简单随机抽样的方法
简单随机抽样
一、知识概述1、简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的机会相等,就称这样的抽样为简单随机抽样.注:(1)一般地,用简单随机抽样从含有N个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为;(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.介绍:抽样方法在统计学中很多,如果按照抽取样本时总体中的每个个体被抽取的概率是否相等来进行分类,可分为:等概率抽样和不等概率抽样.在等概率抽样中,又可以分为不放回抽样和放回抽样.在实际应用中,使用较多的是不放回抽样,相对来说,放回抽样在理论研究中显得更为重要.2、简单随机抽样的实施方法:(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.适用范围:总体的个体数不多时.优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:1°.制定随机数表;2°.给总体中各个个体编号;3°.按照一定的规则确定所要抽取的样本的号码.随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码.3、简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样.注:抽签法与随机数表法的比较:共同点:(1)抽签法和随机数表法都是简单随机抽样的方法,并且要求被抽取样本的总体的个数有限;(2)抽签法和随机数表法都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)抽签法相对于随机数表法简单,随机数表法较抽签法稍麻烦一点;(2)随机数表法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个数相对较少的时候,所以当总体中的个数较多时,应当选用随机数表法,这样可以节约大量的人力和制作号签的成本与精力.二、例题讲解例1、某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:(1)1000名考生是总体的一个样本;(2)1000名考生数学成绩的平均数是总体平均数;(3)70000名考生是总体;(4)样本容量是1000,其中正确的说法有()A.1种B.2种C.3种D.4种解:(3)(4)对,故选B.例2、现要从20名学生中抽取5名进行阅卷调查,写出抽取样本的过程.解:①先将20名学生进行编号,从1编到20;②把号码写在形状、大小均相同的号签上;③将号签放在一个箱子中进行充分搅拌,力求均匀,然后从箱子中抽取5个号签,这5个号签上的号码对应的学生,即为所求的样本.例3、为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,写出用随机数表法抽取样本的过程.解:第一步,先将40件产品编号,可以编为00,01,02,…,38,39.第二步,利用本节教材中提供的随机数表,任选一个数作为开始,例如从第10行第6列的数字开始.第三步,从选定的数6开始,从左往右读,依次得到样本号码是:24,29,05,28,27,34,32,38,20,00.这10个号码所对应的产品为样本.例4、上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选.选法二将39个白球与1个红球混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.试问这两种选法是否都是抽签法?为什么?这两种选法有何异同?解:选法二不是抽签法.因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的概率都相等,等于.例5、某市通过电话进行民意测验实施某项调查,该市的电话号码有7位,其中首两位为区域代码,只能为2,3,5,7的任意两两组合,后5位取自0~9这10个数字.现在任意选择3个区域,每个区域随机选取5个号码进行调查.请你设计一种抽取方案,选出这15个电话号码.解:首先列出所有由2,3,5,7两两组合而成的区域代码共16个,用抽签法随机选取3个;然后制作一张0~99999的随机数表,方法是用抽签法或计算机生成法产生若干个0~9之间的随机整数,5个一组,构成0~99999之间的随机数表;最后用随机数表法选出15个5位号码,分成3组,第1组前加上用抽签法选出的第1个区域代码,第2,3组前分别加上选出的第2,3个区域代码.。
用简单随机抽样方法
用简单随机抽样方法简单随机抽样(Simple Random Sampling)是一种常见的抽样方法,它被广泛应用于统计学、市场调查、研究和实验设计等领域。
简单随机抽样的基本原理是从总体中随机选择一定数量的样本,使得每个样本都有相等的机会被选中,从而保证了样本具有代表性。
下面将详细介绍简单随机抽样的步骤、特点以及优缺点。
简单随机抽样的步骤如下:1. 确定总体:首先,需要明确研究的总体,即需要抽取样本的群体或对象。
例如,如果我们要研究某个城市的市民满意度,那么这个城市的所有居民就是我们的总体。
2. 确定样本大小:根据研究目的和总体规模,确定所需的样本大小。
通常情况下,样本大小需要根据统计学的原理进行计算,以确保具有一定的置信水平和可靠性。
3. 编制抽样框架:将总体分为若干个互不重叠的部分,构成抽样框架。
例如,如果要进行全市居民的抽样调查,可以将城市划分为各个行政区,每个行政区再细分为不同社区或街道等层级,构成抽样框架。
4. 随机抽样:利用随机数发生器或随机数表,根据事先制定的抽样规则,从抽样框架中随机选择样本。
确保每个样本都有被选中的机会,并且样本之间是独立的。
5. 数据收集与分析:对所抽取的样本进行数据收集,可以通过问卷调查、访谈、实地观察等方式获取样本的信息。
然后对收集到的数据进行统计分析,得出研究结论。
简单随机抽样的特点如下:1. 简单性:简单随机抽样是最基本、最简单的一种抽样方法,容易实施。
2. 无偏性:每个个体都有相等的机会被选中,因此样本具有代表性,可以反映总体的特征。
3. 可靠性:经过统计学的计算,可以确定所需的样本大小,以保证样本结果的可靠性。
4. 独立性:简单随机抽样的样本之间是独立的,每个样本都是独立观察的结果,不会相互影响。
简单随机抽样的优点包括:1. 适用性广:适用于各种总体和研究目的,可以应用于不同领域的调查研究。
2. 可行性强:不需要对总体有太多的先验知识,只需要获得总体的名单或抽样框架即可。
三种抽样方法(全)
8
【例题解析】 例1、某校高中三年级的295名学生已经编 号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。 解:样本容量为295÷5=59.
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
24
※(2004年福建省高考卷)一个总体中有 100个个体,随机编号为0,1,2,…,99,依编号顺序 平均分成10个小组,组号分别为1,2,3,…,10.现 用系统抽样方法抽取一个容量为10的样本,规 定如果在第1组随机抽取的号码为m,那么在第k 组抽取的号码个位数字与m+k的个位数字相同. 若m=6,则在第7组中抽取的号码是______. 解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号. 25
二、分层抽样的步骤: (1)按某种特征将总体分成互不相交的层 (2)按比例k=n/N确定每层抽取个体的个数 (n/N)*Ni个。 (3)各层分别按简单随机抽样的方法抽取。 (4)综合每层抽样,组成样本。 练习:分层抽样又称类型抽样,即将相似的个 体归入一类(层),然后每层抽取若干个体构 成样本,所以分层抽样为保证每个个体等可能 入样,必须进行 (c ) A、每层等可能抽样 B、每层不等可能抽样 16 C、所有层按同一抽样比等可能抽样
简单随机抽样的概念
简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
简单随机抽样一般采用两种方法:抽签法和随机数表法。
例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?例2:某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A.总体是240 B、个体是每一个学生 C、样本是40名学生 D、样本容量是402、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A、总体B、个体是每一个学生C、总体的一个样本D、样本容量3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是。
4、从3名男生、2名女生中随机抽取2人,检查数学成绩,则抽到的均为女生的可能性是。
系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
例题:例1.某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。
例2.从编号为150的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()C()2,4,6,16,32DA()3,13,23,33,43()5,10,15,20,25B()1,2,3,4,51.从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为()(A)99 (B)99.5 (C)100(D)100.52.从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()(A)1,2,3,4,5 (B)5,16,27,38,49 (C)2, 4, 6, 8 (D)4,13,22,31,403.某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
简单随机抽样(三种抽样方法)
(3)11,38,60,90,119,146,173,200,227,254
(4)30,57,84,111,138,165,192,219,246,270
其中可能是分层抽样得到,而不可能是系统抽样的一组号码是
A(1)(2)B(2)(3)C(1)(3)D(1)(4)
抽签法(总体个数较少)
随机数表法(总体个数较多)
用抽签法抽取样本的步骤:
简记为:编号;制签;搅匀;抽签;取个体。
用随机数表法抽取样本的步骤:
简记为:编号;选数;读数;取个体。
问题:某校高一年级共有20个班,每班有50
名学生。为了了解高一学生的视力状况,从这 1000人中抽取一个容量为100的样本进行检查, 应该怎样抽样?
1、系统抽样:
当总体的个体数较多时,采用简单随机抽样 太麻烦,这时将总体平均分成几个部分,然 后按照预先定出的规则,从每个部分中抽取 一个个体,得到所需的样本,这样的抽样方 法称为系统抽样(等距抽样)。
2、系统抽样的步骤:
(1)采用随机的方式将总体中的个体编号;
(2)将整个的编号按一定的间隔(设为K)分段,当
抽样特征 相互联系
从总体中
逐个不放
回抽取
将总体分成 用简单随
均衡几部分, 机抽样抽
按规则关联 取起始号
抽取
码
将总体分 成几层, 按比例分 层抽取
用简单随 机抽样或 系统抽样 对各层抽 样
适应范围
总体中 的个体 数较少
总体中 的个体 数较多
总体由差 异明显的 几部分组 成
1.某公司在甲乙练丙丁死习各地区分别有150个、
练习
随机抽样 - 简单 - 讲义
随机抽样知识讲解一、统计中的相关概念总体:所考察对象的某一数值指标的全体构成的集合看作总体.个体:构成总体的每一个元素作为个体.样本:从总体中抽出若干个体所组成的集合叫做样本.样本容量:样本中个体的数目叫样本容量.统计的基本思想方法:用样本估计总体,即通常不去直接去研究总体,而是通过从总体中随机抽取一个样本,根据样本的情况去估计总体的相应情况.二、简单随机抽样1.简单随机抽样的概念概念:一般地,从元素个数为N的总体中不放回地抽取容量为n样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.2.简单随机抽样的特点1)被抽取样本的总体的个数有限;2)从总体中逐个地进行抽取,使抽样便于在实践中操作;3)它是不放回抽样,使其具有广泛的应用性;4)它是等可能抽样,每个个体被抽到的可能性都是nN,保证了抽样方法的公平性.3.常用的简单随机抽样方法1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一张号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤:a.编号,即给总体中的所有个体编号,号码可以从1到N.b.制签,即将1~N这N个号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作).c搅拌均匀,即将号签放在一个不透明的容器中,搅拌均匀..d逐个不放回抽取,即从容器中每次抽取一个号签,并记录其编号,连续抽取n次.抽签法的优缺点:.a优点:简单易行..b缺点:当总体的容量非常大时,费时、费力又不方便.况且,如果号签搅拌的不均匀,可能导致抽样的不公平.2)随机数表法:随机数表是由0,1,2,,9L这10个数字组成的数表,并且表中的每一位置出现各个数字的可能性相同.通过,随机数表,根据实际需要和方便使用的原则,将几个数组合成一组,然后通过随机数表抽取样本.随机数表法的步骤:.a编号,即将总体中的所有个体进行编号(每个号码位数一致);.b在随机数表中任选一个数作为起始号码;.c从选定的数开始按一定的方向读下去,得到的号码若不在编号中,则跳过,若再编号中,则取出,如果得到的号码前面已经取出,也跳过,如此继续下去,直到取满为止;随机数表法的优缺点:.a优点:简单易行,它很好的解决了用抽签法当总体中的个体数较多时制签难的问题..b缺点:当总体中的个体数很多,需要的样本容量也很大时,用随机数表法抽取仍不方便.4.简单随机抽样的应用应用:常用的简单随机抽样方法有抽签法和随机数表法.抽签法一般适用于容量较小的总体,易于操作;随机数表法解决了制签比较麻烦的问题,但在利用“随机数表法”进行简单随机抽样时,要严格按照课本中介绍的步骤,否则易出错误.结合具体的问题,我们应灵活使用这两种方法.三、系统抽样1.系统抽样的概念概念:当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样.(由于抽样样的间隔相等,因此系统抽样也被称作等距抽样)2.系统抽样的步骤:1)编号,即将总体中的个体编号.为方便起见,也可直接利用个体所带有的号码,如准考证号、门牌号等;2)分段,即为将整个的编号进行分段,要确定分段的间隔k .当N n 是整数时,N k n =;当Nn不是整数时,则可用简单随机抽样的方法从总体中剔除一些个体,使剩下的总体中个体个数'N 能被n 整除,这时'N k n=. 3)确定起始个体编号,即由数字1~k 中随机抽取一个数S .4)按照预先确定的规则抽取样本,即通常是将S 依次加上间隔k 的倍数,这样样本的编号依次是:,,2,,(1).S S k S k S n k +++-L3.系统抽样的公平性当N n 是整数时,N k n =;当Nn不是整数时,则可用简单随机抽样的方法从总体中剔除一些个体,使剩下的总体中个体个数'N 能被n 整除,这时'N k n=,上述过程中,总体的每个个体被剔除的可能性相同,也就是说每个个体不被剔除的可能性相同,所以在整个抽样过程中每个个体抽取的可能性仍然相同.4.系统抽样的特点1)适用于总体容量较大的情况;2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系; 3)它是等可能抽抽样,每个个体被抽到的可能性都是nN. 四、分层抽样1.分层抽样的概念概念:当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,我们经常将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这样的抽样方法叫做分层抽样.2.分层抽样的步骤1)分层,即将总体中各个个体按某种特征分成若干个互不重叠的几部分; 2)按比例确定每层抽取个体的个数;3)各层抽样,即各层中采用简单随机抽样或系统抽样抽取相应的个数; 4)汇合成样本.3.分层抽样的特点1)适用于总体由差异明显的几部分组成的情况;2)更充分的反映了总体的情况;3)它是等可能抽样,每个个体被抽到的可能性都是nN .五、三种抽样方式的区别与联系典型例题一.选择题(共5小题)1.(2015•湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石【解答】解:由题意,这批米内夹谷约为1534×≈169石,故选:B.2.(2014•重庆)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.250【解答】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.3.(2014•广东)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50 B.40 C.25 D.20【解答】解:∵从1000名学生中抽取40个样本,∴样本数据间隔为1000÷40=25.故选:C.4.(2014•湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则()A.P1=P2<P3B.P2=P3<P1C.P1=P3<P2D.P1=P2=P3【解答】解:根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,即P1=P2=P3.故选:D.5.(2013•湖南)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10 C.12 D.13【解答】解:∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=13.故选:D.二.填空题(共2小题)6.(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【解答】解:产品总数为200+400+300+100=1000件,而抽取60件进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:187.(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15名学生.【解答】解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15三.解答题(共3小题)8.从2开始的200个偶数,即2、4、6、8…400中,用系统抽样的办法抽取20个偶数作样本.【解答】解:S1:编号,把2、4、6、8…400这200个偶从002到400按偶数次序编号;S2:分段,计算分间隔为k==10,把编号从小到大依次分成20段,每段10个号;S3:定首号,在第一段002~020的10个号中,用简单随机抽样的方法,抽取一个号码,假设抽中的是008;S4:取余号,依次抽取008,028,048,068,088,108,128,148,168,188,208,228,248,268,288,308,328,348,368,388.9.某校组织高一学生对所在市的居民中拥有电视机、电冰箱、组合音响的情况进行一次抽样调查,调查结果:3户特困户三种全无;有一种的:电视机1090户,电冰箱747户,组合音响850户;有两种的:电视机、组合音响570户,组合音响、电冰箱420户,电视机、电冰箱520户;“三大件”都有的265户.调查组的同学在统计上述数字时,发现没有记下被调查的居民总户数,你能避免重新调查而解决这个问题吗?【解答】解:由题意,抽样调查总数3+265+255+265+72+305+155+125=1445户,∴有两种的有1445﹣3﹣747﹣265=430户,故比例为3:747:430:265,利用分层抽样即可解决.10.某地区工人的平均工资是15元/小时,标准差为4元/小时.若从该地区抽取n=50个工厂,问所取得样本的平均工资的期望和方差各是多少?平均工资的抽样分布是什么?【解答】解:∵某地区工人的平均工资是15元/小时,∴抽取的样本的期望是15.∵标准差为4元/小时,∴抽取样本的方差是16.抽样分布符合二项分布,即X~N(15,16).。
抽样调查简单随机抽样
(三)简单随机抽样是等概率抽样(※※※)
1、从样本来看是等概率抽样
每个可能样本的被抽中的概率:
1
(1)考虑顺序的重复抽样时:N n
1
(2)考虑顺序的不重复抽样时:C
n N
n1
(3)不考虑顺序的重复抽样时:(NN!n)! (4)不考虑顺序的不重复抽样时:1 2、从抽样单元看是等概率抽样 CNn
第一节 抽样方式
一、什么是简单随机抽样 为什么叫“简单”随机抽样? ①估计总体参数时使用简单估计量; ②“单纯”抽样,从总体中直接抽个体;(不是
抽群,不是抽大类,抽前不进行任何处理) ③其他抽样都包含简单随机抽样的成分; ④生活中有时抓“机会”、“归属”时采用,
有“容易操作”的意思。
第一节 抽样方式
抽签法
一次抽n个单位 一次抽1个单位连抽n次
简单随机样本抽取方法
随机数法
随机数字表法() 随机数色子法 摇奖机法 伪随机数法
利用随机数字表抽选简单随机样本
随机数表是一张由0,1,2,…,9这十个数 字组成的,一般常用的是五位数的随机数字表, 10个数字在表中出现的顺序是随机的,每个数 字都有同样的机会被抽中。
一、什么是简单随机抽样
根据抽样单位放回否分为放回简单随机抽样 (Simple Random Sampling with Replacement,SRSWR)和不放回简单随 机抽样(Simple Random Sampling without Replacement,SRSWOR) 。
简单随机抽样
一、估计量的种类
• 根据构造方法不同划分:
• ①简单估计量(直接估计量)
• 直接以调查变量的样本指标作为总体指标的 估计量。如样本均值作为总体均值的估计量。 简单估计量是线性估计量,往往也是无偏估 计量。
简单随机抽样的方法
简单随机抽样的方法
简单随机抽样是一种抽样方式,它是指从总体中以任意的、等概率的方式随机抽取n个样本,使得每个个体都有相同的被抽取概率。
以下是简单随机抽样的方法:
1.概率抽样法:将所有个体从总体中标号为1、2、3、…、N。
使用计算机或随机数字表等随机数生成器生成n个随机数,每个随机数对应一个个体,就是样本。
2.抽签法:将所有个体的编号写在同样大小的纸片上,放进一个容器中,摇匀后抽取n个纸片,就是样本。
3.数表抽样法:将所有个体从总体中标号为1、2、3、…、N。
按照取样比例计算出要取多少个样本,然后从以1~N为首项的数列中隔行抽样取得样本。
4.等距抽样法:将总体中每个个体按照一定的顺序排列,然后按照一定的间隔(例如每隔k个个体抽取一个样本)抽取样本。
需要注意的是,简单随机抽样的方法不适用于总体变异系数较大的情形,因为此时抽样可能会出现偏差;对于总体变异系数较小的总体,简单随机抽样是比较可
靠的抽样方法。
简单随机抽样
随机数表的制作
随机数表是人们根据需要编制出来的,由0,1,2,3,4, 5,6,7,8,9十个数字组成,表中每一个数字都是用随机方法 产生的(称为"随机数").随机数的产生方法主要有抽签法、 抛掷骰子法和计算机生成法 . (1)抽签法:用0,1,2,3,4,5,6,7,8,9十个数字做十个签, 放入一个箱中并搅拌均匀,再从箱中每次抽出一个签并记 下签的数码,再放回箱中,如此重复进行下去即可得到一 个随机数表 . 若需要两位数表,则将所得的各个数码按顺序两两连 在一起.如01,07,15,34,76,93, ··· 若需要三位数表,就三三连在一起,如012,321,249, 460,634,105,···
一般地,用抽签法从个体个数为N的总体中抽取一 个容量为k的样本的步骤为:
(1)将总体中的所有个体编号(号码可以从1到N); (2)将1到N这N个号码写在形状、大小相同的号签上; (3)将号签放在同一箱中,并搅拌均匀; (4)从箱中每次抽取一个号签,并记录其编号,连续抽 取k次; (5)从总体中将与抽到的签的编号相一致的个体取出.
抽签法简单易行 , 适用于总体中个体数不多的情形 .
例1.(1)简单随机抽样中,对于每一个个体被抽取的 可能性的判断正确的是( B ) A.与每次抽样有关,第一次抽中的能性要大一些; B.与每次抽样无关,每次抽中的可能性相等; C.与每次抽样有关,最后一次抽中的可能性要大一些; D.与每次抽样无关,每次都是等可能性抽取,但各次抽 取的可能性不一样.
(3) 从选定的数开始按一定的方向读下去, 得到的数码 若不在编号中,则跳过;若在编号中, 则取出;如果得到 的号码前面已经取出, 也跳过;如此继续下去,直到取满 为止 ; (4) 根据选定的号码抽取样本 .
9.1.1简单随机抽样方法
本章知识结构框图如下: 实际问题
总体 普 查
总体数据
简单随机抽样、分层随机抽样
总体数据的特征 总体的取值规律
总体的百分位数
估计 估计
样本数据的特征 样本的取值规律
样本的百分位数
样本
总体的平均数、中位数 估计 样本的平均数、中位数
众数 总体的标准差、方差 估计 样本的标准差、方差
极差
极差
决策与建议
样本观测数据
二、本章学习任务与指导 三个任务的完成,就生成了一个统计问题完整解决的基本思路:首先要根据实际需求, 用适当的方法获取样本数据,选择适当的统计图表对样本数据进行整理和描述,在此 基础上用各种统计方法对样本数据进行分析,从样本数据中提取需要的信息,推断总 体的情况,进而解决相应的实际问题,获得结论,为人们制定决策提出建议
总体 ____调__查__对__象___的全体叫作总体
个体 组成总体的每一个_调__查__对__象__成为个体
抽样调查 根据一定目的,从总体中抽取_一__部__分___个__体__进行调查,并以此为依据对 总体的情况作出估计和推断的调查方法,成为抽样调查
样本 从总体中抽取的那部分___个__体___成为样本
二、本章学习任务与指导 从本章知识结构图中可以看出,本章有三大学习任务:面对实际问题的解决,为人们 的决策提供什么样的建议,始终是我们学习本章的第一任务,也是我们学好本章的目标 驱动任务,也就是教材9.3节内容 那么,要完成这一任务,需要我们用样本的数据特征及其分布的规律性来估计、推断 出总体的数据特征及其分布的规律,例如,总体的取值规律、百分数、集中趋势、离 散程度等等,这是学习本章的第二任务也就是教材9.2节内容 要完成第二大任务,即“用样本估计总体”,就需要我们抽取“好”的或“高质量”的 样本,这就存在一个如何抽取样本的问题,即抽样方法问题,这是学习本章的第三任务。 也就是教材9.1节内容
随机抽样1简单随机抽样
2.简单随机抽样的分类 简单随机抽样抽 随签 机法 数法
3.随机数法的类型 随机数表法
随机数法随机数骰子 计算机产生的随机数
思考讨论 有同学认为:“随机数表只有一张,并且读数时只能按 照从左向右的顺序读取,否则产生的随机样本就不同了,对 总体的估计就不准确了”,你认为正确吗?
2.使用随机抽样方法抽取样本应注意的几个问题 (1)目标要准确. 必须清楚地知道要收集的数据是什么.例如,在食品质
量检验中,为了了解一批袋装牛奶(总体)的细菌超标情况, 从中随机抽取了 n 袋,并测出了每一袋的细菌含量 ai(i= 1,2,…,n),这里 ai(i=1,2,…,n)就是我们要收集的数据.
例 4 一个学生在一次竞赛中要回答的 8 道题是这样产 生的:从 15 道物理题中随机抽取 3 道;从 20 道化学题中随 机抽取 3 道;从 12 道生物题中随机抽取 2 道.请选用合适 的方法确定这个学生所要回答的三门学科的题的序号(物理 题的编号为 1~15,化学题的编号为 16~35,生物题的编号 为 36~47).
变式训练 2
某大学为了选拔世博会志愿者,现从报名的 18 名同学 中选取 6 人组成志愿小组,请用抽签法确定志愿小组成员.
[解] 第一步,将 18 名同学编号,号码是 01,02,…,18; 第二步,将号码分别写在一张纸条上,揉成团,制成号签; 第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀; 第四步,从袋子中依次抽取 6 个号签,并记录上面的编号; 第五步,所得号码对应的同学就是志愿小组的成员.
[解法二] 随机数表法
第一步,将物理题的编号对应地改成 01,02,…,15, 其余两门学科的题的编号不变;
第二步,在随机数表中任选一个数作为开始,任选一个 方向作为读数方向,例如选出第 10 行第 2 列的数 7,向右读;
随机选取样本的方法
随机选取样本的方法1. 介绍在研究和实践中,为了获得对总体的全面认识和准确判断,我们需要从总体中选取一部分样本进行分析和研究。
随机选取样本的方法是一种常用的样本抽样方法,它可以确保样本的代表性和可靠性,从而提高研究和分析的可信度。
本文将详细介绍随机选取样本的方法,包括简单随机抽样、系统抽样、分层抽样和整群抽样四种常见的抽样方法,以及它们的优缺点和适用场景。
2. 简单随机抽样简单随机抽样是最基本也是最常用的一种抽样方法,它的核心思想是从总体中随机选取一部分样本,确保每个样本有相同的被选中的概率。
2.1 简单随机抽样的步骤简单随机抽样的步骤如下:1.确定总体:首先需要明确研究的总体是什么,总体可以是一个人群、一个地区或一个产品等。
2.确定样本大小:根据研究的需要和可行性确定所需样本的大小。
3.编制总体名单:将总体中的个体进行编号,构成总体名单。
4.进行随机抽样:利用随机数表、随机数生成器或抽样软件等工具,从总体名单中随机选择样本。
5.进行样本研究和分析:对选取的样本进行研究和分析,得出相应的结论。
2.2 简单随机抽样的优缺点简单随机抽样的优点如下:•简单易操作:抽样过程相对简单,不需要太多的统计学专业知识。
•代表性强:每个样本被选中的概率相同,可以保证样本的代表性。
•可信度高:样本的随机性保证了研究和分析的可信度。
简单随机抽样的缺点如下:•耗时耗力:如果总体较大,抽样时需要编制总体名单,耗时且工作量大。
•抽样误差无法估计:简单随机抽样无法估计抽样误差,对于抽样结果的置信度无法量化。
3. 系统抽样系统抽样是一种按照一定的规则从总体中选取样本的方法,它可以减少抽样过程中的主观性,确保样本的代表性。
3.1 系统抽样的步骤系统抽样的步骤如下:1.确定总体:同简单随机抽样方法一样,首先需要确定研究的总体。
2.确定样本大小:根据研究的需要和可行性确定所需样本的大小。
3.确定抽样间隔:抽样间隔是指在总体名单上每隔多少个个体选取一个样本。
简单随机抽样-课件
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,如2,11,26,19,45;对应编号的同 学去开会;
随机数表法的步骤如下:
第一步:将50件产品编号,可以编为00,01,02,……49;
例:利用抽签法从15名学生中抽取5名同学去开会。
抽签的步骤如下:
第一步:给15名同学编号,号码为1,2,……15;
第二步:将15名同学的编号分别写在一张小纸条上, 并揉成小球,制成号签;
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,对应编号的同学去开会;
二、选择题
1、简单随机抽样的结果: D
A、由抽样方式决定
B、由随机性决定
C、由人为因素决定
D、由计算方法决定
2、从10个篮球中任意取一个检验其质量,则抽样为:A
A、简单随机抽样
B、系统抽样
C、分层抽样
D、有放回抽样
三、填空题
1、从65名同学中抽出20人考察他们的学习成绩, 在这次抽样中样本为( 20名同学 ),样 本容量为( 20 );
演练反馈:从20名学生中抽取5名同学去开会。
抽签法的步骤如下:
第一步:给20名同学编号,号码为1,2,……20;
第二步:将20名同学的编号分别写在一张小纸条上, 并揉成小球,制成号签;
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,对应编号的同学去开会;
15 65 85 58 96 90 60 24 52 52 57 56 68 42 66 85 87 47 70 01 25 45 35 20 14 01 25 45 86 93 57 48 56 35 87 45 32 56 82 54 56 68 97 80 12 01 02 50 80 95
2.1.1简单随机抽样(三种抽样方法)
上的,由于它充分利用了已知信息,因此它获取的样本更 具代表性,在实用中更为广泛。
第28页,共36页。
2、分层抽样的抽取步骤:
第1页,共36页。
笑一笑,十年少
一天,爸爸叫儿子去买一盒火柴,临出门 前,爸爸嘱咐儿子要买能划燃的火柴,儿子拿 着钱出门了,过了好一会儿,儿子才回到家。
“火柴能划燃吗?”爸爸问。 “都能划燃。” “你这么肯定?”
儿子递过一盒划过的火柴,兴奋地说: “我每根都试过啦。”
问:这则笑话中,儿子采用的是什么调查方式?这其 中的全体是什么?这种调查方式好不好?
性是( )C 。
A.与第几次抽样有关,第一次抽的可能性最大 B.与第几次抽样有关,第一次抽的可能性最小 C.与第几次抽样无关,每次抽到的可能性相等 D.与第几次抽样无关,与抽取几个样本无关
第20页,共36页。
问题某:校高一年级共有20个班,每班有50名学生。
为了了解高一学生的视力状况,从这1000人中抽 取一个容量为100的样本进行检查,应该怎样抽样?
中任意拿出一个零件进行质量检验后,再把它放回盒子里;
4. ③从8台电脑中不放回的随机抽取2台进行质量检验(假设8台电脑已编好号,
对编号随机抽取)
5. A.① B.② C.③
D.以上都不对
四个特点:①总体个数有限;②逐个抽取;③不 放回;④每个个体机会均等,与先后无关。
第10页,共36页。
B 2.在简单随机抽样中,某一个个体被抽中的可能性是( )
为了解1200名学生对学校教改试验的意见打算从中抽取一个容量为30的样本考虑采用系统抽样则分段间隔k2某商场新进3000袋奶粉为检查其三聚氰胺是否超标先采用系统抽样的方法从中抽取150检查若第一组抽取号码是11则第61组抽出的号码2采用系统抽样的方法从个体数为1003的总体中抽取一个容量50的样本则在抽样过程中被剔除的个体数为抽样间隔为1某工厂生产产品用传送带将产品送放下一道工序质检人员每隔十分钟在传送带的某一个位置取一件检验则这种抽样方法是a
随机抽样的方法有哪些
随机抽样的方法有哪些随机抽样是一种常用的统计方法,用于从总体中抽取样本以进行统计推断。
在实际调查和研究中,随机抽样方法的选择对于结果的准确性至关重要。
下面将介绍几种常见的随机抽样方法。
1. 简单随机抽样。
简单随机抽样是最基本的抽样方法之一。
它的特点是从总体中以等概率的方式随机抽取样本,每个样本都有相同的机会被选中。
简单随机抽样通常通过随机数生成器来实现,确保每个样本都是独立且随机选择的。
2. 分层随机抽样。
分层随机抽样是将总体按照某种特征分成若干个层次,然后从每个层次中分别进行简单随机抽样。
这种方法能够保证每个层次都能得到充分的代表,适用于总体结构复杂、差异较大的情况。
3. 系统随机抽样。
系统随机抽样是按照一定的规则从总体中选取样本,通常是按照一定的间隔或序号来选择。
例如,从一个队列中每隔五个人选取一个样本。
系统随机抽样简单易行,适用于总体有序的情况。
4. 整群随机抽样。
整群随机抽样是将总体按照某种特征分成若干个群体,然后随机选择若干个群体作为样本。
这种方法适用于总体结构复杂,群体内部差异较小的情况。
5. 多阶段随机抽样。
多阶段随机抽样是将总体分成若干个阶段,然后在每个阶段进行随机抽样。
这种方法适用于总体结构复杂,难以直接进行抽样的情况。
以上是几种常见的随机抽样方法,每种方法都有其适用的场景和特点。
在实际应用中,需要根据具体情况选择合适的抽样方法,以确保样本的代表性和统计推断的准确性。
同时,在进行随机抽样时,还需要注意样本量的确定、抽样误差的控制等问题,以提高抽样的效果和可靠性。
简单随机抽样
整理课件
14
一、简单估计量的定义
对于简单随机抽样,在没有其它信息的条件 下,最简单的估计是利用样本均值作为总体均值 的估计,即总体均值的简单估计量为:
Yˆ
y
1 n
n i 1
yi
也就是说,样本均值是总体均值的简单估计量。
Yˆ NYˆ
N n n i1
yi估
计
总
体Y总
和
由于总体均值 和和 的总 估 整理课件体 计N总 , 只着 相重 差 1y5 .研
当总体较大时,抽签法实施起来比较困难, 这时可以利用随机数表、随机数骰子、摇奖机、 计算机产生的伪随机数进行抽样。
(1)利用随机数表进行抽选。
随机数表是一张由0,1,2,…,9这十个数 字组成的,一般常用的是五位数的随机数字表, 10个数字在表中出现的顺序是随机的,每个数字 都有同样的机会被抽中。
整理课件
整理课件
20
回顾
➢简单随机抽样的定义与抽选方法 ➢简单随机抽样的实施方法 ➢两个引理 ➢简单估计量的定义 ➢样本均值是总体均值的无偏估计。
定2理 .1:对 于 简 单y是 随 Y的 机无 抽偏 样E 估 (, y) 计 Y
定 理 2.2:对 于 简 单 随 机 本抽 均样 y值 的, 方样 差
V(y)NnS21f S2
V(y)
n(1N f1)NN 1iN 1Yi2N 2iN jYiYj
1f n(N1)
N
(Yi Y)2
i1
于V 是 (y)1f S2 n
于V 是 (Ny)N21fS2
整理课件
n
18
证明:(方法二:对称性证法)
V(y)EyE (y)2E (n 1i n1yiY)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单随机抽样的方法
随机抽样可以分为单纯随机抽样、系统抽样、分层抽样以及整群抽样。
随机抽样要求严格遵循概率原则,每个抽样单元被抽中的概率相同,并且可以重现。
随机抽样常常用于总体个数较少时,它的主要特征是从总体中逐个抽取
抽签法。
一般地,抽签法就是把总体中的n个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
抽签法简单易行,适用于总体中的个数不多时。
当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大。
随机数法。
随机抽样中,另一个经常被使用的方法就是随机数法,即为利用随机数表中、随机数骰子或计算机产生的随机数展开样本。
特点
(1)优点:操作方式简便易行;
(2)缺点:总体过大不易实行。