华师大版初二数学下试题及答案
华师大版八年级下学期数学平行四边形单元测试卷(含参考答案和评分标准)
新华师大版八年级下册数学平行四边形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 在四边形ABCD 中,CD AB //,再添加下列一个条件,四边形ABCD 不一定是平行四边形的是 【 】 (A )CD AB = (B )BC AD = (C )BC AD // (D )C A ∠=∠2. 如图所示,在□ABCD 中,︒=∠︒=∠115,25A DBC ,则=∠BDC 【 】 (A )︒25 (B )︒30 (C )︒40 (D )︒65第 2 题图ADBC第 3 题图EBACD3. 如图所示,在△ABC 中,BC AB A ⊥︒=∠,40,点D 在AC 边上,以CB 、CD 为边作□BCDE ,则E ∠的度数为 【 】 (A )︒40 (B )︒50 (C )︒60 (D )︒704. 如图所示,EF 过□ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若□ABCD 的周长是30,3=OE ,则四边形ABFE 的周长是 【 】 (A )18 (B )21 (C )24 (D )27第 4 题图F ODBCAE第 5题图5. 如图,在□ABCD 中,AB BE ⊥交对角线AC 于点E ,若︒=∠201,则2∠的度数为 【 】 (A )︒120 (B )︒100 (C )︒110 (D )︒906. 如图所示,□ABCD 的周长周长为24,AC 、BD 相交于点O ,BD OE ⊥交AD 于点E ,则△ABE 的周长为 【 】 (A )8 (B )10 (C )12 (D )16第 6 题图EODBCA第 7 题图FECABD7. 如图所示,在□ABCD 中,E 、F 是对角线BD 上不同的两点,若添加下列条件,不能得出四边形AECF 一定是平行四边形的为 【 】 (A )DF BE = (B )CE AF // (C )DCF BAE ∠=∠ (D )CF AE =8. 如图,平行四边形OABC 的顶点A 、C 的坐标分别为()0,5,()3,2,则顶点B 的坐标为 【 】 (A )()3,7 (B )()7,3 (C )()7,4 (D )()4,7yx第 8 题图BCAO第 9 题图9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 15 题图EF CABDP10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA第 11 题图D二、填空题(每小题3分,共15分)11. 如图,在□ABCD 中,AB CE ⊥,若︒=∠65D ,则=∠BCE _________.12. 已知□ABCD 的周长为10,对角线AC 、BD 交于点O ,△AOD 的周长比△AOB 的周长多1,则AB 的长为_________.13. 如图所示,四边形AEDF 是平行四边形,△CED 和△DFB 的周长分别为5和10,则△ABC 的周长为_________.第 13 题图F DABCE第 14 题图ADEBC14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点 F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠; ③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD中,CDAB//,__________.求证:___________________________________.请补全已知和求证部分,并写出证明过程.DB CA17.(8分)已知:如图所示,在□ABCD中,点E是BC边的中点,连结DE并延长交AB边的延长线于点F.求证:BFAB .BC EA FD18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA19.(9分)如图所示,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.EDBFAC20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA21.(10分)如图所示,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ _________,=BP _________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ; (3)当=t _________时,PQ PD =;(4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP新华师大版八年级下册数学摸底试卷平行四边形单元测试卷 参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. ︒25 12. 2 13. 15 14. 2515. ①②③④ 部分题目答案提示9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 9 题图解析 本题考查平行四边形的性质和尺规作图的原理,注意角平分线+平行线模型的识别.由尺规作图可知:OF 平分AOB ∠根据角平分线+平行线模型可知:AG OA = ∵()2,1-A∴()52122=+-=OA ∴5=AG ∵x AC //轴 ∴2==A G y y∵()51==--=-AG x x x G A G∴51=+G x ∴15-=G x∴点G 的坐标为()2,15-∴选择答案【 D 】.10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA解析 本题主要考查平行四边形的性质以及判定.对于①DE BF =,连结AC ,交BD 于点O ,如图1所示.图 1∵四边形ABCD 为平行四边形 ∴OD OB OC OA ==, ∵DE BF =∴OE OD OF OB +=+ ∴OE OF =∵OF OE OC OA ==, ∴四边形AECF 是平行四边形.对于②AF AE =,不能确定四边形AECF 是平行四边形;对于③CF AE =,不能确定四边形AECF 是平行四边形;对于④CFD AEB ∠=∠,如图2所示.图 2∵CFD AEB ∠=∠ ∴21∠=∠∴CF AE //∵四边形ABCD 为平行四边形 ∴CD AB CD AB =,// ∴43∠=∠在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CD AB CFD AEB 43 ∴△ABE ≌△CDF (AAS ) ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形. 对于⑤BD CF BD AE ⊥⊥,,如图3所示.图 3∵BD CF BD AE ⊥⊥, ∴CF AE //(在同一平面内,垂直于同一条直线的两条直线互相平行) 易证:△ABD ≌△CDB ∴CDB ABD S S ∆∆=∴CF BD AE BD ⋅=⋅2121 ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形.(或易证:△ABE ≌△CDF ,∴CF AE =) 综上所述,能使四边形AECF 为平行四边形的条件有:①④⑤,共3个. ∴选择答案【 B 】.14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.第 14 题图ADEBC解析 本题主要考查平行四边形的性质,注意角平分线+平行线模型的识别. 根据角平分线+平行线模型不难确定:△ABE 和△DCE 都是等腰三角形 ∴DC DE AB AE ==, ∵四边形ABCD 为平行四边形 ∴AD BC CD AB CD AB ==,//, ∴︒=∠+∠=180,BCD ABC DE AE ∴AB AE AD BC 22=== ∵BE 平分ABC ∠,CE 平分BCD ∠ ∴22,12∠=∠∠=∠BCD ABC ∴︒=∠+∠1802212 ∴︒=∠+∠9021 ∴︒=∠90BEC在Rt △BCE 中,由勾股定理得:222CE BE BC +=∴53422=+=BC ∴2521==BC AB . 15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠;③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.第 15 题图EF CABDP解析 本题主要考查平行四边形的性质.图 1对于①,∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠(如图1所示) ∵EC BC = ∴21∠=∠ ∴32∠=∠ ∴BE 平分CBF ∠; 故结论①正确; 对于②,如图1所示. ∵EC BC =,BE CF ⊥ ∴CF 平分DCB ∠(等腰三角形“三线合一”) 故结论②正确; 对于③,如图2所示.图 2由结论②可知: CF 平分DCB ∠ ∴21∠=∠∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠ ∴32∠=∠ ∴BC BF =. 故结论③正确;对于④,∵BC BF =,CF BE ⊥∴直线BE 垂直平分CF ∴PC PF = 故结论④正确.综上所述,正确结论的序号是①②③④. 三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD 中,CD AB //,__________.求证:________________________________. 请补全已知和求证部分,并写出证明过程.CD AB =…………………………………………1分四边形ABCD 为平行四边形…………………………………………2分 证明:连结AC ∵CD AB // ∴21∠=∠在△ABC 和△CDA 中∵⎪⎩⎪⎨⎧=∠=∠=CA AC CD AB 21 ∴△ABC ≌△CDA (SAS ) ∴43∠=∠ ∴BC AD //…………………………………………6分 ∵CD AB //,BC AD // ∴四边形ABCD 为平行四边形…………………………………………9分 点评 要证明平行四边形的判定定理,必须按照平行四边形的定义进行,即证明四边形的两组对边分别平行.17.(8分)已知:如图所示,在□ABCD 中,点E 是BC 边的中点,连结DE 并延长交AB 边的延长线于点F . 求证:BF AB =.BC EAFD证明:∵点E 是BC 边的中点 ∴CE BE =∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF // ∴1∠=∠F在△BEF 和△CED 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CE BE F 321 ∴△BEF ≌△CED (AAS ) ∴CD BF =…………………………………………6分 ∵CD BF CD AB ==, ∴BF AB =…………………………………………8分 18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA(1)证明:∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF //∴1∠=∠F∵AB BF = ∴CD BF =在△DCE 和△FBE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BF CD FEB DEC F 1 ∴△DCE ≌△FBE (AAS );…………………………………………5分 (2)解:由(1)可知:△DCE ≌△FBE ∴3==BE CE ∴62==CE BC…………………………………………7分 ∵四边形ABCD 是平行四边形 ∴6==BC AD .…………………………………………9分 19.(9分)如图,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.证明:(1)∵FC BE = ∴CE FC CE BE +=+ ∴FE BC =…………………………………………1分EDBFAC在△ABC 和△DFE 中∵⎪⎩⎪⎨⎧===FE BC DE AC DFAB ∴△ABC ≌△DFE (SSS );…………………………………………4分(2)由(1)可知:△ABC ≌△DFE ∴21∠=∠ ∴DF AB //…………………………………………6分 ∵DF AB =∴DF AB =// ∴四边形ABDF 是平行四边形.…………………………………………9分 20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA证明:∵BC AD CD AB //,// ∴四边形ABCD 是平行四边形…………………………………………3分 ∴OD OB OC OA ==,…………………………………………5分 ∵E 、F 分别是OB 、OD 的中点 ∴OD OF OB OE 21,21==∴OF OE =…………………………………………6分 ∵OF OE OC OA ==, ∴四边形AFCE 是平行四边形.…………………………………………9分 21.(10分)如图,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.证明:∵EC BF = ∴CF EC CF BF -=- ∴EF BC =…………………………………………1分在Rt △ABC 和Rt △DEF 中∵⎩⎨⎧==EF BC DF AC∴Rt △ABC ≌Rt △DEF (HL )…………………………………………5分 ∴DFE ACB ∠=∠ ∴21∠=∠ ∴DF AC //…………………………………………7分 ∵DF AC //,DF AC = ∴四边形ACDF 是平行四边形.…………………………………………10分 22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD(1)证明:∵四边形ABCD 是平行四边形∴CD AB CD AB =,//…………………………………………2分 ∴BE DF //∵E 、F 分别是AB 、CD 的中点 ∴AB BE CD DF 21,21==∴BE DF =∵BE DF //,BE DF = ∴四边形BEDF 是平行四边形 ∴BF DE //;…………………………………………5分(2)解:四边形MENF 是平行四边形 …………………………………………6分 理由如下:由(1)可知:BF DE // ∴,//NF ME ABF ∠=∠1 ∵CD AB //∴ABF ∠=∠2,43∠=∠ ∴21∠=∠∵E 、F 分别是AB 、CD 的中点 ∴CD CF AB AE 21,21==∴CF AE =在△AME 和△CNF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠4321CF AE ∴△AME ≌△CNF (ASA )∴NF ME =∵,//NF ME NF ME = ∴四边形MENF 是平行四边形.…………………………………………10分 23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ ________,=BP ________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ;(3)当=t _________时,PQ PD =; (4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP解:(1)t ,t 2,0≤t ≤16;…………………………………………3分 (2)由题意可知:t AQ AD DQ -=-=16∴()966121621+-=⋅-=t t S ; …………………………………………5分(3)316;…………………………………………7分 提示: 当PQ PD =时,作AD PE ⊥,如图1所示.P由等腰三角形“三线合一”的性质可知:DE QE =易知:四边形ABPE 是矩形(即长方形) ∴t BP AE 2==∴t t t AQ AE QE =-=-=2 t AE AD DE 216-=-= ∵DE QE = ∴t t 216-=解之得:316=t∴当316=t 时,PQ PD =.(4)分为两种情况:图 2P QDABC①当点P 在BC 边上时,四边形PCDQ 是平行四边形,则有DQ PC = ∴t t -=-16221解之得:5=t ;(如图2所示)…………………………………………9分 ②当点P 在BC 边的延长线上时,四边形CPDQ 是平行四边形,则有DQ PC = ∴t t -=-16212解之得:337=t .(如图3所示) 图 3PQDABC综上所述,当5=t 或337=t 时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形.…………………………………………11分学生整理用图。
华师大版初中数学八年级下册《18.1 平行四边形的性质》同步练习卷(含答案解析
华师大新版八年级下学期《18.1 平行四边形的性质》同步练习卷一.选择题(共23小题)1.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD 的面积是()A.8B.C.2D.42.如图,▱ABCD中,AB=3cm,BC=5cm,BF平分∠ABC交AD于F点,CE平分∠BCD交AD于E点,则EF的长为()A.1cm B.2cm C.3cm D.4cm3.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.44.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC <2S△CEF;④∠DFE=4∠AEF.A.①②③④B.①②③C.①②D.①②④5.如图,平行四边形纸片ABCD和CEFG上下叠放(G在CD上),CE∥AD且CE=AD,连结AF、CF.已知▱ABCD的面积为10,▱CEFG的面积为4,则图中阴影部分△AFC的面积为()A.4B.6C.7D.86.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.67.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF 相交于点G.下列结论错误的是()A.∠BAD=2∠DFC B.若BC=4EF,则AB:BC=3:8C.AF=DE D.∠BGC=90°8.如图,已知点M为▱ABCD边AB的中点,线段CM角BD于点E,S△BEM=1,则图中阴影部分的面积为()A.2B.3C.4D.59.如图,▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD=S△AEF;④∠上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF BFE=3∠CEF中,一定成立的是()A.只有①②B.只有②③C.只有①②④D.①②③④10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个11.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD 于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°②S▱ABCD=AC•BC③OE:AC=1:4④S=2S△OEF△OCF其中正确的有()A.1个B.2个C.3个D.4个12.已知▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF ≤S△AEF.中一定成立的是()A.①②B.①③C.②③D.①②③13.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个14.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A.①②③B.①②④C.②③④D.①②③④15.如图所示,在▱ABCD中,BC=6,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F为边AD的中点,AG⊥BE于点G,若AG=2,则BE的长度是()A.10B.8C.4D.416.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.517.如图,已知□ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;=BD•CD;②S平行四边形ABCD③AO=2BO;④S=2S△EOF.△DOF其中成立的个数有()A.1个B.2个C.3个D.4个18.如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4②如果S4>S2,则S3>S1③若S3=2S1,则S4=2S2④若S1﹣S2=S3﹣S4,则P点一定在对角线BD上.其中正确结论的个数是()A.1B.2C.3D.419.如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是()A.3B.4C.5D.620.如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=()A.50°B.40°C.80°D.100°21.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是5+;④四边形ACEB的面积是16.则以上结论正确的是()A.①②B.②④C.①②③D.①③④22.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD= BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是()A.1B.2C.3D.423.如图,F是▱ABCD的边AD上一点,连接BD,BF,BF的延长线与CD的延长线交于点E.若∠E=∠A,∠BDC=90°,则下列结论中不正确的是()A.2DF=BC B.BE=BCC.∠ADE=∠CBE D.D是CE的中点二.填空题(共4小题)24.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE交于点P,BF 与CE交于点Q,若S=20cm2,S△BQC=30cm2,则图中阴影部分的面积为△APDcm2.25.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,OE⊥BD交边AD于点E,若平行四边形ABCD的周长为20,则△ABE的周长等于.26.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是.27.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于.三.解答题(共23小题)28.如图,在平行四边形中,AE⊥BC于E,AF⊥CD于F,∠EAF=60°,BE=2,DF=3,求AB,BC的长及平行四边形ABCD的面积?29.如图,平行四边形ABCD中,AE平分∠BAD,交CD于点F,交BC的延长线于点E,连结BF.(1)求证:BE=CD;(2)若点F是CD的中点.①求证BF⊥AE;②若∠BEA=60°,AB=4,求平行四边形ABCD的面积.30.如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E 为AC的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:DF=AE.31.如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.32.在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F.(1)求证:BE=BF;(2)若∠ADC=90°,G是EF的中点,连接AG、CG.求证:AG=CG;AG⊥CG.33.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.34.如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为9,求AB的长;(2)求证:AF=GE.35.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠F=60°,BE=2,求AB的长.36.如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.(1)求证:△ABF≌△DEF;(2)若AG⊥BE于G,BC=4,AG=1,求BE的长.37.已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC 于点H,过点A作AF⊥BC于F,交BE于点G.(1)若∠D=50°,求∠EBC的度数;(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.38.如图,在▱ABCD中,M、N分别是AD、BC的中点,∠AND=90°,连结CM交DN于点O.(1)求证:△ABN≌△CDM;(2)猜想:四边形CDMN是什么特殊四边形?并证明你的猜想;(3)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.39.已知如图,▱ABCD,AD=a,AC为对角线,BM∥AC,过点D作DE∥CM,交AC的延长线于F,交BM的延长线于E.(1)求证:△ADF≌△BCM;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四边形ABED的面积(用含a的代数式表示).40.如图所示,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)求证:CG=CD;(2)若CF=2,AE=3,求BE的长.41.如图,在▱ABCD中,E为AB中点,EF与CF分别平分∠AEC与∠DCE,G为CE中点,过G作GH∥EF交CF于点O,交CD于点H.(1)猜想四边形CGFH是什么特殊的四边形?并证明你的猜想;(2)当AB=4,且FE=FC时,求AD长.42.已知E为平行四边形ABCD中AB边上一点,且BE=AB,连接DE交BC于F,交AC于G.(1)求证:△BEF≌△CDF;(2)试探究OF与AB有什么位置关系和数量关系,并说明理由.43.已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.44.如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AD=2AB,连接DE,试判断DE与AF的位置关系,并说明理由.45.如图,在▱ABCD中,∠BCD=120°,分别以BC和CD为边作等边△BCE和等边△CDF.求证:AE=AF.46.已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长BC至E,使CE=BC,连接AE交CD于点F.(1)求证:CF=FD;(2)若AD=DC=6,求:∠BDE的度数和OF的长.47.在平行四边形ABCD中,E是BC上任意一点,延长AE交DC的延长线与点F.(1)在图 中当CE=CF时,求证:AF是∠BAD的平分线.(2)根据(1)的条件和结论,若∠ABC=90°,G是EF的中点(如图‚),请求出∠BDG的度数.(3)如图 ,根据(1)的条件和结论,若∠BAD=60°,且FG∥CE,FG=CE,连接DB、DG,求出∠BDG的度数.48.在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),讨论线段DG与BD的数量关系.49.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=120°,FG∥CE,FG=CE,分别连结DB、DG(如图2),求∠BDG 的度数.50.如图,已知平行四边形ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD,CE=3,AB=5.(1)求线段CF的长度;(2)求证:AB=DG+CE.华师大新版八年级下学期《18.1 平行四边形的性质》同步练习卷参考答案与试题解析一.选择题(共23小题)1.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD 的面积是()A.8B.C.2D.4【分析】根据等边三角形的判定得出△DOC是等边三角形,再根据平行四边形的性质和的面积公式即可求解.【解答】解:∵在▱ABCD中,∴AB=DC,∵α=60°.AB=OD=2,∴△DOC是等边三角形,∴△DOC的面积=,∴▱ABCD的面积=4△DOC的面积=4,故选:D.【点评】本题考查了平行四边形的性质和面积,解此题的关键是熟练掌握平行四边形的性质.2.如图,▱ABCD中,AB=3cm,BC=5cm,BF平分∠ABC交AD于F点,CE平分∠BCD交AD于E点,则EF的长为()A.1cm B.2cm C.3cm D.4cm【分析】根据平行四边形的性质可知∠AEB=∠EBC,又因为BE平分∠ABC,所以∠ABE=∠EBC,则∠ABE=∠AEB,则AB=AE=3,同理可证FD=3,继而可求得EF=AE+DE﹣AD.【解答】解:∵四边形ABCD是平行四边形,∴∠AEB=∠EBC,AD=BC=5cm,∵BE平分∠ABC,∴∠ABE=∠EBC,则∠ABE=∠AEB,∴AB=AE=3cm,同理可证:DF=DC=AB=3cm,则EF=AE+FD﹣AD=3+3﹣5=1cm.故选:A.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.3.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.4【分析】想办法证明∠ACB=90°,△BCE是等边三角形即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,OD=DB,∴∠DCA=∠CEB,∵∠DCA=∠BCE,∴∠BCE=∠CEB,∴BC=EC,∵EB=EA=EC,∴∠ACB=90°,EC=BC=EB,∴△BEC是等边三角形,∴∠ABC=60°,∴∠CAB=30°,故①正确,∵OD=DB,AE=EB,∴OE∥AD,故②正确,∵AD∥BC,∴∠DAC=∠ACB=90°,∴AD⊥AC,∴S▱ABCD=AC•AD,故③正确,假设CE⊥BD,则推出四边形ABCD是菱形,显然不可能,故④错误,故选:C.【点评】本题考查平行四边形的性质、直角三角形的判定和性质、等边三角形的判定和性质、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC <2S△CEF;④∠DFE=4∠AEF.A.①②③④B.①②③C.①②D.①②④【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故①正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=EF,故②正确;③∵EF=FM,∴S=S△CFM,△EFC∵MC>BE,∴S△BEC <2S△EFC故③正确;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④错误.故选:B.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DMF是解题关键.5.如图,平行四边形纸片ABCD和CEFG上下叠放(G在CD上),CE∥AD且CE=AD,连结AF、CF.已知▱ABCD的面积为10,▱CEFG的面积为4,则图中阴影部分△AFC的面积为()A.4B.6C.7D.8【分析】作EN⊥AB,延长DC交EN与M,由S阴影=S四边形FEBA﹣S△EFC﹣S△ABC可求阴影部分面积.【解答】解:如图作EN⊥AB,延长DC交EN与M∵AB∥CD,AN⊥EN∴CM⊥EN∵AB∥CD∴且EC=AD=BC ∴EM=MN∵S阴影=S四边形FEBA﹣S△EFC﹣S△ABC=﹣EF×EM﹣AB×MN∴S阴影=(EF+AB)×EM﹣﹣EF×EM﹣AB×MN=EF×EM+AB×MN=S四边形EFGC +S四边形ABCD且S四边形EFGC=4,S四边形ABCD=10∴S阴影=7故选:C.【点评】本题考查了平行四边形的性质,关键是作出平行四边形的高,用已知面积表示阴影部分面积.6.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.6【分析】想办法证明S阴=S△ADE+S△DEC=S△AEC,再由EF∥AC,可得S△AEC=S△ACF解决问题;【解答】解:连接AF、EC.∵BC=4CF,S△ABC=12,∴S△ACF=×12=3,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S阴=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=3,∴S阴=3.故选:B.【点评】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.7.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF 相交于点G.下列结论错误的是()A.∠BAD=2∠DFC B.若BC=4EF,则AB:BC=3:8C.AF=DE D.∠BGC=90°【分析】求出AB=CD,AD∥BC,根据平行线性质和角平分线性质求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,求出AE=DF可知选项C正确,由∠A=∠BCD=2∠FDC,可知选项A正确,由∠GBC=∠ABC,∠GCB=∠BCD,又∠ABC+∠BCD=180°,推出∠GBC+∠GCB=90°,可知D正确;【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠A=∠BCD,∴∠AEB=∠EBC,∠BCF=∠DFC,∵BE平分∠ABC,CF平分∠BCD,∴∠ABE=∠CBE,∠BCF=∠DCF,∴∠ABE=∠AEB,∴∠BAD=2∠DFC,故A正确∴AB=AE,同理DF=CD,∴AE=DF,即AE﹣EF=DF﹣EF,∴AF=DE.故C正确∵∠GBC=∠ABC,∠GCB=∠BCD,又∠ABC+∠BCD=180°,∴∠GBC+∠GCB=90°,∴∠BGC=90°,故D正确,故选:B.【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,已知点M为▱ABCD边AB的中点,线段CM角BD于点E,S△BEM=1,则图中阴影部分的面积为()A.2B.3C.4D.5【分析】由四边形ABCD是平行四边形,推出AB=CD,AB∥CD,由AM=BM,推=2S△EBM,S△EBC=2S△EBM,由此即可解决问题;出===,可得S△DEM【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AM=BM,∴===,=2S△EBM,S△EBC=2S△EBM,∴S△DEM=1,∵S△BEM=S△EBC=2,∴S△DEM=2+2=4,∴S阴故选:C.【点评】本题考查平行四边形的性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD=S△AEF;④∠上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF BFE=3∠CEF中,一定成立的是()A.只有①②B.只有②③C.只有①②④D.①②③④【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠FAB,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF=S△AFM,∴S△ABF <S△AEF,故③错误;④设∠FEA=x,则∠FAE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EFA=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF=90°﹣x,∴∠BFE=3∠CEF,故④正确,故选:C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF≌△DME.10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个【分析】如图延长EF交BC的延长线于G,取AB的中点H连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;【解答】解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,=S△CFG,∵S△DFE=S△EBG=2S△BEF,故③正确,∴S四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD 于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°②S▱ABCD=AC•BC③OE:AC=1:4=2S△OEF④S△OCF其中正确的有()A.1个B.2个C.3个D.4个【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故②正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质得到OE=BC,于是得到OE:AC=:6;故③错误;根据相似三角形的性=2S△OEF;故④正确.质得到=2,求得S△OCF【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故②正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6;故③错误;∵AO=OC,AE=BE,∴OE∥BC,∴△OEF∽△BCF,∴=2:1,∴S△OCF :S△OEF==2,∴S△OCF=2S△OEF;故④正确.故选:C.【点评】此题考查了相似三角形的判定和性质,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE 是△ABC的中位线是关键.12.已知▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF ≤S△AEF.中一定成立的是()A.①②B.①③C.②③D.①②③【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:①∵F是BC的中点,∴BC=2BF,∵在▱ABCD中,AD=2AB,∴BC=2AB,∴BF=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠FAB,∴2∠BAF=∠BAD,故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AFE=S△AFM,∴S△ABF ≤S△AEF,故③正确;故选:D.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△MBF≌△ECF.13.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD=∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M +∠FCD=2∠CFD ;故②正确,∵EF=FM=CF ,∴∠ECM=90°,∵AB ∥CD ,∴∠BEC=∠ECM=90°,∴CE ⊥AB ,故③④正确,故选:D .【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.14.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB 与DE 的延长线交于点F .下列结论中:①△ABC ≌△EAD ;②△ABE 是等边三角形;③AD=AF ;④S △ABE =S △CEF 其中正确的是( )A .①②③B .①②④C .②③④D .①②③④【分析】由平行四边形的性质得出AD ∥BC ,AD=BC ,由AE 平分∠BAD ,可得∠BAE=∠DAE ,可得∠BAE=∠BEA ,得AB=BE ,由AB=AE ,得到△ABE 是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS 证明△ABC ≌△EAD ,①正确;由△FCD 与△ABD 等底(AB=CD )等高(AB 与CD 间的距离相等),得出S △FCD =S △ABD ,由△AEC 与△DEC 同底等高,所以S △AEC =S △DEC ,得出S △ABE =S △CEF .④正确.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),=S△ABC,∴S△FCD又∵△AEC与△DEC同底等高,=S△DEC,∴S△AEC∴S=S△CEF;④正确.△ABE若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不一定正确;∴①②④正确,故选:B.【点评】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.15.如图所示,在▱ABCD中,BC=6,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F为边AD的中点,AG⊥BE于点G,若AG=2,则BE的长度是()A.10B.8C.4D.4【分析】根据平行四边形的性质和角平分线的定义可求出AB=AF,再根据等腰三角形的性质可求出BG的长,进而可求出BF的长,根据全等三角形的性质得到BF=EF,所以BE=2BF,问题得解.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABF=∠E,∵点F恰好为边AD的中点,∴AF=DF,在△ABF与△DEF中,,∴△ABF≌△DEF,∴BF=EF,BE=2BF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∵∠AFB=∠FBC,∵∠ABC的平分线与CD的延长线相交于点E,∴∠ABF=∠FBC,∴∠AFB=∠ABF,∴AB=AF,∵点F为AD边的中点,AG⊥BE.∴BG==,∴BF=2,∴BE=2BF=4.故选:C.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定和性质、勾股定理的运用,题目的综合性较强,难度中等.16.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.5【分析】根据作图过程可得得AE平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAE=∠DEA,证出AD=DE=5,即可得出CE的长.【解答】解:根据作图的方法得:AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是平行四边形,∴DC∥AB,AD=BC=5,∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE=5,∴CE=DC﹣DE=8﹣5=3;【点评】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AD=DE是解决问题的关键.17.如图,已知□ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;=BD•CD;②S平行四边形ABCD③AO=2BO;=2S△EOF.④S△DOF其中成立的个数有()A.1个B.2个C.3个D.4个【分析】①证明BE=CE,OA=OC,根据三角形中位线定理可得结论正确;②证明BD⊥CD,可得结论正确;③设AB=x,分别表示OA和OB的长,可以作判断;④先根据平行线分线段成比例定理可得:DF=2EF,由同高三角形面积的比等于对应底边的比可作判断.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠ADC+∠BCD=180°,∵∠BCD=60°,∴∠ADC=120°,∵DE平分∠ADC,∴∠CDE=60°=∠BCD,∴△CDE是等边三角形,∴CE=CD,∵BC=2CD,∴BE=CE,∴OE∥AB;故①正确;②∵△DEC是等边三角形,∴∠DEC=60°=∠DBC+∠BDE,∵BE=EC=DE,∴∠DBC=∠BDE=30°,∴∠BDC=30°+60°=90°,∴BD⊥CD,∴S=BD•CD;平行四边形ABCD故②正确;③设AB=x,则AD=2x,则BD=x,∴OB=,由勾股定理得:AO==x,故③不正确;④∵AD∥EC,∴=,∴DF=2EF,=2S△EOF.∴S△DOF故④正确;故选:C.【点评】此题考查了平行线分线段成比例定理,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE 是△ABC的中位线是关键.18.如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4②如果S4>S2,则S3>S1③若S3=2S1,则S4=2S2④若S1﹣S2=S3﹣S4,则P点一定在对角线BD上.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据平行四边形的对边相等可得AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,然后利用三角形的面积公式列式整理即可判断出①正确;根据三角形的面积公式即可判断②③错误;根据已知进行变形,求出S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即可判断④.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,则S1=ABh1,S2=BCh2,S3=CDh3,S4=ADh4,∵ABh1+CDh3=AB•h AB,BCh2+ADh4=C•h BC,又∵S=AB•h AB=BC•h BC平行四边形ABCD∴S2+S4=S1+S3,故①正确;根据S4>S2只能判断h4>h2,不能判断h3>h1,即不能得出S3>S1,∴②错误;根据S3=2S1,能得出h3=2h1,不能推出h4=2h2,即不能推出S4=2S2,∴③错误;∵S1﹣S2=S3﹣S4,∴S1+S4=22+S3=S平行四边形ABCD,此时S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即P点一定在对角线BD上,∴④正确;故选:B.【点评】本题考查了平行四边形的性质,三角形的面积,以及平行四边形对角线上点的判定的应用,用平行四边形的面积表示出相对的两个三角形的面积的和是解题的关键,也是本题的难点.19.如图,E 是平行四边形内任一点,若S 平行四边形ABCD =8,则图中阴影部分的面积是( )A .3B .4C .5D .6【分析】根据三角形面积公式可知,图中阴影部分面积等于平行四边形面积的一半.所以S 阴影=S 四边形ABCD .【解答】解:设两个阴影部分三角形的底为AD ,CB ,高分别为h 1,h 2,则h 1+h 2为平行四边形的高,∴S △EAD +S △ECB=AD•h 1+CB•h 2=AD (h 1+h 2)=S 四边形ABCD=4.故选:B .【点评】本题主要考查了三角形的面积公式和平行四边形的性质(平行四边形的两组对边分别相等).要求能灵活的运用等量代换找到需要的关系.20.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 于E ,AF ⊥DE ,垂足为F ,已知∠DAF=50°,则∠B=( )A .50°B .40°C .80°D .100°【分析】由平行四边形的性质及角平分线的性质可得∠ADC 的大小,进而可求解∠B 的度数.【解答】解:在Rt △ADF 中,∵∠DAF=50°,∴∠ADE=40°,又∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选:C.【点评】本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.21.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是5+;④四边形ACEB的面积是16.则以上结论正确的是()A.①②B.②④C.①②③D.①③④【分析】证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【解答】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③错误;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.【点评】本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法,属于中考常考题型.22.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD= BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是()A.1B.2C.3D.4【分析】通过判断△BDE为等腰直角三角形,得到BE=DE,BD=BE,则可对①进行判断;根据等角的余角相等得到∠BHE=∠C,再根据平行四边形的性质得到∠A=∠C,则∠A=∠BHE,于是可对②进行判断;根据“AAS”可证明△BEH≌△DEC,得到BH=CD,接着由平行四边形的性质得AB=CD,则AB=BH,运算可对③进行判断;因为∠BDH=90°+∠EBH,∠BDG=90°+∠BDE,由∠BDE>∠EBH,推出∠BDG>∠BHD,所以④错误;【解答】解:∵∠DBC=45°,DE⊥BC,∴△BDE为等腰直角三角形,∴BE=DE,BD=BE,所以①正确;∵BF⊥CD,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C,∵四边形ABCD为平行四边形,∴∠A=∠C,∴∠A=∠BHE,所以②正确;在△BEH和△DEC中,∴△BEH≌△DEC,∴BH=CD,∵四边形ABCD为平行四边形,∴AB=CD,∴AB=BH,所以③正确;∵∠BDH=90°+∠EBH,∠BDG=90°+∠BDE,∵∠BDE>∠EBH,∴∠BDG>∠BHD,所以④错误;故选:C.。
初二下册数学华东师大版试题
1、在平行四边形ABCD中,AB=5,BC=8,AC=6,则BD的取值范围是?A、2<BD<18B、4<BD<12C、6<BD<10D、8<BD<12(解析:在平行四边形中,两条对角线互相平分,所以AC和BD被O点平分为两段。
根据三角形三边关系,在△ABO中,AB-AO<BO<AB+AO,即5-3<BO<5+3,2<BO<8;同理在△CDO中,2<DO<8。
因此,BD=BO+DO,所以4<BD<16,但考虑到BD不可能等于AC(否则为矩形),且BD不能取到两端点值,故4<BD<12,且由于平行四边形的性质,BD不能等于AC,即BD≠6,所以最终范围是6<BD<10外的其他值,即答案为A。
但实际上,由于平行四边形的对角线性质,更精确的答案是B。
)(答案)B2、若一次函数y=kx+b(k≠0)的图象经过点(1,-1)和(-1,3),则k的值为?A、1B、2C、-1D、-2(解析:将点(1,-1)和(-1,3)分别代入y=kx+b,得到两个方程:-1=k+b和3=-k+b。
两式相减,消去b,得到4=-2k,解得k=-2。
)(答案)D3、下列说法中,正确的是?A、两个直角三角形的斜边相等,则这两个直角三角形全等B、两个直角三角形的直角边相等,则这两个直角三角形全等C、两个直角三角形的面积相等,则这两个直角三角形全等D、两个直角三角形的周长相等,则这两个直角三角形全等(解析:直角三角形的全等判定有HL(Hypotenuse-Leg)定理,即斜边和一条直角边对应相等的两个直角三角形全等。
A选项只给出了斜边相等,没有给出直角边相等,所以不一定全等;B选项给出了直角边相等(可以是两条直角边都相等,或者一条直角边和斜边相等即HL情况),可以判定全等;C选项面积相等不能判定全等,因为面积只与底和高有关,与形状无关;D选项周长相等也不能判定全等,因为周长是所有边长的和,不能唯一确定三角形的形状。
华师版初二下数学卷子及答案
华师版初二下数学卷子及答案一、单选题1.分式223x x +-有意义的条件是()A .2x ≠-B .32x ≠C .3x ≠D .322x -<<2.已知23ab a b =+,65bc b c =+,34ac a c =+,则111a b c ++的值等于()A .116B .113C .115D .6113.已知点1(1,)A y -、2(1,)B y 、3(2,)C y 在反比例函数2y x=-的图象上,则1y 、2y 、3y 的大小关系是()A .132y y y >>B .123y y y >>C .123y y y <<D .213y y y <<4.如图,将矩形ABCD 沿对角线AC 折叠,点D 落在点E 处,AE 与边BC 的交点为M .已知:AB=1,BC=2,则BM 的长等于()A .23B .34C .45D .565.已知在平行四边形ABCD 中,AD AB >,60°ABC ∠=,AB=2.以B 为圆心,以BA 长为半径画弧交BC 于E ,过点E 作EF //AB 交AD 与F .则线段BF 的长等于()AB .C .3D .6.如图,函数3y kx m =-的图象经过点()4,0-,则关于x 的不等式(1)3k x m +>的解集是()A .4x >-B .4x <-C .5x >-D .5x <-7.如图所示,正方形OABC 的对角线OB 在x 轴上,点A 落在反比例函数ky x=第一象限内的图象上如果正方形OABC 的面积为8,则k 的值为()A .2B .4C .8D .168.已知关于x 的方程82044x mx x --=--有增根,则m 的值是()A .4B .4-C .2D .2-9.函数y kx k =+与ky x=(0k ≠)在同一平面直角坐标系的图象可能是()A .B .C .D .10.如图,平行四边形ABCD 中,2AB BC =.AE 平分BAD ∠,交CD 于点E ,点F 为AB 边的中点,AE 与DF 交于点M ,BD 与EP 交于点N ,连接MN .则下列结论:①四边形ADEF是菱形;②与BFN ∆全等的三角形有5个;③7FMN BCEN S S ∆=四边形;④当FM FN =时,60BAD ∠=︒.其中正确的是()A .①③B .①④C .②③D .②④二、填空题11.平行四边形ABCD 的周长为32,且AB=7,则BC=___________.12.用细铁丝折成一个面积为4平方米的矩形.设折成的矩形其中一条长为x 米,矩形的周长为y 米,则y 关于x 的函数关系式是____________.13.如图,点A 是一次函数21y x =+图象上的动点,作AC ⊥x 轴与C ,交一次函数4y x =-+的图象于B .设点A 的横坐标为m ,当m =____________时,AB=1.14.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若120AOD ∠=︒,12BD =,则DC 的长为________.15.要使关于x 的分式方程2144x x ax x++=--解为正数,且使关于x 的一次函y =(a+5)x+3不经过第四象限,则a 的取值范围是________.16.如图,在矩形ABCD 中,AB =6,BC =8,点E 在边BC 上(E 不与B ,C 重合),连接AE ,把 ABE 沿直线AE 折叠,点B 落在点B '处,当CEB ' 为直角三角形时,则CEB ' 的周长为________.三、解答题17.化简求值:22513()224x x x x x x --÷-+--,再从-2,-1,0,1,2中选取一个合适的数代入求值.18.某商店销售A 、B 两种型号的电脑,销售一台B 型电脑的利润比销售一台A 型电脑的利润多50元.已知销售数量相同的A 、B 两种型号电脑获利分别1000元和1500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑n 台,这100台电脑的销售总利润为w 元.①直接写出:w 与n 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售利润最大?最大利润是多少?19.如图,四边形OABC 是平行四边形,反比例函数(0)k y x x=>的图象经过点A ,已知B(-3,2),C(-5,0).(1)求k 的值;(2)求直线AC 的解析式;(3)点P(,m n )在直线AC 和反比例函数图象的下方、x 轴上方的区域内,且m 、n 是整数,直接写出符合条件的点P 的个数.20.在 ABC 中,D 、E 分别为边AB 、AC 的中点,连接DE ,并延长DE 到F ,使EF=DE ,连接AF 、CF 、CD .(1)求证:DE //BC ,12DE BC =;(2)用“矩形、菱形、正方形”填空:①当BC ⊥AC 时,四边形ADCF 是;②当BC=AC 时,四边形ADCF 是;③当BC=AC ,且BC ⊥AC 时,四边形ADCF 是.21.如图,在平行四边形ABCD 中,M ,N 是对角线BD 上的点,且BM DN =,DE 平分ADB∠交AB 于点E ,BF 平分DBC ∠交CD 于点F .(1)求证:四边形EMFN 是平行四边形;(2)当四边形EMFN 是菱形时,求证:四边形BEDF 是菱形.22.如图,在平面直角坐标系中,直线1y mx n =+与双曲线2ky x=交于点()3,2M --和点N .正方形ABCD 的边长为2,且顶点A 和顶点D 在x 轴上,顶点B 在直线1y mx n =+上,顶点C 在双曲线2ky x=上,过点N 向x 轴作垂线,垂足E 是AD 的中点.(1)求直线与双曲线的解析式;(2)求点N 的坐标;(3)在11a x a -≤≤+范围内,总有不等式12y y >,请直接写出此时a 的取值范围.23.如图,在▱ABCD 中,延长AB 到点E ,使BE =AB ,DE 交BC 于点O ,连接EC .(1)求证:四边形BECD 是平行四边形;(2)若∠A =40°,当∠BOD 等于多少度时四边形BECD 是矩形,并说明理由.24.如图,一次函数1y mx =+的图象与反比例函数ky x=的图象相交于A 、B 两点,点C 在x 轴负半轴上,点()1,2D --,连接OA 、OD 、DC 、AC ,四边形OACD 为菱形.(1)求一次函数与反比例函数的解析式;(2)根据图象,直接写出反比例函数的值小于2时,x 的取值范围;(3)设点P 是直线AB 上一动点,且12OAP OACDS S =△菱形,求点P 的坐标.25.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加比赛.两校派出选手的比赛成绩如图所示.根据图中信息,整理分析数据:平均数/分中位数/分众数/分A校858585B校85a b请你结合图表中所给信息,解答下列问题:(1)a=;b=;(2)填空:(填“A校”或“B校”)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是;(3)计算两校比赛成绩的方差,并判断哪个学校派出的代表队选手成绩较为稳定.参考答案1.B【分析】根据分式有意义的条件列出不等式,解不等式即可.【详解】解:若分式223xx+-有意义,则230x -≠,解得32x ≠,故选:B .【点睛】本题考查了分式有意义的条件,解题关键是明确分式有意义的条件是分母不为0.2.A 【分析】根据23ab a b =+,65bc b c =+,34ac a c =+,即可得到32a b ab +=,56b c bc +=,43a c ac +=,再根据1111111111122a b a c b c a b c a b c a b c ab ac bc +++⎛⎫⎛⎫++=++++=++ ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】解:∵23ab a b =+,65bc b c =+,34ac a c =+,∴32a b ab +=,56b c bc +=,43a c ac +=,∴111111111111354112222636a b a c b c a b c a b c a b c ab ac bc +++⎛⎫⎛⎫⎛⎫++=+++++=++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选A .【点睛】本题主要考查了分式的求值,解题的关键在于能够准确观察出1111111111122a b a c b c a b c a b c a b c ab ac bc +++⎛⎫⎛⎫++=++++=++ ⎪ ⎪⎝⎭⎝⎭.3.A 【解析】【分析】把点A 、B 、C 的坐标分别代入函数解析式,求得y 1、y 2、y 3的值,然后比较它们的大小.【详解】解:∵反比例函数2y x=-图象上三个点的坐标分别是A (﹣1,y 1)、B (1,y 2)、C (2,y 3),∴y 1=﹣21-=2,y 2=﹣2,y 3=﹣1.∵﹣2<﹣1<2,∴y 2<y 3<y 1故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征.解题关键是明确函数图象上点坐标都满足该函数解析式,代入准确求出函数值.4.B【解析】【分析】根据折叠与平行可得AM=CM,设BM=x,再利用勾股定理列出方程求得BM的长.【详解】解:由折叠的性质可知,∠DAC=∠MAC,∵四边形ABCD是矩形∴AD∥CB.∴∠DAC=∠ACB,∴∠ACB=∠MAC,∴AM=CM.设BM=x,则AM=CM=2﹣x.∴12+x2=(2﹣x)2,解得,x=3 4,∴BM=3 4,故选:B.【点睛】此题考查了翻折变换,矩形的性质,等腰三角形的判定,勾股定理的综合运用,解题关键是根据折叠得出等腰三角形,利用勾股定理列方程.5.B【解析】【分析】证明四边形ABEF是菱形,解直角三角形求出OB即可解决问题.【详解】解:根据作图的过程可知:BF平分∠ABC,∴∠ABF=∠CBF,∵四边形ABCD是平行四边形,∴BC ∥AD ,∴∠AFB=∠CBF ,∴∠AFB=∠ABF ,∴AB=AF ,∵AB=BE ,∴BE=FA ,∵BE ∥FA ,∴四边形ABEF 是平行四边形,∵AB=BE ,∴平行四边形ABEF 是菱形;连接AE 交BF 于点O ,如图,∵四边形ABEF 是菱形,∴BF ⊥AE ,BO=FO=12BF ,∵60ABE ∠=︒∴30ABO ∠=︒又AB=2,90AOB ∠=︒∴1AO =∴BO∴BF=2OB=故选:B .【点睛】本题考查了作图-复杂作图,平行四边形的性质,菱形的判定与性质,解决本题的关键是掌握平行四边形的性质,菱形的判定与性质.6.C 【解析】【分析】观察函数图象先得到关于x 的不等式kx−3m >0的解集是x >−4,故可求解.【详解】解:由图象可得:当x >−4时,kx−3m >0,所以关于x 的不等式kx−3m >0的解集是x >−4,所以关于x 的不等式k (x +1)>3m 的解集为x +1>−4,即:x >−5,故选:C .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =ax +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.7.B【解析】【分析】连接AC 交轴于点D ,结合正方形OABC 的性质和面积求出三角形AOD 的面积,然后根据反比例函数的比例系数的几何意义求k ,即可.【详解】解:如图,连接AC 交x 轴于点D ,∵四边形OABC 是正方形,∴AC ⊥OB ,即AC ⊥x 轴,∵正方形OABC 的面积为8,∴正方形124AOD OABCS S == ,∵点A 落在反比例函数k y x =第一象限内的图象上,∴22AOD k S == ,∴4k =,∵反比例函数图象在第一象限,∴0k >,∴4k =,故选:B .【点睛】本题考查了正方形的性质和反比例系数k 的几何意义,解题的关键是连接AC 交轴于点D 构造直角三角形.8.C【解析】【分析】首先把所给的分式方程化为整式方程,然后根据分式方程有增根,得到x−4=0,据此求出x 的值,代入整式方程求出m 的值即可.【详解】解:去分母,得:8−x−2m =0,由分式方程有增根,得到x−4=0,即x =4,把x =4代入整式方程,可得:m =2.故选:C .【点睛】此题主要考查了分式方程的增根,解答此题的关键是要明确:(1)化分式方程为整式方程;(2)把增根代入整式方程即可求得相关字母的值.9.B【解析】【分析】分k >0和k <0两种情况讨论,然后根据一次函数和反比例函数所经过的象限逐一判断即可.【详解】当k >0时,一次函数经过第一、二、三象限,反比例函数经过第一、三象限,无符合的图象;当k <0时,一次函数经过第二、三、四象限,反比例函数经过第二、四象限,符合此种条件的图象只有B 选项,故选:B .【点睛】此题考查的是反比例函数和一次函数的综合题型,掌握反比例函数和一次函数的图象所经过的象限与各项系数的关系是解决此题的关键.10.B【解析】【分析】①根据四边形ABCD 是平行四边形,可得:AD=BC ,AB=CD ,AB ∥CD ,再由AE 平分∠BAD ,可得出∠AED=∠DAE ,进而推出AF=DE ,即可运用菱形的判定方法证得结论;②根据题目条件可证明△BFN ≌DEN ,其它三角形均不能证明;③根据题目条件可得出12FMN DMN BFNS S S == ,S 菱形BCEF=4S △BFN ,S 四边形BCEN=3S △BFN ,即可判断结论③错误;④由FM=FN 可得出DF=AF=AD ,即△ADF 是等边三角形,可判定结论④正确.【详解】解:①四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,AB ∥CD ,∵点F 为AB 边的中点,∴AF=12AB ,∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∵AB ∥CD ,∴∠AED=∠BAE ,∴∠AED=∠DAE ,∴AD=DE ,∴BC=DE ,∵AB=2BC.∴BC=12AB ,∴AF=DE,∵AF∥DE,∴四边形ADEF是平行四边形,∵AD=DE,∴四边形ADEF是菱形,故①正确;∵AB∥CD,∴∠FBN=∠EDN,DE=AF=BF,∠BNF=∠DNE,∴△BFN≌DEN(AAS),能够确定与△BFN全等的三角形只有1个,故②错误;③∵△BFN≌DEN,∴FN=EN,BN=DN,∵四边形ADEF是菱形,∴DM=FM,∴12FMN DMN BFNS S S==,同理可证:四边形BCEF是菱形,∴S菱形BCEF=4S△BFN,∴S四边形BCEN=3S△BFN,·S△BFN=2S△FMN,∴S四边形BCEN=4S△FMN,故③错误;④当FM=FN时,∵FN=EN,EF=AF,∴AF=2FM,∵DF=2FM,∴DF=AF=AD,∴△ADF是等边三角形,∴∠BAD=60°,故④正确;故选:B.【点睛】本题是四边形综合题,考查了平行四边形性质,菱形的判定,全等三角形判定和性质,三角形面积和四边形面积,等边三角形判定等,熟练掌握平行四边形的性质和菱形的判定,证明三角形全等是解题的关键.11.9【解析】【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∵AB=7∴BC=9.故答案为:9.【点睛】本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.12.y=2(x+4 x)【解析】【分析】先由矩形面积公式求出矩形的另一条边长,再利用矩形的周长公式,列出周长y关于x的函数解析式,即可求解.【详解】解:∵矩形的面积为4平方米,且其中一条长为x米,∴另一条边长为4 x米∴矩形的周长y=2(x+4 x)故答案为:y=2(x+4 x)【点睛】此题考查了求函数解析式,解题的关键是根据题意构建函数模型求解即可.13.43或23【解析】【分析】分别用m 表示出点A 和点B 的纵坐标,用点A 的纵坐标减去点B 的纵坐标或用点B 的纵坐标减去点A 的纵坐标得到以m 为未知数的方程,求解即可.【详解】解:∵点A 是一次函数21y x =+图象上的动点,且点A 的横坐标为m ,∴(,21)A m m +∵AC ⊥x 轴与C ,∴(,0)C m ∴(,4)B m m -+∵1AB =∴|21(4)|1m m +--+=解得,43m =或23故答案为43或23【点睛】本题考查了一次函数图象上点的坐标特征,根据A 点横坐标和点的坐标特征求得A 、B 点纵坐标是解题的关键.14.6【解析】【分析】由题意易得OD=OC ,∠DOC=60°,进而可得△DOC 是等边三角形,然后问题可求解.【详解】解:∵四边形ABCD 是矩形,BD =12,∴162OD OC BD ===,∵∠AOD =120°,∴∠DOC=60°,∴△DOC 是等边三角形,∴6CD OC OD ===;故答案为:6.【点睛】本题主要考查矩形的性质及等边三角形的性质与判定,熟练掌握矩形的性质及等边三角形的性质与判定是解题的关键.15.﹣5<a <2且a≠﹣4【解析】【分析】根据分式方程的解法得到x =423a -,由解为正数,可以求得符合要求的a 的取值,再根据关于x 的一次函y =(a+5)x+3不经过第四象限得到a+5>0,从而可以解答本题.【详解】解:2144x x a x x++=--,42x x x a +-=--∴x =423a -,∵关于x 的分式方程2144x x a x x ++=--解为正数,∴423a ->0,且423a -≠4,∴a <2且a≠﹣4,又∵关于x 的一次函数y =(a+5)x+3不经过第四象限,∴a+5>0,∴a >﹣5,∴a 的取值范围是﹣5<a <2且a≠﹣4,故答案为:﹣5<a <2且a≠﹣4.【点睛】本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,利用一次函数的性质解答,注意分式方程的解要使得原分式有意义.16.12或【解析】【分析】由矩形的性质和折叠的性质可得6AB AB '==,BE B E '=,90ABC AB E '∠=∠=︒,分90CEB '∠=︒,90EB C '∠=︒两种情况讨论,由勾股定理可求B C '的长,即可求CEB ∆'的周长.【详解】解: 四边形ABCD 是矩形,6AB CD ∴==,8AD BC ==,90DAB ABC ∠=∠=︒折叠6AB AB '∴==,BE B E '=,90ABC AB E '∠=∠=︒若90CEB '∠=︒,且90DAB ABC ∠=∠=︒,∴四边形ABEB '是矩形,且6AB AB '==∴四边形ABEB '是正方形,6BE B E '∴==,2EC BC BE ∴=-=B C '∴=CEB ∴∆'的周长8EC B C B E ''=++=+若90EB C '∠=︒,且90AB E '∠=︒180AB E EB C ''∴∠+∠=︒∴点A ,点B ',点C 三点共线,在Rt ABC 中,10AC ==,1064B C AC AB ''∴=-=-=CEB ∴∆'的周长8412EC B C B E =++=+=''故答案为:12或8+【点睛】本题考查了翻折变换,矩形的性质,勾股定理,熟练运用分类讨论思想解决问题是本题的关键.17.2-x;当x=1时,原式=1;当x=-1时,原式=3.【解析】【分析】原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:22513(224x x x x x x --÷-+--52(3)(2)(2)(2)x x x x x x x +--=-÷+-+5(2)(2)(2)5x x x x x -+=-+ =2x -,∵要使分式有意义,∴x≠0,±2,∴x=±1,当x=1时,原式=2-1=1;当x=-1时,原式=2-(-1)=2+1=3.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(1)每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元;(2)①5015000w n =-+;②商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大为13300元.【解析】【分析】(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;然后根据销售m 台A 型和m 台B 型电脑的分别获利列出方程组,然后求解即可;(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B 型电脑的进货量不超过A 型电脑的2倍列不等式求出n 的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元.分别销售m 台则有5010001500.b a ma mb -=⎧⎪=⎨⎪=⎩解得10015010a b m =⎧⎪=⎨⎪=⎩即每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元.(2)①根据题意可得:()1001501005015000w n n n =+-=-+,故答案为:5015000w n =-+②根据题意得1002n n -≤.解得1333n ≥.5015000w n =-+Q ,500-<,w ∴随n 的增大而减小.n Q 为正整数,∴当34n =最小时,w 取最大值,此时10066n -=(台).50341500013300w =-⨯+=答:商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大为13300元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.19.(1)4k =;(2)AC 解析式为21077y x =+;(3)符合条件的点P 共有5个.【解析】【分析】(1)由四边形OABC 是平行四边形,可得OC=BA ,AB ∥OC ,根据()()305A x --=--,可求点A (2,2),由点A 在反比例函数图像上,可得22k =求解即可;(2)设AC 解析式为y kx b =+,代入坐标得2=2-50k b k b +⎧⎨+=⎩解方程组即可;(3)求出反比例函数的边界点,与一次函数的边界点,找出点P 可取(-1,1),(0,1),(1,1),(2,1),(3,1)即可.解:(1)∵四边形OABC 是平行四边形,∴OC=BA ,AB ∥OC ,∴()()305A x --=--,解得2A x =,∴点A (2,2),点A 在反比例函数图像上,∴22k=,解得4k =;(2)设AC 解析式为y kx b =+,代入坐标得,2=2-50k b k b +⎧⎨+=⎩,解得27107k b ⎧=⎪⎪⎨⎪=⎪⎩,AC 解析式为21077y x =+;(3)当=3x 时,43y =>1,当=4x 时,414y ==;当1x =-时,2108-777y =+=>1,∴点P 可取(-1,1),(0,1),(1,1),(2,1),(3,1),符合条件的点P 共有5个.【点睛】本题考查平行四边形的性质,利用平行四边形性质构建点坐标关系,待定系数法求一次函数解析式,区域内整点问题,正确理解题意、掌握以上知识是解题关键.20.(1)证明见解析;(2)①菱形,②矩形,③正方形.【解析】【分析】(1)证明四边形ADCF 是平行四边形,得出AD ∥CF ,利用一组对边平行且相等证明四边形DBCF 是平行四边形,即可得出结论.(2)①当BC ⊥AC 时,AD=CD ,填菱形即可;②当BC=AC 时,∠CDA=90°,填矩形即可;③当BC=AC ,且BC ⊥AC 时,填正方形即可.(1)证明:∵D、E分别为边AB、AC的中点,∴AD=DB,AE=EC,∵EF=DE12DF =,∴四边形ADCF是平行四边形,∴AD∥CF,AD=CF,∴BD=CF,BD∥CF,∴四边形DBCF是平行四边形,∴FD=CB,FD∥CB,∴DE//BC,12DE BC=;(2)①∵BC⊥AC,∴∠ACB=90°,∵D为边AB的中点,∴AD=CD,∴四边形ADCF是菱形;②∵BC=AC,D为边AB的中点,∴CD⊥AB,∴∠ADC=90°,∴四边形ADCF是矩形;③当BC=AC,且BC⊥AC时,综上,四边形ADCF是正方形;故答案为:菱形,矩形,正方形.【点睛】本题考查了证明三角形中位线定理和特殊平行四边形的判定,解题关键是熟练运用平行四边形的判定定理和性质定理进行推理证明,熟记特殊平行四边形的判定.21.(1)见解析;(2)见解析【解析】【分析】(1)连接EF交MN于O,证△ADE≌△CBF(ASA),得DE=BF,再证DE∥BF,则四边形BEDF是平行四边形,得OE=OF,OB=OD,然后证OM=ON,即可得出结论;(2)由菱形的性质得EF ⊥MN ,由(1)得四边形BEDF 是平行四边形,即可得出结论.【详解】证明:(1)连接EF 交MN 于O ,∵四边形ABCD 是平行四边形,∴∠A=∠C ,AD=BC ,AD ∥BC ,∴∠ADB=∠DBC ,∵DE 平分∠ADB ,BF 平分∠DBC ,∴∠ADE=∠EDB=∠CBF=∠FBD ,在△ADE 和△CBF 中,A C AD BCADE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CBF (ASA ),∴DE=BF ,∵∠EDB=∠FBD ,∴DE ∥BF ,∴四边形BEDF 是平行四边形,∴OE=OF ,OB=OD ,∵BM=DN ,∴OB-BM=OD-DN ,即OM=ON ,∴四边形EMFN 是平行四边形;(2)∵四边形EMFN 是菱形,∴EF ⊥MN ,由(1)得:四边形BEDF 是平行四边形,∴平行四边形BEDF 是菱形.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的平对于性质等知识;熟练掌握菱形的判定与性质,证明△ADE ≌△CBF 是解题的关键,属于中考常考题型.22.(1)11y x =+,26y x=;(2)()2,3N ;(3)21a -<<-或3a >【解析】【分析】(1)根据点M (-3,-2)在反比例函数2ky x=的图象上,可求出反比例函数关系式,根据正方形的边长为2可得点C 的纵坐标为2,进而确定点C 的横坐标,确定OA 的长,确定点B 的坐标,利用待定系数法求出直线的关系式即可;(2根据E 为AD 的中点,可求出点N 的横坐标,再代入直线表达式,即可求解;(3)由两个函数的图象可知:当30x -<<或2x >时,不等式12y y >成立,再根据11a x a -≤≤+,,即可求出a 的取值范围.【详解】解:(1)把点()3,2M --代入2k y x=,得23k -=-,解得6k =,∴26y x=∵正方形ABCD 的边长为2,顶点C 在双曲线2ky x=上,∴可设点(),0A x ,则(),2B x ,(2,0)D x +,(2,2)C x +,把点(2,2)C x +代入26y x =,得622x =+解得1x =,∴点()1,2B .把()3,2M --和()1,2B 代入1y mx n =+,得322m n m n -+=-⎧⎨+=⎩,解得11m n =⎧⎨=⎩,即11y x =+;(2)由(2)知:OA=1,E 为AD 的中点,1AE ∴=,∴OE=2,当2x =时,1213y =+=,()2,3N ∴;(3)根据图象得:当30x -<<或2x >时,不等式12y y >成立,∵11a x a -≤≤+,∴当110a x a -≤≤+<时,有1310a a ->-⎧⎨+<⎩,即21a -<<-当011a x a <-≤≤+时,有12a ->,即3a >.∴a 的取值范围是21a -<<-或3a >.【点睛】本题考查反比例函数与一次函数的交点,求出交点坐标是解决问题的前提,掌握一次函数与反比例函数的交点坐标与不等式的解集之间的关系是正确解答的关键..23.(1)见解析;(2)∠BOD =80°,见解析【解析】【分析】(1)由平行四边形的性质得//AB DC ,AB CD =,再由BE AB =,得BE CD =,//BE CD ,即可得出结论;(2)由平行四边形的性质得出40BCD A ∠=∠=︒,再由三角形的外角性质求出ODC BCD ∠=∠,得出OC OD =,证出DE BC =,即可得出结论.【详解】(1)证明: 四边形ABCD 为平行四边形,//AB DC ∴,AB CD =,BE AB = ,BE CD ∴=,//BE CD ,∴四边形BECD 是平行四边形;(2)解:若40A ∠=︒,当80BOD ∠=︒时,四边形BECD 是矩形,理由如下:四边形ABCD 是平行四边形,40BCD A ∴∠=∠=︒,BOD BCD ODC ∠=∠+∠ ,804040ODC BCD ∴∠=︒-︒=︒=∠,OC OD ∴=,BO CO = ,OD OE =,DE BC ∴=,四边形BECD 是平行四边形,∴四边形BECD 是矩形.【点睛】本题主要考查了矩形的判定、平行四边形的判定与性质、等腰三角形的判定等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.24.(1)1y x =-+,ky x=;(2)0x >或1x <-;(3)(5,6)-或(3,2)-【解析】【分析】(1)由菱形的性质可知A 、D 关于x 轴对称,可求得A 点坐标,把A 点坐标分别代入两函数解析式可求得k 和m 值;(2)由(1)可知A 点坐标为(1,2),结合图象可知在A 点的下方时,反比例函数的值小于2,可求得x 的取值范围;(3)根据菱形的性质可求得C 点坐标,可求得菱形面积,设P 点坐标为(,1)a a +,根据条件可得到关于a 的方程,可求得P 点坐标.【详解】解:(1)如图,连接AD ,交x 轴于点E ,(1,2)D -- ,1OE ∴=,2DE =,四边形AODC 是菱形,2AE DE ∴==,1EC OE ==,(1,2)A ∴-,将(1,2)A -代入直线1y mx =+,得:12m -+=,解得:1m =-,将(1,2)A -代入反比例函数k y x=,得:21k=-,解得:2k =-;∴一次函数的解析式为1y x =-+;反比例函数的解析式为2y x=-;(2) 当1x =-时,反比例函数的值为2,∴当反比例函数图象在A 点下方时,对应的函数值小于2,x \的取值范围为:0x >或1x <-;(3)22OC OE == ,24AD DE ==,142OACD S OC AD ∴=⋅=菱形,12OAP OACDS S ∆=菱形,2OAP S ∆∴=,设P 点坐标为(,1)m m -+,AB 与y 轴相交于点F ,则(0,1)F ,1OF ∴=,111122OAF S ∆=⨯⨯= ,当P 在A 的左侧时,1111()2222OAP OFP OAF S S S m OF m ∆∆∆=-=-⋅-=--,11222m ∴--=,5m \=-,1516m -+=+=,(5,6)P ∴-,当P 在A 的右侧时,11112222OAP OFP OAF S S S m OF m ∆∆∆=+=⋅+=+,∴11222m +=,3m ∴=,12m -+=-,(3,2)P ∴-,综上所述,点P 的坐标为(5,6)-或(3,2)-.【点睛】本题为反比例函数的综合应用,主要考查了待定系数法求函数解析式、菱形的性质、三角形的面积及数形结合思想、分类讨论思想等,题目难度不大,但是属于中考常考题,熟练掌握反比例函数图像和性质及待定系数法等相关知识,并能够灵活运用方程思想、数形结合思想和分类讨论思想是解题关键.25.(1)80,100;(2)A 校,B 校;(3)SA 2=70,SB 2=160,A 校派出的代表队选手成绩较为稳定【解析】【分析】(1)根据条形图将B 校数据重新排列,再根据中位数和众数的概念求解即可;(2)从表中数据,利用平均数和中位数和众数的意义可得出答案,(3)计算出A 、B 两校成绩的方差,根据方差的意义可得答案.【详解】解:(1)将B 校5名选手的成绩重新排列为:70、75、80、100、100,所以其中位数a =80、众数b =100,故答案为:80,100;(2)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是A 校;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是B 校;故答案为:A 校,B 校;(3)2222221=[(7585)(8085)(8585)(8585)(10085)]5A S -+-+-+-+-=70,2222221=[(7085)(7585)(8085)(10085)(10085)]5B S -+-+-+-+-=160,∴22A B S S <.∴A 校派出的代表队选手成绩较为稳定.【点睛】本题考查了平均数,众数,中位数,方差,熟练掌握各统计量的定义和计算要求是解题的关键.。
华东师大版八年级下册数学期末练习试题(有答案)
2020-2021学年华东师大新版八年级下册数学期末练习试题一.选择题(共10小题,满分40分,每小题4分)1.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)2.化简的结果是()A.﹣x B.x C.x﹣1D.x+13.如图,▱AB CD的周长为36cm,△ABC的周长为28cm,则对角线AC的长为()A.28cm B.18cm C.10cm D.8cm4.分式方程=的解是()A.x=9B.x=7C.x=5D.x=﹣15.关于菱形,下列说法错误的是()A.对角线互相平分B.对角线互相垂直C.四条边相等D.对角线相等6.如图,矩形ABCD的对角线AC、BD交于点O.AC=4,∠AOD=120°,则BC的长为()A.4B.4C.2D.27.已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是()A.m≤﹣B.m≥﹣C.m<﹣D.m>8.如图,在▱ABC D中,E是CD上一点,BE=BC.若∠A:∠ADC=1:2,则∠ABE的度数是()A.70°B.65°C.60°D.55°9.如图,直线y=2x+1和y=kx+3相交于点A(m,),则不等式关于x的不等式kx+3≤2x+1的解集为()A.x≥B.x≥C.x≤D.x≤10.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C、D,若点D的横坐标为1,BE=3DE.则k的值为()A.B.3C.D.5二.填空题(共6小题,满分24分,每小题4分)11.当x=时,分式无意义.12.自然界中,花粉的质量很小,一粒某种植物花粉的质量约为0.000042毫克,0.000042用科学记数法表示为.13.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表,则这四人中发挥最稳定的是.选手甲乙丙丁方差(S2)0.0200.0190.0210.02214.如图是一张矩形纸片,E是AB的中点,把△BCE沿直线CE对折,使点B落在对角线BD上的点F处,AB=2,则CB=.15.如图,已知一条直线经过点A(﹣1,0),B(0,﹣2),将这条直线向右平移与x轴、y轴分别交于点C、D,若AB=AD,则直线CD的函数表达式为.16.如图,平面直角坐标系xOy中,正方形ABCO的顶点A,C分别在x轴和y轴的正半轴上,反比例函数y=(x>0)的图象分别与边BC,AB交于点D和点E,连接OD,EF ∥OD交OA于点F,若OF=2FA,且OD=k,则k的值为.三.解答题(共9小题,满分86分)17.计算:2﹣1+﹣(3﹣)0+||.18.先化简:,再从2,﹣2,3,﹣3中选一个合适的数作为a的值代入求值.19.某校九年级举行了主题为“珍惜海洋资源”的知识竞赛活动,为了了解全年级500名学生此次参加竞赛的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图.组别分数(分)频数A60≤x<70aB70≤x<8010C80≤x<9014D90≤x<10018(1)求a的值;(2)所抽取的参赛学生成绩的中位数落在哪个组别?(3)估计该校九年级竞赛成绩达到80分及以上的学生有多少人?20.甲、乙两人做某种机械零件.(1)已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求甲、乙每小时各做零件多少个.(2)已知甲计划做零件60个,乙计划做零件100个,甲、乙的速度比为3:4,结果甲比乙提前20分钟完成任务,则甲每小时做零件个,乙每小时做零件个.21.如图,▱AB CD的对角线AC,BD相交于点O,且AB=13,AC=24,BD=10.求证:▱ABC D是菱形.22.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.23.在正方形ABCD中,点P是射线CB上一个动点.连接PA,PD,点M,N分别为BC,AP的中点,连接MN交PD于点Q.(1)如图1,当点P在线段CB的延长线上时,请判断△QPM的形状,并说明理由.(2)如图2,正方形的边长为4,点P'与点P关于直线AB对称,且点P'在线段BC上.连接AP',若点Q恰好在直线AP'上,求P'M的长.24.为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)学校共有几种租车方案?最少租车费用是多少?25.如图1,四边形ABCD是矩形,点P是对角线AC上的一个动点(不与A、C重合),过点P作PE⊥CD于点E,连接PB,已知AD=3,AB=4,设AP=m.(1)当m=1时,求PE的长;(2)连接BE,试问点P在运动的过程中,能否使得△PAB≌△PEB?请说明理由;(3)如图2,过点P作PF⊥PB交CD边于点F,设CF=n,试判断5m+4n的值是否发生变化,若不变,请求出它的值;若变化,请说明理由.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵点P位于第二象限,∴点的横坐标为负数,纵坐标为正数,∵点距离x轴5个单位长度,距离y轴3个单位长度,∴点的坐标为(﹣3,5).故选:D.2.解:原式===x,故选:B.3.解:∵▱ABC D的周长是36cm,∴AB+AD=18m,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)﹣(AB+AC)=28﹣18=10(cm).故选:C.4.解:去分母得:2(x﹣2)=x+5,去括号得:2x﹣4=x+5,解得:x=9,经检验x=9是分式方程的解.故选:A.5.解:∵菱形的性质有四边相等,对角线互相垂直平分,∴对角线相等不是菱形的性质,故选:D.6.解:如图,∵矩形ABCD的对角线AC,BD交于点O,AC=4,∴OA=OB=AC=2,又∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=2.∴在直角△ABC中,∠ABC=90°,AB=2,AC=4,∴BC===2故选:C.7.解:函数值y随自变量x的增大而减小,那么1+2m<0,解得m<﹣.故选:C.8.解:∵四边形ABCD是平行四边形,∴∠A+∠ADC=180°,∠A=∠C,∵∠A:∠ADC=1:2,∴∠A=60°,∠ADC=120°,∴∠C=60°,∵BE=BC,∴△BCE是等边三角形,∴∠BEC=60°,∵DC∥AB,∴∠BEC=∠ABE,∴∠ABE=60°,故选:C.9.解:∵直线y=2x+1和y=kx+3相交于点A(m,),∴=2m+1,解得m=,∴A(,),由函数图象可知,当x≥时,直线y=2x+1的图象不在直线y=kx+3的图象的下方,∵当x≥时,kx+3≤2x+1.故选:B.10.解:过点D作DF⊥BC于F,∵AD⊥y轴,四边形ABCD是菱形,∴AD∥BC,DC=BC,∴四边形BEDF是矩形,∴DF=BE,BF=DE=1,∵BE=3DE,∴DF=BE=3,设CD=CB=a,∴CF=a﹣1,∵CD2=DF2+CF2,∴a2=32+(a﹣1)2,∴a=5设点C(5,m),点D(1,m+3)∵反比例函数y=图象过点C,D∴5m=1×(m+3)∴m=,∴点C(5,)∴k=5×=故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:由题意得,2x+5=0,解得,x=﹣,故答案为:﹣.12.解:0.000042=4.2×10﹣5.故答案为:4.2×10﹣5.13.解:∵这四人中乙的方差最小,∴这四人中发挥最稳定的是乙,故答案为:乙.14.解:如图,DB与CE交于点O,∵把△BCE沿直线CE对折,使点B落在对角线BD上的点F处,∴CE⊥BF,∴∠COD=90°,∵四边形ABCD是矩形,∴∠DCB=∠ABC=90°,AB=DC=2,∴∠DCE+∠CDB=∠DCE+∠ECB=90°,∴∠CDB=∠ECB,∴△DCB∽△CBE,∴,设CB=x,∵E是AB的中点,∴BE=1,∴,∴x=(负值舍去),故答案为:.15.解:设直线AB的解析式为y=kx+b(k≠0),∵点A(﹣1,0)点B(0,﹣2)在直线AB上,∴,解得,∴直线AB的解析式为y=﹣2x﹣2,∵AB=AD,AO⊥BD,∴OD=OB,∴D(0,2),∴直线CD的函数解析式为:y=﹣2x+2,故答案为:y=﹣2x+2.16.解:FA=a,则OF=2a,则正方形ABCO的边长为3a,∴点B的坐标为(3a,3a),则CD==,故点D的坐标为(,3a),设直线OD的表达式为y=mx,则3a=m,解得m=,故直线OD的表达式为y=x,∵EF∥OD且直线EF过点F(2a,0),则直线EF的表达式为y=(x﹣2a),则当x=3a时,y=(x﹣2a)=,故点E的坐标为(3a,),∵点E、D均在函数图象上,∴k=×3a=3a×,解得k=,故答案为.三.解答题(共9小题,满分86分)17.解:2﹣1+﹣(3﹣)0+||=+4﹣1+=3+.18.解:原式=÷(﹣)=•=﹣,∵a﹣2≠0,a﹣3≠0,a+3≠0,∴a≠2,a≠±3,∴当a=﹣2时,原式=﹣=﹣.19.解:(1)本次调查一共随机抽取的学生有18÷36%=50(人),则a=50×16%=8;(2)所抽取的学生成绩按从小到大的顺序排列,第25、26个数据都在C组,则中位数落在C组;(3)500×=320(人),所以该校九年级竞赛成绩达到80分以上(含80分)的学生约有320人.20.解:(1)设乙每小时做x个,则甲每小时做(x+6)个,甲做90个所用的时间为,乙做60个所用的时间为;根据题意列方程为:,解得:x=12,经检验:x=12是原分式方程的解,且符合题意,则x+6=18.答:甲每小时做18个,乙每小时做12个.(2)设甲每小时做3x个零件,则乙每小时做4x个零件,根据题意得,,解得:x=15,经检验:x=15是原分式方程的解,且符合题意,则3×15=45,4×15=60.答:甲每小时做45个,乙每小时做60个,故答案为:45;6021.证明:∵四边形ABCD是平行四边形,∴OA=AC=12,OB=BD=5,∵OA2+OB2=122+52=169,AB2=132=169,∴OA2+OB2=AB2,∴∠AOB=90°,∴AC⊥BD,∴▱A BCD是菱形.22.解:(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),即轿车到达乙地时,货车与甲地的距离是270千米;(2)设线段CD对应的函数表达式是y=kx+b,∵点C(2.5,80),点D(4.5,300),∴,解得,即线段CD对应的函数表达式是y=110x﹣195(2.5≤x≤4.5);(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70,∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得,线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得x1=3.6,x2=4.2,∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米,答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.23.解:(1)△QPM是等腰三角形,理由如下:延长BC至E,使CE=BP,连接AE,∵PB=CE,∴PB+BC=CE+BC,∴CP=BE,∵四边形ABCD是正方形,∴AB=CD,∠ABC=∠DCB=90°,在△DCP和△ABE中,∴△DCP≌△ABE(SAS)∴∠DPC=∠AEB,∵M是BC的中点,∴MB=MC,∴MB+BP=MC+CE,∴MP=ME,∴M是PE的中点,又∵N是AP的中点,∴MN∥AE,∴∠PMN=∠AEB,∴∠PMN=∠DPC,∴QP=QM,∴△QPM是等腰三角形;(2)延长BC至E,使CE=BP,连接AE,∵M是BC的中点,BC=4,∴BM=CM=2,又∵BP=CE,∴BM+BP=CM+CE,即PM=ME,∴M是PE的中点,且点N是AP中点,∵QM∥AE,∴,又∵AD∥BC,∴△PQP′∽△DQA,∴,∴,设BP=BP′=CE=x,P′M=2﹣x,ME=2+x即:解之得:(舍去)则24.解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:,答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:,∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.25.解:(1)连接BE,由已知:在Rt△ADC中,AC=,当AP=m=1时,PC=AC﹣AP=5﹣1=4,∵PE⊥CD,∴∠PEC=∠ADC=90°,∵∠ACD=∠PCE,∴△ACD∽△PCE,∴,即,∴PE=;(2)如图1,当△PAB≌△PEB时,∴PA=PE,∵AP=m,则PC=5﹣m,由(1)得:△ACD∽△PCE,∴,∴PE=,由PA=PE,即,解得:m=,∴EC=,∴BE=,∴△PAB与△PEB不全等,∴不能使得△PAB≌△PEB;(3)如图2,延长EP交AB于G,∵BP⊥PF,∴∠BPF=90°,∴∠EPF+∠BPG=90°,∵EG⊥AB,∴∠PGB=90°,∴∠BPG+∠PBG=90°,∴∠PBG=∠EPF,∵∠PEF=∠PGB=90°,∴△BPG∽△PFE,∴,由(1)得:△PCE∽△ACD,PE=,∴,即,∴EC=,∴BG=EC=,∴,∴5m+4n=16.。
华东师大版数学八年级下册全册练习题(含答案)
2.分式的基本性质1.下列运算正确的是( D )(A)=- (B)=(C)=x+y (D)=-2.下列分式中是最简分式的是( A )(A)(B)(C)(D)3.若将分式中的x,y都扩大到原来的3倍,则分式的值( A )(A)不变 (B)扩大3倍(C)扩大6倍 (D)缩小到原来的4.(整体求解思想)(2018新乡一中月考)若y2-7y+12=0,则分式的值是( B )(A)1 (B)-1 (C)13 (D)-135.若=2,=6,则= 12 .6.若梯形的面积是(x+y)2(x>0,y>0),上底是2x(x>0),下底是2y(y>0),高是z(z>0),则z=x+y .7.化简:= x-y+1 .8.(辅助未知数法)若==≠0,则= .9.不改变分式的符号,使分式的分子、分母最高次项的系数为正数.解:==.10.通分:(1),,;(2),.解:(1),,的最简公分母为12x3y4z,所以==,==,==.(2),的最简公分母为x(x-y)(x+y),所以==,==.11.(拓展探究)不改变分式的值,把分式中分子、分母的各项系数化为整数,然后选择一个你喜欢的整数代入求值.解:==.因为6x-5≠0,所以x≠.所以当x=0时,原式==-.12.(一题多解)已知=3,求的值.解:法一分子、分母的每一项除以y2,得===.法二已知=3,得x=3y,代入得====.16.2 分式的运算1.分式的乘除1.若分式(-)2与另一个分式的商是2x6y,则另一个分式是( B )(A)- (B)(C)(D)-2.计算:的结果为( A )(A)1 (B)(C) (D)03.如果x等于它的倒数,那么÷的值是( A )(A)1 (B)-2(C)-3 (D)2或-34.计算()2·()3÷(-)4得( A )(A)x5 (B)x5y (C)y5 (D)x155.化简:÷= .6.(2018洛阳伊川期末)若·△=,则△表示的代数式是-.7.学习分式的乘除时,李老师在黑板上写出这样一道题目:若分式没有意义,则÷()2·的值是-.8.化简下列各式:(1)÷;(2) ÷(x+3)·;(3)·÷(-ab4).解:(1)原式=÷=×=.(2)原式=··=-.(3)原式=··=.9.已知a=b+2 018,求代数式·÷的值.解:原式=××(a-b)(a+b)=2(a-b),因为a=b+2 018,所以a-b=2 018,所以原式=2×2 018=4 036.10.(拓展探究)若=x-,化简:(x+)(x2+)(x4+)(x8+)(x16+) (x2-1). 解:因为=x-,所以原式=[(x-)(x+)(x2+)(x4+)(x8+)(x16+)](x2-1)÷=[(x2-)(x2+)(x4+)(x8+)(x16+)](x2-1)÷=[(x4-)(x4+)(x8+)(x16+)](x2-1)÷=[(x8-)(x8+)(x16+)](x2-1)÷=[(x16-)(x16+)](x2-1)÷=(x32-)(x2-1)·=(x32-)·x=x33-.11.(拓展探究)(1)计算:(a-b)(a2+ab+b2);(2)利用所学知识以及(1)所得等式,化简代数式÷. 解:(1)原式=a3+a2b+ab2-a2b-ab2-b3=a3-b3.(2)原式=·=m+n.2.分式的加减第1课时分式的加减1.若-β=,则β等于( D )(A)(B)(C)(D)2.计算++的结果为( D )(A)(B)(C)(D)3.化简-等于( B )(A)(B)(C)-(D)-4.化简:+的结果是a-b .5.化简:-+1=x .6.若=+,则A= 3 ,B= 6 .7.计算:(1)-;(2)-+;(3)+.解:(1)-=+===.(2)-+=-+====.(3)+=-=-===-.8.(2018广州)已知T=+.(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值. 解:(1)T=+=+====.(2)因为正方形ABCD的边长为a,面积为9,所以a2=9,所以a=3(负值已舍去),所以T==.9.(规律探索题)(2018安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,…按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.解:(1)++×=1.(2)++·=1.证明如下:因为左边=++·===1,右边=1,所以左边=右边,所以等式成立.所以第n个等式为++·=1.第2课时分式的混合运算1.化简:(-)·(x-3)的结果是( B )(A)2 (B)(C) (D)2.计算:(1+)÷(1+)的结果是( C )(A)1 (B)a+1(C)(D)3.当x=6,y=3时,代数式(+)·的值是( C )(A)2 (B)3 (C)6 (D)94.化简(y-)÷(x-)的结果是( D )(A)- (B)-(C)(D)5.若x=-1,则÷-2+x的值是0 .6.化简:·÷+= .7.(整体求解法)若x+=2,则(x2+2+)·(x2-)÷(x-)+2 019的值是 2 027 .8.化简:(+)÷.解:(+)÷=·=·=.9.先化简:·+,再在-3,-1,0,,2中选择一个合适的x值代入求值. 解:·+=·+=+===x,为使原分式有意义x≠-3,0,2,所以x只能取-1或.当x=-1时,原式=-1.或当x=时,原式=.(选择其中一个即可)10.(分类讨论题)若a的立方等于它的本身,求(+)÷·的值. 解:原式=÷·=·(a+2)(a-2)·=a3.因为a的立方等于它的本身,所以a=0或1或-1.所以当a=0时,原式=03=0;当a=1时,原式=13=1;当a=-1时,原式=(-1)3=-1.所以(+)÷·的值是0或1或-1.11.(拓展题)(2018德州)先化简,再求值:÷-(+1),其中x是不等式组的整数解.解:原式=·-(+)=-=.因为不等式组的解集是3<x<5,所以不等式组的整数解是x=4.所以当x=4时,原式==.16.3 可化为一元一次方程的分式方程第1课时分式方程及解法1.(2018德州)分式方程-1=的解为( D )(A)x=1 (B)x=2 (C)x=-1 (D)无解2.若方程=+的解为x=15,则?表示的数为( C )(A)7 (B)5 (C)3 (D)13.对于非零的实数a,b,规定a⊕b=-.若2⊕(2x-1)=1,则x等于( D )(A)5 (B)6 (C) (D)4.关于x的方程=2+无解,则m的值为( A )(A)-5 (B)-8 (C)-2 (D)55.若关于x的方程+=3的解为正数,则m的取值范围是( B )(A)m<(B)m<且m≠(C)m>-(D)m>-且m≠-6.有四个方程为-=1,=2,()2=+-1,+6=.其中分式方程有 1 个.7.(2018潍坊)当m= 2 时,解分式方程=会出现增根.8.解分式方程:+=4.解:方程两边同乘(x-1),得x-2=4(x-1),整理得-3x=-2,解得x=,经检验x=是原方程的解,故原方程的解为x=.9.若|a-1|+(b+2)2=0,求方程+=1的解.解:因为|a-1|+(b+2)2=0,所以a-1=0,b+2=0.所以a=1,b=-2.把a=1,b=-2代入方程,得-=1.解得x=-1.经检验x=-1是原方程的解.所以原方程的解是x=-1.10.(拓展题)若分式无意义,则当-=0时,m= .11.(归纳猜想思想)已知方程x-=1的解是x1=2,x2=-;x-=2的解是x1=3,x2=-;x-=3的解是x1=4,x2=-;x-=4的解是x1=5,x2=-.问题:(1)观察上述方程及其解,再猜想x-=n+(n为正整数)的解(不要求证明);(2)写出方程x-=10的解并且验证你写的解是否正确.解:(1)x1=n+1,x2=-.(2)x1=11,x2=-.验证:当x=11时,左边=11-=10=右边;当x=-时,左边=-+11=10=右边.所以x1=11,x2=-都是原方程的解.第2课时分式方程的应用1.某市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是( A )(A)-=5 (B)-=5(C)+5=(D)-=52.(2018衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( A )(A)-=10 (B)-=10(C)-=10 (D)+=103.(2018嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意可列出方程=(1-10%) .4.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程: =.5.已知A,B两地相距160 km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4 h到达,这辆汽车原来的速度是80 km/h.6.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是 6 .7.某校学生利用双休时间去距学校10 km的炎帝故里参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.解:设骑车学生的速度为x km/h,汽车的速度为2x km/h,根据题意得=+,解得x=15,经检验x=15是原方程的解,所以2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15 km/h,30 km/h.8.(2018威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件.根据题意,得-=+.解得x=60.经检验x=60是原方程的解.所以(1+)x=80.答:软件升级后每小时生产80个零件.9.(拓展题)某市在道路改造过程中,需要铺设一条长为1 000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求甲工程队完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的分配方案是什么?(甲、乙两工程队完成的天数均为整数)解:(1)设甲工程队每天能铺设x米,则乙工程队每天能铺设(x-20)米.根据题意,得=,解得x=70.经检验x=70是原方程的解,所以x-20=70-20=50.答:甲、乙工程队每天分别能铺设70米和50米.(2)设分配给甲工程队y米,则分配给乙工程队(1 000-y)米.所以甲工程队完成该项工程的工期为天,乙工程队完成该项工程的工期为天,根据题意,得≤10,解得y≤700.因为y是以百米为单位,所以y=100,200,300,400,500,600,700.所以1 000-y=900,800,700,600,500,400,300.因为甲、乙两工程队完成的天数均为整数,所以y=700.所以1 000-y=300.答:分配给甲工程队700米,分配给乙工程队300米.10.(分类讨论)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.解:(1)设这种笔单价为x元,则本子单价为(x-4)元,由题意得=,解得x=10,经检验x=10是原分式方程的解,则x-4=6.答:这种笔单价为10元,则本子单价为6元.(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得10m+6n=100,整理得m=10-n,因为m,n都是正整数,所以①n=5时,m=7,②n=10时,m=4,③n=15,m=1.所以有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.16.4 零指数幂与负整数指数幂1.零指数幂与负整数指数幂2.科学记数法1.下列计算正确的是( D )(A)(-1)0=-1 (B)(-1)-1=1(C)3m-2= (D)(-a)÷(-a)3=2.计算:-()2+(+π)0+(-)-2的结果是( D )(A)1 (B)2 (C)(D)33.(2018洛阳伊川模拟)某种流感病毒的直径约为0.000 000 08 m,若把0.000 000 08用科学记数法表示为8×10n,则n的值是( A )(A)-8 (B)-7 (C)-6 (D)-54.计算:|-5|+()-1-2 0170的结果是( B )(A)5 (B)6 (C)7 (D)85.某颗粒物的直径是0.000 002 5米,把0.000 002 5用科学记数法表示为 2.5×10-6.6.(2018泰安)一个铁原子的质量是0.000 000 000 000 000 000 000 000 093 kg,将这个数据用科学记数法表示为9.3×10-26kg.7.计算:|1-|+()0= .8.若(3x-15)0+8有意义,则x的取值范围是x≠5 .9.用科学记数法表示:(1)0.000 03;(2)-0.000 006 4;(3)0.000 031 4.解:(1)0.000 03=3×10-5.(2)-0.000 006 4=-6.4×10-6.(3)0.000 031 4=3.14×10-5.10.若52x-1=1,3y=,求x y的值.解:因为52x-1=1,3y=,所以52x-1=50,3y=3-3.所以2x-1=0,y=-3,所以x=,所以x y=()-3==8.11.计算:(1)|-1|-+(π-3)0+2-2;(2)(-1)2 017+(-)-2×-|-2|.解:(1)原式=1-+1+=1-2+1+=.(2)原式=-1+4×1-2=-1+4-2=1.12.(易错题)计算的结果是( B )(A)(B)(C)(2a-1)b (D)(2a-1)b313.(规律探究题)(1)通过计算比较下列各式中两数的大小:(填“>”“<”或“=”)①1-2> 2-1,②2-3> 3-2,③3-4< 4-3,④4-5< 5-4,…;(2)由(1)可以猜测n-(n+1)与(n+1)-n (n为正整数)的大小关系:当n ≤2 时,n-(n+1)>(n+1)-n;当n >2 时,n-(n+1)<(n+1)-n.第17章函数及其图象17.1 变量与函数1.(2018洛阳伊川期末)在函数y=+(9x-81)-1中,自变量x的取值范围是( D )(A)x≠1 (B)x≠-5(C)x≠9 (D)x≠-5且x≠92.下列说法正确的是( D )(A)在球的体积公式V=πr3中,V不是r的函数(B)若变量x,y满足y2=x,则y是x的函数(C)在圆锥的体积公式V=πR2h中,当h=4厘米,R=2厘米时,V是π的函数(D)变量x,y满足y=-x+,则y是x的函数3.某地的地面温度为21 ℃,如果高度每升高1千米,气温下降6 ℃,则气温T(℃)与高度h(千米)之间的表达式为( A )(A)T=21-6h (B)T=6h-21(C)T=21+6h (D)T=(21-6)h4.下列曲线中不能表示y是x的函数的是( C )5.(2018灵宝期中)若等腰△ABC的周长是36,则底边y与腰长x之间的函数表达式是y=36-2x ,其中自变量x的取值范围是9<x<18 .6.根据如图所示程序计算函数值,若输入的x的值为-1,则输出的函数值为 1 .7.下面的表格列出了一个实验的统计数据(单位:厘米),表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,则能表示这种关系的式子是b= d .d 50 80 100 150b 25 40 50 758.图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则y 与n之间的函数表达式为y= 4n .9.分别指出下列表达式中的变量与常量.(1)三角形的一边长为8,它的面积S与这条边上的高h之间满足表达式S=4h;(2)圆的半径r与该圆的面积S之间满足表达式S=πr2.解:(1)变量为S与h,常量为4.(2)变量为S和r,常量为π.10.求下列函数中自变量x的取值范围.(1)y=-8x;(2)y=-x+10;(3)y=x2+2x-3;(4)y=.解:(1)自变量x的取值范围是全体实数.(2)自变量x的取值范围是全体实数.(3)自变量x的取值范围是全体实数.(4)因为11x-88≠0,所以x≠8.所以自变量x的取值范围是x≠8.11.某市出租车价格是这样规定的:不超过2.5千米,付车费8元,超过的部分按每千米2.5元收费.已知某人乘坐出租车行驶了x(x>2.5)千米,付车费y元,请写出出租车行驶的路程x(千米)与所付车费y(元)之间的表达式.解:根据题意可知所付车费为y=8+2.5×(x-2.5)=2.5x+1.75(其中x>2.5).12.一辆汽车的油箱中现有汽油49升,如果不再加油,那么油箱中的油量y(单位:升)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.07升/千米.(1)写出y与x之间的函数关系式;(2)求自变量x的取值范围;(3)汽车行驶200千米时,油箱中还有多少汽油?解:(1)根据题意,得每行驶x千米,耗油0.07x,即总油量减少0.07x,则油箱中的油剩下49-0.07x,所以y与x的函数关系式为y=49-0.07x.(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.07x,不能超过油箱中现有汽油量的值49,即0.07x≤49,解得x≤700.综上所述,自变量x的取值范围是0≤x≤700.(3)当x=200时,代入x,y的函数关系式得,y=49-0.07×200=35.所以汽车行驶200千米时,油箱中还有35升汽油.13.(分类讨论)已知两个变量x,y满足关系2x-3y+1=0,试问:(1)y是x的函数吗?(2)x是y的函数吗?若是,写出y与x的表达式,若不是,说明理由.解:(1)由2x-3y+1=0,得y=,因为对于x的每一个取值,y都有唯一确定的值,所以y是x的函数.(2)由2x-3y+1=0,得x=,因为对于y的每一个取值,x都有唯一确定的值,所以x是y的函数.14.(拓展探究题)用火柴棒按如图所示的方式搭一行三角形,搭1个三角形需3根火柴棒,搭2个三角形需5根火柴棒,搭3个三角形需7根火柴棒,照这样的规律搭下去,搭n个三角形需要y根火柴棒.(1)求y关于n之间的函数表达式;(2)当n=2 019时,求y的值;(3)当y=2 021时,求n的值.解:(1)因为3=2×1+1,5=2×2+1,7=2×3+1,…,所以y与n之间的函数表达式为y=2n+1.(2)当n=2 019时,y=2×2 019+1=4 039.(3)当y=2 021时,2n+1=2 021.所以n=1 010.17.2 函数的图象1.平面直角坐标系1.如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标为( D )(A)(2,1) (B)(1,2)(C)(-1,2) (D)(-1,3)2.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在( D )(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.(2018洛阳栾川期末)若|3-x|+|y-2|=0,则点(x y,y x)在( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限4.已知点M(1-2m,m-1)在第四象限,则m的取值范围在数轴上表示正确的是( B )5.若点P的坐标是(8,6),则坐标原点O到点P的距离是10 .6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(a,b),则a与b的数量关系为a+b=0 .7.若21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,且22 017的个位数字是a,22 018的个位数字是b,22 019的个位数字是c,22 020的个位数字是d,则点A(a-b,c-d)在第二象限.8.已知点P(x,y)位于第二象限,并且y≤x+4,x,y为整数,写出一个符合上述条件的点P的坐标: (-1,3)或(-1,2)或(-1,1)或(-2,1)或(-2,2)或(-3,1) .9.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,求“距离坐标”是(2,1)的点的个数,并画出草图.解:到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个,如图所示.10.在一次“寻宝”游戏中,寻宝人已经找到了坐标分别为(3,2)和(3,-2)的两个标点A,B,并且知道藏宝地点C的坐标为(4,4),除此之外不知道其他信息,如何确定平面直角坐标系并找到“宝藏”(即在图中先正确画出平面直角坐标系,再描出点C的位置)?解:根据题意,建立如图所示的坐标系,点C的位置就是宝藏的位置.11.(探索规律)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是(5,0) .2.函数的图象1.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( D )2.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OA BC为折线),这个容器的形状可以是( D )3.一支蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列4幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( C )4.(2018渑池模拟)星期天晚饭后,小红从家里出去散步,如图是描述她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象信息,则描述符合小红散步情景的是( B )(A)从家出发,到了一个公共阅报栏,看了一会儿报就回家了(B)从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了(C)从家出发,一直散步,然后回家了(D)从家出发,散了一会儿步,就找同学去,18分钟后才开始返回5.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量x的取值范围是4<x≤6 .6.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,请你观察:(1)这是一次100 米赛跑;(2)甲、乙两人先到达终点的是甲;(3)在这次赛跑中乙的速度是8米/秒.7.在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是①②④.8.星期天,小明与小刚骑自行车去距家15千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在如图的平面直角坐标系中,画出符合他们行驶的路程s(千米)与行驶时间t(时)之间的函数图象.解:由题意可知,2.5个小时走完全程15千米,所以1.5小时走了9千米,休息0.5小时后1小时走了6千米,由此作图即可.9.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分)的关系(从小强开始爬山时计时),看图回答下列问题:(1)小强让爷爷先爬了多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)图中两条线段的交点表示什么意思?(4)直角坐标系中的横轴和纵轴上的单位长度取的不一致,这对问题的结论有影响吗?允许这样做吗?解:(1)小强让爷爷先爬了60米.(2)山顶离山脚的距离有300米,小强先爬上山顶.(3)图中两条线段的交点表示小强出发8分钟时,小强赶上爷爷,并且都爬了240米.(4)直角坐标系中的横轴和纵轴上的单位长度取的不一致,对问题结论没有影响,可以这样做.10.拖拉机开始工作时,油箱中有油30升,每小时耗油5升.(1)写出油箱中剩余油量Q(升)与工作时间t(时)之间的函数表达式;(2)写出自变量t的取值范围;(3)画出函数的图象.解:(1)所求的函数表达式是Q=-5t+30.(2)自变量t的取值范围是0≤t≤6.(3)①列表:t 0 2 4 6Q 30 20 10 0②描点并连线,函数图象如图所示.11.(拓展探究)如图①,点G是BC的中点,点H在AF上,动点P以每秒2 cm的速度沿图①的边线运动,运动路径为G-C-D-E-F-H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图②,若AB=6 cm,则下列四个结论中正确的个数为( D )(1)图①中的BC长是8 cm;(2)图②中的M点表示第4秒时y的值为24 cm2;(3)图①中的CD长是4 cm;(4)图②中的N点表示第12秒时y的值为18 cm2.(A)1个(B)2个(C)3个(D)4个12.(实际应用)汽车的速度随时间变化的情况如图所示:(1)这辆汽车的最高时速是多少?(2)汽车在行驶了多长时间后停了下来,停了多长时间?(3)汽车在第一次匀速行驶时共用了几分钟?速度是多少?在这段时间内,它走了多远?解:(1)这辆汽车的最高时速是120千米/时.(2)汽车在行驶了10分钟后停了下来,停了2分钟.(3)汽车在第一次匀速行驶时共用了4分钟,速度是90千米/时,在这段时间内,它走了90×=6千米.17.3 一次函数1.一次函数1.(2018洛阳实验中学月考)若长方形的周长是y,长是2x,宽比长少1,则y与x的函数表达式是( D )(A)y=2x (B)y=2x-1(C)y=2x-2 (D)y=8x-22.(2018郑州一中月考)有下列四个式子:①y-2x2=0;②y+9x=0;③6y=60-2x;④xy-18=0;⑤x-y=0.其中y是x的一次函数的有( B )(A)2个(B)3个(C)4个(D)5个3.用同样规格的黑白两种颜色的正方形瓷砖按如图所示的方式铺地板,设自左向右第x个图形中需要黑色瓷砖y块,则y与x之间的函数表达式是( D )(A)y=x2(B)y=2x+1(C)y=x+3 (D)y=3x+14.函数,一次函数和正比例函数之间的包含关系是( A )5.当m= -1 时,y=(m-1)x m+2是正比例函数.6.某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶超过3千米的部分,按每千米 1.60 元计费.则出租车收费y(元)与行驶路程x(千米)之间的函数表达式是y=.7.如图是由若干盆花组成的形如三角形的图案,每条边有n(n>1)盆花,每个图案中花盆的总数是S,按此规律,则S与n的函数关系式是S=3n-3 .8.从地面到高空11千米之间,气温随高度的升高而下降,每升高1千米,气温下降6 ℃.已知某处地面气温为23 ℃,设该处离地面x千米(0≤x≤11)处的气温为y ℃,则y与x的函数表达式是y=23-6x (0≤x≤11) .9.某用煤单位有煤m吨,每天烧煤n吨,现已知烧煤3天后余煤102吨,烧煤8天后余煤72吨.(1)求m和n的值,并求该单位余煤量y(吨)与烧煤天数x(天)之间的函数表达式;(2)当烧煤12天后,还余煤多少吨?解:(1)由题意,得解得即m=120,n=6.余煤量y吨与烧煤天数x的函数表达式为y=120-6x.(2)当x=12时,y=120-6×12=48.即当烧煤12天后,还余煤48吨.10.水是人类的生命之源,节约用水,人人有责.据测试:拧不紧的水龙头每秒钟会滴下两滴水,每滴水约0.05毫升.小明在洗手时,没有把水龙头拧紧,当小明离开x小时后水龙头滴了y 毫升水.(1)说明y与x之间的关系;(2)当滴了1 620毫升水时,小明离开水龙头多少小时?解:(1)水龙头每秒钟会滴下两滴水,每滴水约0.05毫升,所以离开x小时滴的水为3 600×2×0.05x毫升,所以y=360x(x≥0).所以y与x之间是正比例函数的关系.(2)当y=1 620时,有360x=1 620,解得x=4.5.所以当滴了1 620毫升水时,小明离开水龙头4.5小时.11.(图表信息题)某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升.(1)完成下表:汽车行驶0 50 100 150 200 300路程x/千米油箱剩余油量y/升(2)写出x与y之间的关系.解:(1)填表:汽车行驶0 50 100 150 200 300路程x/千米油箱剩余100 91 82 73 64 46 油量y/升(2)x与y之间的关系为y=100-0.18x.12.(分类讨论题)新学期开始,小明用的练习本可在甲、乙两个商店内买到,已知两个商店的标价都是每本练习本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是:从第1本开始就按标价的85%出售.(1)小明要买20本练习本,到哪个商店购买较省钱?(2)写出甲、乙两个商店中,收款y(元)关于购买本数x(本)(x>10)的表达式,它们都是正比例函数吗?(3)小明现有24元钱,最多可买多少本练习本?解:(1)甲店:10+10×0.7=17(元),乙店:20×0.85=17(元),所以到两个商店一样.(2)甲店:y=10+0.7×(x-10),即y=0.7x+3(x>10),不是正比例函数;乙店:y=0.85x,是正比例函数.(3)因为24元钱到甲店,24=0.7x+3,解得x=30(本);24元钱到乙店,24=0.85x,解得x≈28(本),所以到甲店买,最多可买30本练习本.2.一次函数的图象1.已知坐标平面上,一次函数y=3x+a的图象经过点(0,-4),其中a为一常数,则a的值为( B )(A)-12 (B)-4(C)4 (D)122.把直线y=2x-1向左平移1个单位,平移后直线的表达式为( B )(A)y=2x-2 (B)y=2x+1(C)y=2x (D)y=2x+23.如图所示的计算程序中,y与x之间的函数关系所对应的图象是( C )4.(2018滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x-[x]的图象为( A )5.如图,在△ABC中,点O是△ABC的角平分线的交点,过点O作EF∥BC分别交AB,AC于点E,F,已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( B )6.若点P(-3,-4)在直线y=kx-8上,则直线y=kx-8与x轴的交点坐标是(-6,0) .7.在平面直角坐标系xOy中,点A,B的坐标分别为(3,m),(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为m-6≤b≤m-4 (用含m的代数式表示).8.画出y=2x与y=2x+3的图象,根据图象的特点,说明两者的联系.解:如图所示,从形状看:将y=2x的图象向上平移3个单位可得y=2x+3的图象.9.在直角坐标系中,求原点O到直线y=-x+5的距离.解:如图,因为当x=0时,y=5,所以直线y=-x+5与y轴的交点A的坐标是(0,5).因为当y=0时,-x+5=0,所以x=12,所以直线y=-x+5与x轴的交点B的坐标是(12,0),所以OA=5,OB=12,所以AB==13.作OC⊥AB于点C,所以×13×OC=×5×12,所以OC=.所以原点O到直线y=-x+5的距离是.10.画出函数y=x-3的图象,求出与x轴、y轴的交点坐标及这条直线与两坐标轴围成的三角形的面积.解:当y=0时,x=2,所以直线与x轴的交点坐标是A(2,0),当x=0时,y= -3,所以直线与y轴的交点坐标是B(0,-3).所以S△OAB=OA·OB=×2×3=3.11.(探究题)已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数表达式;(2)画出函数的图象.解:(1)因为y+2与x成正比例,所以设y+2=kx(k是常数,且k≠0),当x=-2时,y=0,所以0+2=k·(-2),解得k=-1.所以函数表达式为y+2=-x,即y=-x-2.(2)列表如下:x 0 -2y -2 0描点、连线,画图,如图所示.3.一次函数的性质1.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( A )(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是( D )(A)a+b<0 (B)a-b>0(C)ab>0 (D)<03.(2018汝州期末)在同一坐标系中,正比例函数y=kx与一次函数y=x-k的图象大致应为( B )4.关于直线l:y=kx+k(k≠0),下列说法不正确的是( D )(A)点(0,k)在l上(B)l经过定点(-1,0)(C)当k>0时,y随x的增大而增大(D)l经过第一、二、三象限5.(2018安阳模拟)若y是关于x的一次函数为y=(k+1)+k,且y随x的增大而减小,则k的值是-2 ,此函数的表达式是y=-x-2 .6.已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k >1 ,b <0 .7.若y是关于x的正比例函数为y=(a-2)x+9-a2,且y随x的增大而增大,则点(-3,-6) 不在直线y=(a-2)x+9-a2上.(填“在”或“不在”)8.在一次函数y=2x+3中,y随x的增大而增大(填“增大”或“减小”),当0≤x≤5时,y 的最小值为 3 .9.已知一次函数y=(3a-2)x+1-b,求a,b的取值范围,使得(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.解:(1)由一次函数y=kx+b(k≠0)的性质可知,当k>0时,函数值y随x的增大而增大,即3a-2>0,所以a>,且b取任意实数.(2)函数图象与y轴的交点为(0,1-b),因为与y轴交点在x轴的下方,。
华师大版八年级下册第一次月考数学试卷(含答案及解析)
八年级数学试卷一、选择题(每小题4分,共40分)1.下列各式﹣3x ,,,﹣,,,中,分式的个数为()A.4B.3C.2D.12.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是()A.①⑤B.①④⑤C.②⑤D.②④⑤3.分式无意义,则x的值()A.1B.﹣1 C.0D.±14.分式的最简公分母是()A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c35.如果把分式的x和y都扩大k倍,那么分式的值应()A.扩大k倍B.不变C.扩大k2倍D.缩小k倍6.方程=﹣的解是()A.1B.﹣1 C.2D.无解7.若分式方程=2+有增根,则a的值为()A.4B.2C.1D.08.(2011•曲靖)点P(m﹣1,2m+1)在第二象限,则m的取值范围是()A.B.C.m<1 D.9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.10.(2004•万州区)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.二、填空题(每小题4分,共24分)11.(2006•永州)当x=_________时,分式的值为0.12.不改变分式的值,把分式的分子、分母的系数都化为整数的结果是_________.13.科学记数法得N=﹣3.25×10﹣5,则原数N=_________.14.若点P(2x﹣2,﹣x+4)到两坐标轴的距离相等,则点P的坐标为_________.15.若函数y﹦(m﹣1)x+m2﹣1是正比例函数,则m的值为_________.16.(2009•鸡西)若关于x的分式方程无解,则a=_________.三、解答题(17题每小题4分,18,19,每小题6分,)17.(16分)计算(1)(﹣)0﹣(﹣)2÷2﹣2﹣(﹣1)3 (2)+﹣(3)+÷(4)(2mn2)﹣2(m﹣2n﹣1)﹣3(结果化为只含有正指数幂的形式)18.先化简,再求值:(1),其中:x=﹣2.(2)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值.(3)先化简,再求值:,其中a=.19.(6分)暑假期间,明明进行爬山锻炼,某时,从山脚出发,1小时后回到了山脚,他离开山脚的距离s(米)与爬山时间t(分)的关系可用下图的曲线表示,根据这个图象回答:(1)明明离开山脚多长时间爬得最高?爬了多少米?(2)爬山多长时间进行休息?休息了几分钟?(3)爬山第30分钟到第40分钟,爬了多少米?(4)下山时,平均速度是多少?(6分)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简求值:四、解答题(20,21,22,每小题8分,23题10分,24题12分)20.(8分)要使关于x的方程﹣=的解是正数,求a的取值范围.21.(8分)某校组织学生到距离6km的少年科技馆参观,学生小李因有事没有赶上学校的包车,于是准备在学校门口改坐出租车去少年科技馆,出租车的收费标准如下:里程收费(元)3km以下(含3km)8.003km以上,每增加1km 1.80(1)写出坐出租车的里程数为xkm(x>3)时,所付车费的代数式.(2)小李同学身上只有14元钱,坐出租车到少年科技馆的车费够不够?请说明理由.22.(8分)已知函数y=﹣2x+3,(1)画出这个函数的图象;(2)写出函数与x轴的交点坐标,与y轴的交点坐标;(3)求此函数的图象与坐标轴围成的三角形的面积.23.(10分)甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.24.(12分)(2012•岳阳二模)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.湘莲品种 A B C每辆汽车运载量(吨)12 10 8每吨湘莲获利(万元) 3 4 2八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列各式﹣3x,,,﹣,,,中,分式的个数为()A.4B.3C.2D.1考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:下列各式﹣3x,,,﹣,,,中,分式有:,,,,∴分式的个数为4个.故选A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是()A.①⑤B.①④⑤C.②⑤D.②④⑤考点:一次函数的定义.分析:根据一次函数的定义条件进行逐一分析即可.解答:解:①y=﹣2x是一次函数;②自变量次数不为1,故不是一次函数;③y=﹣2x2自变量次数不为1,故不是一次函数;④y=2是常数;⑤y=2x﹣1是一次函数.所以一次函数是①⑤.故选A.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3.分式无意义,则x的值()A.1B.﹣1 C.0D.±1考点:分式有意义的条件.分析:分母为零,分式无意义;分母不为零,分式有意义,即|x|﹣1=0,解得x的取值.解答:解:当分母|x|﹣1=0,即x=±1时,分式无意义.故选D.点评:从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.分式的最简公分母是()A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c3考点:最简公分母.分析:解答本题关键是要求出三个分式的分母的最小公倍数,即是分式的最简公分母.解答:解:3,2,8的最小公倍数为24,a2b,ab2,a3bc3的最小公倍数为a3b2c3,∴分式的最简公分母为24a3b2c3,故选C.点评:本题考查最简公分母的知识,比较简单,同学们要熟练掌握.5.如果把分式的x和y都扩大k倍,那么分式的值应()A.扩大k倍B.不变C.扩大k2倍D.缩小k倍考点:分式的基本性质.分析:依题意分别用kx和ky去代换原分式中的x和y,利用分式的基本性质化简即可.解答:解:分别用kx和ky去代换原分式中的x和y,得===,可见新分式是原分式的k倍.故选A.点评:解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.方程=﹣的解是()A.1B.﹣1 C.2D.无解考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2=x+1﹣3(x﹣1),去括号得:2=x+1﹣3x+3,移项合并得:2x=2,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.若分式方程=2+有增根,则a的值为()A.4B.2C.1D.0考点:分式方程的增根.专题:计算题.分析:已知方程两边都乘以x﹣4去分母后,求出x的值,由方程有增根,得到x=4,即可求出a的值.解答:解:已知方程去分母得:x=2(x﹣4)+a,解得:x=8﹣a,由分式方程有增根,得到x=4,即8﹣a=4,则a=4.故选A点评:此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.8.(2011•曲靖)点P(m﹣1,2m+1)在第二象限,则m的取值范围是()A.B.C.m<1 D.考点:点的坐标;解一元一次不等式组.专题:证明题.分析:让点P的横坐标小于0,纵坐标大于0列不等式求值即可.解答:解:∵点P(m﹣1,2m+1)在第二象限,∴m﹣1<0,2m+1>0,解得:﹣<m<1.故选:B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.考点:由实际问题抽象出分式方程.专题:应用题.分析:本题的等量关系为:顺流时间+逆流时间=9小时.解答:解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选A.点评:未知量是速度,有速度,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.10.(2004•万州区)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.解答:解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选C.点评:考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.二、填空题(每小题4分,共24分)11.(2006•永州)当x=﹣2时,分式的值为0.考点:分式的值为零的条件.专题:计算题.分析:要使分式的值为0,必须分式分子的值为0,并且分母的值不为0.解答:解:由分子x+2=0,解得x=﹣2,而x=﹣2时,分母x﹣2=﹣2﹣2=﹣4≠0.所以x=﹣2.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.12.不改变分式的值,把分式的分子、分母的系数都化为整数的结果是.考点:分式的基本性质.分析:不改变分式的值就是依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.解答:解:分子分母上同时乘以100得到,故分式的分子、分母的系数都化为整数的结果是.点评:本题主要考查分式的基本性质的应用,是一个基础题.13.科学记数法得N=﹣3.25×10﹣5,则原数N=﹣0.0000325.考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“﹣3.25×10﹣5中﹣3.25的小数点向左移动5位就可以得到.解答:解:﹣3.25×10﹣5=﹣0.0000325,故答案为:﹣0.0000325.点评:本题主要考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.14.若点P(2x﹣2,﹣x+4)到两坐标轴的距离相等,则点P的坐标为(2,2)或(﹣6,6).考点:点的坐标.分析:由点P到两坐标轴的距离相等得到(2x﹣2)=±(﹣x+4),解得x的值,从而得到点P的坐标.解答:解:∵点P到两轴的距离相等,∴2x﹣2=﹣x+4或2x﹣2=﹣(﹣x+4),即x=2或x=﹣2,代入点P坐标(2,2)或(﹣6,6).故答案为:(2,2)或(﹣6,6).点评:本题考查的是点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.15.若函数y﹦(m﹣1)x+m2﹣1是正比例函数,则m的值为﹣1.考点:正比例函数的定义.分析:根据正比例函数的定义列式计算即可得解.解答:解:根据题意得,m2﹣1=0且m﹣1≠0,解得m=±1且m≠1,所以m=﹣1.故答案为:﹣1.点评:本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.16.(2009•鸡西)若关于x的分式方程无解,则a=1或﹣2.考点:分式方程的解.专题:计算题;压轴题.分析:分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.解答:解:方程两边都乘x(x﹣1)得,x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理得,(a+2)x=3,当整式方程无解时,a+2=0即a=﹣2,当分式方程无解时:①x=0时,a无解,②x=1时,a=1,所以a=1或﹣2时,原方程无解.点评:分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.三、解答题(17题每小题16分,18,19,20题每小题16分,)17.(16分)计算(1)(﹣)0﹣(﹣)2÷2﹣2﹣(﹣1)3(2)+﹣(3)+÷(4)(2mn2)﹣2(m﹣2n﹣1)﹣3(结果化为只含有正指数幂的形式)解答:解:(1)原式=1﹣÷﹣(﹣1)=1﹣1+1=1;(2)原式==﹣=﹣1;(3)原式=+•=﹣=;(4)原式=m﹣2n﹣4•m6n3=m4n﹣1=.18.(6分)先化简,再求值:,其中:x=﹣2.考点:分析:解解:,答:=,=,=x+1,当x=﹣2时,原式=﹣2+1,=﹣1.(2)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a 的值代入求值.(3)先化简,再求值:,其中a=.:解答:解:=×=﹣==,由于a≠±1,所以当a=时,原式==.解答:解:原式=+•=+=,当a=1+时,原式===.19.(6分)暑假期间,明明进行爬山锻炼,某时,从山脚出发,1小时后回到了山脚,他离开山脚的距离s(米)与爬山时间t(分)的关系可用下图的曲线表示,根据这个图象回答:(1)明明离开山脚多长时间爬得最高?爬了多少米?(2)爬山多长时间进行休息?休息了几分钟?(3)爬山第30分钟到第40分钟,爬了多少米?(4)下山时,平均速度是多少?解答:解;(1)根据图象得出:明明离开山脚时间为40分钟爬得最高,爬了600米;(2)爬山8分钟和30分钟时进行休息,分别休息了(10﹣8)=2(分钟)和35﹣30=5(分钟);(3)爬山第30分钟到第40分钟,爬了600﹣400=200(米);(4)下山时,平均速度是:=30米/秒.(6分)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简求值:根据图象可知直线y=(3﹣a)x+b﹣2经过第二、三、四象限,所以3﹣a<0,b﹣2<0,所以a>3,b<2,所以b﹣a<0,a﹣3>0,2﹣b>0,所以=a﹣b﹣|a﹣3|﹣(2﹣b)=a﹣b﹣a+3﹣2+b=1.四、解答题(21,22,23每小题8分,24题10分,25题12分)20.(8分)要使关于x的方程﹣=的解是正数,求a的取值范围.解答:解:去分母,得(x+1)(x﹣1)﹣x(x+2)=a,解得x=﹣因为这个解是正数,所以﹣>0,即a<﹣1.又因为分式方程的分母不能为零,即﹣≠1且﹣≠﹣2,所以a≠±3.所以a的取值范围是a<﹣1且a≠﹣3.21.(8分)某校组织学生到距离6km的少年科技馆参观,学生小李因有事没有赶上学校的包车,于是准备在学校门口改坐出租车去少年科技馆,出租车的收费标准如下:里程收费(元)3km以下(含3km)8.003km以上,每增加1km 1.80(1)写出坐出租车的里程数为xkm(x>3)时,所付车费的代数式.(2)小李同学身上只有14元钱,坐出租车到少年科技馆的车费够不够?请说明理由.解答:解:(1)根据题意得:8+1.8(x﹣3)=1.8x+2.6;(2)1.8x+2.6=14,x=6.∴坐出租车到少年科技馆距离大于6公里,车费够.22.(8分)已知函数y=﹣2x+3,(1)画出这个函数的图象;(2)写出函数与x轴的交点坐标,与y轴的交点坐标;(3)求此函数的图象与坐标轴围成的三角形的面积.考点:一次函数的图象;一次函数图象上点的坐标特征.专题:计算题.分析:(1)利用描点法画函数图象;(2)根据图象写出直线与坐标轴的交点坐标;(3)根据三角形面积根式计算.解答:解:(1)当x=0时,y=3;当y=0时,x=,描点如图:(2)函数图象与x轴的交点坐标为(,0),与y轴的交点坐标为(0,3);(3)此函数的图象与坐标轴围成的三角形的面积=×3×=.23.(10分)甲、乙两地相距828千米,一列普通列车与一列直快列车都由甲地开往乙地,直快列车的平均速度是普通列车的平均速度的1.5倍,直快列车比普通列车晚出发2小时,比普通列车早到4小时,求两列火车的平均速度.解答:解:设普通列车的平均速度为x千米∕时,则直快列车的平均速度为1.5x千米∕时,由题意得解得x=46经检验,x=46是原分式方程的解1.5x=1.5×46=69(千米∕时)答:普通列车的平均速度为46千米∕时,直快列车的平均速度为69千米∕时.24.(12分)(2012•岳阳二模)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:①设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;②如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;③若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.湘莲品种 A B C每辆汽车运载量(吨)12 10 8每吨湘莲获利(万元) 3 4 2解答:解:(1)设装A种为x辆,装B种为y辆,则装C种为10﹣x﹣y辆,由题意得:12x+10y+8(10﹣x﹣y)=100∴y=10﹣2x.(2)10﹣x﹣y=10﹣x﹣(10﹣2x)=x故装C种车也为x 辆.∴解得2≤x≤4.x为整数,∴x=2,3,4故车辆有3种安排方案,方案如下:方案一:装A种2辆车,装B种6辆车,装C种2辆车;方案二:装A种3辆车,装B种4辆车,装C种3辆车;方案三:装A种4辆车,装B种2辆车,装C种4辆车.(3)设销售利润为W(万元),则W=3×12x+4×10×(10﹣2x)+2×8x=﹣28x+400∴W是x的一次函数,且x增大时,W减少,∴x=2时,W max=400﹣28×2=344(万元).参与本试卷答题和审题的老师有:sks;lanchong;星期八;HJJ;zhjh;weibo;gsls;438011;Liuzhx;gbl210;lk;137-hui;孙廷茂;wdxwwzy;马兴田;733599;sd2011;lanyan;csiya;蓝月梦;nhx600;lantin(排名不分先后)菁优网2014年3月17日。
华师大版八年级下册数学期末测试卷及含答案
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知,则直线y=kx﹣k一定经过的象限是()A.第一、三、四象限B.第一、二、四象限C.第一、四象限D.第二、三象限2、下列各组的分式不一定相等的是()A. 与B. 与C. 与D. 与3、给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有()A.1个B.2个C.3个D.4个4、在平面直角坐标系中,点(1,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限5、一艘游船在同一航线上往返于甲、乙两地,已知游船在静水中的速度为15km/h,水流速度为5km/h.游船先从甲地逆水航行到乙地,在乙地停留一段时间后,又从乙地顺水航行返回到甲地,设游船航行的时间为t(h),离开甲地的距离为s(km),则s与t之间的函数关系用图象表示大致是()A. B. C. D.6、如图,点在反比例函数的图象上,点在轴上,且,直线与双曲线交于点,则(n 为正整数)的坐标是()A. B. C. D.7、下列命题中,真命题是A.两对角线相等的四边形是矩形B.两对角线互相垂直的四边形是菱形 C.两对角线互相垂直平分且相等的四边形是正方形 D.一组对边相等另一组对边平行的四边形是平行四边形8、下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形9、若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.610、若函数y= ,当x>0时,y随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<111、如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是( )A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为C.5min~20min,王阿姨步行速度由慢到快 D.曲线段AB的函数解析式为12、今年余姚市上半年接待国内外游客650多万人次,实现旅游总收入61亿元,其中,61亿用科学记数法表示是()A. B. C. D.13、已知:如图,在平行四边形ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,则ED的长为( )A.4B.3C. D.214、八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A. B. C. D.15、二亿七千零九写作(),省略亿位后面的尾数约是()A.200007009;2亿B.20007009;2亿1千万C.20007009;2亿 D.20000709;2亿1千万二、填空题(共10题,共计30分)16、对于正比例函数y=m, y的值随x的值增大而减小,则m的值为________17、为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的和分别表示去年和今年的水费(元)和用水量()之间的函数关系图象.如果小明家今年和去年都是用水150 ,要比去年多交水费________元.18、我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AH,CF于点P、Q.在正方形EFGH的EH、FG两边上分别取点M,N,且MN 经过点O,若MH=3ME,BD=2MN=4 .则△APD的面积为________.19、如图,三个边长均为2的正方形重叠在一起,O1, O2是其中两个正方形的对角线交点,若把这样的n个小正方形按如图所示方式摆放,则重叠部分的面积为________.20、小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离(米)与小明出发的时间(分)之间的关系,则小明出发________分钟后与爸爸相遇.21、在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为________.22、在直角坐标系中,O是坐标原点,正方形OABC的顶点A恰好落在双曲线(x>0)上,且OA与x轴正方向的夹角为30°.则正方形OABC的面积是________.23、在菱形ABCD中,∠A=60°,AB=4 ,点P在菱形内,若PB=PD=4,则∠PDC的度数为________.24、已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为________.25、反比例函数y1= (a>0,a为常数)和y2= 在第一象限内的图象如图所示,点M在y2= 的图象上,MC⊥x轴于点C,交y1= 的图象于点A;MD⊥y轴于点D,交y1= 的图象于点B,当点M在y2= 的图象上运动时,以下结论:①S△ODB =S△OCA;②四边形OAMB的面积为2﹣a;③当a=1时,点A是MC的中点;④若S四边形OAMB =S△ODB+S△OCA,则四边形OCMD为正方形.其中正确的是________.(把所有正确结论的序号都填在横线上)三、解答题(共5题,共计25分)26、解分式方程: ﹣=1.27、如图,A(1,0),B(4,0),M(5,3).动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线l:y=﹣x+b也随之移动.设移动时间为t秒.(1)当t=1时,求l的解析式;(2)若l与线段BM有公共点,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在y轴上.28、如果实数x满足,求代数式的值29、已知:,,求的值.30、我市某一周各天的最高气温统计如下表:最高气温(℃)25 26 27 28天数 1 1 2 3(1)写出这组数据的中位数与众数;(2)求出这组数据的平均数.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、D5、B6、D7、C8、D9、B10、A11、C12、C13、B14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
华师大版初中数学八年级下册《19.2.1 菱形的性质》同步练习卷(含答案解析
华师大新版八年级下学期《19.2.1 菱形的性质》同步练习卷一.选择题(共15小题)1.用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是()A.90°B.60°C.45°D.30°2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A.4cm B.5cm C.6cm D.8cm3.菱形的周长为4,两个相邻内角度数为1:2,则该菱形的面积为()A.B.C.2D.24.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为()A.10°B.15°C.20°D.30°5.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分6.某课外小组设计了一个菱形挂钟.如图,菱形的边长为12厘米,时钟的中心在菱形的交点上,∠ADC=120°,数字3,6,9,12分别在四个顶点ABCD上,则数字1的位置与D点的距离为()A.3厘米B.4厘米C.3厘米D.6厘米7.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1B.C.2D.28.如图,在菱形ABCD中,∠B=100°,O是对角线AC的中点,过点O作MN⊥AD交AD于点M,交BC于点N,则下列结论错误的是()A.∠ACD=40°B.OM=ON C.AM+BN=AB D.MN=AC 9.如果菱形的两条对角线长分别为3和4,那么这个菱形的面积是()A.12B.6C.5D.710.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°11.如图所示,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC 的中点,在下列结论中错误的是()A.S△ADE=S△EODB.四边形BFDE是中心对称图形C.△DEF是轴对称图形D.∠ADE=∠EDO12.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别平行B.两组对边分别相C.一组邻边相等D.对角线互相平分13.在菱形ABCD中,∠ABC=60°,E是AD的中点,点P在对角线BD上,PE⊥AD,若BD=12cm,则PE的长为()A.cm B.2cm C.cm D.3cm14.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°15.如图,一张平行四边形纸片,AB>BC,点E是AB上一点,且EF∥BC,若沿EF剪开,能得到两张菱形纸片,则AB与BC间的数量关系为()A.AB=2BC B.AB=3BC C.AB=4BC D.不能确定二.填空题(共22小题)16.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.17.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=.18.如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=s时,△PAB为等腰三角形.19.如图,菱形ABCD中,AB=5,BD=8,则菱形ABCD的面积为.20.菱形的面积是16,一条对角线长为4,则另一条对角线的长为.21.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为.22.菱形ABCD的周长为52cm,它的一条对角线长10cm,则另一条对角线的长是.23.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.24.如图,菱形ABCD中,点E是AD的中点,连接CE,并延长CE与BA的延长线相交于点F.若∠BCF=90°,则∠D的度数为.25.如图,菱形ABCD落在平面直角坐标系中,其中A点坐标(0,4),D点坐标(﹣3,0),则C点坐标是.26.如图,在菱形ABCD中,对角线BD=10,E点在BD上,且AE=BE=3,那么这个菱形的边长等于.27.如图,菱形ABCD的周长为8,两邻角的比为2:1,则对角线的长分别为.28.已知菱形的周长为40,两条对角线长度之比为3:4,那么对角线的长度分别为.29.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为.30.若菱形的周长是20cm,相邻的两个内角的度数比是1:2,那么菱形中较短的一条对角线的长是cm.31.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.32.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上,且BE=BO,则∠EOA=度.33.如图,菱形ABCD的边长为cm,菱形的四个顶点正好能放在间隔距离(相邻两条平行线间的距离)为1cm的一组平行线上,则菱形的面积为cm2.34.如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是.35.学校植物园沿路护栏的纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示,已知每个菱形图案的边长为cm,其中一个内角为60°.若d=26,该纹饰要用231个菱形图案,则纹饰的长度L=cm.36.如图所示,两个全等的菱形边长为1m,一个微型机器人由A点开始按ABCDEFCGA…的顺序沿菱形的边循环运动,行走2011m停下,则这个微型机器人停在点.37.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是.三.解答题(共13小题)38.如图,在菱形ABCD中,点E为AB的中点,请只用无刻度的直尺作图(1)如图1,在CD上找点F,使点F是CD的中点;(2)如图2,在AD上找点G,使点G是AD的中点.39.(1)如图1,四边形ABCD是平行四边形,E为BC上任意一点,请仅用无刻度直尺,在边AD上找点F,使DF=BE.(2)如图2,四边形ABCD是菱形,E为BC上任意一点,请仅用无刻度直尺,在边DC上找点M,使DM=BE.40.如图所示,在菱形ABCD中,∠BAD=120°,AB=4.求:菱形ABCD对角线AC,BD的长.41.如图,菱形ABCD中,对角线AC、BD交于点O,AC=24,BD=10,DE⊥AB于E,(1)求菱形ABCD的周长;(2)求菱形ABCD的面积;(3)求DE的长.42.如图所示,在菱形ABCD中,∠BAD=120°,AB=4.求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.43.如图,菱形ABCD的周长为48cm,它的一条对角线BD长12cm.(1)求菱形的每一个内角的度数.(2)求菱形另一条对角线AC的长.44.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.45.如图,菱形ABCD的边长为12cm,∠B=60°,从初始时刻开始,点P、Q同时从A点出发,点P以2cm/秒的速度沿A→C→B的方向运动,点Q以4cm/秒的速度沿A→B→C→D的方向运动,当Q点运动点D点时,P、Q两点同时停止运动.设P、Q运动的时间为x秒时,解答下列问题:(1)点P、Q从出发到相遇所用时间是秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时,请求此时x的值是多少秒?46.如图,四边形ABCD是菱形,对角线AC=24,BD=10,过O作OH⊥AB,垂足为H.(1)求菱形ABCD的面积;(2)求OH的长.47.如图所示,在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF(1)AE和AF有何数量关系?证明你的结论.(2)过点C作CG∥EA交AF于点H,交AD于点G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数.48.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.49.如图,在菱形ABCD中,P是AB上的一个动点(不与A,B重合),连接DP 交对角线AC于E,连接EB.求证:∠APD=∠EBC.50.如图,已知两个菱形ABCD、CEFG,其中点A、C、F在同一直线上,连接BE、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG.华师大新版八年级下学期《19.2.1 菱形的性质》同步练习卷参考答案与试题解析一.选择题(共15小题)1.用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是()A.90°B.60°C.45°D.30°【分析】根据菱形的判定方法即可解决问题;【解答】解:如图,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形,故选:A.【点评】本题考查菱形的判定,解题的关键是熟练掌握类型的判定方法,属于中考常考题型.2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A.4cm B.5cm C.6cm D.8cm【分析】由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,AC ⊥BD,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE的长.【解答】解:∵菱形ABCD的周长为48cm,∴AD=12cm,AC⊥BD,∵E是AD的中点,∴OE=AD=6(cm).故选:C.【点评】此题考查了菱形的性质以及直角三角形斜边的中线的性质.此题难度不大,注意掌握数形结合思想的应用.3.菱形的周长为4,两个相邻内角度数为1:2,则该菱形的面积为()A.B.C.2D.2【分析】求出两对角线的长度,然后根据菱形的面积等于对角线乘积的一半进行计算即可求解.【解答】解:如图,AB=4÷4=1,∵两个相邻内角的度数的比为1:2,∴∠BAD=×180°=60°,∴△ABD是等边三角形,∴BD=AB=1,∴BO=×1=,在Rt△ABO中,AO===,∴AC=2AO=,∴菱形的面积为:AC•BD=×1×=故选:A.【点评】本题考查了菱形的对角线互相垂直平分的性质,以及菱形的四条边都相等的性质,根据度数求出以较短的对角线BD为边的三角形是等边三角形是解题的关键.4.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为()A.10°B.15°C.20°D.30°【分析】根据菱形的性质,已知菱形的对角相等,故推出∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB,∠ADE=∠AED,易得解.【解答】解:根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°﹣∠DAE)÷2=55°.∴∠EDC=70°﹣55°=15°.故选:B.【点评】此题要熟练运用菱形的性质得到有关角和边之间的关系.在计算的过程中,综合运用了等边对等角、三角形的内角和定理以及平行线的性质.注意:折叠的过程中,重合的边和重合的角相等.5.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分【分析】由菱形的对角线互相平分且垂直,可得菱形对角线所在直线是对称轴,继而求得答案.【解答】解:∵菱形对角线具有的性质有:对角线互相垂直,对角线互相平分,∴对角线所在直线是对称轴.故A,B,D正确,C错误.故选:C.【点评】此题考查了菱形的性质.注意菱形的对角线互相平分且垂直.6.某课外小组设计了一个菱形挂钟.如图,菱形的边长为12厘米,时钟的中心在菱形的交点上,∠ADC=120°,数字3,6,9,12分别在四个顶点ABCD上,则数字1的位置与D点的距离为()A.3厘米B.4厘米C.3厘米D.6厘米【分析】设时钟的中心为O点,数字1所在的位置是E点,连结AC、OD、OE,根据菱形的性质得出∠ODC=∠ODE=∠ADC=60°,OD⊥AC,∠DOE=∠AOD=30°.解Rt△ODC求出OD=CD=6cm,解Rt△ODE,求出DE=OD=3cm.【解答】解:设时钟的中心为O点,数字1所在的位置是E点,连结AC、OD、OE.∵四边形ABCD是菱形,∴∠ODC=∠ODE=∠ADC=60°,OD⊥AC,∠DOE=∠AOD=30°.∵在Rt△ODC中,∠COD=90°,∠OCD=30°,∴OD=CD=6cm.∵在Rt△ODE中,∠OED=180°﹣∠DOE﹣∠ODE=180°﹣30°﹣60°=90°,∠DOE=30°,∴DE=OD=3cm.故选:A.【点评】本题考查了菱形的性质,含30°角的直角三角形的性质,求出∠OED=90°是解题的关键.7.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1B.C.2D.2【分析】利用菱形的性质以及等边三角形的判定方法得出△DAB是等边三角形,进而得出BD的长.【解答】解:∵菱形ABCD的边长为2,∴AD=AB=2,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=2,则对角线BD的长是2.故选:C.【点评】此题主要考查了菱形的性质以及等边三角形的判定,得出△DAB是等边三角形是解题关键.8.如图,在菱形ABCD中,∠B=100°,O是对角线AC的中点,过点O作MN⊥AD交AD于点M,交BC于点N,则下列结论错误的是()A.∠ACD=40°B.OM=ON C.AM+BN=AB D.MN=AC【分析】根据菱形的性质,对角线互相平分且垂直,各边平行且相等,然后判断各选项即可.【解答】解:∵AB∥CD,∠B=100°,∴∠BCD=80°,∴∠BCA=∠DAC=40°,连接BD,如下图所示:∵在△DOM和△BON中,,∴△DOM≌△BON(AAS),∴OM=ON,DM=BN,∴AM+BN=AB,∵M不是AD的中点,∴MN≠AC,∴选项D是错误的,故选:D.【点评】本题考查菱形的性质,难度适中,解题关键是熟练掌握菱形的性质并灵活运用.9.如果菱形的两条对角线长分别为3和4,那么这个菱形的面积是()A.12B.6C.5D.7【分析】根据菱形面积=ab.(a、b是两条对角线的长度),求出即可.【解答】解:∵菱形的两条对角线长分别为3和4,∴这个菱形的面积是:×3×4=6.故选:B.【点评】此题主要考查了菱形的性质,熟练根据菱形对角线求面积公式是解题关键.10.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.11.如图所示,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC 的中点,在下列结论中错误的是()A.S△ADE=S△EODB.四边形BFDE是中心对称图形C.△DEF是轴对称图形D.∠ADE=∠EDO【分析】由O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点,易证得四边形BFDE是菱形,△DEF是等腰三角形,即可判定B,D正确;又由等底等高三角形的面积相等,即可判定A正确,继而求得答案.【解答】解:A、∵E是OA的中点,∴AE=OE,∵△ADE与△EOD等高,∴S=S△EOD,△ADE故本选项正确;B、∵四边形ABCD是菱形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OF,∴四边形BFDE是平行四边形,∴四边形BFDE是中心对称图形;故本选项正确;C、∵OE=OF,AC⊥BD,∴△DEF是等腰三角形,∴△DEF是轴对称图形;故本选项正确;D、∵AD>OD,AE=OE,∴∠ADE≠∠ODE,故本选项错误.故选:D.【点评】此题考查了菱形的性质与判定、轴对称性与中心对称性.此题难度适中,注意掌握数形结合思想的应用.12.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别平行B.两组对边分别相C.一组邻边相等D.对角线互相平分【分析】对菱形和平行四边形的性质进行比较从而得到最后答案.【解答】解:根据菱形的性质及平行四边形的性质进行比较,发现只有一组邻边相等只有菱形具有平行四边形不具有,故选:C.【点评】此题主要考查了菱形的性质及平行四边形的性质,属于基础题,要注意掌握一些图形的基本性质.13.在菱形ABCD中,∠ABC=60°,E是AD的中点,点P在对角线BD上,PE⊥AD,若BD=12cm,则PE的长为()A.cm B.2cm C.cm D.3cm【分析】连接AC,则可判定△ADC是等边三角形,然后可得出AD、ED的长度,继而在Rt△PED中可求出PE的长.【解答】解:由题意得,四边形ABCD是菱形,∠ABC=60°,故可得△ADC是等边三角形,OD=OB=BD=6cm,在RT△AOD中,AD===4,又∵E是AD的中点,∴AE=ED=AD=2cm,在RT△PED中,PE=EDtan∠ADB=2×=2cm.故选:B.【点评】本题考查了菱形的性质、等边三角形的判定与性质,利用菱形的对角线平分一组对角的性质求解,熟练掌握菱形的性质是解题的关键.14.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°【分析】先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO=∠BAD=×50°=25°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.故选:B.【点评】本题主要考查了菱形的邻角互补,每一条对角线平分一组对角的性质,直角三角形两锐角互余的性质,熟练掌握性质是解题的关键.15.如图,一张平行四边形纸片,AB>BC,点E是AB上一点,且EF∥BC,若沿EF剪开,能得到两张菱形纸片,则AB与BC间的数量关系为()A.AB=2BC B.AB=3BC C.AB=4BC D.不能确定【分析】根据菱形四边相等的性质,可得出AE=AD=BC=EB,从而可得出AB与BC 的关系.【解答】解:∵菱形的四边相等,∴AE=AD=BC=EB,即可得出AB=AE+EB=2BC.故选:A.【点评】本题考查菱形的性质及平行四边形的性质,属于基础知识的考察,关键是掌握平行四边形的对边相等及菱形的四边相等的性质.二.填空题(共22小题)16.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为52.【分析】根据菱形的对角线互相垂直平分,可知AO和BO的长,再根据勾股定理即可求得AB的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC=10,BD=24,菱形对角线互相垂直平分,∴AO=5,BO=12cm,∴AB==13,∴BC=CD=AD=AB=13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB的值是解题的关键.17.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=.【分析】先根据菱形的性质得OA=OC=4,OB=OD=3,AC⊥BD,再利用勾股定理计算出AB=5,然后根据菱形的面积公式得到•AC•BD=DH•AB,再解关于DH 的方程即可.【解答】解:∵四边形ABCD是菱形,∴OA=OC=4,OB=OD=3,AC⊥BD,在Rt△AOB中,AB==5,∵S=•AC•BD,菱形ABCDS菱形ABCD=DH•AB,∴DH•5=•6•8,∴DH=.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.18.如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=5或8或s时,△PAB为等腰三角形.【分析】求出BA的值,根据已知画出符合条件的三种情况:①当PA=AB=5cm时,②当P和C重合时,PB=AB=5cm,③作AB的垂直平分线交AC于P,此时PB=PA,连接PB,求出即可.【解答】解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴AC⊥BD,AO=OC=4cm,BO=OD=3cm,由勾股定理得:BC=AB=AD=CD=5cm,分为三种情况:①如图1,当PA=AB=5cm时,t=5÷1=5(s);②如图2,当P和C重合时,PB=AB=5cm,t=8÷1=8(s);③如图3,作AB的垂直平分线交AC于P,此时PB=PA,连接PB,在Rt△BOP中,由勾股定理得:BP2=BO2+OP2,AP2=32+(4﹣AP)2,AP=;t=÷1=(s),故答案为:5或8或.【点评】本题考查了菱形性质和等腰三角形的判定的应用,主要考查学生能否求出符合条件的所有情况.19.如图,菱形ABCD中,AB=5,BD=8,则菱形ABCD的面积为24.【分析】由菱形ABCD的对角线AC=6,BD=8,根据菱形的面积等于其对角线乘积的一半,即可求得菱形ABCD的面积.【解答】解:∵菱形ABCD的对角线AC=6,BD=8,∴菱形ABCD的面积为:AC•BD=×6×8=24.故答案为:24.【点评】此题考查了菱形的性质.解此题的关键是掌握菱形的面积等于其对角线乘积的一半定理的应用.20.菱形的面积是16,一条对角线长为4,则另一条对角线的长为8.【分析】根据菱形的面积=对角线乘积的一半,即可得出另一条对角线的长.【解答】解:设另一条对角线为x,由题意得,×x×4=16,解得:x=8.故答案为:8.【点评】本题考查了菱形的性质,属于基础题,注意掌握菱形的面积=对角线乘积的一半.21.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为18.【分析】根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律不难求得第6个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=2,∴BM=1,∴AM==,∴AC=2AM=2,同理可得AC1=AC=6,AC2=AC1=6,AC3=AC2=18,AC4=AC3=18.故答案为:18.【点评】本题考查了菱形的性质,勾股定理,等边三角形的性质和判定的应用,解此题的关键是能根据求出的结果得出规律.22.菱形ABCD的周长为52cm,它的一条对角线长10cm,则另一条对角线的长是24.【分析】先由菱形ABCD的周长求出边长,再根据菱形的性质求出OA,然后由勾股定理求出OB,即可得出BD.【解答】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,OA=AC=5,OB=BD,∵菱形ABCD的周长为52cm,∴AB=13,在Rt△AOB中,根据勾股定理得:OB===12,∴BD=2OB=24.故答案为:24.【点评】本题考查了菱形的性质以及勾股定理的运用;熟练掌握菱形的性质和运用勾股定理计算是解决问题的关键.23.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF 是等边三角形,再利用菱形的边长为4求出时间t的值.【解答】解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°∴AB=AD,∠A=60°,∵BM=AE,∴AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,∴∠MEF=∠ADE,∴在△DAE和△EMF中,∴△DAE≌EMF(SAS),∴AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,∴BF=AE,∵AE=t,CF=2t,∴BC=CF+BF=2t+t=3t,∵BC=4,∴3t=4,∴t=故答案为:.或连接BD.根据SAS证明△ADE≌△BDF,得到AE=BF,列出方程即可.【点评】本题主要考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质等知识,解题的关键是运用三角形全等得出△BMF是等边三角形.24.如图,菱形ABCD中,点E是AD的中点,连接CE,并延长CE与BA的延长线相交于点F.若∠BCF=90°,则∠D的度数为60°.【分析】首先连接AC.由条件易得AE垂直平分CF,则AC=AF,易证得△AEF≌△DEC,则可得△ACD为正三角形,故∠D=60°.【解答】解:连接AC,∵四边形ABCD是菱形,∴AD∥BC,AD=AC,∵∠BCF=90°,∴∠AEF=∠BCF=90°,即AD⊥CF,∵点E是AD的中点,∴AC=AF,∵AB∥CD,∴∠F=∠DCE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴CD=AF,∴AC=AD=CD,∴∠D=60°.故答案为:60°.【点评】此题考查了菱形的性质、全等三角形的判定与性质以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.25.如图,菱形ABCD落在平面直角坐标系中,其中A点坐标(0,4),D点坐标(﹣3,0),则C点坐标是(2,0).【分析】根据勾股定理得出AD的长,再利用菱形的性质得出CD的长,即可得出C点坐标.【解答】解:∵A点坐标(0,4),D点坐标(﹣3,0),∴AO=4,DO=3,∴AD=5,∴CD=5,则OC=2,∴C点坐标是:(2,0).故答案为:(2,0).【点评】此题主要考查了菱形的性质以及勾股定理等知识,得出CD的长是解题关键.26.如图,在菱形ABCD中,对角线BD=10,E点在BD上,且AE=BE=3,那么这个菱形的边长等于.【分析】首先连接AC,得出BO的长以及EO的长,再利用勾股定理得出AO的长,进而利用勾股定理得出AB的长.【解答】解:连接AC,∵在菱形ABCD中,对角线BD=10,∴AC⊥BD,BO=5,∵AE=BE=3,∴EO=2,∴AO==,∴AB==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理等知识,得出AO的长是解题关键.27.如图,菱形ABCD的周长为8,两邻角的比为2:1,则对角线的长分别为2和2.【分析】依题意,根据菱形的性质首先求出边长,然后推出对角线与菱形的两边构成的三角形为等边三角形,最后可解答.【解答】解:∵菱形的周长为8,∴菱形的边长是:8×=2,∵两个邻角的比是1:2,∴较大的角是120°,较小的角是60°,∴这个菱形的对角线AC所对的角是60°,由菱形的性质得到,AC与菱形的两边构成的三角形是等边三角形,∴AC=2,BD=2××tan60°=2.故答案为:2和2.【点评】本题考查菱形性质的运用,属于基础题目,根据菱形的性质求出菱形的边长,然后根据等边三角形的性质求解.28.已知菱形的周长为40,两条对角线长度之比为3:4,那么对角线的长度分别为12,16.【分析】首先根据题意画出图形,然后设OA=3x,OB=4x,由菱形的性质,可得方程:102=(3x)2+(4x)2,继而求得答案.【解答】解:如图,∵菱形的周长为40,∴AB=10,OA=AC,OB=BD,AC⊥BD,∵两条对角线长度之比为3:4,∴OA:OB=3:4,设OA=3x,OB=4x,在Rt△AOB中,AB2=OA2+OB2,∴102=(3x)2+(4x)2,解得:x=2,∴OA=6,OB=8,∴AC=12,BD=16,∴对角线的长度分别为:12,16.故答案为:12,16.【点评】此题考查了菱形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想与方程思想的应用.29.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为8a.【分析】根据已知可得菱形性质和直角三角形斜边上的中线等于斜边的一半可以求得AB=2OE,从而不难求得其周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,又∵点E是AB的中点,∴AB=20E,则菱形ABCD的周长为8a.故答案为:8a.【点评】此题主要考查学生对菱形的性质及中位线的性质的理解及运用,属于基础题.30.若菱形的周长是20cm,相邻的两个内角的度数比是1:2,那么菱形中较短的一条对角线的长是5cm.【分析】由已知可求得较短的对角线与菱形的一组邻边组成一个等边三角形,从而得到较短的对角线的长等于其边长.【解答】解:如图,AB=20÷4=5cm,∵两个相邻内角的度数的比为1:2,∴∠BAD=×180°=60°,∴△ABD是等边三角形,∴BD=AB=5cm,∴BO=×10=cm,∴BD=5cm,在Rt△ABO中,AO==cm,∴AC=2AO=2×=5cm,∴菱形中较短的一条对角线的长是5cm.故答案为5.【点评】此题主要考查菱形的性质及等边三角形的判定的理解及运用,难度一般,如果不熟练菱形的性质,解答本题的时候可以先画出草图.31.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.【分析】根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,。
【新】华师大版八年级下册数学期末试题含答案
华师大版八年级下册数学期末测试题姓名: ,成绩: ;一、选择题(12个题,共48分) 1、有理式11249,(),,,,23313x x x yx y x m x x ++--中,分式有( )个 A、1 B、2 C、3 D、42、分式22x x -+有意义的条件是( ) A、2x ≠ B、2x ≠- C、2x ≠± D、2x >-3、点(-4,1)关于原点的对称点是( )A、(-4,1) B、(-4,-1) C、(4,1) D(4,-1) 4、已知点(-1,m )和点(0.5,n )都在直线23y x b =-+上,则m 、n 的大小关系是( )A、m n < B、m n > C、m n = D、无法判断 5、点(0,-2)在(B )A、X轴上 B、Y轴上 C、第三象限 D、第四象限 6、下列判断正确的是( )A、平行四边形是轴对称图形 B、矩形的对角线垂直平分 C、菱形的对角线相等 D、正方形的对角线互相平分7、关于x 的分式方程232x mx +=-的解是正数,则m 可能是( )A 、4-B 、5-C 、6-D 、7- 8、顺次连接平行四边形各边中点所得到的四边形是( )A、平行四边形 B、矩形 B、菱形 D、正方形9、使关于x 的分式方程121k x -=-的解为非负数,且使反比例函数3ky x-=图象过第一、三象限时满足条件的所有整数k 的和为( )A .0B .1C .2D .310、平行四边形ABCD中,∠ADC的平分线与AB交于点E,若AE、EB是方程组32414113x y x y -=⎧⎪⎨+=⎪⎩的解,则平行四边形ABCD的周长为( )A、16 B、17 C、17或16 D、5.511、甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计。
华师大版八年级下册数学期中考试试题含答案
华师大版八年级下册数学期中考试试卷一、单选题1.分式方程111x mx x -=++有增根,则m 的值为()A .1B .2C .-2D .02.函数11y x =-的自变量x 的取值范围为()A .1x =B .1x =-C .1x ≠D .1x ≠-3.已知点()1,2P m m --在y 轴上,则m 的值是()A .1B .2C .-1D .-24.已知点()1,3A --在反比例函数ky x=的图象上,则k 的值为()A .3B .13C .-3D .13-5.下列变形从左到右错误的是()A .22y y x x x--=B .222b b a a ⎛⎫= ⎪⎝⎭C .am abm b=D .1y xx y y x+=--6.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为().A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣7.学校计划购买篮球和足球.若每个足球的价格比篮球的价格贵25元,且用800元购买篮球的数量与用1000元购买足球的数量相同.设每个足球的价格为x 元,则可列方程为()A .100080025x x=-B .100080025x x=+C .100080025x x =-D .100080025x x =+8.一次函数2y x m =-+与2y x =+图象的交点位于第二象限,则m 的值可能是()A .-4B .1C .2D .39.在平面直角坐标系xOy 中,点()4,0A ,点()0,3B -,点C 在坐标轴上,若ABC 的面积为12,则符合题意的点C 有()A .1个B .2个C .3个D .4个10.如图所示,一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,下列判断错误的是()A .关于x 的方程3kx x b -=-+的解是2x =B .关于x 的不等式3x b kx -+>-的解集是2x >C .当0x <时,函数3y kx =-的值比函数y x b =-+的值小D .关于x ,y 的方程组3kx y x y b -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩二、填空题11.计算:()02-=______________.12.已知点A(2,a)与点B(b ,4)关于x 轴对称,则a+b =_____.13.若22x -的值为正数,则x 的取值范围为______________.14.将直线2y x =的图象沿y 轴向上平移1个单位后得到的一次函数的解析式为_______________.15.若正比例函数()1y m x =--的函数值y 随x 的增大而减小,且函数图像上的点到两坐标轴距离相等,则m 的值为______________.16.如图,过x 轴上的点P 作y 轴的平行线,与反比例函数m y x =、ny x=分别交于点A 、B ,若AOB 的面积为3,则m n -=______________.三、解答题17.解方程:1212 x x=-+.18.先化简,再求值:221224x x xx x x-⎛⎫-÷⎪---⎝⎭,其中1x=-.19.一水果经营户从水果批发市场批发了草莓和葡萄共60千克(每种水果不少于10千克),到市场去卖,草莓和葡萄当天的批发价和零售价如下表表示:品名草莓葡萄批发价/(元/千克)1610零售价/(元/千克)2214设全部售出60千克水果的总利润为y(元),草莓的批发量x(千克),请写出y与x的函数关系式,并求最大利润为多少?20.漳武高速公路南靖至永定段正在加速建设,高速全长40千米,预计2022年竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高60%,那么行驶40千米的高速公路比行驶同等长度的普通公路所用时间将会缩短14小时,求该汽车在高速公路上的平均速度.21.观察以下等式:第1个等式:131 1223⎛⎫-÷=⎪⎝⎭;第2个等式:241 1362⎛⎫-÷=⎪⎝⎭;第3个等式:353 14125⎛⎫-÷=⎪⎝⎭;第4个等式:462 15203⎛⎫-÷=⎪⎝⎭;第5个等式:575 16307⎛⎫-÷=⎪⎝⎭;……按照以上规律,解决下列问题:(1)写出第7个等式:_____________;(2)写出你猜想的第n个等式(n为正整数),并证明.22.如图,在平面直角坐标系xOy中,直线AB与反比例函数myx=交于()2,3A-,()4,B n两点.(1)求直线AB 和反比例函数的表达式;(2)连接AO ,求AOB 的面积.23.如图,在平面直角坐标系中,()1,4A ,()3,3B ,()2,1C .(1)作ABC 关于原点对称的111A B C △.(2)在y 轴上找一点P ,使得PB PC +最小,试求点P 的坐标.24.小琳根据学习函数的经验,对函数12y x =+-的图象与性质进行了探究,下面是小琳的探究过程,请你补充完整.x…-4-3-2-1012…y …1-1-2-1m…(1)列表:①m =_____________;②若()6,3A -,(),3B n 为该函数图象上不同的两点,则n =_________;(2)描点并画出该函数的图象;(3)①根据函数图象可得:该函数的最小值为______________;②观察函数12y x =+-的图象,写出该图象的两条性质__________;__________;③已知直线1112y x =--与函数12y x =+-的图象相交,则当1y y <时,x 的取值范围为是_____________.25.如图,直线l :y =﹣12x+2与x 轴,y 轴分别交于A ,B 两点,在y 轴上有一点C (0,4),动点M 从点A 出发以每秒1个单位的速度沿x 轴向左移动.(1)求A ,B 两点的坐标;(2)求△COM 的面积S 与点M 的移动时间t 之间的函数关系式;(3)当t =6时,①直接写出直线CM 所对应的函数表达式;②问直线CM 与直线l 有怎样的位置关系?请说明理由.参考答案1.C 【解析】将原式化为整式方程,根据分式方程111x mx x -=++有增根得出x 的值,将x 的值代入整式方程即可求得m 的值.【详解】解:方程两边都乘(1)x +,得:1x m -=,根据分式方程111x mx x -=++有增根,∴10x +=,∴1x =-,∴112m =--=-,故选:C .【点睛】本题考查了分式方程无解的情况,增根问题可按如下步骤进行:1、让最简公分母为0确定增根;2、化分式方程为整式方程;3、把增根代入整式方程即可求得相关参数的值.2.C 【解析】根据分式的分母不等于零列式解答.【详解】解:由题意得10x -≠,解得1x ≠,故选:C .3.A 【解析】根据在y 轴上的点的横坐标为0,求出m 的值即可.【详解】解:∵点()1,2P m m --在y 轴上,∴10m -=,∴1m =,故选A .【点睛】本题主要考查了在y 轴上点的坐标特征,解题的关键在于能够熟记y 轴上的点的横坐标为0.4.A 【解析】将点A 的坐标代入解析式计算即可;【详解】解:将点()1,3A --代入反比例函数解析式ky x=中,得:31k-=-,解得:3k =,故选择:A .【点睛】本题主要考查求反比例函数解析式,利用待定系数法求函数解析式时常用的方法.5.D 【解析】【分析】根据分式的基本性质对各选项进行判断.【详解】解:A 、22y y x x x--=,此选项正确,不符合题意;B 、222b b a a ⎛⎫= ⎪⎝⎭,此选项正确,不符合题意;C 、am abm b =,此选项正确,不符合题意;D 、1y x x y y x+=---,此选项错误,符合题意;故选:D .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的数或整式,分式的值不变.6.D 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.7.C 【解析】【分析】根据用800元购买篮球的数量与用1000元购买足球的数量相同列分式方程.【详解】解:设每个足球的价格为x 元,则每个篮球(x-25)元,根据题意得100080025x x =-,故选:C .【点睛】此题考查分式方程的实际应用,正确理解题意,找到等量关系列出方程是解题的关键.8.B 【解析】【分析】根据题意将两个函数联立方程组,再根据交点在第二象限列不等式组,即可求出m 的取值范围.【详解】解:∵一次函数y =-2x+m 和y =x+2图象相交,∴22y x m y x =-+⎧⎨=+⎩,解得2343m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∵交点位于第二象限,∴203403m m -⎧<⎪⎪⎨+⎪>⎪⎩①②,解不等式①得2m <,解不等式②得4m >-,∴不等式的解集为42m -<<,∴m 的值可能为1,故选B .【点睛】本题考查了解不等式及两直线相交:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.9.D 【解析】【分析】分类讨论:当C 点在y 轴上,设C (0,t ),根据三角形面积公式得到12|t+3|•4=12,当C 点在x 轴上,设C (m ,0),根据三角形面积公式得到12|m-4|•3=12,然后分别解绝对值方程求出t 和m 即可得到C 点坐标.【详解】解:分两种情况:①当C 点在y 轴上,设C (0,t ),∵三角形ABC 的面积为12,∴12•|t+3|•4=12,解得t =3或−9.∴C 点坐标为(0,3),(0,−9),②当C 点在x 轴上,设C (m ,0),∵三角形ABC 的面积为12,∴12•|m-4|•3=12,解得m =12或−4.∴C 点坐标为(12,0),(−4,0),综上所述,C 点有4个,故选:D .【点睛】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长,也考查了三角形面积公式.10.B 【解析】【分析】根据条件结合图象对各选项进行判断即可.【详解】解:∵一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,∴关于x 的方程3kx x b -=-+的解是2x =,选项A 判断正确,不符合题意;∵由图可知,直线y x b =-+在直线3y kx =-上方时,都在点()2,1A 的左侧,∴关于x 的不等式3x b kx -+>-的解集是2x <,选项B 判断错误,符合题意;∵当x <0时,直线y x b =-+在直线3y kx =-上方,∴当x <0时,函数3y kx =-的值比函数y x b =-+的值小,选项C 判断正确,不符合题意;∵一次函数3y kx =-(k 是常数,0k ≠)与一次函数y x b =-+(b 是常数)的图象相交于点()2,1A ,∴关于x ,y 的方程组3kx y x y b -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,选项D 判断正确,不符合题意;故选:B .【点睛】本题考查了一次函数与二元一次方程(组),一次函数与一元一次不等式,一次函数的性质.方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.11.1【解析】【分析】由于01(0)a a =≠,即任何不为0的0次幂为1,根据零指数幂的意义完成即可.【详解】()02-=1故答案为:1【点睛】本题考查了零指数幂的意义,这里要注意的是,底数不能为0.12.-2【解析】【分析】直接利用关于x 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A (2,a )与点B (b ,4)关于x 轴对称,∴b =2,a =−4,则a +b =−4+2=−2,故答案为:−2.【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.13.x>2【解析】【分析】根据除法运算的符号法则:同号得正,异号得负,由分子为正,则分母也为正,可得关于x 得不等式,解不等式即可.【详解】∵202x >-,且2>0∴20x ->∴2x >故答案为:2x >【点睛】本题考查了解一元一次不等式,分式的值,除法的符号法则等知识,根据除法的符号法则得到关于x 的不等式是解题的关键.14.21y x =+【解析】【分析】根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,将函数2y x =的图象沿y 轴向上平移1个单位后得到的一次函数的解析式为:21y x =+,故答案为:21y x =+.【点睛】本题考查的是一次函数图像与几何变换,熟知“上加下减”的原则是解题的关键.15.2【解析】【分析】根据函数值y 随x 的增大而减小,可得出k 的正负,根据函数图像上的点到两坐标轴距离相等可得出m 的值.【详解】解:∵正比例函数()1y m x =--的函数值y 随x 的增大而减小,∴(1)0m --<,解得:1m >,∵函数图像上的点到两坐标轴距离相等,∴11m -=,解得:2m =,故答案为:2.【点睛】本题考查了一次函数的性质,熟知一次函数的性质是解题的关键.16.6【解析】【分析】设P 点的坐标为(t ,0),则A (t ,m t ),B (t ,n t ),即可得到111==222AOP m S OP AP t m t =g g △,111==222BOP n S OP BP t n t -=g g △,再根据3AOB AOP BOP S S S =+=△△△求解即可.【详解】解:设P 点的坐标为(t ,0),则A (t ,m t ),B (t ,n t),∴111==222AOP m S OP AP t m t =g g △,111==222BOP n S OP BP t n t -=g g △,∵3AOB AOP BOP S S S =+=△△△,∴11322m n ⎛⎫+-= ⎪⎝⎭,∴6m n -=,故答案为:6.【点睛】本题主要考查了反比例函数比例系数的几何意义,解题的关键在于能够熟练掌握相关知识进行求解.17.x=4【解析】【分析】方程两边都乘最简公分母(1)(2)x x -+,化成一元一次方程,解一元一次方程即可.【详解】方程两边都乘最简公分母(1)(2)x x -+,得:22(1)x x +=-解方程得:x=4当x=4时,(1)(2)x x -+=18≠0所以原方程的解为x=4【点睛】本题考查了分式方程的解法,解分式方程时一定要检验.18.2x x+,-1【解析】【分析】先计算括号内的同分母分式减法,将除法化为乘法,再计算除法,最后将1x =-代入求值即可.【详解】解:原式=1(2)(2)2(1)x x x x x x -+-⋅--=2x x +,当1x =-时,原式=-1.【点睛】此题考查分式的化简求值,正确掌握分式的混合运算法则是解题的关键.19.2240y x =+;340【解析】【分析】根据题意可以求得y 与x 的关系式,进而可以求得y 的最大值.【详解】由题意可得,()()()22161410602240y x x x =-+-⨯-=+,1050x ≤≤ ,∴当50x =时,2240y x =+取得最大值,此时340y =,即y 与x 的函数关系式是2240y x =+,最大利润为340元.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.20.96千米/小时【解析】【分析】设汽车在普通公路上的平均速度为x 千米/小时,然后根据题意列出方程求解即可.【详解】解:设汽车在普通公路上的平均速度为x 千米/小时,由题意得:()40401160%4x x -=+,解得60x =,经检验,60x =是原方程的解集,∴汽车在高速公路上的平均速度=60×(1+60%)=96千米/小时,答:汽车在高速公路上的平均速度为96千米/小时.【点睛】本题主要考查了分式方程的应用,解题的关键在于准确找到等量关系列方程求解.21.(1)17978569⎛⎫-÷= ⎪⎝⎭;(2)121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++,证明见解析;【解析】【分析】(1)根据题目中的等式的规律,可以写出第7个等式;(2)根据题目中的等式的规律,猜想出第n 个等式,然后将等号左边的式子化简,即可证明猜想成立;【详解】解:(1)由第1个等式:1311223⎛⎫-÷= ⎪⎝⎭;第2个等式:24121=3624⎛⎫-÷= ⎪⎝⎭;第3个等式:35314125⎛⎫-÷= ⎪⎝⎭;第4个等式:4624152036⎛⎫-÷= ⎪⎝⎭;第5个等式:57516307⎛⎫-÷= ⎪⎝⎭;依次可得:第6个式子为:16867428⎛⎫-÷= ⎪⎝⎭;第7个式子为:17978569⎛⎫-÷= ⎪⎝⎭;故答案为:17978569⎛⎫-÷= ⎪⎝⎭;(2)根据每个式子结构相同,每一项的分子分母随项数的变化规律可猜想:第n 个等式为:121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++;证明如下:∵左边=21(11)n n n n n ⎛⎫-÷ ⎪+⎭+⎝+,=1(1)12n n n n +⨯++,=2n n +,=右边,∴121(1)2n n n n n n n ++⎛⎫-÷= ⎪⎝⎭++成立,【点睛】本题主要考查规律型:数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的式子.22.(1)直线AB :3342y x =-+;反比例函数:6y x -=(2)92【解析】【分析】(1)将点A 的坐标代入反比例函数解析式即可求得m 的值,即可得反比例函数解析式,将点B 的坐标代入反比例函数解析式求得n 的值,然后运用待定系数法求一次函数解析式即可;(2)设一次函数与x 轴的交点为D ,则AOB 的面积=AOD △的面积+BOD 的面积,计算即可.【详解】解:(1)∵直线AB 与反比例函数m y x =交于()2,3A -,()4,B n 两点,将()2,3A -代入m y x =中得:32m =-,解得:6m =-,∴反比例函数解析式为:6y x -=,将()4,B n 代入6y x-=中得:32n =-,∴34,2B ⎛⎫- ⎪⎝⎭,设一次函数解析式为:y kx b =+,则32342k b k b =-+⎧⎪⎨-=+⎪⎩,解得3432k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴一次函数的解析式为:3342y x =-+;(2)设一次函数与x 轴的交点为D,∵一次函数的解析式为:3342y x =-+,令0y =得:33042x =-+,解得:2x =,∴点D 的坐标为:(2,0),∴2OD =,∴113932222AOB AOD BOD S S S OD OD =+=+-= .【点睛】本题考查了反比例函数与一次函数的交点问题,解决此类问题中,三角形面积的问题时,尽可能选择与坐标轴平行的边为底边,有利于问题的解决.23.(1)见解析;(2)见解析,点P 的坐标为(90,5)【解析】【分析】(1)根据轴对称的性质分别找到三点的对应点1A ,1B ,1C ,连线即可解答;(2)根据轴对称的性质作点B 关于y 轴的对称点B 2,连接B 2C 交y 轴于一点,即为点P ,连接PB 、PC ,此时PB+PC 最小,再利用待定系数法求函数解析式.【详解】解:(1)如图:111A B C △即为所求;(2)如图,作点B 关于y 轴的对称点B 2,连接B 2C 交y 轴于一点,即为点P ,连接PB 、PC ,此时PB+PC 最小.则B 2(-3,3),设直线B 2C 的解析式为y=kx+b ,∴3321k b k b -+=⎧⎨+=⎩,解得2595k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线B 2C 的解析式为2955y x =-+,当x=0时,95y =,∴点P 的坐标为(90,5).【点睛】此题考查轴对称的性质,最短路径问题作图,作关于某点对称的图形,利用待定系数法求一次函数的解析式,熟记轴对称的性质确定特殊点的对称点是解题的关键.24.(1)①1;②4;(2)见解析;(3)①-2;②当31x -<<时,20y -≤<;当1x ≤-时,y 随x 的增大而减小;③0x >或4x <-【解析】【分析】(1)①把2x =代入12y x =+-即可得到答案;②把3y =代入12y x =+-即可得到答案;(2)根据表格中的点坐标,描点,连线,画出函数图像即可;(3)①根据(2)中所画的函数图像求解即可;②根据(2)中所画的函数图像写出相应的性质即可;③画出函数1112y x =--的图像,然后利用图像法求解即可.【详解】解:(1)①把2x =代入12y x =+-得2121y =+-=,∴1m =,故答案为:1;②把3y =代入12y x =+-得312x =+-,即15x +=,∴6x =-或4x =,∵()6,3A -,(),3B n 为该函数图象上不同的两点∴4n =,故答案为:4;(2)如图所示,即为所求:(3)①如图所示,由函数图像可知,该函数的最小值为-2,故答案为:-2;②由函数图像可知,当31x -<<时,20y -≤<;当1x ≤-时,y 随x 的增大而减小;③如图所示,画出函数1112y x =--,由图像可知,两直线的交点分别为(-4,1),(0-,1),∴当0x >或4x <-时1y y <.【点睛】本题主要考查了画函数图像,求函数的自变量和函数值,函数图像的性质,根据函数图像的交点解不等式等等,解题的关键在于能够熟练掌握相关知识进行求解.25.(1)A(4,0),B (0,2);(2)82,042t-8,t 4t t S -≤≤⎧⎪=⎨⎪⎩>;(3)①直线CM 的函数表达式为y=2x+4;②直线CM 与直线l 垂直,见解析.【解析】【分析】(1)令x=0和y=0,分别计算即可;(2)当0≤t≤4时,OM=4-t ;当t >4时,OM=t-4,按照三角形的面积公式分别计算即可;(3)当t =6时,确定M 的坐标为(-2,0);①利用待定系数法确定解析式;②利用三角形全等,垂直的定义判断即可.【详解】(1)∵y =﹣12x+2,∴当x=0时,y=2,∴点B 的坐标(0,2);∴当y=0时,﹣12x+2=0,∴x=4,∴点A 的坐标为(4,0);(2)当0≤t≤4时,AM=t ,∵OM+AM=OA ,∴OM+t=4,∴OM=4-t ,∵点C (0,4),∴OC=4,∴S=12OM OC ⨯⨯=1(4)42t ⨯-⨯=8-2t ;当t >4时,AM=t ,∵OA+AM=OM ,∴OM+4=t ,∴OM=t-4,∵点C (0,4),∴OC=4,∴S=12OM OC ⨯⨯=1(4)42t ⨯-⨯=2t-8;∴△COM 的面积S 与点M 的移动时间t 之间的函数关系式为:82,042t-8,t 4t t S -≤≤⎧⎪=⎨⎪⎩>;(3)①当t =6时,OM=t-4=2,∵M 在x 轴的负半轴,∴点M 的坐标为(-2,0),设直线CM 的解析式为y=kx+b ,把(-2,0)和(0,4)分别代入解析式,得204k b b -+=⎧⎨=⎩;解得24k b =⎧⎨=⎩,∴直线CM 的解析式为y=2x+4;②设直线CM 1与直线l 交于点D ,∵OB=O 1M =2,OA=OC=4,∠CO 1M =∠AOB=90°,∴△CO 1M ≌△AOB ,∴∠1M CO=∠BAO ,∵∠C 1M O+∠1M CO =90°,∴∠C 1M O+∠BAO =90°,∴∠1M DA =90°,∴AD ⊥C 1M .【点睛】本题考查了一次函数解析式的确定,坐标与线段的转换,三角形的全等,直线之间的位置关系,熟练运用待定系数法,坐标与线段的关系,三角形的全等是解题的关键.。
华师大版初中八年级下学期数学单元测试卷2及答案
如图,☉O 为 Rt△ABC 的内切圆,切点 分 别 为 M 、
9.
N、
Q ,已
知 ∠ABC =90
°,
CM =2,
AM =3,则 ☉O 的半径为
1
A.
2
3
B.
2
C.
1
D.
2
︵
A.
80
°
第 5 题图
B.
100
°
点(不 与 点 A 、
C 重 合 ),下 列 结 论:① ∠ADB = ∠BDC ;
②AD =CD ;③ 当 BD 最 长 时,
(
2)若 ☉O 的半径为 4,
AB =6,求线段 CE 的长 .
(
21.
10 分)如图,
AB 是 ☉O 的直径,
C、
D 为 ☉O 上两点,
CF ⊥
AB 于点 F,
CE⊥AD 交 AD 的延长线于点 E,且 CE=CF.
︵
(
1)求证:
C 是BD 的中点;
°,则 ∠BOD =
°.
如图,圆锥形烟囱帽的底面圆半径为 12cm,侧面展开图为
13.
半圆,则它的母线长为 cm.
如图,
14.
AB 是 半 圆 O 的 直 径,
C、
D 是 半 圆 弧 的 三 等 分 点,
若 AB =4,则 图 中 阴 影 部 分 的
CE ⊥AB 于点E ,连结 DE .
一个即可)
第 11 题图
第 12 题图
第 13 题图
如图,在 ☉O 中,
12.
AC =BD ,若 ∠AOC =120
°,则 ∠BOD =
120 °.
华师大版数学八年级下册 第17 章函数及其图象 单元测试卷(含答案)
第17 章测试卷(时间:90分钟满分:120分)题号一二三总分得分一、选择题(本大题共12小题,每小题3分,满分36分)1.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A. Q和x是变量B. Q是自变量C.50和x是常量D. x是Q的函数中,自变量x的取值范围是( )2.函数y=√x2A. x>0B. x≥0C. x<0D. x≤03.下面说法错误的是( )A.点(0,-2)在 y轴的负半轴上B.点(3,2)与(3,-2)关于x轴对称C.点(-4,-3)关于原点的对称点是(4,3)D.点(−√2,−√3)在第二象限(其中k是不等于0的常数)在同一平面直角坐标系中的大致图4.如图,函数y=k(x-10)和函数y=kx象可能为( )A.①③B.①④C.②③D.②④5.下列图形中,阴影部分的面积相等的是( )A.①②B.②③C.③④D.①④6.在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x-2与y =kx+k的交点为整点时,k的值可以取( )A.4个B.5个C.6个D.7个7.已知一次函数y=x+2与y=-2+x,下面说法正确的是( )A.两直线交于点(1,0)B.两直线之间的距离为4个单位C.两直线与x轴的夹角都是30°D.两条已知直线与直线y=x都平行的图象如图所示,当y₁<y₂时,x的8.一次函数y₁=ax+b与反比例函数y2=kx取值范围是( )A. x<2B. x>5C.2<x<5D.0<x<2或x>59.已知关于x、y的函数y=(m+3)x m2−10是反比例函数,则m的值为( )A.3B. -3C.±3D.010.已知A,B 两地相距3千米,小黄从A 地到B 地,平均速度为4千米/时,若用x表示行走的时间(时),y表示余下的路程(千米),则y关于x的函数表达式是( )A. y=4x(x≥0)B.y=4x−3(x≥34)C. y=3-4x(x≥0)D.y=3−4x(0≤x≤34)11.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1 200 N和0.5m,则动力 F(单位:N)关于动力臂l(单位:m)的函数表达式正确的是( )A.F=1200l B.F=600lC.F=500lD.F=0.5l12.A、B两点在一次函数图象上的位置如图所示,两点的坐标分别为.A(x+a,y+b),B(x,y),下列结论正确的是( )A. a>0B. a<0C. b=0D. ab<0二、填空题(本大题共6个小题,每小题3分,满分18分)13.在平面直角坐标系中,若点M(1,3)与点 N(x,3)的距离是8,则x的值是 .14.一次函数y=kx+1的图象经过点(1,2),反比例函数.y=kx 的图象经过点(m,12),则m= .15.如果函数y=kx的图象经过点(1,-1),则函数y=kx-2的图象不经过第象限.16.如图,A,C分别是正比例函数y=x的图象与反比例函数.y=4x的图象的交点,过点A 作AD⊥x 轴于点D,过点C作CB⊥x轴于点B,则四边形ABCD 的面积为 .17.如图,过x轴正半轴上的任意一点P 作y轴的平行线交反比例函数y=2x 和y=−4x的图象于A,B两点,C是y轴上任意一点,则△ABC的面积为 .18.如图,点A,C在反比例函数y=ax 的图象上,点B,D在反比例函数y=bx的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=34,CD=32,,AB 与CD 间的距离为6,则a-b的值是.三、解答题(本大题有6个小题,满分66分)19.(12分)已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴的交点B 的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出当y<0时,x的取值范围.x−3.20.(10分)已知一次函数y=32(1)请在如图所示的平面直角坐标系中画出此函数的图象;(2)求出此函数的图象与坐标轴围成的三角形的面积.21.(12分)如图,已知A(n,-2),B(1,4)是一次函数.y=kx+b的图象和反比例函数y=m的图象的两个交点,直线AB 与y轴交于点C.x(1)求反比例函数和一次函数的表达式;(2)求△AOC的面积.22.(10分)如图,在平面直角坐标系xOy中,一次函数.y=−ax+b的图象与反比例的图象相交于点A(-4,-2),B(m,4),与y轴相交于点C.函数y=kx(1)求反比例函数和一次函数的表达式;(2)求点 C的坐标及△AOB的面积.23.(10分)某市出租车计费标准如下:行驶路程不超过3千米时,收费8元;行驶路程超过3千米的部分,按每千米1.6 元计费.(1)求出租车收费y(元)与行驶路程x(千米)之间的函数关系式;(2)若某人一次乘出租车时,付出了车费14.4元,求他这次乘坐了多少千米的路程.24.(12 分)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35 千瓦时时汽车已行驶的路程;当(0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.第17 章测试卷1. A2. B3. D4. C5. C6. A7. D8. D9. A10. D 11. B 12. B 13.9或一7 14.2 15.一 16.8 17.3 18.319.解(1)当x=0时,y=4;当y=0时,x=-2.图象如图所示.(2)由(1)知,A(-2,0)、B(0,4).(3)S AOB=12×2×4=4.(4)当y<0时,x的取值范围为x<-2.20.解(1)函数图象如图所示:(2)函数的图象与坐标轴围成的三角形的面积为12×2×3=3.21.解(1)将B(1,4)的坐标代入y=mx 中,得m=4,所以y=4x.将A(n,-2)的坐标代入y=4x中,得n=-2.将A(-2,-2),B(1,4)的坐标分别代入y=kx+b中,得{−2k+b=−2,k+b=4,解得{k=2,b=2.所以y=2x+2.(2)对于y=2x+2,令x=0,则y=2,所以OC=2,所以S AOC=12×2×2=2.22.解(1)∵点A(-4,-2)在反比例函数y=kx的图象上,∴k=-4×(-2)=8,∴反比例函数的表达式为y=8x.∵点B(m,4)在反比例函数y=8x的图象上,∴4m=8,解得m=2,∴点B(2,4).将A(-4,-2),B(2,4)代入y=-ax+b,得{−2=4a+b,4=−2a+b,解得{a=−1,b=2.∴一次函数的表达式为y=x+2.(2)令x=0,则y=x+2=2,∴点C的坐标为(0,2),∴S XOB=12OC⋅(x B−x A)=12×2×[2−(−4)]=6.23.解(1)∵当0<x≤3时,y=8,又∵当x>3时,行驶路程超过3千米的部分是((x−3)千米,∴y=8+1.6(x−3),综上:出租车收费y(元)与行驶路程x(千米)的函数关系式是y={8(0<x≤3),1.6x+3.2(x⟩3).(2)∵14.4元>8元,∴乘车路程超过3千米,由(1)得:1.6x+3.2=14.4,解得x=7.答:当付车费14.4元时,乘车路程为7千米.24.解(1)由图象可知,蓄电池剩余电量为 35 千瓦时时汽车已行驶了 150千米.1千瓦时的电量汽车能行驶的路程为15060−35=6(千米).(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得{150k+b=35,200k+b=10,cot2+cot=−0.5,b=110,∴y=−0.5x+110.当x=180时,y=−0.5×180+110=20.答:当150≤x≤200时,y关于x 的函数表达式为.y=−0.5x+110,当汽车已行驶180 千米时,蓄电池的剩余电量为20千瓦时.。
华师大版初中八年级下学期数学期末试题及答案
(
2)在(
1)的条件下,连结 BF ,求 ∠DBF 的度数 .
ABCD 的周长是 22;③AD =CD ;④△ABP 面积的最大值
为 32.
其中正确的有
A1 个
B
2 个
C
3 个
( )
第 8 题图
如 图,矩 形 ABOC 中 点 A 的 坐 标 为 (
15.
4,
5),
E是
象于点 P .
生成绩的 平 均 数,所 以 至 少 有 一 半 女 生 的 成 绩 比 小 英
高.
你认同小红的说法吗? 请说明理由 .
(
19.
9 分)如图,四边形 ABCD 的对角线 AC 、
BD 相交于点 O ,
四边形 OBEC 是矩形,△BOC ≌△DOA .
(
1)求证:四边形 ABCD 是菱形;
(
2)若 BC =13,
2,-1),
经过点 A 、
D 的一次函数y=mx+n 的图象与反比例函数Βιβλιοθήκη 生? 并说明理由 .
当点 P 是 AC 的中点时,求得图中阴影部分 的 面
( )
D
4 个
如图,在菱形 ABCD 中,∠B =60
5.
°,
AB =2,则以 AC 为一边
的正方形 ACEF 的周长为
(考查范围:本册教材全部内容)
满分:
120 分 考试时间:
100 分钟
一、选择题(每小题3 分,共30 分)下列各小题均有四个选项,其
中只有一个是正确的 .
( )
下列分式中,有意义的条件为 x≠2 的是
1.
1
A
华师大版初中数学八年级下册《第20章 数据的整理与初步处理》单元测试卷(含答案解析
华师大新版八年级下学期《第20章数据的整理与初步处理》单元测试卷一.选择题(共15小题)1.小明测得一周的体温并登记在下表(单位:℃)其中星期四的体温被墨迹污染.根据表中数据,可得此日的体温是()A.36.6℃B.36.7℃C.36.8℃D.37.0℃2.在黑板上从1开始,写出一组相继的正整数,然后擦去一个数,其余数的平均值为35,擦去的数是()A.5B.6C.7D.83.某单位有1名经理、2名主任、2名助理和11名普通职员,他们的月工资各不相同.若该单位员工的月平均工资是1500元,则下列说法中正确的是()A.所有员工的月工资都是1500元B.一定有一名员工的月工资是1500元C.至少有一名员工的月工资高于1500元D.一定有一半员工的月工资高于1500元4.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A.B.C.D.5.已知数据:x1+3,x2+3,x3+3,x4+3的平均数是9,则数据x1,x2,x3,x4的平均数是()A.5B.6C.7D.86.某同学使用计算器计算30个数据的平均数时,错将其中一个数据15输入为150,那么由此求出的平均数与实际相差()A.5B.4.5C.﹣5D.﹣4.57.数学课上,全班同学每人各报一个数.如果男生所报的数之和与女生所报的数之和相等,且男生所报数的平均值是,女生所报数的平均值是,那么全班同学所报数的平均值是()A.B.C.D.8.综合实践活动中,同学们做泥塑工艺制作.小明将各同学的作品完成情况绘成了如图的条形统计图.根据图表,我们可以知道平均每个学生完成作品()A.12件B.8.625件C.8.5件D.9件9.有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b 颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16B.a=24C.b=24D.b=3410.某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是()A.82,76B.76,82C.82,79D.82,8211.漳州中闽百汇某服装专柜在进行市场占有情况的调查时,他们应该最关注已售出服装型号的()A.中位数B.众数C.平均数D.方差12.鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的()A.平均数B.众数C.中位数D.众数或中位数13.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④14.已知样本x1,x2,x3,…,x n的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差是()A.1B.2C.3D.415.数据8,10,12,9,11的平均数和方差分别是()A.10和B.10和2C.50和D.50和2二.填空题(共12小题)16.某工厂生产同一型号的电池.现随机抽取了6节电池,测试其连续使用时间(小时)分别为:47,49,50,51,50,53.这6节电池连续使用时间的平均数为小时.17.如果一组数据:2,4,6,x,y的平均数为4.8,那么x,y的平均数为.18.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款元.19.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=(用只含有k的代数式表示).20.已知一组数据:0,2,x,4,5的众数是4,那么这组数据的平均数是.21.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是(填“平均数”、“众数”或“中位数”).22.一组数据:1、﹣1、0、4的方差是.23.学校篮球队五名队员的年龄分别为17,15,17,16,15,其方差为0.8,则三年后这五名队员年龄的方差为.24.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为,标准差为.(精确到0.1)25.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为.26.小明同学5次数学单元测试成绩(分数取整数)的平均分是90分,且每次测试都没有低于80分得成绩,中位数是93分,唯一众数是96分,则最低的一次成绩可能是分.27.在一次中学生田径运动会上,参加男子跳高的14名运动员的成绩如下表:这些运动员跳高成绩的中位数是,众数是.三.解答题(共7小题)28.某开发公司现有员工50名,所有员工的月工资情况如下表:请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.29.荆州古城是闻名遐迩的历史文化名城,下表图是荆州古城某历史景点一周的抽样统计参观人数和门票价格.(1)把上表中一周的参观人数作为一个样本,直接指出这个样本的中位数,众数和平均数,分析表中数据还可得到一些信息,如双休日参观人数远远高于平时等,请你尝试再写出两条相关信息;(2)若“五•一”黄金周有甲,乙两个旅行团到该景点参观,两团人数之和恰为上述样本数据的中位数,乙团不超过50人,设两团分别购票共付W元,甲团人数x人,①求W与x的函数关系式;②若甲团人数不超过100人,请说明两团合起来购票比分开购票最多可节约多少元?30.某私立中学准备招聘教职员工60名,所有员工的月工资情况如下:请根据上表提供的信息,回答下列问题:(1)如果学校准备招聘“高级教师”和“中级教师”共40名(其他员工人数不变),其中高级教师至少要招聘13人,而且学校对高级、中级教师的月支付工资不超过83000元,按学校要求,对高级、中级教师有几种招聘方案?(2)(1)中的哪种方案对学校所支付的月工资最少?并说明理由;(3)在学校所支付的月工资最少时,将上表补充完整,并求所有员工月工资的中位数和众数.31.一个公司的所有员工的月收入情况如下:(1)该公司所有员工月收入的平均数是元,中位数是元,众数是元.(2)你觉得用以上三个数据中的哪一个来描述该公司员工的月收入水平更为恰当?说明理由.(3)某天,一个员工辞职了,若其他员工的月收入不变,但平均收入下降了,你认为辞职的可能是哪个岗位上的员工?说明理由.32.小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量:金键学生奶,金键酸牛奶,金键原味奶;根据计算结果分析,你认为哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定.金键学生奶,金键酸牛奶,金键原味奶;(3)根据计算结果分析,你认为哪种牛奶销量最稳定.33.我市今年体育中考于5月18日开始,考试前,九(2)班的王茜和夏洁两位同学进行了8次50m短跑训练测试,她们的成绩分别如下:(单位:秒)(1)王茜和夏洁这8次训练的平均成绩分别是多少?(2)按规定,女同学50m短跑达到8.3秒就可得到该项目满分15分,如果按她们目前的水平参加考试,你认为王茜和夏洁在该项目上谁得15分的可能性更大些?请说明理由.34.某校七年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定的时间内每人踢100个以上(含100)为优秀.下表是甲班和乙班成绩最好的5名学生的比赛数据(单位:个)统计发现两班总分相等,S,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)根椐以上信息,你认为应该把冠军奖状发给哪一个班?简述理由.华师大新版八年级下学期《第20章数据的整理与初步处理》单元测试卷参考答案与试题解析一.选择题(共15小题)1.小明测得一周的体温并登记在下表(单位:℃)其中星期四的体温被墨迹污染.根据表中数据,可得此日的体温是()A.36.6℃B.36.7℃C.36.8℃D.37.0℃【分析】设星期四的体温是x℃,根据平均数的概念列出方程求解.【解答】解:设星期四的体温是x℃,依题意可得:(36.6+36.7+37.0+37.3+x+36.9+37.1)÷7=36.9,解得,x=36.7(℃).故选:B.【点评】本题考查了平均数的概念和一元一次方程的解法.熟记公式:是解决本题的关键.2.在黑板上从1开始,写出一组相继的正整数,然后擦去一个数,其余数的平均值为35,擦去的数是()A.5B.6C.7D.8【分析】设n个数,因为其余数的平均值为35,所以n﹣1是17的倍数,确定n个数的取值范围,计算求解.【解答】解:设一共有n个数,∵擦去一个其余数的平均值为35,∴n﹣1是17的倍数,即17个,34个,51个,68个,85个等,显然只有68个时所得平均数与35相差无几,∴n=69,则1+2+…+69==2415,那么n﹣1=68,则其他数的和是68×35=2408,∵2415﹣2408=7,∴擦去的数是7.故选:C.【点评】本题考查了平均数的综合运用,正确运用分类讨论的思想是解答本题的关键.3.某单位有1名经理、2名主任、2名助理和11名普通职员,他们的月工资各不相同.若该单位员工的月平均工资是1500元,则下列说法中正确的是()A.所有员工的月工资都是1500元B.一定有一名员工的月工资是1500元C.至少有一名员工的月工资高于1500元D.一定有一半员工的月工资高于1500元【分析】算术平均数:对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数,依此即可作出选择.【解答】解:∵某单位有1名经理、2名主任、2名助理和11名普通职员,普通职员的人数占多数,该单位员工的月平均工资是1500元,∴至少有一名员工的月工资高于1500元是正确的.故选:C.【点评】考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.4.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A.B.C.D.【分析】由题意知,设两地距离为S,从甲地行驶至乙地的时间为T1,从乙地返回甲地的时间为T2,则关键时间的计算公式求得T1及T2,再关键平均速度的计算公式即可求得平均速度.【解答】解:设两地距离为S,从甲地行驶至乙地的时间为T1,从乙地返回甲地的时间为T2,则有T1=,T2=;∴平均速度===;故选:D.【点评】本题考查了平均数实际中的运用.平均速度=总路程÷总时间.5.已知数据:x1+3,x2+3,x3+3,x4+3的平均数是9,则数据x1,x2,x3,x4的平均数是()A.5B.6C.7D.8【分析】根据平均数的计算公式即可求解.先求出数据x1+3,x2+3,x3+3,x4+3的和,然后利用平均数的计算公式表示数据x1,x2,x3,x4的平均数,经过代数式的变形可得答案.【解答】解:∵x1+3,x2+3,x3+3,x4+3的平均数是9.∴x1+3,x2+3,x3+3,x4+3的和是4×9=36.∴x1,x2,x3,x4的平均数是:(x1+x2+x3+x4)=[(x1+3)+(x2+3)+(x3+3)+(x4+3)﹣3×4]=(36﹣12)=×24=6.故选:B.【点评】本题主要考查了平均数的计算.正确理解公式是解题的关键,在计算中正确使用整体代入的思想.6.某同学使用计算器计算30个数据的平均数时,错将其中一个数据15输入为150,那么由此求出的平均数与实际相差()A.5B.4.5C.﹣5D.﹣4.5【分析】因为错将其中一个数据15输入为150,可求出多加了的数,进而即可求出答案.【解答】解:由题意知,错将其中一个数据15输入为150,则多加了150﹣15=9135,所以平均数多了135÷30=4.5.故选:B.【点评】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.7.数学课上,全班同学每人各报一个数.如果男生所报的数之和与女生所报的数之和相等,且男生所报数的平均值是,女生所报数的平均值是,那么全班同学所报数的平均值是()A.B.C.D.【分析】可设男生人数为x人,根据平均数公式即可求出男生所报的数之和为x;由于男生所报的数之和与女生所报的数之和相等,则女生人数可求,再根据平均数公式即可求出全班同学所报数的平均值.【解答】解:设男生人数为x人,则女生人数为:x÷()=x.全班同学所报数的平均值为:x×2÷(x+x)=.故选:C.【点评】本题考查了平均数的求法.解题关键是先设男生人数为x人,再用x表示女生人数,从而得出全班同学的人数.8.综合实践活动中,同学们做泥塑工艺制作.小明将各同学的作品完成情况绘成了如图的条形统计图.根据图表,我们可以知道平均每个学生完成作品()A.12件B.8.625件C.8.5件D.9件【分析】根据加权平均数的计算方法,用作品的总件数除以总人数,计算即可得解.【解答】解:==8.625(件).故选:B.【点评】本题考查了加权平均数的计算,要注意作品件数相应的权重.9.有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b 颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16B.a=24C.b=24D.b=34【分析】先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.【解答】解:甲箱98﹣49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49﹣1)÷2=24(颗),∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b=34.故选:D.【点评】此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10.某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是()A.82,76B.76,82C.82,79D.82,82【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中82是出现次数最多的,故众数是82;而将这组数据从小到大的顺序排列(76,76,82,82,82,95),处于中间位置的两个数的平均数是,那么由中位数的定义可知,这组数据的中位数是82.故选:D.【点评】此题考查了中位数、众数的意义,解题的关键是正确理解各概念的含义.11.漳州中闽百汇某服装专柜在进行市场占有情况的调查时,他们应该最关注已售出服装型号的()A.中位数B.众数C.平均数D.方差【分析】们应该最关注的是哪种服装售出的最多,因而最关心的是众数.【解答】解:漳州中闽百汇某服装专柜在进行市场占有情况的调查时,他们应该最关注的是哪种服装售出的最多,因而最关心的是众数.故选:B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.12.鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的()A.平均数B.众数C.中位数D.众数或中位数【分析】根据众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量进行解答即可.【解答】解:生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的众数.故选:B.【点评】本题考查统计量的选择,关键是根据众数就是出现次数最多的数,反映了一组数据的集中程度.13.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案.【解答】解:由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9,乙的成绩为8,9,7,8,10,7,9,10,7,10,甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,甲的方差S甲2=[2×(7﹣8.5)2+2×(8﹣8.5)2+(10﹣8.5)2+5×(9﹣8.5)2]÷10=0.85,乙的方差S乙2=[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]÷10=1.45∴S2甲<S2乙,∴甲的射击成绩比乙稳定;故选:C.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.已知样本x1,x2,x3,…,x n的方差是1,那么样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差是()A.1B.2C.3D.4【分析】根据方差的意义分析,数据都加3,方差不变,原数据都乘2,则方差是原来的4倍.【解答】解:设样本x1,x2,x3,…,x n的平均数为m,则其方差为S12=[(x1﹣m)2+(x2﹣m)2+…+(x n﹣m)2]=1,则样本2x1+3,2x2+3,2x3+3,…,2x n+3的平均数为2m+3,其方差为S22=4S12=4.故选:D.【点评】本题考查方差的计算公式及其运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15.数据8,10,12,9,11的平均数和方差分别是()A.10和B.10和2C.50和D.50和2【分析】应用平均数计算公式和方差的计算公式求平均数和方差.【解答】解:平均数=(8+10+12+9+11)=10,方差是S2=[(8﹣10)2+(10﹣10)2+(12﹣10)2+(9﹣10)2+(11﹣10)2]=×10=2.故选:B.【点评】正确理解平均数和方差的概念.掌握求平均数和方差的公式,是解决本题的关键.二.填空题(共12小题)16.某工厂生产同一型号的电池.现随机抽取了6节电池,测试其连续使用时间(小时)分别为:47,49,50,51,50,53.这6节电池连续使用时间的平均数为50小时.【分析】只要运用求平均数公式:即可求出,为简单题.【解答】解:本组数据分别为:47,49,50,51,50,53,故平均数==50(小时).故答案为50.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.17.如果一组数据:2,4,6,x,y的平均数为4.8,那么x,y的平均数为6.【分析】首先运用求平均数公式:得出x与y的和,再运用此公式求出x,y的平均数.【解答】解:由题意知,(2+4+6+x+y)=4.8,∴x+y=24﹣2﹣4﹣6=12,∴x,y的平均数=×12=6.故答案为6.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.18.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款31.2元.【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,用捐的具体钱数乘以所占的百分比,再相加,即可得该班同学平均每人捐款数.【解答】解:该班同学平均每人捐款:100×12%+50×16%+20×44%+10×20%+5×8%=31.2元.故答案为:31.2.【点评】本题主要考查扇形统计图的定义.统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.19.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=2k2﹣k(用只含有k的代数式表示).【分析】由于已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n),所以这组数据的中位数与平均数相等,即可求出这组数据的各数之和s的值.【解答】解:∵一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n),∴这组数据的中位数与平均数相等,∵这组数据的各数之和是s,中位数是k,∴s=nk.∵=k,∴n=2k﹣1,∴s=nk=(2k﹣1)k=2k2﹣k,故答案为:2k2﹣k.【点评】本题考查了中位数与平均数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是所有数据的和除以数据的个数.20.已知一组数据:0,2,x,4,5的众数是4,那么这组数据的平均数是3.【分析】先根据众数的定义求出x的值,再根据平均数的计算公式列式计算即可.【解答】解:∵0,2,x,4,5的众数是4,∴x=4,∴这组数据的平均数是(0+2+4+4+5)÷5=3;故答案为:3;【点评】此题考查了众数和平均数,根据众数的定义求出x的值是本题的关键,众数是一组数据中出现次数最多的数.21.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数(填“平均数”、“众数”或“中位数”).【分析】由于比赛设置了3个获奖名额,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数及中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故答案为:中位数.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.22.一组数据:1、﹣1、0、4的方差是.【分析】先求出该组数据的平均数,再根据方差公式求出其方差.【解答】解:∵=(1﹣1+0+4)=1,∴S2=[(1﹣1)2+(1+1)2+(0﹣1)2+(4﹣1)2]=(4+1+9)=,故答案为.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.学校篮球队五名队员的年龄分别为17,15,17,16,15,其方差为0.8,则三年后这五名队员年龄的方差为0.8.【分析】方差是用来衡量一组数据波动大小的量,每个数都加了3所以波动不会变,方差不变.【解答】解:由题意知,原来的平均年龄为,每位同学的年龄三年后都变大了3岁,则平均年龄变为+3,则每个人的年龄相当于加了3岁,原来的方差s12=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=0.8,现在的方差s22=[(x1+3﹣﹣3)2+(x2+3﹣﹣3)2+…+(x n+3﹣﹣3)2]=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=0.8,方差不变.故填0.8.【点评】本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.24.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为287.1,标准差为14.4.(精确到0.1)【分析】根据平均数、标准差的概念计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],标准差是方差的算术平方根.【解答】解:由题意知,数据的平均数=(271+315+263+289+300+277+286+293+297+280)=287.1方差S2=[(271﹣287.1)2+(315﹣287.1)2+(263﹣287.1)2+(289﹣287.1)2+(300﹣287.1)2+(277﹣287.1)2+(286﹣287.1)2+(293﹣287.1)2+(297﹣287.1)2+(280﹣287.1)2]=207.4标准差为≈14.4.故填287.1,14.4.【点评】本题考查了平均数,方差和标准差的概念.标准差是方差的算术平方根.25.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为17或18或19.【分析】将五个正整数从小到大重新排列后,有5个数,中位数一定也是数组中的数,根据中位数与众数就可以确定数组中的后三个数.而另外两个不相等且是正整数,就可以确定这两个数,进而得到这五个数.【解答】解:将五个正整数从小到大重新排列后,最中间的那个数是这组数据的中位数,即4;唯一的众数是5,最多出现两次,即第四、五两个数都是5.第一二两个数不能相等,可以为1与2或1与3或2与3;则这五个正整数的和为17或18或19.【点评】本题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数。
华师大版八年级下册数学期中考试试题含答案
华师大版八年级下册数学期中考试试卷一、单选题1.在下列各式:2xyπ,2a ,2a b -,5ab ,2x ﹣2y 中,是分式的共有()A .1个B .2个C .3个D .4个2.若分式211x x -+的值为0,则x 的值为()A .0B .1C .﹣1D .±13.下列各分式中,最简分式是()A .34()51()x y x y -+B .2222x y x y xy ++C .22y x x y-+D .22222-++x y x xy y4.要使式子1m -有意义,则m 的取值范围是()A .m >﹣1B .m≥﹣1C .m >﹣1且m≠1D .m≥﹣1且m≠15.若把分式22x yxy+中的x 和y 都扩大10倍,那么分式的值()A .扩大10倍B .不变C .缩小10倍D .缩小100倍6.若()252m y m x -=+是反比例函数,则m 的值为()A .2B .﹣2C .±2D .无法确定7.函数y ax a =-与(0)ay a x=≠在同一坐标系中的图象可能是()A .B .C .D .8.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s (千米)与时间t(时)之间的关系可以用图中的折线表示.现有如下信息:①小李到达离家最远的地方是14时;②小李第一次休息时间是10时;③11时到12时,小李骑了5千米;④返回时,小李的平均速度是10千米/时.其中,正确的有()A.1个B.2个C.3个D.4个9.反比例函数6yx=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y1<y2<y3C.y3<y1<y2D.y3<y2<y110.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.611.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A.270020x-=4500xB.2700x=450020x-C.270020x+=4500xD.2700x=450020x+12.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx=图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A .(12,0)B .(1,0)C .(32,0)D .(52,0)二、填空题13.用科学记数法表示0.000000025=_____.14.在正比例函数y=﹣3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在第___象限.15.一次函数y=kx+b (k ,b 为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为________.16.如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行,且经过点A (1,﹣2),则kb=__.17.若关于x 的方程222x mx x-+--=﹣2有增根,则m 的值是_____.18.如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点做x 轴的垂线与反比例函数y =1x的图象相交于点P 1,P 2,P 3,P 4,…P n ,再分别过P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n ﹣1B n ﹣1P n 的面积为_____.三、解答题19.(1)计算(﹣12)﹣1π﹣3.14)0﹣2|(2)化简:(222m mm m -+-)÷24m m -.20.解分式方程:(1)2393x x x +--=1.(2)2x x -﹣1=284x -.21.先化简,再求值:22x 4x 31(x 1)(x 2)x 1⎡⎤-++÷⎢⎥+--⎣⎦,其中x =6.22.若分式方程2311x x ++-=21m x -的解是正数,求m 的取值范围.23.小米手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A 款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 款手机每部售价多少元?(2)该店计划新进一批A 款手机和B 款手机共60部,且B 款手机的进货数量不超过A 款手机数量的两倍,应如何进货才能使这批手机获利最多?A ,B 两款手机的进货和销售价格如下表:A 款手机B 款手机进货价格(元)11001400销售价格(元)今年的销售价格200024.如图,已知A 14,2⎛⎫- ⎪⎝⎭,B (-1,2)是一次函数y kx b =+与反比例函数m y x =(0,0m m ≠<)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标.25.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A,B 出发,沿轨道到达C 处,在AC 上,甲的速度是乙的速度的1.5倍,设t 分后甲、乙两遥控车与B 处的距离分别为d 1,d 2(单位:米),则d 1,d 2与t 的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v 2=________米/分;(2)写出d 1与t 的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰参考答案1.C 【分析】根据分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A B叫做分式即可求解.【详解】解:2a,5ab,2x﹣2y是分式,共3个,故选:C.2.B【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式211xx-+的值为零,∴21010xx⎧-=⎨+≠⎩,解得:x=1,故选B.【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键. 3.B【解析】【分析】利用约分可对各选项进行判断.【详解】解:A、34()2()51()3()x y x yx y x y--=++,故A错误;B、2222x yx y xy++是最简分式,故B正确;C、22()()y x y x y x y xx y x y-+-==-++,故C错误;D、22222()()2()x y x y x y x yx xy y x y x y-+--==++++,故D错误.【点睛】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.4.D 【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:1010m m +⎧⎨-≠⎩,解得:m≥﹣1且m≠1.故选D 【点睛】此题主要考查二次根式的性质和分式的有意义的条件,熟练掌握二次根式的性质和分式的有意义的条件即可解题.5.C 【解析】【分析】利用分式的基本性质,x 和y 都扩大10倍,则分子扩大10倍,分母扩大100倍,则分式的缩小10倍.【详解】解:把分式22x yxy+中的x 和y 都扩大10倍,得2101010(2)12210101002102x y x y x yx y xy xy⨯+++==⨯⨯ ,∴分式的值缩小10倍.故选:C .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式6.A【解析】【分析】利用反比例函数的定义得到m+2≠0且m2﹣5=﹣1,然后解方程即可.【详解】解;根据题意得m2﹣5=﹣1,解得m=2或m=-2.又∵m+2≠0,即m≠-2,∴m=2故选:A.【点睛】本题考查了反比例函数的定义:形如y=kx(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.7.B【解析】【分析】首先知道直线经过定点(1,0),讨论a与0的关系,得到各自经过的象限,得到答案.【详解】解:根据函数y=ax−a经过定点(1,0),a>0时经过1,3,4象限,而ayx=在1,3象限;a<0时,函数y=ax−a经过定点(1,0),经过1,2,4象限,而ayx=在2,4象限;故选:B.【点睛】本题考查了一次函数与反比例函数图象;正确从a的符号讨论图象的可能性是关键.8.C【解析】【分析】(1)从图象上可以知道,小亮到达离家最远的地方是在14时,最远距离是30千米;(2)在图象开始处于水平状态的时刻就是小亮第一次休息的时刻;(3)在这段时刻,我们看纵坐标时,两点对应的路程差即是小亮骑车的路程;(4)由图形可知,回去时小亮是匀速行驶,中间没有休息,故速度是路程除以所用的时间.【详解】(1)由图象知,在图形的最高点就是小亮到达离家最远30千米的地方.此时对应的时刻是14时.正确;(2)休息的时候路程为0,即开始出现的第一个水平状态的时刻,由图象可知,小亮第一次休息的时刻是在10时.正确;(3)由图象知,在这段时间内,小亮只在11时到12时运动,对应的路程差为5km.正确;(4)返回时,小亮为匀速运动,路程为30千米,所用时间是2小时,故速度为15千米/小时.错误.所以,共3个信息正确.故选C.【点睛】考查函数的图象问题,关键是考查学生的识图能力,要求学生学会使用数形结合的思想.9.A【解析】【详解】解:k=6>0,所以反比例函数图像位于一三象限,并且当x<0时,y随着x的增大而减小,所以y2<y1<y3.故选A.【点睛】已知反比例函数解析式和点的横坐标要比较纵坐标大小,可以数形结合,借助图像的性质进行比较.10.D【解析】【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S2.【详解】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4-1×2=6.故选D.11.D【解析】【分析】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,根据用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,列方程即可.【详解】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,由题意得2700450020 x x=+故选:D【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB 的解析式是y=-x+52,当y=0时,x=52,即P (52,0),故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.13.2.5×10﹣8【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000025=2.5×10﹣8,故答案为:2.5×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.二【解析】【详解】∵正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,∴﹣3m>0,解得m<0,∴点P(m,5)在第二象限.故答案为二15.x=-1【解析】【分析】先根据题意求出一次函数解析式,然后求出其与x轴的交点坐标即可.【详解】解:∵一次函数y=kx+b过(2,3),(0,1)点,∴321k bb=+⎧⎨=⎩,解得:11kb=⎧⎨=⎩.∴一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(-1,0)点,∴关于x的方程kx+b=0的解为x=-1,故答案为:x=-1.【点睛】本题考查一次函数图像与方程之间的联系,掌握函数与方程之间的关系是解题关键.16.-8【解析】【分析】根据两条平行直线的解析式的k值相等求出k的值,然后把点A的坐标代入解析式求出b 值,再代入代数式进行计算即可.【详解】解:∵y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∵y=kx+b的图象经过点A(1,﹣2),∴2+b=﹣2,解得b=﹣4,∴kb=2×(﹣4)=﹣8.故答案为:﹣8.17.0【解析】【分析】先把方程化为2﹣(x﹣m)=﹣2(x﹣2),解得x=2﹣m,利用增根的定义得到2﹣m=2,从而得到m的值.【详解】解:去分母得2﹣(x﹣m)=﹣2(x﹣2),解得x=2﹣m,当x=2时,原方程有增根,即2﹣m=2,解得m=0.故答案为0.【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.18.12(1) n n-【解析】【详解】解:设OA1=A1A2=A2A3=…=A n-2A n-1=A n-1A n=a,∵当x=a时,1ya=,∴P1的坐标为(a,1a),当x=2a时,12ya=,∴P2的坐标为(2a,12a),……∴Rt△P1B1P2的面积为111() 22aa a-,Rt△P2B2P3的面积为111() 223aa a-,Rt△P3B3P4的面积为111() 234aa a-,……∴Rt △P n -1B n -1P n 的面积为1111111··1()2(1)212(1)a n a na n n n n ⎡⎤-=⨯⨯-=⎢⎥---⎣⎦.故答案为:12(1)n n -19.(11;(2)m ﹣6【解析】【分析】(1)根据负整数指数幂、零指数幂、绝对值的意义和二次根式的性质计算;(2)先把括号内通分和除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【详解】解:(1)原式=﹣2+4﹣2﹣1;(2)原式=2(2)(2)(2)(2)(2)(2)m m m m m m m m m--++-+- =22242m m m m m---=26m m m-=m ﹣6.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了实数的运算.20.(1)x =﹣4;(2)无解【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:3+x (x+3)=x 2﹣9,解得:x =﹣4,经检验:x =﹣4是分式方程的解;(2)去分母得:x (x+2)﹣x 2+4=8,解得:x =2,经检验x =2是增根,分式方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.解:原式=()()()2(x 1)(x 2)+2x 4x+3x 2(x 1)(x 1)x +x 6x 1x 1===x 1(x 1)(x 2)x 3x 2x 3x 2x 3+---+----⋅⋅⋅-+-+-+-+.当x =6时,原式=6-1=5.【解析】【详解】分式的化简求值.【分析】先把括号里面的分子分解因式,再约分化简,然后再通分计算,再把括号外的除法运算转化成乘法运算,再进行约分化简,最后把x=6代入即可求值.22.m >1且m≠6【解析】【分析】先把方程化为整式方程,解整式方程得到x =15m -,再利用原方程的解为正数得到15m ->0且15m -≠1,然后求出两不等式的公共部分即可.【详解】解:去分母得2(x ﹣1)+3(x+1)=m ,解得x =15m -,∵原方程的解为正数,∴x >0且x≠1,即15m ->0且15m -≠1,∴m >1且m≠6.【点睛】本题考查了分式方程的解:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.23.(1)今年A款手机每部售价1600元;(2)进A款手机20部,B款手机40部时,这批手机获利最大.【解析】【分析】(1)设今年A款手机的每部售价x元,则去年售价每部为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A款手机a部,则B款手机(60-a)部,获利y元,由条件表示出y与a 之间的关系式,由a的取值范围就可以求出y的最大值【详解】解:(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,由题意,得()50000120% 50000400x x-=+,解得:x=1600.经检验,x=1600是原方程的根.答:今年A款手机每部售价1600元;(2)设今年新进A款手机a部,则B款手机(60﹣a)部,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B款手机的进货数量不超过A款手机数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B款手机的数量为:60﹣20=40部.∴当新进A款手机20部,B款手机40部时,这批手机获利最大.【点睛】考查一次函数的应用,分式方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.24.(1)当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)一次函数的解析式为y=12x+52;m=﹣2;(3)P 点坐标是(﹣12,54).【解析】【分析】(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式以及m 的值;(3)设P 的坐标为(x ,12x+52)如图,由A 、B 的坐标可知AC=12,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB 的高(2﹣12x ﹣52),由△PCA 和△PDB 面积相等得,可得答案.【详解】解:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x <﹣1,所以当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b ,y=kx+b 的图象过点(﹣4,12),(﹣1,2),则1422k b k b ⎧-+=⎪⎨⎪-+=⎩,解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩一次函数的解析式为y=12x+52,反比例函数y=m x图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC 、PD ,如图,设P 的坐标为(x ,12x+52)如图,由A 、B 的坐标可知AC=12,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB 的高(2﹣12x ﹣52),由△PCA 和△PDB 面积相等得1 2×12×(x+4)=12×|﹣1|×(2﹣12x﹣52),x=﹣52,y=12x+52=54,∴P点坐标是(﹣52,54).25.(1)40;(2)当0≤t≤1时,d1=﹣60t+60;当1<t≤3时,d1=60t﹣60;(3)当0≤t<2.5时,两遥控车的信号不会产生相互干扰.【解析】【分析】(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a 的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.【详解】(1)乙的速度v2=120÷3=40(米/分),(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=6060(01) {6060(13)t tt t-+≤-≤≤<;(3)d2=40t,当0≤t<1时,d2-d1>10,即-60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2-d1>10,即40t-(60t-60)>10,当1≤t<52时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DCBA 二、填空题(每小题3分,共36分) 7.化简:111+++x x x = . 8.分式方程112=-x 的解为 .9.某种微粒的直径为0.000001027mm ,用科学记数法表示是 mm . 10.点(4,-3)关于原点对称的点的坐标是 _____________. 11.如图,在梯形ABCD 中,AD ∥BC ,AC =BD ,AB =5cm , 则DC =___cm.12.把命题“对等角相等”改写成“如果…那么…”的形式:______________________________________________ .13.命题“若b a =,则22b a =”的逆命题是 命题(选填“真”或“假”). 14.若正比例函数kx y =(k ≠0)经过点(1-,2),则k 的值为_______.15.已知四边形ABCD 中,90A B C ∠=∠=∠=︒,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________.16.甲、乙两人进行射击比赛,在相同条件下,各射击10次,他们的平均成绩均为7环,10次射击的成绩的方差分别是S 2甲 = 3,S 2乙 =1.5,则成绩比较稳定的是___________.(填“甲”或“乙”)。
17.如图,已知AB 、CD 相交于点O ,AD=BC ,试添加一个条件,使得△AOD ≌△COB ,你添加的条件是 (只需写一个).18.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:所剪次数1 2 3 4 … n正三角形个数 471013…n aD B CAO第17题(第11题)则10a =. 三.解答题(共90分)19.(8分)计算:130512)2(--⎪⎭⎫⎝⎛+--π20.(8分)先化简再求值: 12-x x ÷(1+ 11-x ) ,其中x=-2 .21.(8分)如图,菱形ABCD 中,点E 、F 分别是BC 、CD 边的中点.求证:AE=AF .22.(8分)小青在八年级上学期的数学成绩如下表所示.测验类别 平时测验期中考试 期末考试 测验1 测验2 测验3 课题学习 成绩887286989081(1)计算小青该学期平时测验的平均成绩; (2)如果学期总评成绩根据如图所示的权重计算,请计算小青该学期的总评成绩.A FD B EDCBA23.(8分)如图,已知平行四边形ABCD .(1)用直尺和圆规作出∠ABC 的平分线BE ,交AD 的延长线于点E ,交DC 于点F(保留作图痕迹,不写作法);(2)在第(1)题的条件下,求证:△ABE 是等腰三角形24.(8分)下面两图是某班在“五·一”黄金周期间全体同学以乘汽车、步行、骑车外出方式旅游的人数分布直方图和扇形分布图.从这两个分布图所提供的数字,请你回答下列问题: ⑴补上人数分布直方图中步行人数的空缺部分;⑵若全校有2500名学生,试估计该校步行旅游的人数.FE D CB A 25.(8分)如图,在平行四边形ABCD 中,点E 、F 在BD 上,且BF=DE. ⑴直接写出图中一对全等的三角形;⑵延长AE 交BC 的延长线于G ,延长CF 交DA 的延长线于H (请自己补全图形), 求证:四边形 AGCH 是平行四边形.26. (8分)如图,在直角坐标平面内,函数),0(为常数m x xmy >=的图象经过A(1,4),B(a ,b),其中a>1,过点B 作y 轴垂线,垂足为C ,连接AC 、AB.⑴求m 的值;⑵若△ABC 的面积为4,求点B 的坐标.27. (13分)甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同,每天甲、乙两人共加工35个零件,设甲每天加工x个.(1)直接写出乙每天加工的零件个数(用含x的代数式表示);(2)求甲、乙每天各加工多少个;(3)根据市场预测估计,加工A型零件所获得的利润为m元/ 件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元。
求每天甲、乙加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值、最小值.28.(13分)已知直线b x y +=21与x 轴交于点A(-4,0),与y 轴交于点B. ⑴求b 的值;⑵把△AOB 绕原点O 顺时针旋转90°后,点A 落在y 轴的A '处,点B 若在x 轴的B '处; ①求直线B A ''的函数关系式;②设直线AB 与直线B A ''交于点C ,矩形PQMN 是△C B A '的内接矩形,其中点P ,Q 在线段B A '上,点M 在线段C B '上,点N 在线段AC 上.若矩形PQMN 的两条邻边的比为1∶2,试求矩形PQMN 的周长.四、附加题(共10分)友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷得分已达到或超过90分,则本题的得分不计入全卷总分. 1.(5分)计算:2x x= . 2.(5分)如图,∠1=∠2,AB=CD ,BC=5cm,则AD= cm .12DA BC南安市2008—2009学年度下学期期末学习目标检测初二数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确作完该步应得的累计分数. (四)评分最小单位是1分,得分或扣分都不出现小数.一、选择题(每小题4分,共24分)1.A ;2.A ;3.C ;4.B ;5.D ;6.D二、填空题(每小题3分,共36分)7.x1; 8. 3=x ; 9. 1.027×10-6; 10.(-4,3); 11. 5; 12. 13+=x y ; 13. 一个等腰三角形有一个角是60° 14. -2; 15. AB =BC 或AC ⊥BD ; 16. 乙; 17. <; 18. 31三、解答题(10题,共90分)19. 解:原式=1+3-5 …………6分=-1 ……………8分20. 解:原式=112-÷-x xx x …………2分 =xx x x x 1)1)(1(-•-+ …………3分=11+x …………5分 当2-=x 时原式=1121-=+- …………8分21.证明:在菱形ABCD 中AB =BC =CD =AD∠B =∠D ………………3分 ∵点E 、F 分别BC 、CD 边的中点∴ BE =21BC DF =21CD∴ BE =DF∴△ABE ≌△ADF …………6分∴ AE =AF …………8分22.解:⑴小青该学期平时平均成绩为:(88+72+86+98)÷4=86(分) …………3分 ⑵小青该学期的总评成绩为 86×10%+90×30%+81×60%=84.2(分) …………8分23.⑴准确画BE 得2分,准确标出点E 、F 的位置各得1分,共4分; ⑵证明:∵BE 平分∠ABC∴∠ABE=∠CBE …………5分 ∵四边形ABCD 是平行四边形 ∴AD ∥BC∴∠AEB=∠CBE …………6分 ∴∠AEB=∠ABE …………7分 ∴△ABE 是等腰三角形 …………8分24.解:⑴略…………4分⑵估计该校步行旅游的人数约为 2500×30%=750(人) …………8分25.⑴△ABD ≌△CDB 或△ABE ≌△CDF 或△ADE ≌△CBF …………3分 ⑵补全图形 …………4分 证明:在□ABCD 中 ∵AD ∥BC ∴∠1=∠2 ∵AD=BC DE=BF∴△ADE ≌△CBF …………6分∴∠3=∠4∵∠3=∠G∴∠4=∠G∴AG ∥HC又∵AH ∥CG∴四边形AGCH 是平行四边形 ………………8分26.解:⑴把A(1,4)代入4==m xm y 得 ………… 3分 ⑵作AD ⊥x 轴于D ,交BC 于点E ,则AE ⊥BC∵点B(a ,b)在函数xy 4=的图象上, ∴ab 4= …………4分 ∴a BC =,ab AE 444-=-= …………5分 ∵421=•=∆AE BC S ABC ∴4)44(21=-••aa 解得a=3 …………7分∴34=b ∴点B 的坐标为(3,34) …………8分27.解:(1)x -35; …………(3分)(2)xx -=358060 ………… (4分) 解得x=15 …………(5分)经检验,x=15是原方程的解,且符合题意.………(6分) 30- 15=20答:甲每天加工15个,乙每天加工20个.………(7分)(3)y=15m + 20(m-1) ………… (9分)=35m - 20…………(10分)∵在y=35m - 20中,y 是m 的一次函数,k=35>0,y 随m 的增大而增大…………(11分)又由已知得:3≤m ≤5∴当m =5时,y 最大值=175…………(12分)当m =3时,y 最小值=85 …………(13分)28.解⑴把A(-4,0)代入b x y +=21,得 2,0)4(21==+-⨯b b …………3分 ⑵①221+=x y ,令0=x ,得2=y ,∴B(0,2) …………4分 由旋转性质可知4=='OA A O , 2=='OB B O∴A '(0,4),B '(2,0) …………5分设直线B A ''的解析式为b ax y '+=⎩⎨⎧='+='024b a b 解得⎩⎨⎧='-=42b a ∴直线B A ''的解析式为42+-=x y …………7分②∵点N 在AC 上∴设N(x ,221+x ) (04<<-x ) ∵四边形PQMN 为矩形∴NP=MQ=221+x …………8分 ⅰ)当PN :PQ=1∶2时PQ=2PN=4)221(2+=+x x ∴x x a ++4(,0)M(42+x ,221+x ) ∵点M 在C B '上∴2214)42(2+=++-x x 解得34-=x此时342)34(21=+-⨯=PN ,PQ=38 ∴矩形PQMN 的周长为8)3834(2=+ …………10分 ⅱ)当PN ∶PQ=2∶1时PQ=21PN=141)221(21+=+x x ∴Q(x x ++141,0) M(145+x ,221+x ) ∵点M 在C B '上∴2214)145(2+=++-x x 解得0=x此时PN=2,PQ=1∴矩形PQMN 的周长为2(2+1)=6 …………12分综上所述,当PN ∶PQ=1∶2时,矩形PQMN 的周长为8当PQ ∶PN =1∶2时,矩形PQMN 的周长为6 …………13分。