Ch8半导体光电子器件
半导体光电器件设计与制造
半导体光电器件设计与制造半导体光电器件是一种新型的电子元器件,它具有集成度高、能耗低、体积小、速度快等优点,在现代电子技术领域得到了越来越广泛的应用。
本文将着重探讨半导体光电器件的设计与制造。
一、半导体光电器件的设计半导体光电器件的设计是一个非常重要且复杂的过程,需要考虑多种因素,包括光电转换效率、灵敏度、响应时间、抗噪性、线性度、集成度等等。
在设计半导体光电器件时,首先需要选择合适的材料。
目前半导体光电器件所采用的材料主要包括硅、锗、砷化镓等。
不同的材料具有不同的光学特性,需要根据具体应用选择最适合的材料。
例如,在红外光谱方面,砷化镓材料比硅材料更具有优势。
其次,还需要选择合适的器件结构和工艺流程。
不同的结构和工艺流程会直接影响器件的性能,特别是在响应时间、灵敏度和抗噪性方面。
例如,在太阳能电池中,通过薄膜技术可以减小材料厚度,从而提高光电转换效率。
最后,还需要根据具体应用选择最佳的器件型号和电路结构。
不同的型号和电路结构直接影响器件的输出特性和稳定性。
二、半导体光电器件的制造半导体光电器件的制造是一个多工艺流程组成的过程。
下面我们将简要介绍半导体光电器件的制造流程。
1. 原材料准备在制造半导体光电器件之前,需要准备各种原材料,包括硅片、掺杂源、工艺材料等。
这些原材料需要具备高纯度和稳定性。
2. 刻蚀处理半导体光电器件的制造需要进行多次刻蚀处理,通过切割、挖空或覆盖等方式刻蚀出所需结构。
刻蚀处理通常采用干法和湿法两种方式。
3. 掺杂处理半导体光电器件中,掺杂处理是关键步骤之一。
通过高温熔融掺杂源,将掺杂原子注入硅片中,从而改变硅片的导电性能。
4. 结构形成半导体光电器件的结构形成是制造过程中的核心部分。
在此过程中,需要使用光刻技术和薄膜技术,将器件所需结构逐步形成。
5. 金属化处理在半导体光电器件中,金属化处理是将器件引出端与导体线之间形成电连接的过程。
6. 包封处理通过防潮、防腐、抗辐射等包封处理方法,将半导体光电器件封装成成品,以保证其在使用过程中能够稳定地工作。
半导体器件物理-负阻器件、功率器件、光电器件
11
1
f x 2 LSC j ( RC j )2
偏 置 在 Rmin处 , 则 电 阻 截 止 频 率
fr0
1 2RminC j
Rmin 1 RS
fr
f
r
为
0
电
阻
为
零
的
最
高
频
率
换 言 之 , 有 负 阻 时 频 率低 于fr0
偏 置 在Rmin处 , 则 电 抗 截 止 频 率
11
1
f x0 2 LSC j ( RminC j )2 f x
1
exp
2ES E
dE
其 中 E 2qξ ; π mEg
经验公式
E
S为E1与E
中
2
较
小
者
。
Ip
It
Ip
V Vp
exp
1
V Vp
IV
V
Vp VV
E1
13
It
Ip
V Vp
exp
1
V Vp
Vp ?
当偏压使电子态分布的峰值与空穴分布的峰值 对应同一能量时的偏压为峰值电流的电压
电子浓度分布
23
三、MIS隧道二极管( MIS Tunnel Diode )
1、基本结构
tox 7nm tox 5nm 1nm tox 3nm
2、基本原理
EFm
EFm
EFm
tox 7 nm : 隧 穿 可 略 ; tox 1nm : 作 用 可 略 ; 1nm tox 7 nm : 隧 穿 效 应 。
直接带隙 能量、动量守恒 E2
E1
声子与初始电子能量之 和等于隧穿后能量
半导体光电子材料与器件教学大纲
附件2:《半导体光电子材料与器件》教学大纲(理论课程及实验课程适用)一、课程信息课程名称(中文):半导体光电子材料与器件课程名称(英文):Semiconductor Optoelectronic materials and devices课程类别:选修课课程性质:专业方向课计划学时:32(其中课内学时:40 ,课外学时:0)计划学分:2先修课程:量子力学、物理光学、固体物理、激光原理与技术、半导体物理等选用教材:《半导体物理学简明教程》,孟庆巨胡云峰等编著,电子工业出版社,2014年6月,非自编;普通高等教育“十二五”规划教材,电子科学与技术专业规划教材开课院部:理学院适用专业:光电信息科学与工程、微电子学等专业课程负责人:梁春雷课程网站:无二、课程简介(中英文)《半导体光电子材料与器件》是光电信息科学与工程本科专业的专业课。
学习本课程之前,要求学生已经具有量子力学、热力学与统计物理、固体物理和半导体物理方面的知识。
本课程论述基于电子的微观运动规律为基础的各种半导体器件的工作原理。
其核心内容是硅光电子器件的工作原理和设计方法。
本课程的目的是让学生了解和掌握半导体器件相关的物理知识,熟练掌握各种常见半导体器件参数与器件的结构参数和材料参数之间的关系。
能够使用典型的光电子器件进行光电探测。
初步具备新型器件的跟踪研究能力和自主开发能力。
Semiconductor Optoelectronic Materials and Devices is the course designed for the undergraduate students of optoelectronic information science and engineering specialty. Before taking this class, the students are required to have the knowledge of quantum mechanics, thermodynamics and statistical physics, solid state physics and semiconductor physics.The class will discuss the principles of working of all kinds of Semiconductor devices based on the microscopic movement of electron. The main content will be the principle of working and the method of design of optoelectronic devices base on silicon. The purpose is to let the students understand and master physical knowledge related to the semiconductor devices, skillfully master all kinds of relations of semiconductor devices parameters with structural parameter and material parameter. The students are requires to be able to employ some typical devices for photoelectric detection, also they will be able to have the basic ability to follow and develop new devices.三、课程教学要求序号专业毕业要求课程教学要求关联程度1 工程知识本课程注重培养学生理论联系实际的能力、科学研究的思想方法、创新能力以及工程实践能力等。
《半导体物理学》【ch08】半导体表面与MIS 结构 教学课件
半导体表面与MIS 结构
导入
为了解决这一问题,人们对半导体表面,特别是硅一二氧化硅系统进行了广泛的研究工作。这方 面的研究成果使集成电路克服了性能不稳定的障碍,得到进一步的迅速发展,同时也发展了有关 半导体表面的理论。这些事实证明了实践推动理论的发展、理论又反过来指导实践这一辩证关系。 在半导体表面的研究工作中,有理想表面研究和实际表面研究两个方面。本章的讨论将侧重于实 际表面研究方面,包括表面态概念、表面电场效应、硅—二氧化硅系统性质、MISC指金属—绝 缘层一半导体)结构的电容一电压特性、表面电场对pn 结特性影响及其他有关表面效应等。
表面态
上述结论可推广到三维情形,可以证明在三维晶体中,仍是每个表面原子对应禁带中的一个表面能 级,这些表面能级组成表面能带。因单位面积上的原子数约为10 ¹5 cm-² ,故单位表面积上的表面 态数也具有相同的数量级。表面态的概念还可以从化学键方面来说明。以硅晶体为例,因晶格的表 面处突然终止,在表面的最外层的每个硅原子都将有一个未配对的电子,即有一个未饱和的键,这 个键称作悬挂键,与之对应的电子能态就是表面态。因每平方厘米表面约有10 ¹5个原子,故相应的 悬挂键数亦应为约10 ¹5个。表面态的存在是肖克莱等首先从实验上发现的,后来有人在超高真空中 对洁净硅表面进行测量’,证实表面态密度与上述理论结果相符。
表面电场效应
01 空间电荷层及表面势
可归钠为堆积、耗尽和反型三种情况,以下分别加以说明:
2 多数载流子耗尽状态
当金属与半导体间加正电压(指金属接 正)时, 表面势vs为正值,表面处能带 向下弯曲。这时越接近表面,费米能级 离价带顶越远,价带中的空穴浓度越低。 在靠近表面的一定区域内,价带顶位置 比费米能级低得多,根据玻耳兹曼分布, 表面处空穴浓度将较体内空穴浓度低得 多,表面层的负电荷基本上等于电离受 主杂质浓度。表面层的这种状态称作耗 尽。
电子元器件型号对应表
电子元器件型号对应表741 运算放大器2063A JRC杜比降噪20730 双功放24C01AIPB21 存储器27256 256K-EPROM27512 512K-EPROM2SK212 显示屏照明3132V 32V三端稳压3415D 双运放3782M 音频功放4013 双D触发器4017 十进制计数器/脉冲分配器4021 游戏机手柄4046 锁相环电路4067 16通道模拟多路开关4069 游戏机手柄4093 四2输入施密特触发器409841256 动态存储器52432-01 可编程延时电路56A245 开关电源5G0401 声控IC5G673 八位触摸互锁开关5G673 触摸调光5G673 电子开关6116 静态RAM6164 静态RAM65840 单片数码卡拉OK变调处理器7107 数字万用表A/D转换器74123 单稳多谐振荡器74164 移位寄存器7474 双D触发器7493 16分频计数器74HC04 六反相器74HC157 微机接口74HC405374HCU04 六反相器74LS00 与门74LS00 4*2与非门74LS00 四2与非门74LS00 与门74LS04 6*1非门74LS08 4*2与门74LS11 三与门74LS123 双单稳多谐振荡器74LS123 双单稳多谐振荡器74LS138 三~二译码器74LS142 十进制计数器/脉冲分配器74LS154 4-16线译码器74LS157 四与或门74LS161 四2计数器74LS161 十六进制同步计数器74LS161 四~二计数器74LS164 数码管驱动74LS18 射频调制器74LS193 加/减计数器74LS193 四2进制计数器74LS194 双向移位寄存器74LS27 4*2或非门74LS32 四或门74LS32 4*2或门74LS374 八位D触发器74LS374 三态同相八D触发器74LS37774LS48 7位LED驱动74LS73 双J-K触发器74LS74 双D触发器74LS85 四位比较器74LS90 计数器75140 线路接收器75141 线路接收器75142A 线路接收器75143A 线路接收器7555 时钟发生器79MG 四端负稳压器8051 空调单片机8338 六反相器A1011 降噪ACVP2205-26 梳状滤波视频处理AD536 专用运放AD558 双极型8位D-A(含基准电压)变换器AD558 双极型8位D-A(含基准电压)变换器AD574A 12比特A/D变换器AD650AD670 8比特A/D变换器(单电源)1995s-2、15 AD7523 D-A变换器1994x-125AD7524 D-A变换器1994x-126AD7533 模数转换器1994x-141AD7533 模数转换器1995s-184ADC0804 8比特A/D变换器1995s-2、20 ADC0809 8CH8比特A/D 1995s-2、23ADC0833 A/D变换4路转换器1995s-2 ADC80 12比特A/D变换器1995s-2、8 ADC84/85 高速12比特A/D变换器1995s-2 AG101 手掌游戏机1993x-155AM6081 双极型8位D-A变换器1994x-127 AMP1200 音频功放皇后1993s-104AN115 立体声解码1991-135AN2510S 摄象机寻象器1994x-109AN2661NK 影碟机视频1995s-45AN2662K 时基校正(模拟)1995s-45AN2664FBP 影碟机视频1995s-45AN2664NK 影碟机视频1995s-45AN2870 影碟机伺服1995s-45AN3100N 射频调制器1991-55AN362 立体声解码1991-135AN363N 立体声解码1991-135AN3890FBS 影碟机主轴电机驱动1995s-45AN3891FBP 影碟机主轴电机驱动1995s-45 AN5026K 红外接收1993x-106AN51354 中放/音频/视频解调1994s-255 AN5138K 图象通道1994-308AN5265 音频功放1994s-298AN5342K 亮度锐度加强电路1994s-243 AN5344FBP CFU地1995s-274AN5352 模拟开关1994-245AN5515 彩电场输出1995s-34AN5515 场输出1994-73AN5521 场输出电路1991-203AN5521 场输出1994-73AN5521 场输出1994-240AN5521 场扫描1994-308AN5600K 图象处理1994-308AN5612 色差解调1994s-245AN5652 伴音中放1994-308AN5862K PIP切换输出1994s-245AN6551 双运放1991-54AN6612 电机稳速1992-63AN6612S 杜比降噪1995s-43AN6650 电机稳速1991-183AN6650 电机稳速1992-7AN6650 电机稳速1992-83AN6650 电机稳速1992-127AN6650 电机稳速1993s-165 AN6913L 双运放1995s-85AN7106K 单片放音机1992-63 AN7108 单片放音机1992-7AN7108 单片放音机1992-127 AN7108 单片放音机1992-136 AN7108 单片放音机1993s-165 AN7110 音频功放1994x-107 AN7112E 音频功放1994s-39 AN7158N 音频功放1991-3AN7158N 音频功放1991-203 AN7168 双音频功放1991-195 AN7178 音频功放1994x-107 AN7188NK 双音频功放1992-14 AN7311 双前置放大1991-195 AN7315 双前置放大1992-99 AN7410 立体声解码1991-135 AN74LS293 1994x-93AN7812 三端稳压器1994s-299AN78N05 三端稳压器1994s-298AP500/A DC功放驱动1995s-60AP500/A 双声道DC功放驱动1995s-156 AT24C01 存储器1994x-46ATC105 充电控制1993x-191AX5212D 微机鼠标编码1994s-183BA1035B 高速运放1994x-94BA1106F 放音前置放大及功放1995s-43 BA1310 立体声解码1991-135BA1320 立体声解码1991-135BA1330 立体声解码1991-135BA1335 立体声解码1991-135BA1404 调频发射1994x-183BA3015 电风扇电脑1994s-162BA3105 电风扇电脑1994x-58BA3212N 录放前置1994-180BA328 双前置放大1991-43BA328 低噪前置1992-58BA328 双声道前置放大1995s-189BA3506 音频功放1991-139BA3822LS 5段均衡1994-180BA508 遥控电路1995s-171BA5102 音频前置1993x-108BA5102 遥控电风扇编码1995s-119BA5104 电风扇遥控1995s-183BA527 音频功放1991-168BA5302 红外接收头1995s-183BA5406 双功放1992-47BA6124 电平指示1991-31BA6209 录象机加载1991-11BA6209 主导电机驱动1994-192BA6219B 加载电机驱动1994-120BA6227 电机稳速1991-139BA6303 磁鼓控速1992-139BA6439P 主导电机驱动1994-120BA728 双运放1992-91BA7751LS 录象机音频处理1993s-84 BA8105 遥控电风扇电路1995s-119BA8206A4 电风扇控制1995s-183BAS3108T FM发射1992-94BGJ3302 四运放电压比较器1994-25 BH-SK-I 声控IC 1994s-175BH-SK-V 声控IC 1994x-74BISS0001 红外传感信号处理1995s-182BL3102 时钟频率脉冲1994s-255BL3207 BBD延时1994s-255BL50462AP 遥控编码与发射1995s-299 BM5060 彩电CPU 1994-308BM5067 彩电CPU 1995s-212BM5069 彩电CPU 1995s-212BTS114 感温高速开关管1992-34BTS115 感温高速开关管1992-34BTS130 感温高速开关管1992-34BTS131 感温高速开关管1992-34BTS240 感温高速开关管1992-34BTS412 电源开关模块1992-112C036 4*2与非门1993s-93C043 双D触发器1993s-101C066C 4*2与非门1993x-147C1225H 音响驱动1992-198C1470 电机稳速1992-99C1490HA 红外接收1991-110C1676 超高频放大1995s-199C1891A 环绕声处理器1992-24C7642 单片收音机1991-95CA3069 运放1994x-184CA3160 1994x-188CA3193 音频运放1994x-36CA3524 脉冲调制1992-14CC14433 三位半A/D转换1991-46CC14433 三位半A/D转换1991-174CC4093 含施密特触发器的四2输入与非门1994s-44 CC4511 七段译码器1991-46CCU3000-17 从属微处理器1995s-299CCU3002-FDTV-11 彩电CPU 1995s-299CD1403 单运放1991-2CD4001 4*2或非门1993s-69CD4001 4*2或非门1994x-2CD4011 4*2与非门1993s-53CD4011 4*2与非门1993x-150CD4011 四2输入与非门1994s-80CD4013 双D触发器1991-2CD4013 双D触发器1993s-101CD4013 双D触发器1993x-6CD4013 双D触发器1994s-82CD4013 双D触发器1994x-22、54CD4017 十进制计数/分配1991-110CD4017 十进制计数/分配1993s-142CD4017 十进制计数译码器1994s-82CD4017 十进制计数器/脉冲分配器1994s-34 CD4017 十进制计数器/脉冲分配器1994x-2 CD40174 六D触发器1992-130CD4017B 十进制计数/分配1993x-173CD4017B 十进制计数器1995s-184CD40193B 双向可预置可逆计数器1994x-84 CD4020 14级二进制计数器1994s-80CD4024 七位二进制串行计数器1994s-80 CD4028 二~十进制译码器1992-98CD4035 移位寄存器1994s-72CD4040 十二进制二进制计数器1992-22 CD4040 十二进制二进制计数器1993s-207 CD4040 12级二进制计数器1993x-125CD4040 12级二进制计数器1994s-80CD4046 锁相环电路1994x-188CD4046 锁相环电路1995s-181CD4051 模拟开关1992-130CD4051 模拟多路转换器1995s-2、35CD4052 四选一模拟开关1992-82CD4053 3*2模拟开关1992-62、207CD4053 3*2模拟开关1994x-54CD4053 3*2模拟开关1994x-126CD4053B TV/AV切换1994-219CD4053B 双向模拟开关1994-247CD4060 分频计数1993s-12CD4060 十四位计数器/分配器/振荡器1994s-30、40 CD4066 4*2模拟开关1992-112CD4066 4*2模拟开关1993s-91CD4066BE 四路模拟开关1994-269CD4067 模拟多路转换器1992-162CD4067 模拟多路转换器1995s-2CD4069 6*1非门1991-166CD4069 6*1非门1993s-45CD4069 6*1非门1993x-150CD4069 六非门1994s-4、82CD4071 4*2或门1994s-30CD4072 2-4输入或门1992-130CD4075 三或门1991-170CD4078 多输入或门1991-170CD4093 四与非门施密特触发器1994x-42CD4099 8路可寻址锁存器1991-170CD4510 二~十加减计数器1992-98CD4511 LED显示驱动1991-2CD4511 译码驱动1993x-159CD4511 译码显示1994s-30CD4514 4-10线译码器1993x-158CD4518 双二~十进制计数器1993x-125 CD4518 计数器1994s-30CD4541B 双D触发器1995s-79CD4553 三位BCD码计数器1993s-47 CD74206 音频功放1994x-107CD9020-002 字符产生器1994s-255CD9135 六路互复位触摸开关1994x-188 CE550 电风扇控制1994s-170CH1058 音乐片1991-192CH208 译码输出1991-174CH220 电子密码锁1994x-26CIC7642 调幅收音1994s-55CIC9140 电话按键码1993s-107CNX82A2 稳压反馈光电耦合器1995s-299 CP4027 双J-K触发器1993s-109CS839 霍尔开关1994s-34CS8704 电话振铃1994-46CSC5089 单片电话机1994-77CTC9140 电话脉冲拨号1994-46CU001 多功能遥控1991-56CU47C433AN-002 彩电CPU 1994s-255 CW-18 呼救语音1993x-133CW8403 音乐IC 1993s-125CW9300 音乐IC 1993s-101CW9300 音乐IC 1993x-198CX20029 单片收音机1992-111CX20106 红外接收1993s-126CX20106 红外接收1994-230CX20106A 红外预放器1991-30CX20106A 红外接收1994x-22CX20111 调频调幅中放1992-127CX20112 电视立体声/多语种解码1994x-4 CX20188 杜比B/C降噪1992-174CX522-054 彩电CPU 1994s-302CX7959 存储器1994s-307CXA1019 单片收音机1991-114CXA1019 单片调频收音1991-152CXA1019 调频静噪1995s-52CXA1019M 单片收音机1994-74CXA1019P 单片调频收音1993x-85CXA1034P 单片放音机1992-83CXA1100 杜比降噪1991-106CXA1101 杜比降噪1991-106CXA1101 杜比降噪1992-108CXA1102 杜比降噪1991-106CXA1145P 游戏机色处理1991-131CXA1145P PAL编码1993x-78CXA1191M 调幅调频电视单片收音1993x-158 CXA1191M 单片收音机1994s-198CXA1191M 单片调频调幅收音1994x-63CXA1191P 收音专用1994-11CXA1238 单片收音机1991-140CXA1238M 调频收音1994s-130CXA1238M 调频收音1994s-156CXA1250 场频驱动1993x-103CXA1262N 单片放音机1993x-99CXA1315M 彩电副总线1995s-272CXA1642 消歌声1993s-64CXA1642 消声(卡拉OK)1995s-36CXA1642 消歌声1995s-204CXA1644P 卡拉数字延时1993x-72CXA1735S 音频处理器1995s-272CXA8008P 单片放音机1991-75CXA8008P 单片收音机1992-163CXD1254AQ 摄象机同步1993x-103CXD1310BLA 视频处理器1993x-103CXK1001P 存储器1994-307CXP80420-139S 彩电CPU 1994-334D1130 AM/FM收音1992-43D2024 音频功放1991-48D2283 音频低放1994s-135D2283 音频功放1994x-47D2822 助听器专用1991-167D414 单片收音机1991-167D7176AP 中放及伴音鉴频1994-19D7240AP 音频功放1991-3D75028CW 空调器CPU 1995s-194D7796 音频均衡1991-32DAC08 双极型8位D-A变换器1994x-129DAC08 双极型8位D-A变换器1994x-135DAC90 双极型8位D-A(含基准电压)变换器1994x-126 DBL2004 彩电场输出1995s-34DCM0016 系列高速带掉电保护RAM 1995s-174DCM0064 系列高速带掉电保护RAM 1995s-174DCM0256 系列高速带掉电保护RAM 1995s-174DCM8128 系列高速带掉电保护RAM 1995s-174 DJ2001 洗衣机电脑1991-159DN888 数字延迟1993x-110DPU-2553-25 偏转处理器1995s-299DRAM4164 数据存储1993s-80DS8629N 100分频器1992-22DTI-2260 数字瞬态改善处理器1995s-299EA1062 语音电路1994-138EK001 混频厚膜1994s-255ELM742A 低压低功耗电压比较器1995s-118 ET91210 电话程控1991-58F1212 程序快门1992-71GL7488P 录象机伺服系统1994-210GP605 开关电源PWM脉宽调制1995s-126 GS8200 录象机系统控制1994-210GSE-3568 多音声效片1994s-128GY65839 单片卡拉OK专用1994s-172GY9308 DDC数码延迟1993x-120GY9403 数码卡拉OK延迟1994x-52H9081 四声5闪光片1994x-167HA11227 立体声解码1991-135HA112A 音乐门铃1991-156HA11414 行场扫描1993s-28HA11489 亮度/彩色矩阵1991-203HA11489 视频处理1994x-19HA11509N 亮/色/行场扫描1991-43HA1166Z 黑白机行场扫描1994-82HA12017 放音均衡1991-8HA12058 杜比降噪1993x-160HA12102 双前置放大1991-43HA13001 音频功放1993s-75HA13119 音频功放1994x-99HA1392 音频功放1992-188HA1397 音频功放1991-176HA3302 四运放电压比较器1994-25HA51338SP 亮/色/行场扫描1991-43HA51338SP 彩电行场扫描/色度/亮度1995s-163 HCF40015 红外接收前置放大1994s-118HD14053B 电视遥控发射1993x-164HD401304 彩电CPU 1995s-174HD401314 彩电CPU 1995s-174HD44007A 彩色同步1991-14HEF4017 2-10进制计数器/脉冲分配器1994x-22 HEF4053BP 3*2模拟开关1994s-7HEF4066B 四路模拟开关1994-269HEF4503 3*2模拟开关1992-207HF-268/288 保密语音模块1995s-94HFC3030 彩灯闪光片1994x-71HFC3040 多发光二极管控制1991-64HFC3040 彩灯六路闪光芯片1994s-50HFC5203A 语音1994x-90HFC5219 “有电危险、请勿靠近”语音块1995s-95 HIC101 放象机电源厚膜块1995s-85HM50256 动态存储器1995s-159HM50464 动态存储器1995s-159HM511000 动态存储器1995s-159HM6117 游戏存储1993s-11HM6232 电源厚膜1993x-35HM6401 电源/场输出厚膜1991-115HM7101 电源厚膜1993x-35HM7942 电源厚膜1993x-35HM8951 电源厚膜1993s-35HM8951A 电源厚膜1995s-99HM8951B 电源厚膜1993x-195HM8951B 电源厚膜1994-65HM9007 电子镇流器1991-82HM9007 电子镇流器1993s-146HM9102 电源厚膜1992-103HM9102 电源厚膜1993x-35HM9102 开关电源取样1994-141HM9102D 电话按键码1993s-107HM911L 热释电红外线探测1994x-194 HM9201 电源厚膜1993x-35HM9205 稳压电源取样1994-332HM9207 电源厚膜1993s-3HM9207 电源厚膜1994-65HM9207B 电子镇流器1994s-6HM-JL1 音频模块1993s-160HN6401 电源厚膜1993x-35HPC177C 四运放电压比较器1994-25 HPC339C 四运放电压比较器1994-25 HT12C 遥控发射1994x-110HT2880 八音音乐片1994s-32HT6337A 风扇遥控接收1994x-110 HT7713 声控闪光片1994x-10HT7713 触摸调光1994x-63HT82D 双音音乐门铃1994s-32HY12503 可程式化语音模块1995s-94HY-20A 语音录放1994s-78HY42503 可程式化语音模块1995s-94HY-88A 动物叫声效片1993x-182HY8-S 三端音乐片1991-172IC1818P 单片游戏机1993s-95IC7107 三位半A/D转换器1993x-181ICL7107 三位半A/D驱动1993s-62ICL7107 三位半模/数转换器1994s-80ICL7107 DVM三位半A/D 1995s-2、21ICL7109 积分型12比特A/D变换器1995s-2 ICL7139 自动量程万用表1992-42ICL7660 双直流变换1993s-62ICL7660 DC-DC变换器1995s-39、68ICL8038 函数发生器1994x-112ICL8211 欠压检测用IC 1995s-40、89ICM7555 时基电路1995s-46ICM7556 时基电路1995s-40ICWJ9301 电脑密码锁1994s-190ICX045BLA 1/3寸CCD图象传感器1993x-103 IR2155 日光灯电子镇流模块1995s-38IR3M02 微机开关电源1994s-109IR3M03A DC-DC变换1992-86IR3M03A DC-DC变换1993s-119ISD1000A 系列单片语音录放IC 1995s-174 ISD1100 系列单片语音录放IC 1995s-174 ISD1400 系列单片语音录放IC 1995s-174 ISD2500 系列单片语音录放IC 1995s-174 IVR1601 一次性编程语音1993s-159IX0238CE 场输出1994-73IX0250CE 音频功放1994-73IX0256CE 开关电源1994-73IX0308 电源厚膜1992-127IX0308CZ 电源厚膜1994-67IX0323CD 电源厚膜1994s-3IX0323CE 电源厚膜1994-33IX0324CFNI 行场扫描/色解码1994-34IX0355CE 场输出1994-73IX0465CE 开关电源1994-73IX0517CE 开关电源1994-73IX0640CE 场输出1994-73IX0689CE 电源厚膜1994-48IX0711CE 彩电中放1994-73IX0711CEN 图象中放1994x-83IX0712CE 亮/色/行场扫描1994-73IX0712CEN1 扫描/解码1994-96IX0933CE 彩电CPU 1994-96JU0114 电源厚膜1991-155JU0114 彩电电源厚膜块1995s-43、51 JU0116 电源厚膜1994-66K2356 语音保密1992-178KA2184A 红外预放器1991-30KA2184A 红外线接收预放1991-56KA2184A 红外接收1993s-126KA2184A 红外接收放大1993x-170KA2209 音频功放1993x-43KA22134 音频功放1994x-83KA2221 双前置放大1991-43KA22429 调频收音1994s-55KA2402 电机稳速1993x-99KA2402 电机稳速1995s-131KA2407 电机稳速1993x-43KA2410 电话振铃1994x-11KA2410 电话振铃1994-138KA2915 单片黑白电视机1993s-167 KAC4558 双运放1991-71KD-07 闪光灯、音乐集成块1995s-71KD-100 音乐IC 1993x-5KD-152B 音乐IC 1993x-189KD-155 口哨声控片1995s-183KD-253 “叮咚”门铃1994x-194KD-253B “叮咚”门铃1994s-62KD-254 音乐片1994s-143KD482FB 石英钟报时1991-4KD-482FC 钟控打点1993s-142KD483 程控双音打点石英钟1994s-175 KD5068 狗叫声音乐片1993x-126KD5105 电子爆竹1993s-38KD-5601 爆竹声1993x-189KD56010 “恭喜发财”语音片1994x-138 KD56012 鸟叫声1993s-157KD56012 鸟叫IC 1994x-143KD-5602 军号声音乐片1995s-191KD5603 “欢迎光临”语音片1991-62KD5603 欢迎光临1993s-142KD-5603 “欢迎光临”语音片1994s-63 KD56032 六秒自然声1995s-143KD56033 娃娃哭笑语音块1995s-103 KD5604 谢谢光临1993s-142KD-5608 “狗叫”音乐片1992-168KD9300 音乐门铃1991-156KD9300 音乐门铃1994s-138KD9300 音乐门铃1994x-2、34KD9561 警车声音乐片1992-68KD9561 音乐IC 1994x-42KD9562B 警报声音乐1993x-52KD9562C 八声声效片1992-10KH1668 风扇控制1994x-154KIA6227H 音频功放1994-346KIA6299H 音频功放1994x-107KIA6401 电话振铃1994x-11KIA7299P 音频功放1994s-51KIA75558P 录象机伺服系统1994-210 KIA8125S 音频前置放大1994s-51KIA8127F AM/FM中放1994-180KM41C64P-10 画中画DRAM 1995s-299 KS5194/5 液晶显示驱动1994x-66KS5803 红外遥控发射1991-56KS5803 红外发射1992-95KS5917 语音电路1993s-183L200 五端集成稳压器1994s-110L4960 开关电源脉宽调制1995s-102 L4962 开关电源脉宽调制1995s-102 L4962 脉宽调制器1995s-152L4964 开关电源脉宽调制1995s-102 L4970 开关电源脉宽调制1995s-102 L4974 开关电源脉宽调制1995s-102 L78MR05 1994-240LA1231N FM解调1991-35LA1260 调频、调幅收音1994-104 LA3160 双前置放大1991-43LA3160 前置放大1994-340LA3350 立体声解码1991-135LA3361 立体声解码1991-66LA3361 立体声解码1991-135LA3365 立体声解码1991-135LA4127 双前置放大1993x-83LA4140 音频功放1993x-91LA4140 音频功放1994-137LA4275 音频功放1994s-255LA4422 音频功放1994-73LA4445 音频功放1991-67LA4445 音频功放1991-203LA4445 音频功放1993x-27LA4597 音频功放1993x-27LA5110 彩电稳压电源1995s-187LA5112 彩电稳压电源1995s-187LA5511 电机稳速1991-3LA5515 电机稳速1991-3LA5521D 电机稳速1995s-131LA7016 制式切换1995s-299LA7299 音频功放1991-67LA7555 中频信号处理1995s-342LA7575 PLL同步检波中频解码1995s-299LA7680 图象/伴音中频/视放/解码1994-273、302 LA7830 场输出电路1991-203LA7830 场输出电路1992-39LA7830 场输出1994-73LA7832 彩电场输出1995s-27LA7832/33 场输出1994s-255LA7837 场输出1994s-299 1995-62LA7838 场输出1994-268LA7905 50Hz/60Hz识别1994s-255LA7910 波段开关1994-248LA7920 波段开关1994s-307LAG665 单片放音机1991-132LAG665 单片放音机1991-199LAG665 单片放音机1992-47LAG665 随身听IC 1994s-20LAG665 单片放音机1994x-83LAG665F 单片放音机1993x-109LAG665F 单片立体声放音1995s-12LB1405 电平指示1993x-154LB1407 电平指示1995s-55LC219 风扇红外遥控发射1993x-170LC219 红外发射编码1994-230LC220A 六路译码器1993x-170LC220A 红外译码1994-230LC4036 双向模拟开关1994s-255LC4066B 四路模拟开关1994-269LC7441 PIP系统控制1994s-245LC7444 双时钟发生器1994s-245LC7480 多路转换开关和模/数转换器1994s-245 LC7881 D/A转换1992-124LCL102 计程显示器1994s-34LD398C 卫视接收厚膜块1993x-157LD505 音频放大1992-141LD866A 雷达探测模块1994s-63LD866B 雷达探测模块1994s-63LF398 取样与保持1995s-2、29LH-169B “抓贼呀”语音片1994s-7LIC1149-5 降压控制器1994s-104LM010 1994x-192LM1035 音量、平衡、音调直流控制1993s-32 LM1036 音量、平衡、音调直流控制1993s-32 LM1040 音量、平衡、音调直流控制1993s-32 LM12 运放1995s-30LM134 1994x-192LM1851N 漏电检测1994x-42LM1875 运算放大器1991-36LM1875 音频功放1994s-68LM1894 杜比降噪1991-106LM1894 动态降噪1991-200LM1894 降噪1993s-90LM1894 动态降噪1993s-170LM2575 开关电源脉宽调制1995s-102LM258 双前置放大1993x-43LM2904CT 三端稳压器1994s-168LM2907/2917 频率/电压转换器1994s-199LM293X 低压差三端稳压器1995s-41LM311 专用运放比较器1994x-18LM317 三端可调稳压电源1991-103LM317 三端可调稳压电源1993s-124LM317 三端可调稳压电源1994s-4LM317 正压可调三端稳压1995s-39LM317T 可调三端稳压1991-186LM318N 高速运放1994x-128LM3272C 石英钟芯1992-35LM331 V/F变换器1995s-2、37LM337 负压可调三端稳压1995s-39、46 LM339N 四运放电压比较器1994-25LM3524A 开关电源脉宽调制1995s-102 LM358 双运放1992-8LM358P 运放1995s-299LM358PS 录象机主导放大整形1994-120 LM35DZ 温度传感1992-198LM385 小功率基准电压1995s-39、60、76 LM386 音频功放1991-168LM386 音频功放1993s-6、77LM386N 音频功放1994x-90LM3875T 单片功放1993s-146LM3875T 音频功放1993x-144LM3876T 单片功放1993s-146LM389 调频发射1992-70LM3900 电流型四运放1994s-199 LM3909 单片振荡器1995s-63LM3909N 闪烁灯1995s-88LM3914 电平显示1993x-22LM3915 显示驱动1994x-16LM4280 音频功放1995s-299LM567 频率解调1991-2LM567 音频解调1991-62LM567 红外音频解调1991-134LM567 红外音频解调1994x-2LM567 红外音频解调1994x-119LM567 调频发射、接收1995s-143 LM6181 视频放大1994x-7LM723 通用型稳压块1994s-79LM833 双运放1993s-170LM8361 数字钟1994x-162LM837 四运放1993s-170LMC1982 数控音响1993s-178LP167 环形脉冲分配/驱动1994s-122LP2950CZ 低压差5V稳压器(三端)1995s-88 LQ46 四合一语音片1992-76LQ46 语音片1994x-162LR3714AM 遥控发射1993x-156LR40993 电话机发号1995s-111LR6 低压线性稳压器1995s-94LS190 对数放大器1994x-77LS7232 触摸调光1991-100LS7232 触摸调光1993s-94LS7232 触摸调光1994x-142LS85 1994x-77LT1005 逻辑控制稳压器1995s-39LT1057 音频运放1991-120LT1073 充电检测控制1994s-56LT1173CS8 DC-DC变换器1994x-8a)a 》模拟ab》地址总线accessorier》配件adc》模拟到数字的转换afc》自动频率控制agc》自动增益控制aged》模拟地afms》来自音频信号alarm》告警ant》天线antsw》天线开关atms》到移动台音频信号(b)base》三极管基极batt+》电池电压b+》内电路工作电压buzz》蜂鸣器(c)cdma》码分多址control》控制cpu》中央处理器(d)d》数字dac》数字到模拟的转换d b》数据总线dcin》外接直流电愿输入dgnd》数字地dtms》到数据信号dfms》来数据信号dsp》数字信号处理器(e)emitter》三极管发射极en》使能etacs》增强的全接入通信系统ext》外部的(f)feed back》反馈fdma》频分多址fh》跳频fl》滤波器fm》调频from》来自于(g)gain》增益gnd》地(h)hook》外接免提状态(i)i》同相支路if》中频int》中断i/o输入输出ictrl》供电电流大小控制端(l)led》发光二极管loop fliter》环路滤波器lspctrl》扬声器控制(m)mclk》主时钟mic》送话器mod》调制信号mopip》调制i信号正modin》调制i信号负mute》静音(o)ofst》偏置on》开onsrq》免提开关控制(p)powcontrol》功率控制powlev》功率级别pwrsrc》供电选择pll》锁相环q》正交支路(r)ram》随机储存器(暂存)ref》参考reset》复位rf》射频rfadat》射频频率合成数据rfaenb》射频频率合成启动rssi》接收强度指示rx》接收rxon》接收开rxifp》接收中频信号正rxifn》接收中频信号负sat-det》饱和度检测saw》声表面波滤波器spk》扬声器spi》串行外围接口swdc》末调整电压synstr》频率合成器启动synclk》频率合成器时钟syndat》频率合成器数据synton》频率合成器开/关sw》开关(t)tdma》时分多址temp》温度监测txvco》发送压控振荡器频率控制tp》测试点tx》发送tx en》发送使能txon》发送开(v)vbatt》电池电压vrpad》调整后电压vpp》峰峰值vppflash flash》编程控制vcxocont》基准振荡器频率控制vswitch》开关电压vcc》电愿vco》压控振荡第一节电阻器电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。
光电子器件的设计制造研究
光电子器件的设计制造研究光电子器件是指具有光电转换功能的器件,是将光能转换为电信号或将电信号转换为光信号的电子器件。
它广泛应用于通信、光电显示、量子计算、医学影像等多个领域。
现代科技的不断发展与进步,也催生出了越来越多的新型光电子器件。
1. 光电子器件的分类(1)光电检测器件:接收光信号并转换为电信号的器件,包括光电二极管和光电倍增管等。
(2)光源器件:发射出光信号的器件,包括发光二极管和激光器等。
(3)光电转换器件:将电信号转换为光信号的器件,包括LED 和 OLED 等。
(4)光学组件:主要用于光路设计,包括透镜、棱镜、波片等。
2. 光电子器件的设计制造(1)基于硅材料的光电子器件设计硅材料是一种广泛应用于半导体器件的基材,也是目前最成熟的光电子器件材料之一。
基于硅材料的光电子器件主要有硅光电倍增管、微纳加工技术等。
硅光电倍增管是一种基于硅材料的高效光电传感器,用于探测宇宙辐射、中子和γ 射线等。
它具有高斯宽、低功耗、良好的线性响应特性和承受高流量的特点。
另一方面,微纳加工技术使得硅可以被加工制造成多种不同的光学元件,如微结构光纤、互连网络和实验室虚拟电路等。
(2)基于 III-V 材料的光电子器件制造III-V 材料是一种广泛应用于半导体、量子点、量子井和太阳能电池等的材料,主要包括氮化镓、氮化铝、砷化镓和磷化铟等。
基于 III-V 材料的光电子器件的制造包括分子束外延技术和金属有机化学汽相沉积技术等。
分子束外延(MBE)技术是一种利用分子束在真空中生长单晶材料的技术,具有单元空间电荷控制、高质量薄膜制造等优点。
金属有机化学汽相沉积技术(MOCVD)是一种生长晶体的技术,其工作原理是将预处理材料蒸发至高温下部分分解,再与载气反应生成光电子器件材料。
(3)基于有机材料的光电子器件制造有机材料是一种应用于 OLED 显示屏、有机太阳能电池等的材料。
基于有机材料的光电子器件制造包括真空蒸发和非真空技术等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8. Semiconductor lasers8Semiconductor lasersypA typical semiconductor laser is formed froma semiconductor diode and a pair of plane-parallel mirrors.In operation, the diode is forward biasedIn operation the diode is forward biasedThe populations are so large that f e+ f h> 1 for some photon energy (above the bandgap energy), thereby giving gain in the semiconductor material.If the gain per pass exceeds the mirror transmission loss and any other losses experienced by the beam (e.g, diffraction, absorption loss in nominally transparent parts of the structure, loss from scattering off material, or structure imperfections)the structure will lase.Semiconductor laser structuresThere are two basic configurations edge-emittingedge emittingsurface emitting.Edge emitting lasers(1)Edge-emitting lasers(1) The edge-emitting laser usually is based on a The edge-emitting laser usually is based on a waveguide structure.Edge-emitting lasers(2)Ed itti l(2)A “slab” waveguide is formed from the p and n AlGaAs layers to give waveguiding in one direction, surrounding the GaAs layer. The AlGaAs is essentially transparent at the laser operating wavelength has a relatively lower refractive index than the GaAs, both confining the optical mode and electrons and holes injected b th fi i th ti l d d l t d h l i j t d Improve the effectiveness of the stimulated emission gain.The mirrors in a laser are usually formed from the natural reflectivity of the semiconductor-air interfacereflectivity of the semiconductor-air interfaceThese plane-parallel mirrors form a Fabry-Perot cavity, and such lasers are known as Fabry-Perot lasers.Edge-emitting lasers(3)Edge emitting lasers(3)To obtain enough gain per pass to overcome this relatively large mirror loss the laser ca it needs to be t picall 100s of microns mirror loss, the laser cavity needs to be typically 100s of microns long. Heat dissipation is always a problem in semiconductor laser structures since relatively high current densities (e.g., 100s of A/)i d t t ffi i t i A/cm 2or more) are required to generate sufficient carrier densities in the diode. In most edgeemitting laser diodes, therefore, it is desirable to g g ,,confine the current injection and the optical mode in a relatively narrow stripe to minimize the total dissipation, and to allow for some heat spreading. Also, confining in a narrow stripe gives a p g ,g p g mode shape that is more nearly the same size in both directions, as is desirable if we want to couple into. Hence, a long narrow contact stripe is often used.contact stripe is often used.The injection of current into this narrow stripe can itself cause a weak guiding effect in the lateral direction, giving rise to a “gain-guided”laserguided laser.Edge-emitting lasers(4)Edge-emitting lasers(4)In modern lasers, this gain guiding is usually supplemented by In modern lasers this“gain guiding”is usually supplemented by refractive index guiding to give “index-guided” lasers. A commong g q g p g y index guiding technique is to etch a ridge in the top cladding layer of the slab guide, which tends to give a higher effective index for the laser mode in the region just below the ridge, hence givingidisome waveguiding.Edge-emitting lasers(5)Edge-emitting lasers(5)In a more sophisticated index-guided structure the index is larger in the center partly because there is only the low bandgap active material (InGaAsP) present.In this structure, a deep mesa ridge is formed in the originalIn this structure,a deep mesa ridge is formed in the original layered material,down to just below the active region; then the additional InP layers are “regrown”on the sides, burying the activeon the sides“burying”the activeheterostructure (hence the name“buried heterostructure”).)This kind of structure is particularlyefficient at injecting carriers only intothe active region in the middle of thelaser mode.There are many variants of the buriedThere are many variants of the buriedheterostructure concept.g g()Edge-emitting lasers(6)It is difficult to get the laser beam in an edge-emitting laser to be the same dimensions in both directions.h di i i b h di iThe beam as it leaves the laser is small in the “vertical” direction, and relatively larger in the “horizontal” direction.d l ti l l i th“h i t l”di tiAs it propagates into thefar field, the situationf fi ld th it tireverses because ofdiffraction, with a relativelydiff i i h l i llarge beam in the verticaldirection and a smallerbeam in the horizontal direction.Edge-emitting lasers(7) Edge-emitting lasers(7)Edge-emitting lasers(8)Edge-emitting lasers(8) p pA separate confinement heterostructure is a more sophisticated heterostructure in which a greater number of different layers of material are added,with some of the layers being primarily present to guide(or confine)the optical mode,and some being theremodeprimarily to position the electron and hole populations optimally for gain.In the GRINSCH,the material is graded approximately quadratically around about the thin active region.The approximately parabolic grading of index gives good control over the waveguide mode profile,and the thin active layer with deep potential wells for electrons and holes results in good overlap of the excited electron and hole populations for strong gain. The active region is also in the middle of the optical mode where the amplitude is highest,and hence the effective gain is also highest.highest highestOutput spectrum of a laser at a current just Output spectrum of a laser at a current justabove thresholdDistributed feedback(DFB)laser Distributed feedback (DFB) laserpp g y For applications where the laser wavelength must be more closely controlled (as in telecommunications), it is common to use either distributed Bragg reflector (DBR) or distributed feedback (DFB) laser structures.Both of these rely on the use of periodic grating structures, usually formed by corrugating an interface in the laser structure. The period of the corrugations is a (small) integer number of half-Th i d f th ti i(ll)i t b f h lf wavelengths, which isalso the basic structureof the simplest DFBlaser.A distributed Bragg reflector laser structure A distributed Bragg reflector laser structureThis high reflectivity arises because all of the reflections off of different periods in the grating add up in phase.S h i f d bSuch a mirror formed by anoptical structure with a periodf h lf l h i ll dof half a wavelength is calleda Bragg mirror or a distributedBragg reflector(DBR)Vertical-cavity surface-emitting lasers(1) Vertical-cavity surface-emitting lasers(1)e ve c c v y su ce e g se(VCS)s eThe vertical-cavity surface-emitting laser (VCSEL) is like a DBR laser, but made in the vertical direction.The motivations for making the VCSEL are not so much to obtaingnarrow-linewidth, single-frequency operation, but more to make lasers that can have intrinsically circular beam profiles, therefore making them easier to interface to fibers, and to allow the construction of arrays of lasers.VCSELs are also very small compared to edge emitters, because CS l ll d d i bthey avoid the long waveguide region.VCSELs have been enabled partly by the development of low-loss VCSEL h b bl d tl b th d l t f l l mirrors made integral to the semiconductor structure. These mirrors are formed from alternating quarter wave layers of low and high are formed from alternating quarter-wave layers of low and high index transparent semiconductors.Vertical cavity surface emitting lasers(2) Vertical-cavity surface-emitting lasers(2)(a)Emitting through anetched hole in theh d h l i hsubstrate.(b)Emitting through the topof the structure.(c)Emitting through atransparentt tsubstrate.Vertical cavity surface emitting lasers(3) Vertical-cavity surface-emitting lasers(3) Various other advantages come from the quantum confinement Various other advantages come from the quantum confinement effects seen in such thin, quantum-well layers.In particular, the density of states in quantum wells has a muchIn particular,the density of states in quantum wells has a much more favorable form for laser gain, being more abrupt.y g yThis better form of the density of states leads to significantly improved differential gain in the laser, which can be particularly important in high-speed modulation.In addition, the quantum confinement effects also give another degree of freedom in designing structures, since the quantum confinement can change the laser wavelength without changing fi t h th l l th ith t h i the composition.Almost all modern high-performance laser structures now use Almost all modern high performance laser structures now use quantum-well active layers.Laser gain dynamics(1)Laser gain dynamics(1)We can understand some of the basic phenomena that occur aswe try to modulate a laser at progressively higher speeds basedon a relatively simple rate equation model.s ode,we eed o co s de wo coup ed spec s.In this model, we need to consider two coupled aspects.One aspect is how the carrier density is affected by the number ofphotons in the cavity, and the other is how the number of photons h t i th it d th th i h th b f h tin the cavity is affect by the carrier density.We therefore consider two simple “rate equations” –first orderq pdifferential equations that are coupled to one another.Laser gain dynamics(2)g y()Consider first the rate of change of the number of carriers per unit ,,gvolume, N, in the laser gain medium.We are passing current, I, into the laser diode. Some fraction of the carriers in this current add to the carrier density in the active (gain) region of the device (usually most of them in a(i)i f h d i(ll f h iwelldesigned laser diode).If the volume of the gain region is then in the gain regionIf the volume of the gain region is V gain, then, in the gain region, The number of carriers added per unit volume per unit time I/I / eV gainWe expect there will be some recombination of the carriers that does not add photons to the cavity mode of interest.we presume this undesired recombination is characterized by a simple lifetime, , so we have the number of undesired carrier recombinations per unit volume per unit time = N /recombinations per unit volume per unit time=NLaser gain dynamics(3)g y()The number of photons added to the light beam in the laser mode p g y p y gper unit length inside the laser cavity is simply the gaincoefficient, g, times the number of photons in the laser mode. if the number of photons per unit volume in the laser mode is Np , the number of photons added to the beam per unit volume per unit length inside the cavity is gNp .The photons are traveling at a velocity vg inside the cavity, where vg is the group velocity.Hence the number of photons added to the beam per unit volume H h b f h dd d h b i lper unit time is v g N g p.Because a carrier is removed from N for each photon added by this Beca se a carrier is remo ed from N for each photon added b this stimulated recombination process, we have the number ofstimulated carrier recombinations per unit volume per unit time stimulated carrier recombinations per unit volume per unit timev g N g pLaser gain dynamics(4)Adding the creation and recombination rates calculated above with the appropriate signs, we have a net rate equation for the carrier densitycarrier densityLaser gain dynamics(5)g y()For the photons in the laser mode of interest in the cavity, We can lump all of these photon loss mechanisms into a photon lifetime, , for this cavity mode, to obtain the number of photons lost from the cavity per unit cavity volume per unit time = N p/ Photons are being added to the laser mode by the process of stimulated emission. We know that, per unit volume of the gain material, v g N g p photons are being added per unit time.As a result of both of these effects, to calculate the number of photons being added to the cavity mode per unit cavity volume per unit time, we need to introduce a correction factor called the “mode confinement factor”, G, so that the number of photons added perN g punit cavity volume per unit time = G vgLaser gain dynamics(6)we obtain a rate equation for the number of photons per unit volume in the cavity modevolume in the cavity modesteady state situationsteady state situationSuppose for the moment that we were running the laser in aS f th t th t i th l isteady state manner, at some fixed current, I o. In this condition, the gain would be and the carrier and photon densities would the gain would be g o, and the carrier and photon densities would be N o and N po, respectively. In this steady state situation, the p(carrier and photon densities would also be stable (i.e., dN / dt= 0 and dN p/ dt= 0)The gain dynamics of the laser in a simple The gain dynamics of the laser in a simple “small-signal” model(1)The gain dynamics of the laser in a simplesmall signal model (2)“small-signal”model(2)This equation is that of a simple damped harmonic oscillator, This equation is that of a simple damped harmonic oscillator driven by the term on the right hand side.We can usefully define a resonance (angular) frequencyThe gain dynamics of the laser in a simpleThe gain dynamics of the laser in a simple “small-signal” model (3)output power at different modulation frequencies output power at different modulation frequenciesLaser diode markets(1)()Laser diode markets(2) Laser diode markets(2)Laser diode markets(3)Laser diode markets(4) Laser diode markets(4)Laser diode markets(5)。