圆锥曲线的特殊性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1命题12.椭圆两个共轭直径上的正方形之和等于两个对称轴上的正方形之和.命题13.双曲线两个共轭直径上的正方形之差等于两个对称轴上的正方形之差.命题31.椭圆或双曲线的两条共轭直径所构成的平行四边形(以其交角为内角)等于两条对称轴所构成的矩形.

2我探究的这一特性是在抛物线、椭圆和双曲线上讨论的——过圆锥曲线的焦点,做一条弦与圆锥曲线相交,则由焦点分割弦得到的两段线段长度的倒数之和,与圆锥曲线离心率和焦点到相应准线的距离相乘的倒数的两倍;但是对于双曲线,当这两个交点分别位于两支上面的时候,之和应该改为之差。这样说来可能比较抽象,那么用数学表达式来说明一下。设m和n是焦点分割弦形成的线段的长度,e代表圆锥曲线的离心率,p代表焦点到相应准线的距离,则有112mnep+=恒成立,对于交点位于两支上的弦,满足112mnep−=的关系。换句话说,焦点分割弦得到的线段长度的倒数之和或者之差是一个定值,只与圆锥曲线有关系,而与点在圆锥曲线的位置没有关系。这给我们什么启示呢

3用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。

首先注意到复数恒等式:,两边取模,运用三角不等式得

等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。因此托勒密定理得证。

1.第二定义的统一性圆的准线在∞,0=e. 2.极坐标方程的统一性3.曲线上一点光学性质的统一性椭圆:点光源在一个焦点上,光线通过另一个焦点。双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯4.一般弦长公式具有统一性5.过焦点弦长公式具有统一性6.过曲线上一点切线方程的统一性7.直径所对周角之斜率乘积的统一性8.焦点弦端点切线的交点轨迹的统一性9.过焦点且和焦点弦垂直的的直线和焦点弦端点切线的关系统一性10.过非等轴双曲线曲线上一点做互相垂直弦共有的性质11.过曲线上一点做倾斜角互补直线所成弦而具有共有的性质12.内部焦点弦被焦点分成两个焦半径倒数和为定值13.圆锥曲线内部外部点代入方程后不等式符号的统一性14.过同一焦点两任意焦点弦AB和CD,AC和BD交点轨迹统一15.任意一弦BA延长交准线于E,则FE平分BFA外角16.任意一弦BA延长交准线于E,则FE平分BFA外角,又任意一弦AN延长交准线于Q,则FQ平分BFA外角后得到EFQ是直角17.过一个焦点交圆锥曲线于MN,做MN的垂直平分线交轴与P则离心率等于2PF/MN 18.二次曲线和二次曲线交于两点AB,联立两方程消X得0)(=YH,消Y得0)(=XG则AB为端点的圆的方程就是0)()(=+YHXG(必须先保证X和Y系数相同)19.若有弦AB,AB中点为),(00.yxP 则弦AB方程为0)2,2(),(00=−−−yyxxfyxf

20.圆锥曲线通径长统一为定值ep2 21.利用统一的圆锥曲线方程中判别式可以判断曲线类型22.F是焦点,E是F对应准线L和轴交点AD垂直L,BC垂直L 则有BD、AC同时平分线段EF(一组关系)23.F是焦点,E是F对应准线L和轴交点AB是过焦点F的弦,BC平行FE,N是线段

EF的中点,则BC

和AN交点C在准线L上24 F是焦点,E是F对应准线L和轴交点,B是圆锥曲线上一点,C在L上,BC平行FE,N是线段EF中点,则直线BF和CN的交点A恰在圆锥曲线上25过圆锥曲线准线L上一点做圆锥曲线的两条切线MA、MB则切点弦必过焦点F且和MF垂直(一组关系)25 F是焦点,过曲线上一点P的切线与相应于焦点F的准线交于Q,则PFQ是直角26 点P在圆锥曲线上时过P的切线方程和点P不在曲线上的切点弦方程一致27 截圆锥得到圆锥曲线的统一性:用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;

当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。28焦点关于切线的对称点的轨迹统一性问题29过圆锥曲线外一点做和圆锥曲线有一个公共点的直线的统一性问题30 圆锥曲线的以焦点为圆心以2a为直径的特征大圆和以中心为圆点以a为半径的特征小圆的统一性问题31从圆锥曲线外一定点P引两条切线PA、PB,A、B为切点,过圆锥曲线上的任一点引切线交PA、PB于C、D,则CFD∠是定值.32从圆锥曲线外准线上一点P引两条切线PA、PB,A、B为切点,过圆锥曲线上的任一点引切线交PA、PB于C、D,则2π=∠CFD,是定值.33AB是圆锥曲线的(直径,长轴,实轴,轴),过B的直线lAB⊥,点D是圆锥曲线上除轴两端点外任意一点,直线AD交直线l于点E,点C是线段BE的中点,那么DC是圆锥曲线的切线。(一组关系) 34过圆锥曲线焦半径的端点作切线,与以轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直. 35已知圆锥曲线E的焦点为F,其对应准线为L,L与F所在的对称轴交于点A,动弦BC平行于L,直线AB与圆锥曲线E相交于D,则C,D,F 三点共线.

36 自圆锥曲线的准线与对称轴的交点引这条圆锥曲线的切线,则切线斜率的平方等于这条圆锥曲线离心率的平方37 与圆类似,若点A,P,B均在圆锥曲线C上,则称∠APB为曲线C的周角,弦AB为周角∠APB所对的弦.在文[1 ]中,已有结论:“圆锥曲线中,当k PA. k PB=- 1 ,则直周角所对的弦恒经过定点,且该定点恰在经过直周角顶点的法线上38椭圆、双曲线和抛物线关于切线和法线的一条性质,现统一表述如下:图1定理(如图1)设P为圆锥曲线上的任一点(非顶点),e为离心率,F为焦点,l是过P的切线,法线PM交x轴于M,∠FPM=θ,l的倾斜角为α,(1)|FM|=e|PM|;(2)sinθ=e|cosα|. 39 设圆锥曲线的一条准线与对称轴的交点为A,其相应的通径的一个端点

相关文档
最新文档