致病菌毒力因子分析-VFDB 2012 update

合集下载

蜡样芽孢杆菌GW-01全基因组测序及生物学特性分析

蜡样芽孢杆菌GW-01全基因组测序及生物学特性分析

刘珊,蒋杨丹,颜佶沙,等. 蜡样芽孢杆菌GW-01全基因组测序及生物学特性分析[J]. 食品工业科技,2024,45(7):167−176. doi:10.13386/j.issn1002-0306.2023060031LIU Shan, JIANG Yangdan, YAN Jisha, et al. Whole Genome Sequencing and Biological Characterization of Bacillus cereus GW-01[J]. Science and Technology of Food Industry, 2024, 45(7): 167−176. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060031· 生物工程 ·蜡样芽孢杆菌GW-01全基因组测序及生物学特性分析刘 珊1,2,蒋杨丹1,2,颜佶沙1,2,谢宇宣1,2,赵思佳1,2,何启田3,赵甲元1,2,*(1.西南土地资源评价与监测教育部重点实验室(四川师范大学),四川成都 610101;2.四川师范大学生命科学学院,四川成都 610101;3.浙江大学生物系统工程与食品工程学院,浙江杭州 310000)摘 要:目的:通过全基因组测序和生物信息学,研究前期筛选可降解高效氯氰菊酯(β-CY )蜡样芽孢杆菌GW-01的基因组序列信息和生物学特性,为其安全性评估提供参考。

方法:利用HPLC 验证了GW-01降解β-CY 的能力。

GW-01的整个基因组基于二代Illumina NovaSeq 与三代PacBio Sequel 测序平台相结合的测序技术,对菌株GW-01进行全基因组测序,并对测序数据进行基因组组装、基因预测与功能注释、碳水化合物活性酶预测、毒力因子和抗生素抗性分析,此外,还基于gyrA 基因序列对菌株GW-01构建系统发育树。

病原菌毒力因子及其遗传调控机制研究

病原菌毒力因子及其遗传调控机制研究

病原菌毒力因子及其遗传调控机制研究病原菌是指会导致疾病、伤害或死亡的微生物。

病原菌毒力因子和遗传调控机制的研究是了解病原菌致病机理的核心问题之一。

本文将从病原菌毒力因子的定义入手,探讨其在致病过程中的作用;随后,将重点讲解遗传调控机制,介绍目前的研究进展及其意义。

一、病原菌毒力因子的定义一个病原菌的毒力源于其毒力因子的数量和类型。

毒力因子是指可影响病原菌在宿主体内或体外繁殖速率、侵袭力和毒性的分子或结构。

毒力因子种类繁多,包括蛋白质、酶和配体等。

研究病原菌毒力因子有助于探究其致病机制,为疫苗和抗生素的开发提供科学依据。

二、病原菌毒力因子在致病过程中的作用病原菌利用多种手段使它们更适合入侵和繁殖宿主。

其毒力因子在这个过程中扮演着至关重要的角色。

下面是几个实例:1. 欧氏肺炎克雷伯杆菌毒力因子欧氏肺炎克雷伯杆菌是肺炎的主要病原菌之一。

研究发现,该菌中的一种毒力因子β-lactamase可破坏抗生素β-lactam类药物。

此外,该菌还分泌赖氨酸去羧基酶和脂质A(LPS),LPS在克服宿主免疫方面起重要作用。

这些毒力因子是欧氏肺炎克雷伯杆菌进攻宿主免疫系统的利器。

2. 疟原虫毒力因子疟原虫是引起疟疾的主要病原体。

它的毒力因子包括红细胞素、热休克蛋白和浆膜致死毒素等。

其中,红细胞素是疟原虫入侵红细胞的关键因素,热休克蛋白则用于进入细胞,浆膜致死毒素则会导致细胞死亡。

3. 沙门氏菌毒力因子沙门氏菌是一种通过食物或水传播的病原菌。

它的毒力因子包括鞭毛、肠毒素和膜蛋白等。

其中,肠毒素引起肠胃炎。

鞭毛使得沙门氏菌更容易附着于宿主肠道表面,而膜蛋白则让沙门氏菌逃避免疫系统的攻击。

三、遗传调控机制的研究进展及其意义毒力因子在病原菌致病过程中起到重要作用,研究它们的遗传调控机制同样非常重要。

在病原菌中,这些毒力因子通常呈现复杂的表观遗传调控,可以通过转录因子、ncRNA、修饰酶等方式来进行控制。

近年来,许多调控机制逐渐被发现,并被认为对病原菌的致病性发挥非常重要。

细菌毒力因子的研究及抗生素发展的思考

细菌毒力因子的研究及抗生素发展的思考

细菌毒力因子的研究及抗生素发展的思考生命中,细菌是无处不在的。

它们存在于我们的身体中、土壤中及水中等各种环境中。

有许多种细菌是有益的,可以进行许多生物反应,同时也有一些细菌是有害的,它们可以引起各种各样的疾病。

而这些细菌的害处,除了靠感官来观察外,更多的要靠科学研究来发现它们的毒力因子。

本文将从细菌的毒力因子入手,探讨抗生素研发面临的挑战以及促进抗生素的发展。

细菌毒力因子的研究人类战斗细菌病的历史已经有一个多世纪了,因此人们对细菌病原体的研究从来没有停止过。

细菌的毒力因子是一种能使机体发生疾病的分子组织,这种分子组织可以使细菌在机体内获得生长和繁殖的条件,从而对机体产生危害。

实际中,细菌的毒力因子是极为多样的。

例如,大肠杆菌的毒力因子可以使人体发生急性肠炎,金黄色葡萄球菌的毒力因子可以引发皮肤热 swollen skin 和人类食物中毒。

研究细菌毒力因子对于预防和治疗细菌感染病非常重要。

通过对毒力因子的研究,我们可以开发出更加高效的抗生素,减少因细菌而引起的疾病,提高医学水平和人类的健康生活质量。

目前大多数抗生素对细菌的治疗效果主要是针对细菌的生存机制。

例如,利用抗生素作用于细胞壁或细胞膜上的磷脂,可以使细胞死亡。

然而,对于细菌具体的毒力因子,抗生素往往没有效果。

因此,研究细菌毒力因子是防治细菌病的一个关键方向。

抗生素发展面临的挑战抗生素的发展历史已经有80多年了。

在这80年里,许多强有力的抗生素被开发出来,它们在医疗中做出了巨大的贡献。

然而,随着时间的推移,人们发现越来越多的细菌对治疗常用的抗生素产生了耐药性,使得抗生素的功效被削弱。

原因是多方面的,细菌抵抗抗生素的机制很多,例如,细菌可以通过改变自身的生理代谢水平来抵抗抗生素的杀菌效果。

比如,青霉素可以针对细菌的细胞壁,细菌靠改变细胞壁的代谢来直接抵御药物的抗菌效果。

此外,现今抗生素的研究发现成本高、效率低,放缓了药物的开发进程,新型抗生素的开发难度也加大。

病原菌毒力机制的分子分析

病原菌毒力机制的分子分析

病原菌毒力机制的分子分析病原菌指的是可以引起疾病的微生物。

病原菌通过侵入人体并感染人体细胞来进行攻击。

随着科学技术的不断进步,人们对病原菌的接触也越来越频繁。

而要对抗病原菌,除了开发药物以外,还需要了解它们的攻击机制。

其中,病原菌的毒力机制是非常重要的,因为它可以控制病原菌对宿主的侵袭和传播。

本文就分子生物学的角度,来分析病原菌毒力机制的分子分析。

1. 病原菌毒力因子的类型病原菌的毒力因子指的是能够对宿主产生损伤的病原菌产物或分泌物,包括外毒素、内毒素、表面蛋白等。

外毒素是指病原菌释放到宿主细胞外的毒素,主要有神经毒素、溶血素等。

内毒素是指病原菌释放到感染部位周围产生的毒素,可导致感染部位局部产生炎症、水肿等。

表面蛋白是指病原菌表面的分子,它们可以识别宿主细胞表面分子,并与其发生互作用,从而征服宿主防御机制。

2. 感染过程中毒力因子的作用病原菌的毒力因子在感染过程中发挥重要作用。

外毒素主要会使宿主细胞的生理功能发生异常,例如神经毒素会造成中毒、溶血素会导致红细胞破裂等。

内毒素会导致感染部位局部产生炎症、水肿等,从而为病原菌的进一步传播创造了有利条件。

表面蛋白与宿主细胞表面分子结合后,可使病原菌稳定地附着在细胞表面上,逃避宿主体内的免疫攻击。

有些病原菌还可以通过先对宿主免疫系统造成不良影响,再感染宿主细胞,从而更好地完成对宿主的攻击。

3. 毒力基因的研究方法分子生物学的发展为毒力机制揭示提供了强有力的手段。

毒力基因的研究是分子生物学中的重要课题。

在病原菌毒力基因的分析过程中,首先需要确定病原菌的毒力基因,这可以通过反转录聚合酶链式反应(RT-PCR)、全基因组测序等方法获得。

在确定毒力基因后,可以采用一系列的实验技术,如基因敲除、基因纯化以及活性测定等,来研究毒力基因产物的生化性质、生物学功能和作用机制。

4. 毒力基因研究的意义毒力基因研究对于揭示病原菌毒力机制的作用方式、发现病原菌与宿主相互作用机制,以及开发抗病原菌药物等方面具有重要意义。

病原细菌的毒力因子研究

病原细菌的毒力因子研究

病原细菌的毒力因子研究病原细菌是一类可引起多种疾病的微生物,其毒力因子是导致感染和疾病发生的重要因素之一。

对病原细菌毒力因子的深入研究,不仅有助于疾病的预防和治疗,更可为新型药物和疫苗的研发提供重要参考。

一、什么是病原细菌毒力因子病原细菌毒力因子是指在感染过程中,病原细菌所释放出的各种能够引起宿主细胞和组织受损的物质,包括毒素、酶、细胞壁组分、蛋白质等。

对于某些病原细菌而言,毒力因子的存在与否会决定是否具有致病性。

二、病原细菌毒力因子的分类病原细菌毒力因子可分为三类,包括细菌因子、外毒素和内毒素。

1、细菌因子细菌因子是指由细菌本身产生的毒力分子,如LPS、flagellin、细胞壁分解产物等。

2、外毒素外毒素是指在细菌细胞外由病原菌合成并分泌的毒素,如破伤风毒素、百日咳毒素等。

3、内毒素内毒素是一类存在于细菌细胞内的高度毒性的成分,它是由病原菌死亡后释放出的内毒素、脂多糖和蛋白聚糖等结合而成的物质。

可引起细胞损伤、过敏反应、内分泌和代谢异常等病症。

三、病原细菌毒力因子的研究现状病原细菌毒力因子的研究是现代分子生物学的一个重要领域,近年来得到了广泛的关注和研究。

目前,研究人员通过基因克隆、蛋白质分析和仿生学等技术手段,逐渐揭示出了病原细菌毒力因子的作用机制和致病途径。

例如,大肠杆菌毒力因子组合疫苗(ECV)就是由多种毒力因子基因组成的重组疫苗。

该疫苗通过基因工程技术将多个大肠杆菌毒力因子的基因组合在一起,形成一个新的基因序列,然后用重组蛋白、基因工程等概念制备而成,具有广谱、高效、安全性好等优点。

近年来,该疫苗已被应用于动物饲料、水产养殖、人类疫苗等多个领域。

此外,近年来还涌现出一种新型研究手段,即单细胞记录技术 (SCR)。

该技术通过用电极在单个活体细胞上录得电位变化,可以准确探测到细胞之间的相互作用和信息传递方式。

研究人员利用单细胞记录技术,成功地研究出了肠道菌群的群体行为、病原细菌的传播路径等问题,有望为病原细菌毒力因子的研究提供新的思路和手段。

致病菌毒力因子分析-VFDB2012update

致病菌毒力因子分析-VFDB2012update

致病菌毒⼒因⼦分析-VFDB2012updateVFDB 2012update:toward the genetic diversity and molecular evolution of bacterial virulence factorsLihong Chen,Zhaohui Xiong,Lilian Sun,Jian Yang*and Qi Jin*State Key Laboratory for Molecular Virology and Genetic Engineering,Institute of Pathogen Biology,Chinese Academy Medical Sciences and Peking Union Medical College,Beijing 100176,China Received September 15,2011;Accepted October 17,2011ABSTRACTThe virulence factor database (VFDB,http://www /doc/721c89b19b6648d7c0c746a7.html /VFs/)has served as a comprehensive repository of bacterial virulence factors (VFs)for>7years.Bacterial virulence is an exciting and dynamic field,due to the availability of complete se-quences of bacterial genomes and increasing sophisticated technologies for manipulating bacteria and bacterial genomes.The intricacy of virulence mechanisms offers a challenge,and there exists a clear need to decipher the ‘language’used by VFs more effectively.In this article,we present the recent major updates of VFDB in an attempt to summarize some of the most important virulence mechanisms by comparing different compositions and organiza-tions of VFs from various bacterial pathogens,iden-tifying core components and phylogenetic clades and shedding new light on the forces that shape the evolutionary history of bacterial pathogenesis.In addition,the 2012release of VFDB provides an improved user interface.INTRODUCTIONBacterial virulence factors (VFs)are fascinating for a number of reasons.First,the ability of successful patho-gens to establish infections,produce disease and survive in a hostile environment is provided by a large armamentar-ium of virulence mechanisms.Elucidating the molecular mechanisms of VFs can improve understanding of the cellular and molecular basis of pathogenesis.Second,many important virulence factors interact with host cells and modulate their functions.Investigating the complex and ?nely balanced interactions between hosts and patho-gens can uncover useful tools for studying normal host cellular processes.Third,a much deeper understandingof the mechanisms of action of VFs will inform new avenues for identifying promising approaches to disease prevention and therapy.Fueled by recent technological innovations in the life sciences,the ? eld of microbial viru-lence has expanded rapidly over the past decade.Since its inception in 2004,the virulence factor database (VFDB,/doc/721c89b19b6648d7c0c746a7.html /VFs/)has provided the broadest and most comprehensive up-to-date information regarding experimentally validated bacterial virulence factors (e.g.extracellular products,such as enzymes and toxins and secreted effectors or cell-associated products,such as capsular polysaccharides and outer membrane proteins),and has further explored plasticity in the reper-toire of VFs on an intra-genera level since its second release (1,2).To summarize the common themes in bac-terial virulence and to re?ect the diversity of genomic encoding,structural architecture and functional original-ity,we recently updated VFDB with an enhanced user interface and new contents dedicated to inter-genera com-parative analysis of VFs involved in host cell attachment and invasion,bacterial secretion systems and effectors,toxins,and iron-acquisition systems (Table 1).DATABASE UPDATES Data sources and processingThe core dataset of VFDB only covers experimentally demonstrated VFs from 24genera of medically important bacterial pathogens.Several predicted VFs from complete genomes were also included for comparative analyses in the second release (2),but this information is still far from suf?cient for a comprehensive study of the genetic diver-sity and molecular evolution of VFs.Many VFs found in human pathogens have homologues present in animal or plant pathogens,and,sometimes,even in non-pathogens.Additionally,the genomic sequences encoding most func-tionally validated VFs are fragmentary,rather than complete genomes in the public domain.Therefore,via exhaustive literature screening and expert review,the*To whom correspondence should be addressed.Tel:+861067877732;Fax:+861067877736;Email:zdsys@/doc/721c89b19b6648d7c0c746a7.htmlCorrespondence may also be addressed to Jian Yang.Tel:+861067877735;Fax:+861067877736;Email:yangj@/doc/721c89b19b6648d7c0c746a7.html The authors wish it to be known that,in their opinion,the ?rst two authors should be regarded as joint First Authors.Published online 8November 2011Nucleic Acids Research,2012,Vol.40,Database issue D641–D645doi:10.1093/nar/gkr989The Author(s)2011.Published by Oxford University Press.This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (/doc/721c89b19b6648d7c0c746a7.html /licenses/by-nc/3.0),which permits unrestricted non-commercial use,distribution,and reproduction in any medium,provided the original work is properly cited.basic information on >1200VFs was collected from over 1100original research papers (Table 1).These collected VFs,derived from 75genera of bacteria,were organized into four super-families and31subclasses in VFDB (Table 1).Nevertheless,we do not intend to discuss the biological diversity of certain VFs;therefore,only experi-mentally veri?ed VFs were included.In addition,if more than one sequence was available for an individual species,only the representative one was collected into the database for the sake of brevity.The nucleotide and amino-acid sequences of VF-encoding genes and related annotation information were extracted from individual GenBank (3)records using ad hoc BioPerl scripts.The conserved domain(s)of each protein were recognized by local Pfam (4)search using the HMMER3program (/doc/721c89b19b6648d7c0c746a7.html /),and the related protein structure information was available from the PDB database (5)via batch BLAST search followed by manual curation.Homologue groups were determined by reciprocal BLAST on individual datasets of each subclass,and the results were further curated based on conserved synteny.Next,the MatGAT program (6)and DaliLite server (7)were used to calculate pairwise sequence and structure (if itexists)similarities,respectively,among each group.The T–coffee package (8)was employed to generate multiple alignment for each homologue group.For highly divergent proteins,the segments of respective conserved domain(s)were used instead of full sequences for producing reliable align-ments.The ESPript web server (9)was used to render structure information on multiple alignments.The MEGA software (10)was used to build phylogenetic trees based on the multiple alignment of the core compo-nent/domain of each subclass of VFs.The overall data-processing procedure is shown in Figure 1.Data presentation and web interfaceThe effective presentation of data is one of the key criteria for any good database to provide users with the most in-tuitive and easy-to-understand results.The VFDB offers four main styles to visualize the comparative results of each subclass of VFs during different analysis stages (Figure 1).The information gleaned from literature is pre-sented in a concise table (exempli?ed in the right panel of Figure2A),which covers the basic data for each VF,such as organism name,taxonomic class,VF name/family,known/proposed function,key component(s)and a direct link to the original literature available in PubMed (11).The linear graphic view is used to display unambiguouslythe diversity of VFs in terms of genetic composition or genomic organization (Figure 2B).The manually curated multiple alignments (Figure 2C)and phylogenetic tree built from the corecomponent/domain (Figure 2D)are also available to enable users to further analyze the sequence/structure diversity and molecular evolutionary relationships of homologous VFs from various pathogens.For the 2012release of the VFDB,we built a more responsive and intuitive user interface with high-performance grids,expandable trees,collapsible menus and tabbed panels using ExtJS (/doc/721c89b19b6648d7c0c746a7.html /),which is a cross-browser JavaScript library for building rich internet applications.This library provides users with the look and feel of a desktop application rather than a traditional web page.For example,the aforemen-tioned tables are fully sortable and ?lterable by a single click on the column title,and each column is also movable and scalable (or hidden)by dragging and dropping on the title.These features that were previously available only in standalone applications will undoubtedly provide the database users with better experiences than before.The main web interface is vertically divided into two panels:a collapsible menu panel on the left and a tabbed content panel on the right (for example,see Figure 2A).The menu panel provides a tree-like organiza-tion of all subclasses of VFs with direct links to each in-dividual page for easy navigation.To maximize the visible region of the content panel,the menu is collapsed into a clickable vertical bar automatically upon page load (for example see Figure 2D).The bottom tool bar of the content panel provides several convenient functional buttons on the left side for easy manipulation of theTable 1.Data summary of newly released contents for the diversity and evolution analyses of VFs (as of September 2011)VF super-family Number of subclasses Number of VFs Number of genera involved Number ofVFs-related genes Number ofrelated references Adhesion and invasion 10429472016387Secretion systems 6217482879483Toxin1248742564218Iron acquisition 3723055169Total3112057559551133Figure 1.The overall method of data processing and presentation.D642Nucleic Acids Research,2012,Vol.40,Database issueFigure 2.The updated VFDB web interface.(A )Menu panel (left)and tabular view of basic data sets (right).(B )Graphic view for multiple-component VFs,color-coded by homologue groups.(C )Structure-based multiple alignment of homologous VFs.(D )Deduced phylo-genetic tree based on key component/domain (the menu panel is collapsed as a vertical bar in the left).(E )Color-shaded matrix of pairwise sequence similarities.(F )Popup window with detailed gene information along with a graphic illustration of conserved domains and a 3D structure preview.Nucleic Acids Research,2012,Vol.40,Database issue D643tables and for saving the web contents as a local?le(Excel table,PNG?gure or FASTA sequences).In addition, there are icon buttons on the right side of the tool bar for rapid switching between the aforementioned different data presentation styles.Genetic diversity of VFsThe diversity of genetic composition or genomic organiza-tion of homologous VFs from different pathogens may re?ect the evolutionary relationships of the bacteria in terms of virulence.To facilitate future studies on the di-versity of VFs,the composition and organization of VFs are highlighted in the graphic view for easy comparison. For single-gene-encoded VFs,domain architectures are shown as colored bars with a direct link to the respective protein family information.As for multiple-component VFs,all genes are depicted as clickable arrows in the linear map and are color-coded by homologue groups (Figure2B).Therefore,it becomes straightforward to ?nd out whether those VF-related genes are clustered or scattered on the genomes of various pathogens.For example,the genes encoding synthesis of type IVa pili are generally dispersed throughout the bacterial genome while those of type IVb pili are arranged in a contiguous cluster.We endeavor herein to provide a framework for further investigations into whether these genes were acquired separately or whether all genes were previously in a single cluster that was disrupted by genomic rearrangements.Detailed information on each gene,including genomic location,coding strand,scienti?c name,product and se-quences,as well as a graphic illustration of conserved domains and a preview of3D structure(s)(if they exist) are available from a popup window upon clicking on the linear map(Figure2F).By default,the linear maps are ordered on the basis of the phylogenetic tree(see below)to emphasize potential correlations between genetic vari-ations and molecular evolution of VFs.In addition,the linear maps of each VF are also organized in a highly scalable grid,which enables users to sort and?lter the VFs easily to construct customized graphic comparisons. Sequence/structure variations and phylogenetic analysis We explore the sequence and structure similarity of each homologue group in order to provide insight into how VFs may have evolved from common ancestors or may have exploited different mechanisms to arrive at similar biological activities.The multiple-alignment of homolo-gous VFs is displayed by superimposing the crystal struc-ture of the representative protein,and secondary structural elements are highlighted on top of the alignment (Figure2C).It will be helpful to disclose possible similar structures deduced from homologous sequences.Color-shaded matrices summarizing the pairwise sequence/struc-ture similarities among each homologue group are also provided in an attempt to illustrate sequence variations within each group and reveal potential protein pairs that share low sequence similarities but produce highly similar 3D structures.For example,within the a-hemolysin sub-family of b-barrel pore-forming toxins,the overall sequence identities of the core leukocidin domain from Vibrio cholerae cytolysin(VCC)and most of other members are<30%(Figure2E),but their structure com-parison scores are notably high,indicating clear similarities at the structural level.However,it should be noted that protein pairs displaying signi?cant sequence homology and similar enzymatic activities might still differ in host cell targets,thereby playing different roles in bacterial pathogenesis,such as Escherichia coli SopE and SopE2,Pseudomonas ExoS and ExoT,and the Shigella IpaH proteins.The growing diversity of VFs has prompted numerous efforts to develop classi?cation schemas and unravel the evolutionary origins of VFs.For example,six major ?mbrial clades of chaperone/usher systems and seven dif-ferent families of T3SS are already well-established (12,13).Therefore,we performed extensive phylogenetic analysis of subclass or subfamily in the VFDB. Phylogenetic trees are labeled by species and color-coded by bacterial taxonomy(for example,see Figure2D).This analysis may not only provide insights into the evolution-ary history of VFs but may also facilitate future classi?-cation of newly identi?ed VFs using the existing schemas. As a preliminary result,we found aerolysin-like toxin family and a-hemolysin family each might be further divided into twogroups(Figure2D),though additional investigations are needed.DISCUSSIONBacterial pathogenicity is one of the most important sub-jects in microbiology.The pathogenicity of bacteria depends on the ability to employ virulence factors, which are localized to the cell surface,released into the extracellular milieu or injected directly into host cells.Obviously,much is yet to be learned from the sophisticated virulence strategies posed by bacterial pathogens.There is an increasing need to review the entire?eld and perform bioinformatic mining of the ex-plosively growing data regarding bacterial VFs.VFDB is dedicated to meeting these demands by providing up-to-date,thought-provoking information and various analytical tools.Nevertheless,we acknowledge that our work represents only a preliminary characterization of VFs.The increasingly rapid expansion of knowledge con-cerning the multifaceted aspects of VFs will continue to challenge our capacity to compile the latest and most relevant information for the scienti?c community. FUNDINGNational Basic Research Program from the Ministry of Science and Technology of China(grants2009CB522603 and2011CB504904to J.Y.and Q.J.,respectively);Beijing Nova Program(grant2009A67to J.Y.).Funding for open access charge:Beijing Nova Program.Con?ict of interest statement.None declared.D644Nucleic Acids Research,2012,Vol.40,Database issueREFERENCES1.Chen,L.,Yang,J.,Yu,J.,Yao,Z.,Sun,L.,Shen,Y.and Jin,Q.(2005)VFDB:a reference database for bacterial virulence factors.Nucleic Acids Res.,33,D325–D328.2.Yang,J.,Chen,L.,Sun,L.,Yu,J.and Jin,Q.(2008)VFDB2008release:an enhanced web-based resource for comparativepathogenomics.Nucleic Acids Res.,36,D539–D542.3.Benson,D.A.,Karsch-Mizrachi,I.,Lipman,D.J.,Ostell,J.andSayers,E.W.(2011)GenBank.Nucleic Acids Res.,39,D32–D37. 4.Finn,R.D.,Mistry,J.,Tate,J.,Coggill,P.,Heger,A.,Pollington,J.E.,Gavin,O.L.,Gunasekaran,P.,Ceric,G.,Forslund,K.et al.(2010) The Pfam protein families database.Nucleic Acids Res.,38,D211–D222.5.Rose,P.W.,Beran,B.,Bi,C.,Bluhm,W.F.,Dimitropoulos,D.,Goodsell,D.S.,Prlic,A.,Quesada,M.,Quinn,G.B.,Westbrook,J.D.et al.(2011)The RCSB Protein Data Bank:redesigned web site and web services.Nucleic Acids Res.,39,D392–D401.6.Campanella,J.J.,Bitincka,L.and Smalley,J.(2003)MatGAT:an application that generates similarity/identity matrices usingprotein or DNA sequences.BMC Bioinformatics,4,29.7.Holm,L.and Park,J.(2000)DaliLite workbench for proteinstructure comparison.Bioinformatics,16,566–567.8.Di Tommaso,P.,Moretti,S.,Xenarios,I.,Orobitg,M.,Montanyola,A.,Chang,J.M.,Taly,J.F.and Notredame,C.(2011)T-Coffee:a web server for the multiple sequence alignment ofprotein and RNA sequences using structural information andhomology extension.Nucleic Acids Res.,39,W13–W17.9.Gouet,P.,Robert,X.and Courcelle,E.(2003)ESPript/ENDscript:extracting and rendering sequence and3D informationfrom atomic structures of proteins.Nucleic Acids Res.,31,3320–3323.10.Tamura,K.,Dudley,J.,Nei,M.and Kumar,S.(2007)MEGA4:Molecular Evolutionary Genetics Analysis(MEGA)softwareversion4.0.Mol.Biol.Evol.,24,1596–1599.11.Sayers,E.W.,Barrett,T.,Benson,D.A.,Bolton,E.,Bryant,S.H.,Canese,K.,Chetvernin,V.,Church,D.M.,DiCuccio,M.,Federhen,S.et al.(2011)Database resources of the NationalCenter for Biotechnology Information.Nucleic Acids Res.,39,D38–D51.12.Nuccio,S.P.and Baumler,A.J.(2007)Evolution of the chaperone/usher assembly pathway:?mbrial classi?cation goes Greek.Microbiol.Mol.Biol.Rev.,71,551–575.13.Troisfontaines,P.and Cornelis,G.R.(2005)Type III secretion:more systems than you think.Physiology,20,326–339.Nucleic Acids Research,2012,Vol.40,Database issue D645。

禽源大肠杆菌的分离及其毒力因子的检测

禽源大肠杆菌的分离及其毒力因子的检测

!"!"!
、\QF6$( $#==,6WX ) 、T]5E EFG 0Z[[./( \Q$ J 9/.. )
糖、 乳糖、 蔗糖、 枸橼酸盐等微量生化培养管均为杭
基金项目: 江苏省自然科学基金 ( 01$%%2%3#) 作者简介: 朱善元 (&’2" 4 ) , 男, 江苏泰州人, 副教授, 南京农业大学在职博士研究生, 主要从事病原微生物学研究。 5.6: 327#$87222"2&2; 9:;:327#$8722283%3; <7=:>6:?@+AA@BC &$2 D *,= 收稿日期: 接受日期: 修回日期: $%%"7%&7&&; $%%"7%$7$#; $%%"7%27&&
[’] 配制。葡萄糖、 麦芽糖、 甘露 铁琼脂等均根据文献
。禽源大
其 中 9& 菌 毛 最 为 多 肠杆菌主要有 9& 和 E 菌 毛, 见 。近年来, 在许多病原菌中发现了毒力岛的存 ( P>QP 在, 并 可 能 与 其 毒 力 进 化 有 关; 例 如 KEL 是最早发现于耶尔森菌属的强毒 R:+P,Q.S>*>+B >@6:ST) 但在人源、 猪源、 牛源、 兔源大肠杆菌中也广 力岛 , 泛存在
朱善元等:禽源大肠杆菌的分离及其毒力因子的检测 = W 微生物学报 (#**’) ($) )’
’O’
!"#$%&’’ 株、 !"#"(&’’ 株均可扩增到约为 )#*+, 的 片段, 与期望的长度大小相当 (图 ") , 而从 -" 大肠

病原菌毒力因子的分离和分析

病原菌毒力因子的分离和分析

病原菌毒力因子的分离和分析随着人类对生物学的深入探索,对于病原菌的认识也越来越深入了解,病原菌对于人类健康危害不可忽视。

而病原菌的毒力因子则是其危害的关键所在。

因此,对病原菌毒力因子的研究也显得尤为重要。

一、病原菌毒力因子的定义和作用什么是病原菌毒力因子?病原菌毒力因子,简称毒因子,是一种菌体分泌或释放出来的有害物质,可以对宿主人体造成损伤和危害,是细菌致病能力的关键因素之一。

病原菌毒力因子的作用主要包括以下几个方面:1. 促进病原菌侵入宿主细胞:毒因子可以改变宿主细胞的生物活性,使宿主细胞对病原菌产生亲和力和黏附力,为病原菌的侵入提供条件。

2. 破坏宿主细胞膜结构:毒因子可以破坏宿主细胞的生物膜结构,使细胞内部的重要物质外漏,导致细胞死亡。

3. 减弱宿主免疫系统:毒因子能够抑制宿主免疫系统的正常功能,使宿主对细菌的抵抗力降低,从而加重细菌感染的严重程度。

二、常见病原菌的毒力因子常见的病原菌有很多种,每种病原菌都有其特定的毒力因子。

下面介绍一下常见病原菌的毒力因子:1. 猪链球菌的毒力因子包括M蛋白、Streptococcal pyrogenic exotoxin和Streptolysin O等,可以引起急性喉炎、败血症等疾病。

2. 病毒性肝炎病毒的毒力因子主要是病毒的表面蛋白,能够诱导宿主的免疫系统产生病毒抗体,导致肝脏炎症。

3. 大肠杆菌的毒力因子包括肠毒素和贴附因子等,可以引起腹泻等疾病。

4. 沙门氏菌的毒力因子主要包括肠毒素和菌体纤毛等,可以引起食物中毒和肠道感染。

以上只是常见病原菌的一部分毒力因子,实际上每种病原菌都有其独特的毒力因子,都需要在实验室中进行分离和分析。

三、那么,病原菌毒力因子到底是如何被分离和分析的呢?其实,这个过程主要包括以下几个步骤:1. 病原菌种植。

首先需要在实验室中培养病原菌,有些病原菌需要在特定的培养基上生长。

2. 准备细胞滤液。

将培养好的病原菌离心去细胞后,将上清液称为细胞滤液。

病原菌毒力因子的研究

病原菌毒力因子的研究

病原菌毒力因子的研究随着人类社会的发展和全球化趋势的日益加速,疾病防治问题越来越受到人们的关注。

而病原菌作为导致疾病的主要原因之一,其毒力因子的研究已经成为了当前医学领域一个热门的课题。

什么是病原菌的毒力因子?病原菌的毒力因子指的是病原菌所产生的能够导致病原菌侵入宿主并引发感染的一系列分子、结构和机制。

病原菌的毒力因子通常与细菌的菌液、细胞壁和细胞质等部分相关,主要包括:(1)菌毒素:由病变体积内细菌依赖性合成,储存在细胞内,分泌至细菌外,导致伤害宿主细胞的蛋白质分子。

(2)鞭毛:一种由多个蛋白质组成的细胞外结构,能够帮助细菌在宿主组织内寻找和侵入目标细胞。

(3)细胞粘附因子:细胞表面蛋白能够与宿主细胞的受体相结合,从而使得细菌能够更容易地侵入宿主细胞。

(4)抗菌素酶:一类由细菌产生的酶,能够分解抗生素,降低其杀菌效果。

病原菌毒力因子对人类健康的影响病原菌毒力因子的作用机制复杂,它们可以使得病原菌能够在宿主体内更快地繁殖、扩散和侵入,从而导致宿主组织发生病变和炎症反应。

许多感染性疾病,如狂犬病、流感、细菌性痢疾、病毒性肝炎等,都是由病原菌毒力因子引起的。

病原菌毒力因子的研究不仅可以帮助医学界更好地了解各种感染病的发病机理,还能为设计预防和治疗措施提供重要参考。

如何研究病原菌毒力因子?病原菌毒力因子的研究在细菌学和免疫学领域有着广泛的应用。

研究人员在这个领域的主要工作是,不断探究病原菌分子机制,分离和鉴定某些毒力因子,以及寻找它们的信号途径和调控因素。

分子技术:随着分子生物学的不断发展,研究人员已经可以从病原菌中提取和克隆出毒力因子的基因,并通过基因工程技术将其表达到宿主细胞中。

利用这种技术,人们可以更简单、更容易地探究该毒力因子的作用机制。

蛋白质组学技术:可用于大规模筛选和定量病原菌中的毒力因子,通过比较病原菌滋生在不同环境中的蛋白质表达组学,探寻细菌的策略和快速寻找新的候选因子。

化学基因组学技术:通过合成和检测定量化的化学复合物,以揭示病原菌在特定生境内分泌的小分子化合物的谱系,从而发现可能的毒力因子或调控因子。

细菌毒力因子的发现与生化作用研究

细菌毒力因子的发现与生化作用研究

细菌毒力因子的发现与生化作用研究随着科学技术的不断发展,人们对于微生物的了解也越来越深入。

微生物是一类能够在极端条件下生存的生物,其中细菌是其中最为广泛的一种。

虽然细菌常常被人们所忽视,但是它们有着极其强大的生化作用,有些细菌甚至拥有非常强大的毒力因子,对人类的生命健康造成了威胁。

本文将从细菌毒力因子的发现与生化作用研究入手,探讨细菌的真正面貌。

一、细菌毒力因子的发现细菌毒力因子通常指的是一些能够使细菌具有致病性的生化分子。

早在19世纪末20世纪初期,人们已经开始研究细菌毒力因子。

当时,人们通过实验发现一些致病细菌分泌特定的毒液,可以导致宿主身体的损害。

这些毒液中的成分就是细菌毒力因子的一部分。

随着科学技术的不断进步,人们对于细菌毒力因子的研究也愈加深入。

迄今为止,人们已经发现了许多能够影响细菌毒力的分子。

有些分子可以增强细菌的毒力,有些则可以抑制细菌的毒力。

这些分子往往存在于细菌外膜、细胞壁、胞浆和分泌物中。

通过研究这些分子,人们能够更深入地了解细菌的生化作用。

二、细菌毒力因子的生化作用细菌毒力因子的发现为人类认识细菌的生化机制提供了重要的线索。

对于细菌毒力因子的生化作用的研究也为人们带来了诸多的启示。

1. 细菌毒力因子增强菌体附着能力一些细菌毒力因子能够增强菌体附着能力,使得细菌可以更紧密地与宿主的细胞表面结合。

这使得细菌可以更容易地侵入宿主细胞并进行破坏。

例如,金黄色葡萄球菌(Staphylococcus aureus)能够分泌一种叫做生物胶的分子。

这种分子可以使得菌体表面产生一层粘附性的物质,从而增强其在宿主细胞表面的附着能力。

这样一来,菌体可以更容易地进入宿主细胞内部,进行破坏。

2. 细菌毒力因子影响宿主细胞的信号通路一些细菌毒力因子可以干扰宿主细胞的信号转导通路,从而影响宿主细胞的功能。

这些分子可以破坏宿主细胞的细胞膜完整性、影响细胞的成型过程,并改变细胞代谢过程,进而致病。

例如,大肠杆菌可以分泌一种叫做Shiga毒素的分子。

考虑环境因素的病原菌毒力因子的筛选与分析研究

考虑环境因素的病原菌毒力因子的筛选与分析研究

考虑环境因素的病原菌毒力因子的筛选与分析研究病原菌的毒力因子是指能够导致宿主发病和死亡的分子、细胞结构或其他物质。

它们通常是病原菌侵入宿主时导致疾病发展的重要因素。

在考虑如何筛选和分析这些毒力因子时,我们不能忽视环境因素对它们的影响。

环境因素是指影响病原菌和宿主相互作用的所有外部因素。

这包括温度、水分、气压、营养物质、光照等多方面的因素。

环境因素可以影响病原菌的生长、代谢和适应能力,在一定程度上也会影响其毒力因子的表达和作用。

因此,在筛选和分析病原菌毒力因子时,我们不仅需要考虑其产生的生物学条件,还需要深入研究其生长环境和与宿主相互作用时所处的环境。

首先,我们需要了解病原菌的生长条件。

不同的病原菌有不同的生长最适温度和最适pH值。

此外,病原菌的生长所需的营养物质也不同。

因此,在筛选病原菌毒力因子时,我们需要遵循其最适生长条件,并确保其生长和代谢所需的营养物质充足。

这些条件可以通过添加特定的培养基或调整环境参数来满足。

其次,我们需要了解宿主和病原菌的相互作用环境。

在宿主体内,病原菌需要适应不同的生理和免疫反应,才能成功地侵入和繁殖。

因此,在筛选和分析毒力因子时,我们也需要考虑宿主和环境因素对其表达和作用的影响。

例如,在研究肠道病原菌时,我们需要考虑到肠道中的营养物质、细菌群落和肠道免疫反应的影响。

这些条件可以通过使用不同的细胞培养模型或动物模型来模拟。

最后,我们还需要考虑病原菌的生态环境。

病原菌通常生存在特定的环境中,例如水、土壤或动物皮毛中。

不同的生态环境可以影响病原菌的生长、代谢和适应能力,从而影响其毒力因子的表达和作用。

因此,在筛选和分析毒力因子时,我们还需要考虑到病原菌的生态环境,并模拟其在不同环境下的表达和作用状况。

综上所述,考虑环境因素对病原菌毒力因子的筛选和分析非常重要。

我们需要了解病原菌和宿主相互作用环境的影响,以确保我们得到的研究结果在真实环境中具有较高的可重复性和可靠性。

通过深入研究病原菌生长、宿主相互作用和生态环境,我们可以更好地理解毒力因子的作用机制,并为开发更有效的预防和治疗方法提供科学依据。

致病菌的毒力机制与致病性研究

致病菌的毒力机制与致病性研究

致病菌的毒力机制与致病性研究致病菌是指能引起人类、动物或植物发生疾病的微生物。

它们通常具有高度的适应性和复杂的生存机制,许多致病菌还会产生毒素,对宿主产生严重的危害。

因此,深入研究致病菌的毒力机制和致病性具有重要的意义。

一、致病菌的毒力机制致病菌通常会通过多种途径入侵宿主,包括呼吸道、肠道、皮肤、黏膜等等。

不同的致病菌具有不同的致病机制和毒力因素,但一般而言,致病菌的毒力机制主要包括以下几个方面:1.菌体结构和分泌系统一些细菌表面的结构或分泌系统能使它们逃避宿主免疫系统的攻击,例如革兰氏阴性菌表面的菌毛和胞外多糖就能挡住免疫细胞的攻击。

而且,致病菌通常会利用它们的分泌系统,释放一些毒素和蛋白质,这些物质能够破坏宿主细胞并导致疾病。

2.毒素很多细菌都会产生毒素,这些毒素能破坏宿主细胞和组织,引起炎症、出血、神经损害等等。

不同的毒素具有不同的作用机制,例如破坏细胞壁、膜或纤维蛋白等等。

一些毒素还能影响宿主的免疫系统和代谢功能,导致多种疾病。

3.细菌生长和代谢产物一些细菌产生的生长和代谢产物有毒性,例如酸和氮化合物等等。

它们能引起宿主代谢障碍、蛋白质和核酸的损伤,导致多种疾病。

此外,一些细菌也能够抑制宿主免疫系统的功能,加重疾病发展和恶化。

二、致病性研究致病性研究是研究致病菌对宿主造成危害的过程。

通过深入了解致病菌的毒力机制和致病性,可以为开发新的治疗和预防策略提供理论依据。

1.基因组分析基因组分析是一种研究致病性的重要手段。

通过对细菌基因组的比较和分析,可以揭示致病菌的毒力因素、适应性和抗药性等方面的信息。

研究人员还可以利用这些信息,设计针对致病菌的新型药物和疫苗。

2.生物学实验生物学实验是评估致病性的重要方法。

利用动物模型和细胞培养系统,可以模拟致病菌对宿主的影响,评估毒力因素对宿主的损伤程度,探讨毒力机制的详细机制,为防治疾病提供理论依据。

3.药物研究药物研究是针对致病菌进行治疗的一种重要手段。

医院感染的细菌毒力因子研究

医院感染的细菌毒力因子研究
新型抗菌药物研发
针对耐药性病原菌,研发新型抗菌药物,提高临床治 疗效果。
疫苗与治疗药物研发
疫苗研发
01
基于毒力因子研究,开发针对特定病原菌的疫苗,提高人群免
疫力。
治疗药物研发
02
针对毒力因子开发新型治疗药物,抑制病原菌的生长和毒力表
达。
临床试验与效果评估
03
对新疫苗和治疗药物进行临床试验,评估其在医院感染防控中
详细描述
医院应根据患者的病情和传染性进行合理的隔离,采取相应的防护措施,如使用口罩、手套、隔离衣 等。同时,应加强患者和医护人员的防护意识,提高防护措施的依从性。
05
研究展望
新技术与方法的应用
01
02
03
基因组学技术
利用全基因组测序等技术 在医院感染病原菌的基因 组层面揭示毒力因子的作 用机制。
毒素
如霍乱弧菌的霍乱毒素、大肠杆 菌的志贺毒素等,能够破坏宿主 细胞的正常生理功能。
粘附素
使细菌粘附到宿主细胞表面,如 肺炎链球菌的荚膜和流感嗜血杆 菌的菌毛等。
侵袭性酶
如溶血素、胶原酶等,能够破坏 宿主细胞的细胞膜和组织结构, 使细菌更容易侵入细胞内。
细菌毒力因子的作用机制
破坏宿主细胞
粘附和侵入细胞
医院感染的分类
内源性感染
由患者自身携带的病原体引起的感染 ,如皮肤黏膜表面的细菌、肠道和泌 尿生殖道的细菌等。
外源性感染
由外界病原体侵入人体引起的感染, 如通过接触、呼吸道、消化道等途径 传播的病原体。
医院感染的危害
增加患者死亡率
医院感染可导致患者病情加重, 甚至死亡。
增加医疗费用
医院感染需要更多的医疗资源和时 间进行治疗和管理,增加了医疗费 用。

ST6型金黄色葡萄球菌食物中毒菌株的毒力因子分析

ST6型金黄色葡萄球菌食物中毒菌株的毒力因子分析

• 64 •中国病原生物学杂志2021年1月第16卷第1期Journal o f Pathogen Biology J a n.2021. V o l.16.N o.1D()I:10. 13350/j.cjpb.210113•论著•ST6型金黄色葡萄球菌食物中毒菌株的毒力因子分析王多陶晓霞王文周:,王铜孟凡亮张建中、高鸿霞卜’,闰笑梅'(1.北华大学医学技术学院,吉林吉林132013;2.传染病预防控制国家重:点实验室,感染性疾病诊治协同创新中心,中国疾病预防控制中心传染病预防控制所;3.深圳市妇幼保健院)【摘要】________目的检测f t物中毒优势别S T6咽菌株的尚力坫W特征,为食品安令风险评佔、食源性病原蔺的监测和致病性研究提供依椐。

方法选取深圳地K 7次食物中海收*的32株S T6咽蘭株进行全基W组测序,利用V F D B数据库 进行毒力因子分析,并通过序列比对进行S K A亚型分析。

结果第1一4起食物中毒S T6菌株携带的毒力因子谱完 全相同;第5—7起食物中毒中,同一起ft物中毒的暴发賭株携带的毒力W子一致•而非暴发菌株与暴发菌株携带的毒力 因子不完全一致。

在32株S T6型菌中粘附、酶和\1哦分泌系统相关的海力基因具有较高的携带率,cr溶血素(A/y./— )、|3-溶血尜a//))、S-溶血素)、y-溶血素基因(/以A、/7/#、/如r)、肠毐素A基闪(.SM)和表皮剥脱靡素A基闪 (心)的携带率均为100%,双组分白细胞毐素L u k D E基W(/M D和/M E)的携带率为96.8%。

所有菌株携带的肠毒素 A均为S E A1亚塑。

结论32株S T6咽食物中毒相关阐株携带多个莓力闪子基因,以〇如、廳、心、/M D、/M£:毒力 基因携带率较高,编码的毒力因子可能对S T6型菌株的致病性产生影响。

金黄色葡佝球菌;毒力因子;组分析【关键词】【中图分类号】R378. 11【文献标识码】A【文章编号】1673-5234(2021)01-0064-07[^Journal o f Pathogen B io lo g y. 202\J a n; 16( 1) :64 — 70, 75.]Virulence factors of sequence type (ST) 6 Sfflp/zy/oc.oc(.M S aw/T M s in food poisoning outbreaksWANG Duo1’,TA() Xiao-xia2, WANG Wen-zhou , WANG Tong^,M EN G Fan-liang_ , ZHANG Jian~zh〇ng i G A()Hong-xia1»Y A N Xia〇_m ei~ (1.College o f M edical Technology Beihua U niversity *J ilin * J il i n132013 ^ China ; 2. State K e y Laboratory o f Infectious Disease Prevention a n d C o n tro l, Collaborative Innovation Center f o r Diagnosis u n d T reatm ent o f Infectious Diseases ^ N ational Institute for Com niunicabLe Disease Control a7id Prevention ^Chinese Center f o r Disease Control and Prevention; 3. A f f i l i a t e d Shenzhen M a te m ity S'-C h i/J HealthcareH o sp ita l - Southern M edical U niversity)I Abstract]Objective T o d e t e r m i n e the characteristics of the virulence gen e s of the d o m i n a n t Staphylococcus aureuss e q uence type (S T) 6 strains causing food poisoning in order to provide a basis for risk a s s e s s m e n t of food safety, m o n i t o­ring of f o o d b o r n e pathogens, a n d research o n pathogenicity. M e t h o d s^'hirty-two S. aureus S T6strains f r o m7 food poisoning o utbreaks in S h e n z h e n w e r e selected for w h o l e-g e n o m e sequencing, virulence factors w e r e analyzed using the V F D B database, cind S K A s u b t y p e analysis w a s p e r f o r m e d using s e q uence alignment. Results T h e virulence factors profiles of S. aureus S T6strains f r o m food poisoning outbreaks 1 to 4 w e r e identical. T h e virulence factors of strains causing outbr e a k s 5 to 7 m a t c h e d,but the virulence factors of strains not causing o utbreaks a n d those causing outbreaks differed. Virulence factors associated with adhesion, e n z y m e s,a n d a type \1 vSecretion s y s t e m w e r e highly prevalent a- m o n g the 32 S. aureus S T6 strains. T h e prevalence of a-he m o l y s i n gen e s U il y/h l a ), a p-h e m o l y s i n g e n e(h lb) • a 8-he- m o l y s i n g e n e(h i d)*y-h e m o l y s i n g e n e s U i/^A,h l g B.h l^('),a n entcrotoxin A g e n e(se a)^a n d a n epidermal detoxifi­cation toxin A g e n e ieta )w a s100%.a n d the prevalence of t w o c o m p o n e n t leukotoxin L u k D E ge n e s(l u k D a n d l u k E) w a s 96. 8 %.T h e entcrotoxin S E A l s u b t y p e w a s identified in all strains. Conclusion T h e32 S. aureus S T6strains caUvSing food poisoning carried multiple \irulcnce factors, cna ,sea .eta ,lukD*a n d lu k E w e r e relatively prevalent. T his m a y affect the pathogenicity of S. aureus S T6strains.Staphylococcus;virulence factor;w h o l e g e n o m e sequencing金黄色葡萄球菌是w••致食源性疾病的常见致病菌 之一,由其引起的食源性疾病使全球公共ii生面临着 持续挑战1。

16株军团菌全基因组比较及重要毒力因子分析

16株军团菌全基因组比较及重要毒力因子分析

16株军团菌全基因组比较及重要毒力因子分析陈爱平;张拥军【期刊名称】《中国人兽共患病学报》【年(卷),期】2022(38)10【摘要】目的运用生物信息学方法,分析军团菌参考菌株全基因组序列,了解军团菌基因组特征,比较不同菌株间的毒力因子、耐药基因以及种系发生,为进一步研究军团菌基因组流行病学、遗传进化提供数据。

方法选择NCBI公共数据库中基因组序列完整、背景清楚、不同来源(临床、外环境)和不同种的代表性军团菌16株,运用开源基因组数据分析平台RAST、MAUVE、VFDB、CARD等进行生物信息学分析。

结果16株参考菌株基因组大小在(3.13~4.23)Mbp,编码基因(CDSs)3018~3954个,划分为265~387个亚系统。

同种军团菌基因组结构基本相同,非嗜肺军团菌(非LP)不同菌株之间基因组结构差异大,同时存在较多非保守区域。

嗜肺军团菌血清I型(LP1)和米克戴德军团菌(L.micdadei)各属于1个种系进化主分枝,LP1细分为3个小分枝。

临床分离的LP1携带的毒力因子类别和数量最多。

菌株YU237缺失Dot/Icm T4BSS分泌系统,其余参考菌株都具有分泌系统的4种毒力因子,临床分离的LP1携带的T4BSS效应蛋白毒力因子数量为31~35个,其它参考菌株3~5个。

16株参考菌株都携带有adeF耐药基因,部分菌株携带有LpeA、LpeB、FEZ-1耐药基因。

结论不同种的军团菌基因组存在差异,而种内相对保守;相对于临床分离株,外环境非LP不同菌株基因组种间差异大。

LP1军团菌存在遗传分化现象。

毒力因子种类和数量跟LP1军团菌的致病力相关,特别是T4BSS效应蛋白。

全基因组生物信息分析技术,可以对可能的耐药基因进行预测,为临床治疗提供辅助参考,同时可以解析病原菌的遗传和功能特征。

【总页数】8页(P854-861)【作者】陈爱平;张拥军【作者单位】重庆医药高等专科学校;高致病性病原微生物重庆市重点实验室【正文语种】中文【中图分类】R378【相关文献】1.高通量全基因组测序法对尿道致病性大肠埃希菌NB8株毒力因子数据的初步分析2.大熊猫源致病大肠杆菌CCHTP全基因组测序及耐药和毒力基因分析3.鱼源致病菌皮特不动杆菌Ap-W20的全基因组序列及其毒力特征分析4.致病性大肠杆菌全基因组测序及毒力基因分析5.一株ST37型肺炎克雷伯菌的全基因组测序及毒力因子比较分析因版权原因,仅展示原文概要,查看原文内容请购买。

鉴定致病菌毒力因子方法的进展

鉴定致病菌毒力因子方法的进展

鉴定致病菌毒力因子方法的进展
吴振龙;聂军
【期刊名称】《疾病控制杂志》
【年(卷),期】2001(5)4
【摘要】综述鉴定致病菌毒力因子的分子生物学和遗传分析方法 ,如签名标记法、简并引物 PCR、体内表达技术、差减杂交法、随机引物 PCR、差异显示技术、酵母双杂交系统和噬菌体显示系统等。

【总页数】3页(P335-337)
【关键词】生物合成;毒力因子;致病菌;病菌鉴定
【作者】吴振龙;聂军
【作者单位】第一军医大学流行病学教研室
【正文语种】中文
【中图分类】R372
【相关文献】
1.牙周致病菌主要毒力因子脂多糖受体TLR4与牙周炎关系的研究进展 [J], 许丽华;许尧生
2.临床常见腹泻致病菌的快速鉴定方法研究进展 [J], 齐伟;黄文芳
3.猪链球菌毒力因子和鉴定方法的研究进展 [J], 赵华梅;潘秀珍;唐家琪
4.慢性牙周炎优势致病菌相关毒力因子研究进展 [J], 徐娟; 陈晓涛
5.无公害畜禽肉和水产品中常见致病菌及其毒力因子 [J], 吴清平;杨小鹃;张菊梅
因版权原因,仅展示原文概要,查看原文内容请购买。

Comamonas kerstersii细菌致病性的基因组分析

Comamonas kerstersii细菌致病性的基因组分析

Comamonas kerstersii细菌致病性的基因组分析王慧;明德松;王明席【期刊名称】《华侨大学学报(自然科学版)》【年(卷),期】2024(45)3【摘要】为了更好地管理Comamonas kerstersii(C.kerstersii)感染,通过分析C.kerstersii菌株121606基因组中的毒力因子基因(VFGs)来了解其毒力和致病性。

对已经完成测序的C.kerstersii 121606基因组,通过BLAST搜索VFDB数据库来预测其VFGs。

结果表明:C.kerstersii含有大量VFGs,其中一些与其在人体内的生存和生长,以及在胃肠道和肺部的致病性有关。

基因组分析表明:C.kerstersii可能是一种细胞内病原体。

C.kerstersii所携带的VFGs有助于解释其在文献中所报道的胃肠道感染和临床工作中所遇到的肺部感染中的毒力和致病性,这些数据也为新型抗生素和疫苗开发提供了理想的靶点,以用于治疗C.kerstersii感染。

【总页数】23页(P394-416)【作者】王慧;明德松;王明席【作者单位】华侨大学医学院;福建医科大学附属泉州第一医院【正文语种】中文【中图分类】Q939.48;R378【相关文献】1.影响固定化纯种氨氧化细菌Comamonas aquatic LNL3短程硝化过程因素动力学分析2.学校周边环境空气中细菌种类的调查分析与细菌致病性分析3.一株河鲈源致病性虫草菌Cordyceps confragosa CHL02菌株的全基因组测序及比较基因组分析4.基于细菌全基因组的大口黑鲈源维氏气单胞菌AV040株致病性与耐药性解析5.一株多药耐药Comamonas kerstersii细菌的基因组分析因版权原因,仅展示原文概要,查看原文内容请购买。

幽门螺杆菌不同感染阶段的相关毒力因子及其致病性

幽门螺杆菌不同感染阶段的相关毒力因子及其致病性

幽门螺杆菌不同感染阶段的相关毒力因子及其致病性陈莫耶;袁媛【期刊名称】《世界华人消化杂志》【年(卷),期】2012(20)30【摘要】幽门螺杆菌(Helicobacter pylori,H.pylori)感染可以诱发浅表性胃炎、消化性溃疡、胃黏膜相关淋巴瘤,甚至胃癌等多种疾病.其毒力因子的差异是导致不同临床结局发生的重要因素之一.H.pylori致病过程主要分为3个阶段:(1)稳定定植于胃黏膜上皮细胞;(2)逃避宿主免疫系统攻击;(3)释放毒素损伤胃黏膜.本文对H.pylori参与的致病过程中,不同阶段的重要毒力因子,包括黏附定植相关因子、免疫逃逸相关因子、黏膜效应相关因子等与疾病的相关性及其可能致病机制予以综述.【总页数】7页(P2937-2943)【关键词】幽门螺杆菌;毒力因子;胃十二指肠疾病;致病机制【作者】陈莫耶;袁媛【作者单位】中国医科大学附属第一医院肿瘤研究所暨普通外科研究所肿瘤病因与筛查研究室辽宁省高校肿瘤病因与预防重点实验室【正文语种】中文【中图分类】R573.1【相关文献】1.嗜水气单胞菌毒力因子检测及不同毒力基因型菌株对剑尾鱼的致病性研究 [J], 任燕;孙承文;石存斌;潘厚军;陶家发;吴淑勤2.细胞毒素相关蛋白毒力型幽门螺杆菌感染与冠心病患者血清炎性因子及同型半胱氨酸水平的相关性研究 [J], 沈云峰;胡远贵;张洪波3.老年患者医院感染的肠外致病性大肠埃希菌毒力因子检测及SNP分析 [J], 曹阳;刘双庆;魏殿军;陈薇4.猪肺源致病性大肠杆菌和化脓隐秘杆菌混合感染病原的分离鉴定及主要毒力因子的检测 [J], 蔡瑶; 周雪珂; 江朝源; 曾喻兵; 徐志文; 朱玲5.太原地区不同临床型胃疾患与幽门螺杆菌感染及其毒力相关基因cagA关系的探讨 [J], 高瑞红;王海滨;景亚武;郝素珍因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

VFDB 2012update:toward the genetic diversity and molecular evolution of bacterial virulence factorsLihong Chen,Zhaohui Xiong,Lilian Sun,Jian Yang*and Qi Jin*State Key Laboratory for Molecular Virology and Genetic Engineering,Institute of Pathogen Biology,Chinese Academy Medical Sciences and Peking Union Medical College,Beijing 100176,ChinaReceived September 15,2011;Accepted October 17,2011ABSTRACTThe virulence factor database (VFDB,http://www /VFs/)has served as a comprehensive repository of bacterial virulence factors (VFs)for >7years.Bacterial virulence is an exciting and dynamic field,due to the availability of complete se-quences of bacterial genomes and increasing sophisticated technologies for manipulating bacteria and bacterial genomes.The intricacy of virulence mechanisms offers a challenge,and there exists a clear need to decipher the ‘language’used by VFs more effectively.In this article,we present the recent major updates of VFDB in an attempt to summarize some of the most important virulence mechanisms by comparing different compositions and organiza-tions of VFs from various bacterial pathogens,iden-tifying core components and phylogenetic clades and shedding new light on the forces that shape the evolutionary history of bacterial pathogenesis.In addition,the 2012release of VFDB provides an improved user interface.INTRODUCTIONBacterial virulence factors (VFs)are fascinating for a number of reasons.First,the ability of successful patho-gens to establish infections,produce disease and survive in a hostile environment is provided by a large armamentar-ium of virulence mechanisms.Elucidating the molecular mechanisms of VFs can improve understanding of the cellular and molecular basis of pathogenesis.Second,many important virulence factors interact with host cells and modulate their functions.Investigating the complex and finely balanced interactions between hosts and patho-gens can uncover useful tools for studying normal host cellular processes.Third,a much deeper understandingof the mechanisms of action of VFs will inform new avenues for identifying promising approaches to disease prevention and therapy.Fueled by recent technological innovations in the life sciences,the field of microbial viru-lence has expanded rapidly over the past decade.Since its inception in 2004,the virulence factor database (VFDB,/VFs/)has provided the broadest and most comprehensive up-to-date information regarding experimentally validated bacterial virulence factors (e.g.extracellular products,such as enzymes and toxins and secreted effectors or cell-associated products,such as capsular polysaccharides and outer membrane proteins),and has further explored plasticity in the reper-toire of VFs on an intra-genera level since its second release (1,2).To summarize the common themes in bac-terial virulence and to reflect the diversity of genomic encoding,structural architecture and functional original-ity,we recently updated VFDB with an enhanced user interface and new contents dedicated to inter-genera com-parative analysis of VFs involved in host cell attachment and invasion,bacterial secretion systems and effectors,toxins,and iron-acquisition systems (Table 1).DATABASE UPDATES Data sources and processingThe core dataset of VFDB only covers experimentally demonstrated VFs from 24genera of medically important bacterial pathogens.Several predicted VFs from complete genomes were also included for comparative analyses in the second release (2),but this information is still far from sufficient for a comprehensive study of the genetic diver-sity and molecular evolution of VFs.Many VFs found in human pathogens have homologues present in animal or plant pathogens,and,sometimes,even in non-pathogens.Additionally,the genomic sequences encoding most func-tionally validated VFs are fragmentary,rather than complete genomes in the public domain.Therefore,via exhaustive literature screening and expert review,the*To whom correspondence should be addressed.Tel:+861067877732;Fax:+861067877736;Email:zdsys@Correspondence may also be addressed to Jian Yang.Tel:+861067877735;Fax:+861067877736;Email:yangj@ The authors wish it to be known that,in their opinion,the first two authors should be regarded as joint First Authors.Published online 8November 2011Nucleic Acids Research,2012,Vol.40,Database issue D641–D645doi:10.1093/nar/gkr989ßThe Author(s)2011.Published by Oxford University Press.This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (/licenses/by-nc/3.0),which permits unrestricted non-commercial use,distribution,and reproduction in any medium,provided the original work is properly cited.basic information on >1200VFs was collected from over 1100original research papers (Table 1).These collected VFs,derived from 75genera of bacteria,were organized into four super-families and 31subclasses in VFDB (Table 1).Nevertheless,we do not intend to discuss the biological diversity of certain VFs;therefore,only experi-mentally verified VFs were included.In addition,if more than one sequence was available for an individual species,only the representative one was collected into the database for the sake of brevity.The nucleotide and amino-acid sequences of VF-encoding genes and related annotation information were extracted from individual GenBank (3)records using ad hoc BioPerl scripts.The conserved domain(s)of each protein were recognized by local Pfam (4)search using the HMMER3program (/),and the related protein structure information was available from the PDB database (5)via batch BLAST search followed by manual curation.Homologue groups were determined by reciprocal BLAST on individual datasets of each subclass,and the results were further curated based on conserved synteny.Next,the MatGAT program (6)and DaliLite server (7)were used to calculate pairwise sequence and structure (if it exists)similarities,respectively,among each group.The T–coffee package (8)was employed to generate multiple alignment for each homologue group.For highly divergent proteins,the segments of respective conserved domain(s)were used instead of full sequences for producing reliable align-ments.The ESPript web server (9)was used to render structure information on multiple alignments.The MEGA software (10)was used to build phylogenetic trees based on the multiple alignment of the core compo-nent/domain of each subclass of VFs.The overall data-processing procedure is shown in Figure 1.Data presentation and web interfaceThe effective presentation of data is one of the key criteria for any good database to provide users with the most in-tuitive and easy-to-understand results.The VFDB offers four main styles to visualize the comparative results of each subclass of VFs during different analysis stages (Figure 1).The information gleaned from literature is pre-sented in a concise table (exemplified in the right panel of Figure 2A),which covers the basic data for each VF,such as organism name,taxonomic class,VF name/family,known/proposed function,key component(s)and a direct link to the original literature available in PubMed (11).The linear graphic view is used to display unambiguouslythe diversity of VFs in terms of genetic composition or genomic organization (Figure 2B).The manually curated multiple alignments (Figure 2C)and phylogenetic tree built from the core component/domain (Figure 2D)are also available to enable users to further analyze the sequence/structure diversity and molecular evolutionary relationships of homologous VFs from various pathogens.For the 2012release of the VFDB,we built a more responsive and intuitive user interface with high-performance grids,expandable trees,collapsible menus and tabbed panels using ExtJS (/),which is a cross-browser JavaScript library for building rich internet applications.This library provides users with the look and feel of a desktop application rather than a traditional web page.For example,the aforemen-tioned tables are fully sortable and filterable by a single click on the column title,and each column is also movable and scalable (or hidden)by dragging and dropping on the title.These features that were previously available only in standalone applications will undoubtedly provide the database users with better experiences than before.The main web interface is vertically divided into two panels:a collapsible menu panel on the left and a tabbed content panel on the right (for example,see Figure 2A).The menu panel provides a tree-like organiza-tion of all subclasses of VFs with direct links to each in-dividual page for easy navigation.To maximize the visible region of the content panel,the menu is collapsed into a clickable vertical bar automatically upon page load (for example see Figure 2D).The bottom tool bar of the content panel provides several convenient functional buttons on the left side for easy manipulation of theTable 1.Data summary of newly released contents for the diversity and evolution analyses of VFs (as of September 2011)VF super-family Number of subclasses Number of VFs Number of genera involved Number ofVFs-related genes Number ofrelated references Adhesion and invasion 10429472016387Secretion systems 6217482879483Toxin1248742564218Iron acquisition 3723055169Total3112057559551133Figure 1.The overall method of data processing and presentation.D642Nucleic Acids Research,2012,Vol.40,Database issueFigure 2.The updated VFDB web interface.(A )Menu panel (left)and tabular view of basic data sets (right).(B )Graphic view for multiple-component VFs,color-coded by homologue groups.(C )Structure-based multiple alignment of homologous VFs.(D )Deduced phylo-genetic tree based on key component/domain (the menu panel is collapsed as a vertical bar in the left).(E )Color-shaded matrix of pairwise sequence similarities.(F )Popup window with detailed gene information along with a graphic illustration of conserved domains and a 3D structure preview.Nucleic Acids Research,2012,Vol.40,Database issue D643tables and for saving the web contents as a localfile(Excel table,PNGfigure or FASTA sequences).In addition, there are icon buttons on the right side of the tool bar for rapid switching between the aforementioned different data presentation styles.Genetic diversity of VFsThe diversity of genetic composition or genomic organiza-tion of homologous VFs from different pathogens may reflect the evolutionary relationships of the bacteria in terms of virulence.To facilitate future studies on the di-versity of VFs,the composition and organization of VFs are highlighted in the graphic view for easy comparison. For single-gene-encoded VFs,domain architectures are shown as colored bars with a direct link to the respective protein family information.As for multiple-component VFs,all genes are depicted as clickable arrows in the linear map and are color-coded by homologue groups (Figure2B).Therefore,it becomes straightforward to find out whether those VF-related genes are clustered or scattered on the genomes of various pathogens.For example,the genes encoding synthesis of type IVa pili are generally dispersed throughout the bacterial genome while those of type IVb pili are arranged in a contiguous cluster.We endeavor herein to provide a framework for further investigations into whether these genes were acquired separately or whether all genes were previously in a single cluster that was disrupted by genomic rearrangements.Detailed information on each gene,including genomic location,coding strand,scientific name,product and se-quences,as well as a graphic illustration of conserved domains and a preview of3D structure(s)(if they exist) are available from a popup window upon clicking on the linear map(Figure2F).By default,the linear maps are ordered on the basis of the phylogenetic tree(see below)to emphasize potential correlations between genetic vari-ations and molecular evolution of VFs.In addition,the linear maps of each VF are also organized in a highly scalable grid,which enables users to sort andfilter the VFs easily to construct customized graphic comparisons. Sequence/structure variations and phylogenetic analysis We explore the sequence and structure similarity of each homologue group in order to provide insight into how VFs may have evolved from common ancestors or may have exploited different mechanisms to arrive at similar biological activities.The multiple-alignment of homolo-gous VFs is displayed by superimposing the crystal struc-ture of the representative protein,and secondary structural elements are highlighted on top of the alignment (Figure2C).It will be helpful to disclose possible similar structures deduced from homologous sequences.Color-shaded matrices summarizing the pairwise sequence/struc-ture similarities among each homologue group are also provided in an attempt to illustrate sequence variations within each group and reveal potential protein pairs that share low sequence similarities but produce highly similar 3D structures.For example,within the a-hemolysin sub-family of b-barrel pore-forming toxins,the overall sequence identities of the core leukocidin domain from Vibrio cholerae cytolysin(VCC)and most of other members are<30%(Figure2E),but their structure com-parison scores are notably high,indicating clear similarities at the structural level.However,it should be noted that protein pairs displaying significant sequence homology and similar enzymatic activities might still differ in host cell targets,thereby playing different roles in bacterial pathogenesis,such as Escherichia coli SopE and SopE2,Pseudomonas ExoS and ExoT,and the Shigella IpaH proteins.The growing diversity of VFs has prompted numerous efforts to develop classification schemas and unravel the evolutionary origins of VFs.For example,six major fimbrial clades of chaperone/usher systems and seven dif-ferent families of T3SS are already well-established (12,13).Therefore,we performed extensive phylogenetic analysis of subclass or subfamily in the VFDB. Phylogenetic trees are labeled by species and color-coded by bacterial taxonomy(for example,see Figure2D).This analysis may not only provide insights into the evolution-ary history of VFs but may also facilitate future classifi-cation of newly identified VFs using the existing schemas. As a preliminary result,we found aerolysin-like toxin family and a-hemolysin family each might be further divided into two groups(Figure2D),though additional investigations are needed.DISCUSSIONBacterial pathogenicity is one of the most important sub-jects in microbiology.The pathogenicity of bacteria depends on the ability to employ virulence factors, which are localized to the cell surface,released into the extracellular milieu or injected directly into host cells.Obviously,much is yet to be learned from the sophisticated virulence strategies posed by bacterial pathogens.There is an increasing need to review the entirefield and perform bioinformatic mining of the ex-plosively growing data regarding bacterial VFs.VFDB is dedicated to meeting these demands by providing up-to-date,thought-provoking information and various analytical tools.Nevertheless,we acknowledge that our work represents only a preliminary characterization of VFs.The increasingly rapid expansion of knowledge con-cerning the multifaceted aspects of VFs will continue to challenge our capacity to compile the latest and most relevant information for the scientific community. FUNDINGNational Basic Research Program from the Ministry of Science and Technology of China(grants2009CB522603 and2011CB504904to J.Y.and Q.J.,respectively);Beijing Nova Program(grant2009A67to J.Y.).Funding for open access charge:Beijing Nova Program.Conflict of interest statement.None declared.D644Nucleic Acids Research,2012,Vol.40,Database issueREFERENCES1.Chen,L.,Yang,J.,Yu,J.,Yao,Z.,Sun,L.,Shen,Y.and Jin,Q.(2005)VFDB:a reference database for bacterial virulence factors.Nucleic Acids Res.,33,D325–D328.2.Yang,J.,Chen,L.,Sun,L.,Yu,J.and Jin,Q.(2008)VFDB2008release:an enhanced web-based resource for comparativepathogenomics.Nucleic Acids Res.,36,D539–D542.3.Benson,D.A.,Karsch-Mizrachi,I.,Lipman,D.J.,Ostell,J.andSayers,E.W.(2011)GenBank.Nucleic Acids Res.,39,D32–D37. 4.Finn,R.D.,Mistry,J.,Tate,J.,Coggill,P.,Heger,A.,Pollington,J.E.,Gavin,O.L.,Gunasekaran,P.,Ceric,G.,Forslund,K.et al.(2010) The Pfam protein families database.Nucleic Acids Res.,38,D211–D222.5.Rose,P.W.,Beran,B.,Bi,C.,Bluhm,W.F.,Dimitropoulos,D.,Goodsell,D.S.,Prlic,A.,Quesada,M.,Quinn,G.B.,Westbrook,J.D.et al.(2011)The RCSB Protein Data Bank:redesigned web site and web services.Nucleic Acids Res.,39,D392–D401.6.Campanella,J.J.,Bitincka,L.and Smalley,J.(2003)MatGAT:an application that generates similarity/identity matrices usingprotein or DNA sequences.BMC Bioinformatics,4,29.7.Holm,L.and Park,J.(2000)DaliLite workbench for proteinstructure comparison.Bioinformatics,16,566–567.8.Di Tommaso,P.,Moretti,S.,Xenarios,I.,Orobitg,M.,Montanyola,A.,Chang,J.M.,Taly,J.F.and Notredame,C.(2011)T-Coffee:a web server for the multiple sequence alignment ofprotein and RNA sequences using structural information andhomology extension.Nucleic Acids Res.,39,W13–W17.9.Gouet,P.,Robert,X.and Courcelle,E.(2003)ESPript/ENDscript:extracting and rendering sequence and3D informationfrom atomic structures of proteins.Nucleic Acids Res.,31,3320–3323.10.Tamura,K.,Dudley,J.,Nei,M.and Kumar,S.(2007)MEGA4:Molecular Evolutionary Genetics Analysis(MEGA)softwareversion4.0.Mol.Biol.Evol.,24,1596–1599.11.Sayers,E.W.,Barrett,T.,Benson,D.A.,Bolton,E.,Bryant,S.H.,Canese,K.,Chetvernin,V.,Church,D.M.,DiCuccio,M.,Federhen,S.et al.(2011)Database resources of the NationalCenter for Biotechnology Information.Nucleic Acids Res.,39,D38–D51.12.Nuccio,S.P.and Baumler,A.J.(2007)Evolution of the chaperone/usher assembly pathway:fimbrial classification goes Greek.Microbiol.Mol.Biol.Rev.,71,551–575.13.Troisfontaines,P.and Cornelis,G.R.(2005)Type III secretion:more systems than you think.Physiology,20,326–339.Nucleic Acids Research,2012,Vol.40,Database issue D645。

相关文档
最新文档