高中数学必修四总复习课件精心整理.ppt

合集下载

人教版高二数学必修四复习课件(48ppt)

人教版高二数学必修四复习课件(48ppt)

ymin
1.
x
2k
时,
ymin
1.
无对称轴
(k , 0)
2
无最值
二、函数 y Asin(x ) ( A 0, 0)的图像和性质.
A:振幅 (运动的物体离开平衡位置的最大距离) T:周期T= 2
(运动的物体往复运动一 次所需要的时间 )
f:频率f 1 = T 2
(运动的物体在单位时间 内往复运动的次数 )
sina
y
++
cos a
y
–+
tan a
y

+
o
x
––
o
x
–+
o +
–x
例:
1、如果角a的终边经过点P0(-3,-4),
求sin a, cos a, tan a
解:r (3)2 (4)2 5
sin a y 4 r5
cos a x 3 r5
tan a y 4 4 x 3 3
如果 e1, e2 是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
量 a,有且只有一对实数1, 2 ,使 a 1e1 2 e2
三、向量的坐标表示
y
1.以原点O为起点的 OA a ,
a
A(x, y)
a j
a xi y j 向量的正交分解O i
x
a (x, y)
A(x1, y1)
tan( ) tan tan
1 tan tan
tan( ) tan tan
1 tan tan
(2)二倍角的正余弦公式
sin2 2sin cos
cos2 cos2 sin 2

人教A版高中数学必修四课件:第二章 阶段复习课 平面向量 (共82张PPT)

人教A版高中数学必修四课件:第二章 阶段复习课 平面向量 (共82张PPT)
择决定命运,环境造就人生!
1、只要有坚强的意志力,就自然而然地会有能耐、机灵和知识。2、你们应该培养对自己,对自己的力量的信心,百这种信心是靠克服障碍,培养意志和锻炼意志而获得的。 3、坚强的信念能赢得强者的心,并使他们变得更坚强。4、天行健,君子以自强不息。5、有百折不挠的信念的所支持的人的意志,比那些似乎是无敌的物质力量有更强大 的威力。6、永远没有人力可以击退一个坚决强毅的希望。7、意大利有一句谚语:对一个歌手的要求,首先是嗓子、嗓子和嗓子……我现在按照这一公式拙劣地摹仿为:对 一个要成为不负于高尔基所声称的那种“人”的要求,首先是意志、意志和意志。8、执着追求并从中得到最大快乐的人,才是成功者。9、三军可夺帅也,匹夫不可夺志也。 10、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志,并把研究继续下去。11、我的本质不是我的意志的结果, 相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。12、公共的利益,人类的福利,可以使可憎的工作变为可 贵,只有开明人士才能知道克服困难所需要的热忱。13、立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。14、意志的出现不是对愿 望的否定,而是把愿望合并和提升到一个更高的意识水平上。15、无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。16、即使 遇到了不幸的灾难,已经开始了的事情决不放弃。17、最可怕的敌人,就是没有坚强的信念。18、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下 去。19、意志若是屈从,不论程度如何,它都帮助了暴力。20、有了坚定的意志,就等于给双脚添了一对翅膀。21、意志坚强,就会战胜恶运。22、只有刚强的人,才有神 圣的意志,凡是战斗的人,才能取得胜利。23、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。24、疼痛的强度,同自然赋于人类的意志和刚度成正比。25、能 够岿然不动,坚持正见,度过难关的人是不多的。26、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中 锻炼出来的,学习了不在生活面前屈服。27、只要持续地努力,不懈地奋斗,就没有征服不了的东西。28、立志不坚,终不济事。29、功崇惟志,业广惟勤。30、一个崇高 的目标,只要不渝地追求,就会居为壮举;在它纯洁的目光里,一切美德必将胜利。31、书不记,熟读可记;义不精,细思可精;惟有志不立,直是无着力处。32、您得相 信,有志者事竟成。古人告诫说:“天国是努力进入的”。只有当勉为其难地一步步向它走去的时候,才必须勉为其难地一步步走下去,才必须勉为其难地去达到它。33、 告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。34、成大事不在于力量的大小,而在于能坚持多久。35、一个人所能做的就是做出好榜样,要有勇气在风 言风语的社会中坚定地高举伦理的信念。36、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。37、你既然期望辉煌伟大的一生,那么就应该从今 天起,以毫不动摇的决心和坚定不移的信念,凭自己的智慧和毅力,去创造你和人类的快乐。38、一个有决心的人,将会找到他的道路。39、在希望与失望的决斗中,如果 你用勇气与坚决的双手紧握着,胜利必属于希望。40、富贵不能淫,贫贱不能移,威武不能屈。41、生活的道路一旦选定,就要勇敢地走到底,决不回头。42、生命里最重 要的事情是要有个远大的目标,并借助才能与坚持来完成它。43、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头, 缓步的骆驼继续向前。44、有志者事竟成。45、穷且益坚,不坠青云之志。46、意志目标不在自然中存在,而在生命中蕴藏。47、坚持意志伟大的事业需要始终不渝的精神。 48、思想的形成,首先是意志的形成。49、谁有历经千辛万苦的意志,谁就能达到任何目的。50、不作什么决定的意志不是现实的意志;无性格的人从来不做出决定。我终 生的等待,换不来你刹那的凝眸。最美的不是下雨天,是曾与你躲过雨的屋檐。征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。 真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样可口!人格的完善是本,财富的确立是末能力可以慢 慢锻炼,经验可以慢慢积累,热情不可以没有。不管什么东西,总是觉得,别人的比自己的好!只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹 出世间的绝唱。对时间的价值没有没有深切认识的人,决不会坚韧勤勉。第一个青春是上帝给的;第二个的青春是靠自己努力的。不要因为寂寞而恋爱,孤独是为了幸福而 等待。每天清晨,当我睁开眼睛,我告诉自己:我今天快乐或是不快乐,并非由我所遭遇的事情造成的,而应该取决于我自己。我可以自己选择事情的发展方向。昨日已逝,

最新数学必修四知识点总结.ppt

最新数学必修四知识点总结.ppt

弧度 0
64
3
2 3 5
23 4 6
3 2
2
阿1h,
例3.已知角和满足
求角–的范围.
3
4
解:
, 0 . , .
3
3
, 7
4
4 3 12
例4、 已知扇形的周长为定值100,问扇形的半
径和圆心角分别为多少时扇形面积最大?最大值
是多少?
略解:S 1 lr 1 (100 2r)r r 2 50r (r 25)2 625.
(2)象限角、象限界角(轴线角)
①象限角
第一象限角:
(2k<<2k+
2
,
kZ)
第二象限角:
(2k+
2
<<2k+,
kZ)
第三象限角:
(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2, kZ 阿1h,

2k-
2
<<2k,
kZ
)
②轴线角
x 轴的非负半轴: =k360º(2k)(kZ);
M
O
P
阿1h,
M
O
P
10)函数y=lg sinx+
c
os
x
1 2
的定义域是
(A) (A){x|2kπ<x≤2kπ+ (B){x|2kπ≤x≤2kπ+
(33(k2k∈∈ZZ))}}
(C){x|2kπ<x≤2kπ+π (k∈Z)}

高中数学必修四三角函数PPT课件

高中数学必修四三角函数PPT课件

01
02
03
04
第一象限
正弦、余弦、正切均为正。
第二象限
正弦为正、余弦为负、正切为 负。
第三象限
正弦、余弦均为负、正切为正。
第四象限
正弦为负、余弦为正、正切为 负。
02 三角函数诱导公 式与变换
诱导公式及其应用
诱导公式的基本形式
01
通过角度的加减、倍角、半角等变换,得到三角函数的等价表
达式。
诱导公式的推导
02
正切函数的周期为$pi$,即$tan(x + kpi) = tan x$,其中$k in Z$。
三角函数的奇偶性
正弦函数是奇函数, 即$sin(-x) = -sin x$。
正切函数是奇函数, 即$tan(-x) = -tan x$。
余弦函数是偶函数, 即$cos(-x) = cos x$。
三角函数在各象限的符号
三角恒等变换
和差化积、积化和差等公式及应用
三角函数的图像与性质
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
三角恒等变换的应用: 证明等式、化简表达式 等
余弦定理及其应用
余弦定理的公式表达 在任意三角形ABC中,有$a^2 = b^2 + c^2 - 2bccos A$,以及相应的其他两个式子。
余弦定理的推导 通过向量的数量积和投影进行推导。
余弦定理的应用 用于求解三角形的边和角,尤其在已知三边或两边及夹角 的情况下。同时,也可用于判断三角形的形状(锐角、直 角或钝角)。

数学必修4知识点总结.ppt

数学必修4知识点总结.ppt
特别地,当λ=0或a=0时, λa=0
设a,b为任意向量,λ,μ为任意实数,则有:
①λ(μa)=(λμ) a ②(λ+μ) a=λa+μa ③λ(a+b)=λa+λb
对于向任量意的的加向、量减ar、、数br乘,以运及算任统意称实为数向、 量的1、 线形2运,恒算有。
(1ar
2br )=1ar
r
2b
a b
.
o
相等向量一定是平行向量吗?
向量相等
平行向量一定是相等向量吗?
向量平行
向量的加法:1 三角形法则:
rr
uuur r uuur r
已知向量a和b,在平面内任取一点O,作OA a, AB b,
uuur r r
r r r r uuur uuur uuur
则向量OB叫做a和b的和,记作a b.即a b=OA+ AB=OB
.对称轴:x=k

o
. /2 3/2 2
x
-1 T/2
3、正切函数的图象与性质
y=tanx
y 图
象 3
2
2
o
2
3
2
x
定义域 {x | x k , k N}
2
值域 R
周期性 T
奇偶性 奇函数
单调性(k , k )(k Z )
2
2
正切函数的性质:
y
1
y 1
2
2
O 1 2
(3)终边相同的角,具有共同的绐边和终边的角 叫终边相同的角,所有与角终边相同的角(包含
角在内)的集合为. k 360, k Z
(4)角在“到”范围内,指.0 360
一、角的基本概念

高中数学必修4全套课件

高中数学必修4全套课件

诱导公式分类
根据三角函数的类型,诱 导公式可分为正弦、余弦 、正切等类型的诱导公式 。
诱导公式的应用
通过诱导公式,可以简化 复杂的三角函数计算,解 决与三角函数相关的数学 问题。
三角函数图像与性质
图像绘制
实际应用
通过绘制三角函数的图像,了解函数 的形状、周期性、对称性等特点。
了解三角函数在物理、工程等领域的 应用,体会数学与实际问题的联系。
高中数学必修4全套课件
汇报人: 202X-12-30
目录
• 三角函数 • 三角函数的诱导公式 • 三角函数的图像与性质 • 平面向量 • 向量的数量积 • 向量的向量积与向量的混合积
01
三角函数
角的概念的推广
总结词
角的概念从0度推广到360度,引入正角和负角的概念。
详细描述
角的概念从0度开始,顺时针旋转形成的角称为正角,逆时针旋转形成的角称为 负角。角的范围从-360度到360度,任意一个角都可以表示为整数倍的360度加 上一个正角的组合。
向量的数量积的应用
总结词
了解向量的数量积在实际问题中的应用,包括力的合 成与分解、速度和加速度的研究等。
详细描述
向量的数量积在物理中有广泛的应用。例如,在力的 合成与分解中,力的大小可以通过向量的数量积来计 算,力的方向则可以通过向量的单位向量来表示。在 速度和加速度的研究中,速度和加速度可以视为位置 向量的时间导数,而它们之间的夹角余弦值可以通过 向量的数量积来计算。此外,向量的数量积还可以用 于解决一些实际问题,如卫星轨道计算、碰撞检测等 。
向量的加法与减法
总结词
掌握向量加法和减法的几何意义和运 算规则
详细描述
向量的加法和减法可以通过平行四边 形法则或三角形法则进行计算。向量 加法的几何意义是表示向量的位移或 合成效果,而减法可以看作加法的反 向操作。

【优选整合】人教A版高中数学必修四 小结与复习 课件 (共22张PPT)

【优选整合】人教A版高中数学必修四 小结与复习 课件 (共22张PPT)
sin cos cos sin
cos cos
1 2 1 2 1
2
[sin( ) sin( )] [sin( ) sin( )]
[cos( ) cos( )] 1 2 [cos( ) cos( )]
sin sin
(2)和差化积公式
sin sin 2 sin

2
cos

2
sin sin 2 cos

2
sin

2
cos cos 2 cos
cos cos 2 sin

2
cos
sin
cos cos sin sin
tan tan 1 tan tan tan tan
1 tan tan
tan( )
.
.
tan( )
2、辅助角公式
a sin x b cos x
a b a b a b
第三章
三角恒等变换
三角恒等变换---复习小结
温故知新
1、两角和与差的三角函数公式:
sin( )
sin cos cos sin
sin( ) sin cos cos sin
cos( ) cos cos sin sin cos( )
T 2
T
2
C S
2 2
小试牛刀
计算:
(1 ) cos 74
( 2 ) sin 20

数学必修四知识点总结共27页PPT

数学必修四知识点总结共27页PPT

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法谈话。——笛卡儿
Thank you
数学必修四知识点总结
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30°
6
4
2、弧度制
弧度与角度的换算
180°= π rad
0O 30O 45O 60O 90O 120O 135O 150O 180O 270O 360O
弧 度0 sin 0
cos 1
tan 0
64 12 22 32 22
31
3
3
2
2 3 5
3 46
3 2
2
3 2
3
12
21 22
0
-1 0
1 2
13
4
1 2 1 18
54
第三部分 三角函数的图像与性质
大题题型: 1、已知解析式 2、解析式含参数 3、作图与图像变换
1、正弦、余弦函数的图象与性质
y=sinx
y=cosx
y
y

1
1

2
o
-1
2
3
2
2 x
o 3 2 x
2 -1 2
2
定义域
R
R
值域 性 周期性
[-ቤተ መጻሕፍቲ ባይዱ,1]
T=2
2
13
cos(
)
cos
cos
sin
sin
4
4
4
12 2 ( 5 ) 2 17 2 13 2 13 2 26
例:周练1第4题
注:要求的角用已知的角表示 B
解:∵
π

)(

4 tan(
4
π )
tan
(a
)
(
4
π )
4
tan( ) tan( )
1
tan(
)
tan(
4
)
21 54
0
1 2 3 22 2
-1
0
1
3
不 存 在
3 -1
3 3
0

存0

3、扇形的公式
l
r
弧长公式:l r
a
扇形面积公式:S
1 2
lr
1 2
r2
例:扇形的周长为6cm,面积为2cm²,求该 扇形圆心角所对的弧度数。
解:设该扇形的圆心角的弧度数为,半径为r, 弧长为l,则
周长:l 2r ar 2r 6 面积:S 1 lr 1 ar 2 2
{x | x k , k N}
2 R
T
奇函数
(k , k )(k Z)
2
2
例:复习卷第3题 例:复习卷第4题
A D
题型一:已知解析式 求单调区间、值域、周期、求值
例:复习卷大题第二题
答案:
题型二:解析式含参
例:复习卷大题第二题
cos a
y
–+
tan a
y

+
o
x
––
o
x
–+
o +
–x
例:
1、如果角a的终边经过点P0(-3,-4),
求sin a, cos a, tan a
解:r (3)2 (4)2 5
sin a y 4 r5
cos a x 3 r5
tan a y 4 4 x 3 3
答案:D
2、三角函数的公式
4
若sinx与cosx前面的系数是1:1,提取 2
例:sin x
3 cos x 2(1 sinx 3 cos x)
2
2
(2 sinxcos cosx sin )
3
3
2sin(x )
3
若sinx与cosx前面的系数是1:3 ,提取2
题型:化简与求值 例:复习卷第1题
D
1 2
例:复习卷第2题
(1)同角三角函数关系式
sin 2 cos2 1
(2)诱导公式
sin tan cos
诱导公式三
sin() sin , cos() cos , tan() tan 。
诱导公式四
诱导公式二
sin( ) sin , sin( ) sin ,
cos( ) cos , cos( ) cos ,
D
例:早练1第1题 根据角的范围判断符号的正负
1、已知
cos
12
,a
(3π,2π), 则cos(
π )
(
13
2
4
D
)
A、5 2 13
B、7 2 13
C、17 2 26
D、7 2 26
解:∵sin 2 cos2 1,而cos 12 | sin | 5 ,
13
13
又∵ (3 ,2 ),sin 0故sin 5
奇偶性
奇函数

单调性
[2k
2
,
2k
2
],
k
Z,Z
[2k , 2k 3 ], k z,]
2
2
[-1,1]
T=2
偶函数
[2k , 2k ], k Z,Z
[2k , 2k ], k Z,]
2、正切函数的图象与性质
y=tanx
y 图
象 3
2
2
o
2
3
2
x
定义域
值域
周期性 奇偶性 单调性
若a与β 终边在同一直线,则β =α+kπ,k∈Z
例:
终边与0°角相同的角的集合:{ | 2k , k Z}
终边在x轴上的角的集合:{ | k , k Z}
终边在y轴上的角的集合:{ | k , k Z}
2
如图,终边在阴影部分的角的集合为:
45° { | 2k 2k , k Z}
正弦:
正余 余正 符号同
cos( ) cos cos sin sin
cos( ) cos cos sin sin
余弦:
余余 正正 符号反
tan( ) tan tan
1 tan tan
tan( ) tan tan
1 tan tan
分式结构 上同下反
(4)二倍角的正余弦公式
22 求得a 1或a 4
第二部分 三角函数的公式
1、三角函数的定义 2、同角三角函数关系式 3、诱导公式 4、和差倍角公式
1、三角函数的定义
1、任意角的三角函数定义 r x2 y 2
sin a y cos a x tan a y
r
r
x
2、任意角的三角函数在各个象限的符号
sina
y
++
sin2 2sin cos
cos2 cos2 sin 2
2cos2 1
1 2sin2
二倍角公式常用于降次化简
tan2 2 tan
1 tan 2
(5)辅助角公式
例:sin x cosx 2( 2 sinx 2 cos x)
2
(2 sinxcos
2
cosx sin
)
4
4
2 sin(x )
必修四 总复习
第一部分 角的概念与表示
1、任意角的概念 2、弧度制 3、扇形的相关计算
1、角的概念
(1)角的概念的推广 y 的终边
(,)
正角
o
负角
零角 x
的终边 (2)在坐标系中讨论角 轴线角与象限角
(3)终边相同的角 若a与β 终边相同,则β =α+2kπ,k∈Z
(4)终边在同一直线上的角
tan( ) tan 。 tan( ) tan 。
sin( ) cos
2
cos( ) sin
2
sin( pπ - a ) = cos a 2
cos( pπ - a ) = sin a 2
(3)两角和差的正余弦公式
sin( ) sin cos cos sin
sin( ) sin cos cos sin
相关文档
最新文档