熟度的指标。

马克隆值越大,纤维越粗。

4、品质长度品质长度Lp :又称右半部平均长度,比主体长度长的那部分纤维的重量加权平均长度。

(用于确定工艺参数)5、蠕变在一定的温度和较小的恒定外力作用下,高分子的形变随时间的增加而逐渐增大的现象6、应力松弛纤维在拉伸变形恒定条件下,应力随时间的延长而逐渐减小的现象18.根据自己的实际情况,用简易、可靠的方法鉴别棉、粘胶、羊毛、涤纶、锦纶、腈纶六种常用纤维。

(建议采用两种不同方法鉴别纤维) (6分)答:鉴别棉、粘胶、羊毛、涤纶、锦纶、腈纶第一步:燃烧法,若有烧纸的味道纤维是棉和粘胶,归为一组;有烧毛的味道为毛纤维;燃烧时有浓烟,残留物是黑色硬块,为涤纶,燃烧时熔融不冒浓烟,残留物是淡综色透明硬块为锦纶。

残留物是黑色小珠,易碎的,为腈纶。

第二步:在有烧纸味的一组纤维中,取少量分别放入试管内,并滴入37%的盐酸,若观察到纤维溶解为粘胶,不溶解为棉纤维。

对涤纶、锦纶可按上述步骤分别滴入37%的盐酸,若观察到纤维溶解为锦纶,不溶解为涤纶。

5.一批粘胶重1000kg,取50g试样烘干后称得其干重为44 .5g,求该批粘胶的回潮率和公定重量。

(已知粘胶的公定回潮率为13.0%)解:W=5.445.4450-=12.36%G公=G实⨯实公WW++100100=1000⨯36.1210013100++=1005.7kg10.涤/棉混纺纱的干重混纺比为65/35,求:(1) 该混纺纱的公定回潮率;(2) 该混纺纱在公定回潮率时的混纺百分比。

(涤纶纤维公定回潮率为0.4%)W公=0.65⨯0.4+0.35⨯8.5=3.24%65⨯(1+0.004):35⨯(1+0.111)= 65.26:38.89 =62.66:37.34N dtex ÷Nt=10 Nt(特数)×Nm(公支)=10001.在常用的合成纤维中,维纶纤维的吸湿性最强,丙纶纤维的吸湿性最差,锦纶纤维最耐磨,丙纶纤维最轻,氨纶纤维的弹性最好,涤纶最为常用。

2.平衡回潮率: 是指纤维材料在一定大气条件下,吸、放湿作用达到平衡稳态时的回潮率。

3.公定回潮率: 业内公认的纤维所含水分质量与干燥纤维质量的百分比.4.吸湿滞后性: 纤维材料所具有的从放湿得到的平衡回潮率总是高于从吸湿得到的平衡回潮率的性质.。

相关文档
最新文档