《高数》第十一章-习题课:级数的收敛、求和与展开
高等数学第十一章习题
1. 填空题
∞
∑ (1)
lim
n→∞
un
= 0 是级数 un 收敛的
n=1
必要
条件,
而不是
充分
条件;
∞
∞
∞
(2) 若级数 ∑un 绝对收敛, 则级数 ∑un 必定 收敛 ; 若级数 ∑un 条件收敛,
n=1
n=1
n=1
∞
则级数 ∑ un 必定 发散 ; n=1
∞
∞
(3) 级数 ∑un 按某一方式经添加括号后所得的级数收敛是级数 ∑un 收敛的
.
n=1 (n − 1)! 3
n=1 (n − 1)!
n=1 (n − 1)!
93
所以
S ( x)
=
x2 (
+
x
x
+ 1)e3
,
x ∈ (−∞, +∞) .
93
∑ ∑ (4) 令 t = x + 1, 则 ∞ (x + 1)n = ∞ tn . n=0 (n + 2)! n=0 (n + 2)!
设 an
−1)
,
而 lim un+1 n→∞ un
=
lim
n→∞
2(n + 1) 2n+1
−1 2n x2 2n −1
=
x2 2
,
当
x=±
2
时级数
∞
∑
2n
−
1
发散,
所 以 级 数 的 收 敛 区 间 为 (−
2,
2) .
设
n=1 2
∑ S ( x)
=
∞ n=1
高数11-2数项级数及审敛法.ppt
2) lim un 0,
n
则级数 (1)n1un收敛 , 且其和 S u1, 其余项满足
n1
rn un1 .
用Leibnitz 判别法判别下列级数的敛散性:
1) 1 1 1 1 (1)n1 1 n1 1
收敛
2)
1
2 1
2!
3 1
3!
因此级数发散 ;
因此
Sn
a, 0,
n 为奇数 n 为偶数
从而
不存在 , 因此级数发散.
综合 1)、2)可知, q 1 时, 等比级数收敛 ; q 1 时, 等比级数发散 .
例2. 判别下列级数的敛散性:
解: (1)
Sn
ln 2 1
ln 3 2
ln 4 3
ln n 1 n
(ln 2 ln1) (ln3 ln 2) ln(n 1) ln n
定理 1. ( Abel定理 )若幂级数 an xn
n0
则对满足不等式
的一切 x 幂级数都绝对收敛.
反之, 若当
时该幂级数发散 , 则对满足不等式
的一切 x , 该幂级数也发散 .
发散
收敛 发散
收o敛
发散x
收敛半径
收敛区间
收敛域
定理2. 若
的系数满足
则
1) 当 ≠0 时,
R
1
;
2) 当 =0 时, R ;
lim
n
un
0
满足
比值审敛法 nlimuunn1
根值审敛法
lim n
n
un
1
1
收敛
发散
不满足 发 散
比较审敛法
《高等数学》(北大第二版 )第11章习题课
(习题课) 习题课) 10.1 敛散性判定的方法 10.1.1 直接判定法
∞
设级数
∑ a 的部分和数列 S = ∑ a
n =1 n n k =1
∞
n
k
. 为判定
∑a
n =1
∞
的敛
n
散性,只要直接讨论数列Sn 的敛散性即可。
1 例 1 判定级数∑ 的敛散性. n =1 (2n - 1)(2n + 1)
∞
∑u
n =1
n
= u1 + u2 + ⋅ ⋅ ⋅
(1)
∑v
n =1
∞
n
= v1 + v2 + ⋅ ⋅ ⋅ (2)
如果级数(2)收敛,并且当 n ≥ N时,un ≤ vn , 则级(1 )收敛. 如果级数(1)发散,并且当 n ≥ N时,u n ≤ vn , 则级(2)发散.
例2 判定下列级数的敛散性 :
10.1.5 任意项级数收敛准则
判定任意项级数的敛散性,通常把它转化为相应的绝对值组成 的级数,即一正项级数而加以考虑,这时如果收敛,原级数也收 敛,称为绝对收敛。对于绝对收敛的任意项级数,正项级数的判敛 法都能直接用上.一般地,有关于级数收敛的Cauchy准则:级数
∑u
n
收敛的充要条件为,对于任意给定的ε>0,总存在N,使对任何
∞
1 . p n 1
比值判敛法
对于正项级数
∑ u , 如果
n =1 n
∞
un +1 lim = ρ, n →∞ u n
则当ρ < 1时级数收敛;当ρ > 1时级数发散.
根值判敛法 对于正项级数
级数的收敛、求和与展开
机动
目录
上页
下页
返回
结束
4.狄利克雷判别法与阿贝尔判别法 (Dirichlet 判别法) 判别法)
k→∞
级数∑akbk
k =1
∞
若序列 ak }单调且lim ak = 0, 又级数∑bk {
k =1
∞
的部分和有界, 即存在常数 M>0 使
| ∑bk |≤ M, n =1,2,L
k =1 n
则级数∑akbk收敛 .
∑
= x 2 e x − x(e x − 1)
∴
∞
x ∑ n! n =1
∞
n
(n - 1)2 n 1 ∞ (n − 1)2 n +1 1 ∞ (n − 1) x n +1 = ∑ = ∑ | x = 2 = e 2 + 1. ∑ n! 2 n =1 n! 2 n =1 n! n =1
xn 例10 求 级数∑ 的和函数, 其中 x < 1. 1 n( n + 1) ∞ ∞ x n +1 xn xS(x) = ∑ 解 S(x) = 1 n ( n + 1) 1 n( n + 1)
第十章 习题课 级数的收敛、 级数的收敛、求和与展开
一、数项级数敛散性的判别法 二、求幂级数收敛域的方法 三、幂级数和函数的求法 四、函数的幂级数和付式级数 展开法
机动 目录 上页 下页 返回 结束
求和 展开
(在收敛域内进行) 时为数项级数; 时为幂级数;
(an , bn 为傅氏系数) 时, 为傅立叶级数.
2
x = 2
2
x 当 <1, 即− 2 < x < 2 时 级数收敛; , 2
高等数学无穷级数11-1
n0aqn当 当qq
1时, 收敛 1时, 发散
二、收敛级数的基本性质
性质1 设常数 k 0, 则 un与kun
有相同的敛散性.
n1 n1
证 令un与kun 的部分和分别为 sn 及n .
n1 n1
则 n k1u k2u kn u
k(u 1u 2 u n) ksn
于是 当sns, nksn ks ;
当sn不存在极k限 0时 且 ,
nksn 也不存在极限.
所以, un与kun 有相同的敛散性.
n1
n1
结论: 级数的每一项同乘一个不为零的常数, 敛散性不变.
性质2 设有两个级数 un与vn,
n1
n1
若 un s , v n , 则 (unvn)s.
n1
试判别级数 (un a) 的敛散性.
n1
解
因为 u n
n1
收敛, 故
ln im un 0.
从而 ln i m (una)a0
故级数 (un a) 发散.
n1
求级数
n1
5 n(n
1)
1 2n
的和.
解
收敛.
n0aqn当 当qq
1时, 收敛 1时, 发散
例 讨论级数 3lnna(a0) 的敛散性.
n1
解 因为 3 ln n a 是以 lna
n1
为公比的等比级数, 故
当1 ae时, |lna|1, 级数 收敛.
e
当0 a
高数下册第11章复习题与答案
第十一章-无穷级数练习题(一).基本概念 收敛.Q Q 1.设v U n 为正项级数,下列四个命题 n -1(1)(2) 若limU n =0,则「U n 收敛; 若v U n 收敛,贝U v U n 100收敛; n=1 n W A.级数X |U n |收敛;n =1B.极限 lim Un =0 ;C. 极限 lim Un ^ = r ::: 1 ;F U nnD. 部分和数列Sn =•'.: Uk 有界.k 45.下列级数中条件收敛的是().(3)若 lim U n 1 nY U n Q Q(4)若v U n 收敛,则 n -1 中,正确的是( ) A . (1)与 (2);C . (3)与(4);Q Q 1,则v U n 发散; n =1 lim 5^ ::: 1 . n匚U n■■ 1' 1 ;厂' n= - n cos 1;n 4 tnB.B .⑵与(3);D . (4)与(1). C. 2.下列级数中,收敛的是( 1 )• oO q' (-1)n 1 ; n 吕 .n 1001 A. ' -;n £ n□0 B .、 n ;n 壬 2n +1 QQD. ' (-1)nn 4 n, n6.下列级数中绝对收敛的是).8 1 、(-1)n— n=1 nC . 0.001 一 0.001 30.001; 1B. ' —nw nD . 4 32 43 443•在下列级数中,发散的是( ).Q QC. (-1)n nM n旳1D.二.sin .n 吕 nQO *;(二).求等比级数的和或和函数。
提示:注 意首项C . —1—;n - n 3n 17.幕级数nx n 1在(-2, 2)上的和函数 n=02s(x) = ___________ .八2 八3 八4333 ...23' 44 4 4oO8.幕级数(-1)nn=04ns(x)= ---------------4.条件()满足时,任意项级数U n 定n=1在(-4 , 4)上的和函数9.无穷级数:]旳的和S=—(三)■判定正项级数的敛散性。
高数第十一章第1节
如此继续,
4
圆内接正 3 2 n边形的面积为 a1 a2 an
即 A a1 a2 an
如果内接正多边形的边数无限增多, 即n无限增大, 则和a1 a2 an的极限就是所求圆面积A.
此时上面和式变为无穷多项相加 a1 a2 an
n ku1 ku2 kun ksn 于是 lim n lim ksn k lim sn ks ,
n n n
所以,级数 kun 也收敛, 且其和为ks.
n 1
20
由上讨论可知, 如果 un发散, 则{sn }没有极限, 如
n 1
所以 lim Ak lim sn .即
k
n
级数 vm 也收敛, 且 vm un .
m 1 m 1 n 1
29
注:收敛级数去括弧后所成的级数不一定收敛.
例如, 级数 (1 1) (1 1) 收敛于0.
而级数 1 1 1 1 却发散.
1 n 例如 级数 ( ) , n 1 2
sn u1 u2 un ,
为级数(1)的部分和数列。
1 i 1 n 其部分和Sn ( ) 1 ( ) 1 ( n ) 2 i 1 2
n
7
给定一个级数,可以作出它的部分和数列; 反之,给定一个级数的部分和数列,也可以作出 该级数,即令:u1 s1 , u2 s2 s1 , , un sn sn1 , , 显然级数 的部分和数列就是 sn 。 u1 +u2 + +un +
高等数学-幂级数
其中
称为傅里叶级数. 称为傅里叶级数.
(3)
狄利克雷(Dirichlet)充分条件(收敛定理) 狄利克雷(Dirichlet)充分条件(收敛定理) (Dirichlet)充分条件
∑=u ( x) + u ( x) ++ u ( x) +
n=1 1 2 n
∞
上的(函数项)无穷级数. 称为定义在区间 I 上的(函数项)无穷级数.
(2)
收敛点与收敛域
收敛, ∑u ( x ) 收敛,
n=1 n 0
13
如果 x0 ∈ I , 数项级数
∞
则称 x0 为级数
收敛点, ∑u ( x) 的收敛点,
n=1 n
∞
否则称为发散点. 否则称为发散点. 发散点
的所有收敛点的全体称为收敛域 收敛域, 函数项级数 ∑un ( x)的所有收敛点的全体称为收敛域,
n=1 ∞
所有发散点的全体称为发散域. 所有发散点的全体称为发散域. 发散域
(3)
和函数
在收敛域上, 在收敛域上,函数项级数的和是 x 的函数 s(x),
∞
∑ un
∞
∞
收敛, 为绝对收敛; 收敛, 则称 ∑un 为绝对收敛;
发散, 收敛, 为条件收敛. 若 ∑ un 发散,而 ∑un 收敛, 则称 ∑un 为条件收敛.
n=1 n=1 n=1
12
5、函数项级数
(1) 定义
设u1( x), u2 ( x),, un ( x),是定义在 I R 上的 函数, 函数,则
1 (1) 则当 ρ ≠ 0 时, R = ; ρ (2) 当 ρ = 0 时, R = +∞;
(3) 当 ρ = +∞ 时, R = 0.
高等数学 第十一章 无穷级数 第五节 函数的幂级数展开式的应用
1 2 = (1 x + 2!
x 2n + ( 1)n + ( 2n)!
1 3 + i( x x + 3!
x 2 n +1 + ( 1)n + ( 2n + 1)!
cos x
)
sin x
= cos x + i sin x .
∵ e ix = cos x + i sin x
又 ∵ e ix = cos x i sin x
x2
解法
被积函数 被积函数
定积分的近似值 定积分的近似值
展开成幂级数 展开成幂级数
逐项积分 逐项积分
sin x 例3 计算 ∫ dx 的近似值 , 精确到10 4. 0 x
1
sin x 1 2 1 4 1 6 x ∈ ( ∞ ,+∞ ) 解 ∵ = 1 x + x x + x 3! 5! 7! 1 sin x 1 1 1 ∫0 x dx = 1 3 3! + 5 5! 7 7! + 收敛的交错级数 1 1 < < 10 4 , 第四项 7 7! 3000
取前三项作为积分的近似值,得
sin x 1 1 ∫0 x dx ≈ 1 3 3! + 5 5! ≈ 0.9461
1
三,求数项级数的和
1.利用级数和的定义求和:
(1)直接法;
∞
(2)拆项法;
(3)递推法.
1 例4 求 ∑ arctan 2 的和. 2n n =1
解
1 1 + 1 1 2 8 = arctan 2 , s2 = arctan + arctan = arctan 1 1 2 8 3 1 2 8
第十一章 无穷级数(习题及解答)
第十一章 无穷级数§11.1 级数的概念、性质一、单项选择题1. 若级数1n n aq ∞=∑收敛(a 为常数),则q 满足条件是( ). (A)1q =; (B)1q =-; (C)1q <; (D)1q >. 答(D).2. 下列结论正确的是( ).(A)若lim 0n n u →∞=,则1n n u ∞=∑收敛;(B)若1lim()0n n n u u +→∞-=,则1n n u ∞=∑收敛;(C)若1n n u ∞=∑收敛,则lim 0n n u →∞=;(D)若1n n u ∞=∑发散,则lim 0n n u →∞≠. 答(C).3. 若级数1n n u ∞=∑与1n n v ∞=∑分别收敛于12,S S ,则下述结论中不成立的是( ).(A)121()nn n u v S S ∞=±=±∑; (B)11nn ku kS ∞==∑;(C)21nn kvkS ∞==∑; (D)112nn nu S vS ∞==∑. 答(D). 4. 若级数1n n u ∞=∑收敛,其和0S ≠,则下述结论成立的是( ).(A)1()n n u S ∞=-∑收敛; (B)11n nu ∞=∑收敛; (C)11n n u∞+=∑收敛; (D)n ∞=收敛. 答(C).5. 若级数1n n a ∞=∑收敛,其和0S ≠,则级数121()n n n n a a a ∞++=+-∑收敛于( ).(A)1S a +; (B)2S a +; (C)12S a a +-; (D)21S a a +-.答(B).6. 若级数∑∞=1n na发散,∑∞=1n nb收敛则 ( ).(A)∑∞=+1)(n n nb a发散;(B)∑∞=+1)(n n nb a可能发散,也可能收敛;(C)∑∞=1n nn ba 发散; (D)∑∞=+122)(n n n b a发散. 答(A).二、填空题1. 设1a <,则().n n a ∞=-=∑答:11a +. 2. 级数0(ln 3)2nnn ∞=∑的和为.答:21ln 3-.3. 级数0n ∞=∑,其和是 . 答: 14.数项级数∑∞=+-1)12)(12(1n n n 的和为.答:12. 5*. 级数0212nn n ∞=-∑的和为. 答: 3.三、简答题1. 判定下列级数的敛散性(1)23238888(1)9999nn -+-++-+答: 收敛.解: (2) 11113693n+++++ 答: 发散.解:(3)1133n++ 答: 发散.解:(4) 232333332222n n +++++ 答: 发散.解:(5) 22331111111123232323n n ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭答: 收敛.解:§11.2 正项级数收敛判别法、P — 级数一、单项选择题1. 级数1n n u ∞=∑与1n n v ∞=∑满足0,(1,2,)n n u v n <≤=,则( ).(A)若1n n v ∞=∑发散,则1n n u ∞=∑发散;(B)若1n n u ∞=∑收敛,则1n n v ∞=∑收敛; (C)若1n n u ∞=∑收敛,则1n n v ∞=∑发散;(D)若1n n u ∞=∑发散,则1n n v ∞=∑发散. 答(D).2. 若10,(1,2,)n a n n≤<=,则下列级数中肯定收敛的是( ).(A)1nn a ∞=∑; (B)11()n n n a a ∞+=+∑;(C)21n n a∞=∑; (D)n ∞=. 答(C).3. 设级数 (1)12!nn n n n ∞=∑与 (2) 13!nn n n n ∞=∑,则( ). (A)级数(1)、(2)都收敛; (B) 级数(1)、(2)都发散;(C)级数(1)收敛,级数(2)发散; (D) 级数(1)发散,级数(2)收敛. 答(C).4. 设级数(1) n ∞=与 (2) 110!nn n ∞=∑, 则( ).(A)级数(1)、(2)都收敛; (B) 级数(1)、(2)都发散;(C)级数(1)收敛,级数(2)发散; (D) 级数(1)发散,级数(2)收敛. 答(D).5. 下列级数中收敛的是( ).(A)1n ∞= (B)11sin n n ∞=∑; (C)1(1)31nn n n ∞=--∑; (D)1121n n ∞=-∑. 答(A).6*. 若级数22116n n π∞==∑,则级数211(21)n n ∞==-∑( ). (A)24π; (B)28π; (C)212π; (D)216π. 答(B).7. 设1n n u ∞=∑与1n n v ∞=∑均为正项级数,若1lim=∞→nnn v u ,则下列结论成立的是( ).(A)1nn u ∞=∑收敛, 1n n v ∞=∑发散; (B) 1n n u ∞=∑发散, 1n n v ∞=∑收敛;(C)1nn u∞=∑与1n n v ∞=∑都收敛,或1n n u ∞=∑与1n n v ∞=∑都发散. (D)不能判别. 答(C).8. 设正项级数∑∞=1n nu收敛,则( ).(A)极限1limn n n u u +→∞≤1; (B) 极限1lim n n nuu +→∞<1;(C)极限1n; (D)无法判定. 答(A)9. 用比值法或根值法判定级数1n n u ∞=∑发散,则∑∞=1n nu( ).(A)可能发散; (B)一定发散;(C)可能收敛; (D)不能判定. 答(B)二、填空题1. 正项级数1n n u ∞=∑收敛的充分必要条件是部分和nS .答:有上界.2. 设级数1n n α∞=∑收敛,则α的范围是. 答:32α>. 3. 级数1n n u ∞=∑的部分和21n nS n =+,则n u =. 答:2(1)n n +. 4. 级数0212n n n ∞=+∑是收敛还是发散. 答:收敛.5. 若级数11sin p n n n π∞=∑收敛,则p 的范围是. 答:0p >.6. 级数13!n n n n n∞=∑是收敛还是发散 . 答:发散.三、简答题1. 用比较法判定下列级数的敛散性:(1) 2111n nn ∞=++∑; 答:发散. (2) 11(1)(2)n n n ∞=++∑; 答: 收敛.(3) 1sin2nn π∞=∑; 答:收敛. (4)11(0)1n n a a∞=>+∑.答1a >收敛;1a ≤发散.2. 用比值法判定下列级数的敛散性:(1) 132nnn n ∞=⋅∑; 答:发散. (2) 213n n n ∞=∑; 答: 收敛. 解:(3) 12!n n n n n ∞=⋅∑; 答: 收敛. (4)11tan2n n n π∞+=∑. 答: 收敛.解:3. 用根值法判定下列级数的敛散性:(1) 121nn n n ∞=⎛⎫ ⎪+⎝⎭∑; 答: 收敛. (2)11[ln(1)]nn n ∞=+∑; 答:收敛.解: 解:(3) 21131n n n n -∞=⎛⎫⎪-⎝⎭∑; 答:收敛.解:(4) 1nn n b a ∞=⎛⎫⎪⎝⎭∑其中,()n a a n →→∞,,,n a b a 均为正数.答:当b a <时收敛,当b a >时发散,当b a =时不能判断.§11.3 一般项级数收敛判别法一、单项选择题1. 级数1nn u∞=∑与1nn v∞=∑满足,(1,2,)n n u v n ≤=,则( ).(A) 若1n n v ∞=∑收敛,则1n n u ∞=∑发散;(B) 若1nn u∞=∑发散,则1nn v∞=∑发散;(C) 若1n n u ∞=∑收敛,则1n n v ∞=∑发散;(D) 若1n n v ∞=∑收敛,则1n n u ∞=∑未必收敛.答(D).2. 下列结论正确的是( ).(A) 1nn u∞=∑收敛,必条件收敛; (B) 1nn u∞=∑收敛,必绝对收敛;(C) 1nn u ∞=∑发散,则1nn u ∞=∑必条件收敛;(D)1n n u∞=∑收敛,则1nn u∞=∑收敛. 答(D) .2. 下列级数中,绝对收敛的是( ).(A) 1(1)31nn n n ∞=--∑; (B) 1211(1)n n n ∞-=-∑; (C) 111(1)ln(1)n n n ∞-=-+∑; (D) 111(1)n n n ∞-=-∑. 答(B) .3. 下列级数中,条件收敛的是( ).(A) 1(1)n n ∞-=-∑; (B) 112(1)3nn n ∞-=⎛⎫-⎪⎝⎭∑; (C) 1211(1)n n n ∞-=-∑; (D) 111(1)2n n n n ∞-=-⋅∑. 答(A) . 4. 设α为常数,则级数21sin n n n α∞=⎛- ⎝∑( ). (A) 绝对收敛; (B) 条件收敛;(C) 发散; (D)敛散性与α的取值有关. 答(C).5. 设),3,2,1()11ln(cos =+=n nn a n π,则级数( ).(A)∑∞=1n na与∑∞=12n na都收敛. (B)∑∞=1n na与∑∞=12n na都发散.(C)∑∞=1n na收敛,∑∞=12n na发散. (D)∑∞=1n na发散,∑∞=12n na收敛. 答(C).6.设),3,2,1(10 =<<n na n ,则下列级数中肯定收敛的是( ). (A)∑∞=1n n a . (B)∑∞=-1)1(n n na . (C) ∑∞=2ln n n n a . (D)∑∞=22ln n n n a . 答(D). 7.下列命题中正确的是( ).(A) 若∑∞=12n nu与∑∞=12n nv都收敛,则21)(n n nv u+∑∞=收敛.(B)若∑∞=1n nn v u收敛,则∑∞=12n n u 与∑∞=12n n v 都收敛.(C) 若正项级数∑∞=1n n u 发散,则nu n 1≥. (D)若),3,2,1( =<n v u n n ,且∑∞=1n nu发散,则∑∞=1n nv发散. 答(A).二、填空题1. 级数11(1)n n n α-∞=-∑绝对收敛,则α的取值范围是 . 答: 1.α> 2. 级数11sin 2n n nαπ∞=∑条件收敛,则α的取值范围是 . 答:0 1.α<≤3. 级数2n n a ∞=∑收敛,则0(1)nn n a n ∞=-∑是条件收敛还是绝对收敛 .答:绝对.收敛三、简答题1. 判定下列级数的敛散性,若收敛,是条件收敛还是绝对收敛?(1) 1(1)n n ∞-=-∑ 答: .条件收敛解: (2)111(1)3n n n n∞--=-∑; 答: .绝对收敛 解: (3)21sin (1)n n n α∞=+∑; 答: .绝对收敛 解: (4)111(1)32n nn ∞-=-⋅∑; 答: .绝对收敛 解: (5)111(1)ln(1)n n n ∞-=-+∑; 答: .条件收敛 解:(6) 2112(1)!n n n n ∞+=-∑ 答: .发散 解:§11.4 幂级数收敛判别法一、单项选择题1. 幂级数1nn x n∞=∑的收敛区间是( ).(A)[1,1]-; (B)(1,1)-; (C)[1,1)-; (D)(1,1]-. 答(C).2. 幂级数1(1)(1)2nnnn x n ∞=+-⋅∑的收敛区间是( ).(A)[2,2]-; (B)(2,2)-; (C)[2,2)-;(D)(2,2]-. 答(D).3. 幂级数2213nn n x n ∞=⋅∑的收敛半径是( ).(A)3R =; (B)R ; (C)13R =; (D)R = 答(B). (A ) (C)(B )(D)4. 若级数∑∞=+1)2(n nnx C 在4x =处是收敛的,则此级数在1x =处( ).(A)发散;(B)条件收敛; (C)绝对收敛; (D)收敛性不能确定. 答(C).5. 若级数∑∞=+1)2(n nnx C 在4x =-处是收敛的,则此级数在1x =处( ).(A)发散;(B)条件收敛; (C)绝对收敛; (D)收敛性不能确定. 答(D).6.若幂级数nn nx a)1(0-∑∞=在1-=x 处条件收敛,则级数∑∞=0n n a ( ).(A)条件收敛; (B)绝对收敛; (C)发散; (D)敛散性不能确定. 答(B).二、填空题1. 幂级数21nn x n∞=∑的收敛域是 . 答: [1,1].-2. 幂级数2123n n nn x nn ∞=⎛⎫+ ⎪⎝⎭∑的收敛域是. 答: 11,.33⎡⎤-⎢⎥⎣⎦3. 幂级数1211(1)(21)!n n n x n --∞=--∑的收敛半径R = ,和函数是 .答:,sin .R x =+∞4. 幂级数20(1)(2)!n nn x n ∞=-∑的收敛半径R = ,和函数是 .答:,cos .R x =+∞5. 设0nn n a x ∞=∑的收敛半径为R ,则20n n n a x ∞=∑的收敛半径为 .答:6. 设幂级数0nn n a x ∞=∑的收敛半径为4,则210n n n a x ∞-=∑的收敛半径为 .答:2.7. 幂级数1(23)(1)21nn n x n ∞-=---∑的收敛域是 . 答:(1,2].8. 幂级数∑∞=-02)1(n n nx a在处2=x 条件收敛,则其收敛域为 .答:]2,0[.一、简答题1. 求下列幂级数的收敛域. (1)1nn nx∞=∑; 答: (1,1).- (2)121(1)nn n x n ∞-=-∑; 答: [1,1].- (3) 13nnn x n ∞=⋅∑; 答:[3,3)-. (4) 2121n n n x n ∞=+∑; 答:11,22⎡⎤-⎢⎥⎣⎦.(5) nn ∞= 答:[4,6). (6)211(1)21n nn x n +∞=-+∑. 答:[1,1].-2. 用逐项求导或逐项积分,求下列幂级数的和函数.(1)11n n nx∞-=∑; 答:21(),(1,1)(1)S x x x =∈--. 解:(2) 21121n n x n -∞=-∑. 答:11()ln ,(1,1)21xS x x x +=∈--.解:3*. 求级数112nn n ∞=⋅∑的和. 答:2ln 2. 解:§11.5 函数展开成幂级数一、单项选择题1. 函数2()x f x e -=展开成x 的幂级数是( ).(A) 46212!3!x x x ++++;(B) 46212!3!x x x -+-+;(C) 2312!3!x x x ++++ ; (D) 2312!3!x x x -+-+. 答(B).2. 如果()f x 的麦克劳林展开式为20n n n a x ∞=∑,则n a 是( ).()(0)(A)!n f n ;(2)(0)(B)!n f n ;(2)(0)(C)(2)!n f n ;()(0)(D)(2)!n f n . 答(A). 3. 如果()f x 在0x x =的泰勒级数为00()n n n a x x ∞=-∑,则n a 是( ).()0(A)()n f x ;(2)0()(B)!n fx n ;(2)0()(C)!n f x n ;()0()(D)!n f x n . 答(C). 4. 函数()sin 2f x x =展开成x 的幂级数是( ).357(A)3!5!7!x x x x -+-+; 224466222(B)12!4!6!x x x -+-+; 335577222(C)23!5!7!x x x x -+-+; 462(D)14!6!x x x -+-+. 答(C).二、填空题1. 函数()xf x a =的麦克劳林展开式为. 答: 0(ln ).!n nn a x n ∞=∑ 2. 函数12()3x f x +=的麦克劳林展开式为. 0ln 3.2!nn n xn ∞=⎛⎫ ⎪⎝⎭ 3. 幂级数2111(1)(21)!n n n x n -∞-=--∑的和函数是 . 答:sin .x4. 函数1()1f x x =-的麦克劳林级数为. 答:0.n n x ∞=∑5. 函数1()1f x x=+的麦克劳林级数为. 答:0(1).n n n x ∞=-∑6. 函数()ln(1)f x x =+的麦克劳林级数为.答: 11(1).nn n x n∞-=-∑ 7. 函数()xf x e =在1x =处的泰勒级数. 答:0(1).!n n ex n ∞=-∑8. 函数1()1f x x =+在1x =处的泰勒级数.答: 10(1)(1).2nnn n x ∞+=--∑ 9. 函数1()f x x=展开成3x -的幂级数为. 答: 1(3)(1).3nnn n x ∞+=--∑ 10. 函数2()cos f x x =展开成x 的幂级数为. 答:212012(1).2(2)!n nn n x n -∞=+-∑ 11. 级数0(1)(2)!nn n ∞=-∑的和等于. 答:cos1.三、简答题1. 将下列函数展开成x 的幂级数,并求展开式成立的区间. (1) ()ln(),(0)f x a x a =+>; 解:答:11ln()ln (1).nn nn x a x a n a ∞-=+=+-⋅∑ (2) 2()sin f x x =;解:答:2211(2)sin (1),(,).2(2)!nn n x x n ∞-==--∞+∞∑ (3) ()(1)ln(1)f x x x =++; 解:答:12(1)(1)ln(1),(1,1].(1)n nn x x x x n n -∞=-++=+--∑(4*) ()f x =;解:21212(2)!(1),[1,1].(!)2n nn n x x n +∞=⎛⎫=+-- ⎪⎝⎭∑(5). 2()23xf x x x =--.解:答:211221112(2)!(1),(1,1).2343(!)2n n nn n x n x x x x n +∞-=⎡⎤⎛⎫=-+-- ⎪⎢⎥--⎣⎦⎝⎭∑2. 将函数()cos f x x =展开成3x π⎛⎫+ ⎪⎝⎭的幂级数.解:答: 221011cos (1),(,).2(2)!33nn n nn x x x n ππ+∞=⎡⎤⎛⎫⎫=-+++-∞+∞⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦∑3*. 将函数2()ln(3)f x x x =-在1x =展开成幂级数. 解:答: 2101(1)ln(3)ln 2(1),(0,2].2n n n n x x x n ∞-=-⎡⎤-=+--⎢⎥⎣⎦∑ 4*. 将函数21()32f x x x =++展开成4x +的幂级数.解:答: 2110111(4),(6,2).3223n n n n x x x ∞++=⎛⎫=-+-- ⎪++⎝⎭∑§11.6 2π为周期的傅里叶级数一、单项选择题1. 函数系{}1,cos ,sin ,cos 2,sin 2,,cos ,sin ,().x x x x nx nx(A) 在区间[,]ππ-上正交; (B) 在区间[,]ππ-上不正交;(C) 在区间[0,]π上正交; (D) 以上结论都不对. 答(A).2. 函数系{}1,sin ,sin 2,,sin ,().x x nx(A) 在区间[0,]π上正交; (B) 在区间[0,]π上不正交;(C) 不是周期函数; (D) 以上结论都不对. 答(B).3. 下列结论不正确的是( ).(A)cos cos d 0,()nx mx x n m ππ-=≠⎰;(B)sin sin d 0,()nx mx x n m ππ-=≠⎰; (C)cos sin d 0nx mx x ππ-=⎰; (D)cos cos d 0nx nx x ππ-=⎰. 答(D).4. ()f x 是以2π为周期的函数,当()f x 是奇函数时,其傅里叶系数为( ).(A)010,()sin d n n a b f x nx x ππ==⎰;(B)010,()cos d n n a b f x nx x ππ==⎰; (C)020,()sin d n n a b f x nx x ππ==⎰;(D)020,sin d n n a b nx x ππ==⎰.答(C).5. ()f x 是以2π为周期的函数,当()f x 是偶函数时,其傅里叶系数为( ).(A)010,()sin d n n b a f x nx x ππ==⎰;(B)020,()cos d n n b a f x nx x ππ==⎰; (C)010,()cos d n n b a f x nx x ππ==⎰;(D)020,cos d n n b a nx x ππ==⎰. 答(B).二、填空题1. ()f x 是以2π为周期的函数,()f x 傅里叶级数为.答:01(cos sin ).2n n n a a nx b nx ∞=++∑其中1()cos d ,0,1,2,,n a f x nx x n πππ-==⎰1()sin d ,1,2,.n b f x nx x n πππ-==⎰2. ()f x 是以2π为周期的偶函数,()f x 傅里叶级数为.答:01cos .2n n a a nx ∞=+∑ 02()cos d ,0,1,2,.n a f x nx x n ππ==⎰其中3. ()f x 是以2π为周期的奇函数,()f x 傅里叶级数为.答:1sin .n n b nx ∞=∑ 02()sin d ,1,2,.n b f x nx x n ππ==⎰其中4. 在(),()f x x x πππ=--≤≤的傅里叶级数中,sin x 的系数为 .答:2.5. 在()1,()f x x x ππ=+-<≤的傅里叶级数中,sin 2x 的系数为 .答: 1.-6. 在()1,()f x x x ππ=+-<≤的傅里叶级数中,cos2x 的系数为 .答:0.三、简答题1. 下列函数()f x 的周期为2π,试将其展开为傅里叶级数.(1) 2()31,()f x x x ππ=+-≤<;解:答: 221(1)()112cos ,(,).nn f x nx nπ∞=-=++-∞+∞∑(2) ,0(),0bx x f x ax x ππ-≤<⎧=⎨≤≤⎩;解:答:121[1(1)]()(1)()()()cos sin ,4n n n b a a b fx a b nx nx n n ππ-∞=⎧⎫----+=-++⎨⎬⎩⎭∑ (21).x k π≠+2. 将函数()2sin ()3xf x x ππ=-≤≤展开为傅里叶级数.解:答:121()(1)sin ,(,).91n n n f x nx n ππ∞+==---3. 将函数()cos ,()2x f x x ππ=-≤≤展开成傅里叶级数. 解:答:121241()(1)cos ,[,].41n n f x nx n ππππ∞+==+---∑4. 将函数(),(0)2xf x x ππ-=≤≤展开成正弦级数.解:答:1sin (),(0,].n nxf x n π∞==∑ 5. 将函数2()2,(0)f x x x π=≤≤展开成正弦级数和余弦级数.解:答:2331422()(1)sin ,[0,).n n f x nx n n n πππ∞=⎡⎤⎛⎫=---⎢⎥ ⎪⎝⎭⎣⎦∑ 2212(1)()8cos ,[0,].3nn f x nx nππ∞=-=+∑§11.7 一般周期函数的傅里叶级数一、单项选择题1. 下列结论不正确的是( ).(A)coscos d 0,()lln x m xx n m l l ππ-=≠⎰; (B)sin sin d 0,()l l n x m x x n m l l ππ-=≠⎰;(C)cos sin d 0l l n x m x x l l ππ-=⎰; (D)sin sin d 0l l n x n x x l lππ-=⎰. 答(D).2. ()f x 是以2l 为周期的函数,则()f x 的傅里叶级数为( ).(A)01cos n n n n x n x a a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑;(B)01cos 2n n n a n x n x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑; (C)1nn n xb l π∞=∑; (D)01cos 2n n a n x a l π∞=+∑. 答(B). 3. ()f x 是以2l 为周期的函数,当()f x 是偶函数时,其傅里叶级数为( ).01(A)cos2n n a n x a l π∞=+∑; 01(B)cos n n n xa a l π∞=+∑; 1(C)sin n n n x b l π∞=∑; 01(D)sin 2n n a n xa l π∞=+∑. 答(A). 4. ()f x 是以2l 为周期的函数,当()f x 是奇函数时,其傅里叶级数为( ).01(A)sin 2n n b n x b l π∞=+∑; 01(B)cos n n n x b b l π∞=+∑1(C)sin n n n x b l π∞=∑; 1(D)cos n n n xb l π∞=∑. 答(C).二、填空题1. ()f x 是以2为周期的函数, ()f x 的傅里叶级数为.答:01cossin .222n n n a n n a x b x ππ∞=⎛⎫++ ⎪⎝⎭∑ 111()cos d ,0,1,2,,22n n a f x x x n π-==⎰其中111()sin d ,1,2,.22n n b f x x x n π-==⎰2. ()f x 是以2l 为周期的偶函数, ()f x 的傅里叶级数为.答:01cos .2n n a n a x l π∞=+∑ 02()cos d ,0,1,2,.l n n a f x x x n l lπ==⎰其中3. ()f x 是以2l 为周期的奇函数,()f x 的傅里叶级数为.答:1sin.n n n b x l π∞=∑ 02()sin d ,1,2,.n n b f x x x n l l ππ==⎰其中4. 设()f x 是以3为周期的函数,1,10(),02x x f x x x +-≤<⎧=⎨≤<⎩.又设()f x 的傅里叶级数的和函数为()S x ,则(0)S =,(3)S =.答:1(0)(3).2S S ==5. 设()f x 是以3为周期的函数,32,10(),01x f x x x -≤<⎧=⎨≤<⎩,则()f x 的傅里叶级数在1x =处收敛于.答:3.26. 设()f x 是以2为周期的函数,1,02()10,12x x f x x ⎧≤<⎪⎪=⎨⎪≤<⎪⎩,又设()S x 是()f x 的正弦级数的和函数,则74S ⎛⎫= ⎪⎝⎭.答: 71.44S ⎛⎫=- ⎪⎝⎭三、简答题1. 设周期函数在一个周期内的表达式为211()122f x x x ⎛⎫=--≤< ⎪⎝⎭,试将其展开为傅里叶级数.解:答: 121111(1)()cos(2)(,).122n n f x n x ππ=∞=-=+-∞+∞∑2. 设周期函数在一个周期内的表达式为21,30()1,03x x f x x +-≤<⎧=⎨≤<⎩,试将其展开为傅里叶级数.解:答: 1221166()[1(1)]cos(1)sin ,3(21).233n n n n n f x x x x k n n ππππ∞+=⎧⎫=-+--+-≠+⎨⎬⎩⎭∑ 3*. 将函数2(),(02)f x x x =≤≤分别展开成正弦级数和余弦级数.解:答: 123218(1)2[(1)1]sin ,0 2.2n n n n x x x n n πππ+∞=⎧⎫-=+--≤<⎨⎬⎩⎭∑ 2221416(1)cos ,0 2.32n n n x x x n ππ∞=-=+≤≤∑。
(完整版)无穷级数习题及答案.doc
第十一章 无穷级数(A)用定义判断下列级数的敛散性1. n 2n 1; .1;3. 11 。
2n 1 2n 2n2n 13 n5 nn 1判断下列正项级数的敛散性.n! ;5. n e; 6.n 1;7. 2n 3;8. n 4 ;n 1 e n1 2nn 1 n n 3 n 1 n! n 1 100 n nn nn1 n9.;10.3n n 12n。
n 11求下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛.1n 1n 1 ; 12.1n1; 13.1.1 1.01 1.001 1.0001;112 nln nn 1n 214.122 2 3 1 4 1 ;21 32 4 2求下列幂级数的收敛半径和收敛区间.3n x n;16.1 n x n ; 17.n! xn; .1 n;n n n 1 2n n n 1 n n 1n 119.1 2n 1; 20. n 2n;1 2 n 1xn 1 3 n xn求下列级数的和函数21. n 1 nxn 1; 22. n 1 21n 1 x2n 1;将下列函数展开成 x x 0 的幂的级数23. shx e xe x , x 00 ;24. cos 2 x , x 00 ;225. 1 x ln 1 x , x 00 ; 26. 1, x 0 3 ;x将下列函数在区间, 上展开为付里叶级数27. A xcos x,x。
28. f x 2t , x22x , 3x t 029.将函数 f x, 0 t 3 展开成付里叶级数。
xx, 0 xl2分别展开成正弦级数和余弦级数。
30.将函数 f xllx , x l2(B)用定义判断下列级数的敛散性1.1;2.1; 3.n 2 2 n 2n 03n 1 3n4n 1n n 1 n2n 1判断下列正项级数的敛散性2n n!2n2n3n na n. ; 5.;6. ,( a 0 );4n3n 12n nn 1nn1n 11nb7.,其中 a na ( n), a n , b , a 均为正数;n 1a n11x8.n,( a 0);9. n 42x ;1 n 1 0 1 x n 1 1判断下列任意项级数的敛散性,收敛时要说明条件收敛或绝对收敛n 12 n 2n 1ln 2110.1;11.n 1;12.1n 1 nn!12 n 13n 2 3nn 1n 1nn 1求下列幂级数的收敛半径和收敛域.nx 2 n;14.x n ,( a 0 ,b 0 ); 1312n!n 1 anb nn 115.n12 n 1; 16. 3n2 nn;12 n4 n x 5x 1 n 1n 1n求下列级数的和函数17. nx 2n ;18.2n 1x 2 n ; 19. n 2 x n ;n 1n 1n ! n 120.求证: ln 21;n ;; 2将下列函数展开成 xx 0 的幂的级数21.f x21,x 0 0 ;22.f x12 ,x 01;23. x ,x 0 0 ; 2x3x 1x1 x 224.证明偶函数的付里叶级数数仅含余弦项;25.写出函数 f x1 x 2k , x2k 1 , 2k1 , k 0, 1, 2,的2付里叶级数,并讨论收敛情况。
高等数学 第十一章 无穷级数 第四节 函数展开成幂级数
n→ ∞ n→ ∞
充分性
n→ ∞
∵ f ( x ) sn+1 ( x ) = Rn ( x ),
n→ ∞
∴ lim[ f ( x ) sn+1 ( x )] = lim Rn ( x ) = 0,
即 lim sn+1 ( x ) = f ( x ),
n
( 2n 1)!! n + ( 1) x + ( 2n)!! ( 1,1]
n
[(2n)!!= 2n(2n 2)(2n 4) 4 2 = 2 n!]
双阶乘
2.间接展开法 根据唯一性, 利用常见展开式, 通过变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分等 方法,求展开式. 例如 cos x = (sin x )′
泰勒级数在收敛区间是否收敛于f(x)?
问题
f ( x) ? ∑
==
n= 0
∞
f
( n)
( x0 ) ( x x0 ) n n!
注意:只要函数f(x)在x0点任意阶可导,总可以 写出函数的泰勒级数,但是泰勒级数在收敛区间内 是否收敛于f(x)? 还需进一步研究.
x12 e , 例如 f ( x ) = 0,
一,泰勒级数
定理 1 如果函数 f ( x ) 在 U ( x 0 ) 内具有任意阶导 数, 且在 U ( x 0 ) 内能展开成( x x0 )的幂级数, 即 f ( x) =
a n ( x x0 ) n ∑
n= 0
∞
1 (n) f ( x0 ) 则其系数 a n = n!
且展开式是唯一的.
高等数学 课件 PPT 第十一章 无穷级数
第二节 正项级数及其审敛法
定 理3
(比较审敛法的极限形式)设有两个正项级数
(1)如果
级数
收敛.
,且级数 收敛,则
(2)如果
,且级数
发散,则级数
发散.
第二节 正项级数及其审敛法
证 因为 n>N时
对任给ε>0,存在正整数N,当
(1)当n>N时
因为 收敛,由比较审敛法的推论可知
也收敛.
第二节 正项级数及其审敛法
则 (1)当ρ<1时,级数 (2)当ρ>1时,级数 (3)当ρ=1时,级数
收敛. 发散(包括ρ=∞). 可能收敛也可能发散.
第二节 正项级数及其审敛法
证 由极限的定义可知,对任给ε>0,存在正整数N, 当n>N时,不等式
成立. (1)当ρ<1时,取ε使得ρ+ε=q<1,于是当n>N时,
即
第二节 正项级数及其审敛法
二、收敛级数的基本性质
性质1
设k为非零常数,若级数 敛,且其和为ks.
收敛于和s,则级数
也收
证明
设级数
,
的部分和分别为sn,τn,则
二、收敛级数的基本性质
于是
因此,级数
也收敛,且其和为ks.
二、收敛级数的基本性质
性质2
若级数
与
分别收敛于s与τ,则级数
也收敛,其和为 s±τ.
二、收敛级数的基本性质
第二节 正项级数及其审敛法
容易看出,上式各项小于下面级数所对应的各项,即
因为后一个级数是公比为
的等比级数,并且由
得知r<1.所以该级数收敛.再根据比较审敛法推得前 一个级数也收敛.又因为收敛的正项级数去掉括号后仍收敛,所以 原级数收敛.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念:
为收敛级数
若
收敛 , 称
若
发散 , 称
绝对收敛 条件收敛
Leibniz判别法: 若
且
则交错级数
收敛 , 且余项
4
例1. 若级数
均收敛 , 且
证明级数
收敛 .
证: 0 c n a n bn a n (n 1 , 2 , ), 则由题收敛
(1)n
n0
x2n ,
x (1,1)
arctan
x
x
01
1 x2
d
x
(1)n x2n1, n02n 1
x [1,1]
于是
f (x) 1 (1)n x2n (1)n x2n2
n1 2n 1
n02n 1
25
f
a 1 时收敛 ; a 1 时发散.
s 1 时收敛;
a 1 时, 与 p 级数比较可知 s 1 时发散.
7
P257 题3. 设正项级数 和 都收敛, 证明级数
也收敛 .
提示:
因
lim
n
un
lim
n
vn
0
,存在
N
>
0, 当n
>N
时
又因
2( un2 vn2 )
思考: 如何利用本题结果求级数
提示: 根据付式级数收敛定理 , 当 x = 0 时, 有
e 1 1
2 n1
f (0 ) f (0 ) 1
2
2
28
作业
P257 6 (2); 7 (3); 9(1) ; 10 (1) ;
8 (3) ;
29
利用收敛级数的性质及比较判敛法易知结论正确.
8
P257 题4. 设级数
收敛 , 且
是否也收敛?说明理由.
提示: 对正项级数,由比较判别法可知
但对任意项级数却不一定收敛 . 例如, 取
vn
(1)n n
1 n
lim vn 1 lim (1)n 1
n un
n n
级数
收敛 , 级数
(c n a n ) 收敛
n 1
n 1
[(c n a n ) a n ]
n 1
(c n a n ) a n 收敛
n 1
n 1
练习题: P257 1 ; 2 ; 3 ; 4 ; 5
5
解答提示: P257 题2. 判别下列级数的敛散性:
提示: (1) lim n n 1 , 0 , N , n 1 n n 1
练习:
P257 题7. 求下列级数的敛散区间:
13
解:
lim n
n
an
lim (1 1)n e n n
R 1 , 即 1 x 1 时原级数收敛 .
e
ee
当 x 1 时, e
un
(1
1) n
n
n
e
(1 1)n1 e n
1 1 0 (n ) e
26
2. 函数的付式级数展开法
系数公式及计算技巧; 收敛定理; 延拓方法
练习:
P258 题11. 设 f (x)是周期为2的函数, 它在 [ , )
上的表达式为
y
将其展为傅氏级数 .
解答提示
o x
an
1
0
ex
cos nx d x
1
ex (n sin nx cos nx) 1 n2
15
例2. 解: 分别考虑偶次幂与奇次幂组成的级数
注意:
∵ 原级数 =
∴
其收敛半径
R
min{R1,
R2}
1 4
极限不存在
16
三、幂级数和函数的求法
• 求部分和式极限
• 初等变换法: 分解、套用公式
• 映射变换法(在收敛区间内)
anxn
n0
难
逐项求导或求积分
S(x)
对和式积分或求导
an xn
因调和级数发散, 据比较判别法, 原级数发散 .
6
利用比值判别法, 可知原级数发散.
(3)
n
n1
cos2 2n
n
3
:
用比值法, 可判断级数
收敛,
再由比较法可知原级数收敛 .
因
n
充分大时
1 n
1 ln10 n
,
∴原级数发散 .
发散,
(5)
n1
an ns
(a 0, s 0): 用比值判别法可知:
显然 x = 0 时上式也正确, 而在 x 2 级数发散,
故和函数为
20
原式
n1
1 n
1 n 1
xn
x0
n1
1 x
x
tn
0
dt
1 x
x
1
t
t
d
t
0
(0 x 1)
1 1 ln (1 x)
1
(
1
1)
ln
(1
x x)
展开成 x 的幂级数.
解:
1 (2 x)2
1 2x
1 2
1
1
x 2
1 2
xn
n0 2n
1 2
n1
nx n 1 2n
,
24
2. 设
, 将 f (x)展开成
x 的幂级数 , 并求级数
的和. ( 01考研 )
解:
1 1 x2
(1)n
n1
(n 1)! n n 1
因
un1
un
n 2 (1 1 )n1 n n1 n1
所以原级数绝对收敛 .
12
二、求幂级数收敛域的方法
• 标准形式幂级数: 先求收敛半径 R , 再讨论 x R
处的敛散性 . 通过换元转化为标准形式
• 非标准形式幂级数 直接用比值法或根值法
因此级数在端点发散 , 故收敛区间为( 1 , 1 ) . ee
14
解: 因 lim un1(x) lim
x2
n un (x) n
2
当 x2 1 , 即 2 x 2 时,级数收敛; 2
当 x 2时, 一般项 un n 不趋于0, 级数发散;
故收敛区间为 ( 2 , 2 ) .
2
2
x sin x 2
19
练习: P258 题8. 求下列幂级数的和函数:
x≠0
解: (1)
原式
n1
1 2n
( x 2n 1 )
1 x
(
n1
x2
2
)
n
1 x
x2
1
2
x2 2
x 2 x2
2 x2 (2 x2 )2
(0 x2 1) 2
n0
求和
S * ( x)
• 数项级数 直接求和: 直接变换, 求部分和等 求和 间接求和: 转化成幂级数求和, 再代值
17
例3. 求幂级数 法1 易求出级数的收敛域为
x
1 sin x x cos x ,
2
2
18
法2 先求出收敛区间
设和函数为 则
1 2
S(x) 1 sin x x cos x,
x
21
即得
1 ( 1 1) ln (1 x) , x
0 x 1
显然 x = 0 时, 和为 0 ; x = 1 时, 级数也收敛 . 根据和函数的连续性 , 有
22
练习: P258 题9(2). 求级数
的和 .
解:
原式=
1 2
n0
(1)
n
(
(2n
2n
1) 1)!
2
一、数项级数的审敛法
1. 利用部分和数列的极限判别级数的敛散性
2. 正项级数审敛法
必要条件
lim
n
un
0
满足
不满足 发 散
比值审敛法
lim
n
un1 un
1 不定
部分和极限
根值审敛法 lim n
n
un
用它法判别 比较审敛法
1
1
收敛
发散
3
3. 任意项级数审敛法
0
1
e
(1)n 1 n2
1
(n 0, 1, 2,)
27
bn
1
0
ex
sin nx d
x
1
ex (sin nx n cos nx) 1 n2
0
n
1
e 1
(1)n n2
(n 1, 2,)
f
(
x)
e
2
1
1