《应用数理统计》期末考试-2012
应用数理统计试题库
一 填空题 1设621,,,X X X 是总体)1,0(~N X 的一个样本,26542321)()(X X X X X X Y +++++=。
当常数C = 1/3 时,CY 服从2χ分布。
2 设统计量)(~n t X ,则~2X F(1,n) ,~12X F(n,1) 。
3 设n X X X ,,,21 是总体),(~2σu N X 的一个样本,当常数C = 1/2(n-1) 时,∑-=+-=11212)(n i i i X X C S 为2σ的无偏估计。
4 设)),0(~(2σεεβαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。
对于固定的0x ,则0x βα+~ ()20201,x x N x n Lxx αβσ⎛⎫⎡⎤- ⎪⎢⎥++ ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭。
5.设总体X 服从参数为λ的泊松分布,,2,2,, 为样本,则λ的矩估计值为ˆλ= 。
6.设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 ()()()()222212211,11n S n S n n ααχχ-⎡⎤--⎢⎥⎢⎥--⎢⎥⎣⎦。
7.设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫ ⎝⎛=∑⎪⎪⎭⎫⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛202121,则Y 的分布为 ()12,02TN A A A A μ⎛⎫= ⎪⎝⎭∑ 。
8.某试验的极差分析结果如下表(设指标越大越好):表2 极差分析数据表则(1)较好工艺条件应为22121A B C D E 。
(2)方差分析中总离差平方和的自由度为 7 。
(3)上表中的第三列表示 A B ⨯交互作用 。
9.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。
则y 关于x 的线性回归模型为 ()ˆ 2.356 1.813~0,1.611yx N εε=++ 10设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 12x - ,极大似然估计量为 max{X 1,X 2,…,X n } 。
中国农业大学《应用数理统计》期末考试-2014
这个负责人的看法?( α = 0.05 ) 将此问题转化成统计问题,利用所学知识给出合理的、令人信服的推断,推断过 程的每一步要给出理由或公式。 对涉及到的数据运算作合理的近似计算或估算则 可。可能用到的标准正态分布的分位点有: u 0.90 = 1.28, u 0.95 = 1.65, u 0.975 = 1.96, u 0.995 = 2.58 。 六、 (20 分)某医院用光色比色计检验尿贡时,得尿贡含量与肖光系数读数的结 果如下: 尿贡含量 x 肖光系数 y 2 64 4 138 6 205 8 285 10 360
已知它们之间有下述关系式: yi = β 0 + β1 xi + ε i i = 1, 2,3, 4,5 各 ε i 相互独立,均服从 N (0,σ 2 ) 分布,试求 β 0 , β1 的最小二乘估计,并给出检验 ( α = 0.05, F0.95 (1,3) = 10.1 ) 假设 H 0 : β1 = 0 的拒绝域。
2
三、 (20 分)有甲乙两个检验员,对同样的试样进行分析,各人实验分析的结果
如下: 实验号 甲 乙 1 4.3 3.7 2 3.2 4.1 3 8 3.8 4 3.5 3.8 5 3.5 4.6 6 4.8 3.9 7 3.3 2.8 8 3.9 4.4
试问甲乙两人的实验分析之间有无显著差异?( α = 0.05 ) t0.975 (7) = 2.3646, t0.975 (14) = 2.1448
中国农业大学研究生《应用数理统计》期末考试试题(2014.12.21) 学院: 学号: 姓名:
(说明:把答案写在答题册上,可以使用简易计算器,考试时间 120 分钟)
一、 (10 分)设 X 1 , X 2 ,L , X n 是来自正态总体 N (0, σ 2 ) 的简单样本,
数理统计期末测试题
数理统计期末测试题数理统计一、填空题1、设n X X X ,,21为母体X 的一个子样,如果),,(21n X X X g ,则称),,(21n X X X g 为统计量。
不含任何未知参数2、设母体σσμ),,(~2N X 已知,则在求均值μ的区间估计时,使用的随机变量为nX σμ-3、设母体X 服从修正方差为1的正态分布,根据来自母体的容量为100的子样,测得子样均值为5,则X 的数学期望的置信水平为95%的置信区间为。
025.01015u ?±4、假设检验的统计思想是。
小概率事件在一次试验中不会发生5、某产品以往废品率不高于5%,今抽取一个子样检验这批产品废品率是否高于5%,此问题的原假设为。
0H :05.0≤p6、某地区的年降雨量),(~2σμN X ,现对其年降雨量连续进行5次观察,得数据为: (单位:mm) 587 672 701 640 650 ,则2σ的矩估计值为。
1430.87、设两个相互独立的子样2121,,,X X X 与51,,Y Y 分别取自正态母体)2,1(2N 与)1,2(N , 2*22*1,S S 分别是两个子样的方差,令2*2222*121)(,S b a aS +==χχ,已知)4(~),20(~222221χχχχ,则__________,==b a 。
用)1(~)1(222*--n S n χσ,1,5-==b a8、假设随机变量)(~n t X ,则21X 服从分布。
)1,(n F 9、假设随机变量),10(~t X 已知05.0)(2 =≤λX P ,则____=λ 。
用),1(~2n F X 得),1(95.0n F =λ10、设子样1621,,,X X X 来自标准正态分布母体)1,0(N ,X为子样均值,而01.0)(=>λX P ,则____=λ01.04)1,0(~1z N nX=?λ 11、假设子样1621,,,X X X 来自正态母体),(2σμN ,令∑∑==-=161110143i i i iX XY ,则Y 的分布)170,10(2σμN12、设子样1021,,,X X X 来自标准正态分布母体)1,0(N ,X 与2 S 分别是子样均值和子样方差,令2*210S X Y =,若已知01.0)(=≥λY P ,则____=λ 。
《应用统计学》期末考试试题++a+)+卷
一、单项选择题(每题2分,共30分)△1.在编制等距数列时,如果全距等于56,组数为6,为统计运算方便,组距取( B )。
A 、9.3B 、9C 、6D 、102.某商业局对其所属商店的销售计划完成百分比采用如下分组,请指出哪项是正确的( C )。
A 、80—89% 90—99% 100—109% 110%以上B 、80%以下 80.1—90% 90.1—100% 100.1—110%C 、90%以下 90—100% 100—110% 110%以上D 、85%以下 85—95% 95—105% 105—115% 3.以下是根据8位销售员一个月销售某产品的数量制作的茎叶图30267855654 则销售的中位数为( C )。
A. 5 B. 45 C. 56.5 D. 7.5 4.按使用寿命分组的产品损坏率一般表现为( D )分布。
A 、钟型 B 、对称 C 、J 型 D 、U 型5.某11位举重运动员体重分别为:101斤、102斤、103斤、108斤、102斤、105斤、102斤、110斤、105斤、102斤,据此计算平均数,结果满足(D)。
A、算术平均数=中位数=众数B、众数>中位数>算术平均数C、中位数>算术平均数>众数D、算术平均数>中位数>众数6.甲数列的标准差为7.07,平均数为70,乙数列的标准差为3.41,平均数为7,则( D )。
A、甲数列平均数代表性高; B 、乙数列平均数代表性高;C、两数列的平均数代表性相同;D、甲数列离散程度大;7.某银行想知道平均每户活期存款余额和估计其总量,根据存折账号的顺序,每50本存折抽出一本登记其余额。
这样的抽样组织形式是( C )A、类型抽样B、整群抽样C、机械抽样D、纯随机抽样8.在方差分析中,检验统计量F是(B)。
A、组间平方和除以组内平方和B、组间均方和除以组内均方C 、组间平方和除以总平方和D 、组内均方和除以组间均方9. 回归方程中,若回归系数为正,则( A )。
应用数理统计试卷2010-12
《应用数理统计》试卷注意:将完成的试卷用本人邮箱以附件发送到xuehr@,邮件标题注名应用数理统计答卷+姓名。
并在元月七日之前提交,过时不再受理。
班级:_____________姓名:_____赵立慧_______ 学号:________2010210009___一.有四个品牌的彩电在五个地区销售,为分析彩电的品牌(因素A)和销售地区(因素B)对销售量是否有影响,对每个品牌在各地区的销售量取得以下数据,见下表。
试分析品牌和销售地区对彩电的销售量是否有显著影响?回答如下问题:(1)品牌和销售地区这两个因素总得来说对彩电的销售量是否有显著影响(即方差分析模型的显著性)?显著水平是多少?答:品牌和销售地区这两个因素总得来说对彩电的销售量是有显著影响的,显著水平是0.0006.(2)品牌和销售地区分别对销售量影响作用是否显著?显著水平是多少?答:品牌对彩电的销售量有显著影响,显著水平是小于0.001.而销售地区对彩电的销售量在0.1水平下都不显著。
(3)对在0.1水平下显著的因素求均值及组间差异显著性检验(Duncan检验法)。
答:在0.1水平下,只有品牌因素有显著性。
4个品牌的均值分别为344.2,,347.8,337.0,284.8。
第四个品牌和其他三个品牌在0.05水平下有显著差异。
(4)写出完整的sas程序data fanfcha;do a = 1to4;do b = 1to5;input y @;output;end;end;cards;365 350 343 340 323345 368 363 330 333358 323 353 343 308288 280 298 260 298;proc anova;class a b;model y = a b;means a b/duncan;run;二、在林木生物量生产率研究中,为了了解林地施肥量(x1,kg)、灌水量(x2,m)与生物量(Y,kg)的关系,在同一林区共进行了20次试验,观察值见103下表,试建立Y关于x1,x2的线性回归方程。
2012-10应用统计期末考试B试题
课程考核期末考试试题卷试卷编号( 2012 至 2013 学年 第_一 期 )课程名称: 应用统计 考试时间: 110 分钟 课程代码: 6015089 试卷总分: 100 分1.重点调查中的重点单位是指( )A.处于较好状态的单位B.体现当前工作重点的单位C.规模较大的单位D.在所要调查的数量特征上占有较大比重的单位2.根据分组数据计算均值时,利用各组数据的组中值做为代表值,使用这一代表值的假定条件是( )。
A .各组的权数必须相等B .各组的组中值必须相等C .各组数据在各组中均匀分布D .各组的组中值都能取整数值3.已知甲、乙两班学生统计学考试成绩:甲班平均分为70分,标准差为7.5分;乙班平均分为75分,标准差为7.5分。
由此可知两个班考试成绩的离散程度( ) A.甲班较大 B.乙班较大 C.两班相同 D.无法作比较4.某乡播种早稻5000亩,其中20%使用改良品种,亩产为600公斤,其余亩产为500公斤,则该乡全部早稻平均亩产为( )A.520公斤B.530公斤C.540公斤D.550公斤 5.时间序列若无季节变动,则其各月(季)季节指数应为( ) A.100% B.400% C.120% D.1200%6.用最小平方法给时间数列配合直线趋势方程y=a+bt ,当b <0时,说明现象的发展趋势是( )A. 上升趋势B.下降趋势C.水平态势D.不能确定 7.某地区今年和去年相比商品零售价格提高12%,则用同样多的货币今年比去年少购买( )的商品。
A.10.71%B.21.95%C.12%D.13.64% 8.置信概率表达了区间估计的( )A.精确性B.可靠性C.显著性D.规范性9.H 0:μ=μ0,选用Z 统计量进行检验,接受原假设H 0的标准是( ) A.|Z|≥Z α B.|Z|<Z α/2 C.Z ≥Z α/2 D.Z>-Z α10.对居民收入与消费支出的几组不同样本数据拟合的直线回归方程如下,你认为哪个回归方程可能是正确的?( )A.y=125-10xB.y=-50+8xC.y=150-20xD.y=-15-6x二、简答题(10分)加权算术平均数受哪几个因素的影响?若报告期与基期相比各组平均数没变,则总平均数的变动情况可能会怎样?请说明原因。
应用统计学5套期末考试卷AB卷带答案习题试卷模拟卷
应用统计学模拟试卷(一)一. 单项选择题(10%, 每题1分)1.要了解某企业职工的文化水平情况,则总体单位是()。
A.该企业的全部职工B.该企业每一个职工的文化程度C.该企业的每一个职工D.该企业全部职工的平均文化程度2.对一批食品进行质量检验,最适宜采用的调查方法是()。
A.全面调查B.抽样调查C.典型调查D.重点调查3.将某地区40个工业企业按产值多少分组而编制的变量数列中,变量值是()。
A.产值B.工厂数C.各组的产值数D.各组的工厂数4.某企业某月产品销售额为20万元,月末库存商品为30万元,这两个总量指标是()。
A.时期指标B.时点指标C.前者为时期指标,后者为时点指标D.前者为时点指标,后者为时期指标5.离散程度大小与平均数代表性之间存在()。
A.正比关系B.反比关系C.恒等关系D.依存关系6.下面4个动态数列中,属于时点数列的是()。
A.历年招生人数动态数列B.历年增加在校生人数动态数列C.历年在校生人数动态数列D.历年毕业生人数动态数列7.在材料单耗综合指数中,每种产品的材料单耗指标是()。
A.质量指标B.数量指标C.相对指标D.总量指标A、提高B、下降C、不变D、条件不够,无法判断8.某企业产品为连续性生产,为检查产品质量,在24小时中每隔30分钟取下一分钟的产品进行全部检查,这是()。
A.整群抽样 B.简单随机抽样C.类型抽样 D.纯随机抽样9.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y =10 + 70x,这意味着年劳动生产率每提高1 000元时,工人工资平均()。
A.增加70元B.减少70元C.增加80元 D.减少80元10.对某市全部商业企业职工的生活状况进行调查,调查对象是()。
A.该市全部商业企业B.该市全部商业企业职工C.该市每一个商业企业D.该市商业企业每一名职工二. 多项选择题(20%, 每题2分)1.下面说法正确的是()。
A.性别、文化程度、企业所属行业类型都是品质标志B.企业的职工人数、企业管理人员数都是数量标志C.某地区职工的工资总额是统计指标D.在校学生的年龄是连续变量2.我国第六次人口普查的标准时间是2010年11月1日零时,下列情况应统计人口数的有()。
应用数理统计(中国矿业大学)2012年卷
√
√
( 87.80, 278.69) ≈ (9.37, 16.69).
(2分)
√ 三:(15分) 设炮弹着落点 (x, y) 离目标 (原点) 的距离为 z = x2 + y2 , 若设 x 和 y 为独立同分布的随机变量, 其共同分布为 N (0, σ2) ,可得 z 的分布密度为:
z
z2
p(z) = σ2 exp(− 2σ2 ),
H0 : P (Ai) = 1/6 i = 1, 2, · · ·, 6.
(2分) 因为分布不含未知参数, 又 k = 6, α = 0.05, 查表可得 χ2α(k − 1) = χ20.05(5) = 11.07. 又
χ2 = ∑6 (fi − npi)2 = 4.4 < 11.07.
i=1
npi
z > 0,
这个分布称为瑞利分布. (1): 设 z1, z2, · · ·, zn 为来自上述瑞利分布的一个样本, 求 σ2 的极大似然估计, 证明它是 σ2 的无偏估计; (2): 求瑞利分布中 σ2 的费希尔信息量 I(σ2).
解:(1): 易知 z1, z2, · · ·, zn 的似然函数为
1dy = 1 − e−z/2.
e−z/2
e−z/2
6
所以 Z = −2 ln Y 的密度函数为
fZ (z)
=
FZ′ (z)
=
1 e−z/2, y 2
>
0,
fZ(z) = 0,
z≤0
(8分)
又 Γ(1) = 1, 2, · · ·, n
F= Y /m
服从自由度为 (n, m) 的 F 分布, 记为 F ∼ F (n, m).
《应用统计》期末考试复习题.doc
《应用系统》一、单项选择题1、从一幅52张的扑克牌(去掉大小王)中,任意取5张,其中没有K 字牌的概率为( B ) A 、5248 B 、552548C CC 、52548CD 、555248 2、事件A 与B 互不相容,,3.0)(0.4,)(==B P A P 则=)(B A P ( A ) A 、0.3B 、0.12C 、0.42D 、0.73、设B A 、为两个随机事件,则B A -不等于( A ) A 、B AB 、B AC 、AB A -D 、B B A -⋃)(4、设B A 、为两个随机事件,则B A AB ⋃等于( C ) A 、ΦB 、ΩC 、AD 、B A ⋃5、已知事件A 与事件B 互不相容,则下列结论中正确的是( A ) A 、)()()(B P A P B A P +=+ B 、)()()(B P A P AB P ⋅= C 、A 与B ,A 与B 相互独立D 、)(1)(B P A P -=6、已知事件A 与B 相互独立,则下列等式中不正确的是( D ) A 、P(B|A)=P(B)B 、P(A|B)=P(A)C 、P(AB)=P(A)P(B)D 、P(A)=1-P(B)7、设电灯泡使用寿命在2000小时以上的概率为0.15,欲求12个灯泡在使用2000小时以后只有一个不坏的概率,则只需用什么公式即可算出( D ) A 、全概率公式 B 、古典概型计算公式 C 、贝叶斯公式D 、贝努利概型计算公式8、随意地投掷一均匀骰子两次,则两次出现的点数之和为8的概率为( C ) A 、363 B 、364 C 、365 D 、362 9、盒中有10个木质球,6个玻璃球,玻璃球中有2个红色4个蓝色,木质球中有3个红色7个蓝色,现从盒中任取一球,用A 表示“取到蓝色球”,用B 表示“取到玻璃球”,则P(B|A)=( D ) A 、106B 、166 C 、74 D 、114 10、6本中文书和4本外文书,任意在书架上摆放,则4本外文书放在一起的概率是( C ) A 、!10)!6!4( B 、107 C 、!10)!7!4( D 、104 11、设随机变量X 的分布列为)(x F 为其分布函数,则=)2(F ( C )A 、0.2B 、0.4C 、0.8D 、112、在相同条件下,相互独立地进行5次射击,每次射中的概率为0.6,则击中目标的次数X 的概率分布为( A )A 、二项分布B(5,0.6)B 、泊松分布P(2)C 、均匀分布U(0.6,3)D 、正态分布)5,3(2N)(),(),,(y F x F y x F Y X 分别是二维连续型随机变量),(Y X 的分布函数和边缘分布函数,),,(y x f ),(x f X )(y f Y 分别是),(Y X 的联合密度和边缘密度,则一定有( C )A 、)()(),(y F x F y x F Y X =B 、)()(),(y f x f y x f Y X =C 、X 与Y 独立时,)()(),(y F x F y x F Y X =D 、对任意实数y x 、,有)()(),(y f x f y x f Y X =14、设随机变量X 对任意参数满足2)]([)(X E X D =,则X 服从什么分布( B ) A 、正态B 、指数C 、二项D 、泊松15、X 服从参数为1的泊松分布,则有( C ) A 、)0(11}|1{|2>-≥≥-εεεX P B 、)0(11}|1{|2>-≤≥-εεεX PC 、)0(11}|1{|2>-≥<-εεεX PD 、)0(1}|1{|2>≤<-εεεX P16、设二维随机变量),(Y X 的分布列为则==}0{XY P ( D ) A 、121 B 、61 C 、31 D 、32 17、若)(),(,)(),(21X E X E Y E X E 都存在,则下面命题中错误的是( D ) A 、))]())(([(),(Y E Y X E X E Y X Cov --= B 、)()()(),(Y E X E XY E Y X Cov -= C 、),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+D 、),()-,(Y X Cov Y X Cov =18、若D(X),D(Y)都存在,则下面命题中不一定成立的是( C ) A 、X 与Y 独立时,D(X+Y)=D(X)+D(Y) B 、X 与Y 独立时,D(X-Y)=D(X)+D(Y) C 、X 与Y 独立时,D(XY)=D(X)D(Y)D 、D(6X)=36D(X)19、设)()(x X P x F ≤=是连续型随机变量X 的分布函数,则下列结论中不正确的是( A )A 、F(x)是不增函数B 、0≤F(x)≤1C 、F(x)是右连续的D 、F(-∞)=0,F(+∞)=120、每张奖券中尾奖的概率为101,某人购买了20张奖券,则中尾奖的张数X 服从什么分布( A ) A 、二项B 、泊松C 、指数D 、正态21、设θˆ是未知参数θ的一个估计量,若θθ≠)ˆ(E ,则θˆ是θ的( D ) A 、极大似然估计 B 、矩估计C 、有效估计D 、有偏估计22、设总体22),,(~σσu N X未知,通过样本n x x x ,,,21 检验00:u u H =时,需要用统计量( C )A 、nu x u /-0σ=B 、1-/-0n u x uσ=C 、ns u x t /-0=D 、su x t 0-=23、设4321,,,x x x x 是来自总体),(2σu N 的样本,其中u 已知,2σ未知,则下面的随机变量中,不是统计量的是( D ) A 、41-x xB 、u x x -221+C 、4323-x x x +D 、)(14212x x x ++σ设总体X 服从参数为λ的指数分布,其中0>λ为未知参数,n x x x ,,,21 为其样本,∑==ni i x n x 11,下面说法中正确的是( A ) A 、x 是)(x E 的无偏估计 B 、x 是)(x D 的无偏估计 C 、x 是λ的矩估计D 、x 是2λ的无偏估计25、作假设检验时,在哪种情况下,采用t 检验法( B ) A 、对单个正态总体,已知总体方差,检验假设00u u H =: B 、对单个正态总体,未知总体方差,检验假设00u u H =:C 、对单个正态总体,未知总体均值,检验假设2020σσ=:HD 、对两个正态总体,检验假设22210σσ=:H26、设随机变量 ,,,,21n X X X 相互独立,且),,,2,1( n i X i =都服从参数为1的泊松分布,则当n 充分大时,随机变量∑==ni i X n X 11的概率分布近似于正态分布( C )A 、)1,1(NB 、),1(n NC 、)1,1(nN D 、)1,1(2n N 27、设n x x x ,,,21 是来自总体X 的样本,)1,0(~N X ,则∑=ni ix12服从( B )A 、)1-(2n χB 、)(2n χC 、)1,0(ND 、),0(n N28、设总体X 服从),(2σu N ,n x x x ,,,21 为其样本,x 为其样本均值,则212)-(1x x ni i∑=σ服从( A )A 、)1-(2n χB 、)(2n χC 、)1-(n tD 、)(n t29、设总体X 服从),(2σu N ,n x x x ,,,21 为其样本,212)-(1-1x x n s n i i ∑==,则22)1-(σs n 服从( A ) A 、)1-(2n χB 、)(2n χC 、)1-(n tD 、)(n t答案:A30、10021,,,x x x 是来自总体)(22,1~N X 的样本,若)1,0(~,10011001N b x a y x x i i +==∑=,则有( A ) A 、5-,5==b a B 、5,5==b aC 、51-,51==b a D 、51,51==b a 31、对任意事件A,B ,下面结论正确的是( D ) A 、0)(=AB P ,则=A Ø或=B Ø B 、1)(=⋃B A P ,则Ω=A 或Ω=B C 、)()()(B P A P B A P -=-D 、)()()(AB P A P B A P -=32、已知事件A 与B 相互独立,6.0)(,5.0)(==B P A P ,则)(B A P ⋃等于( B ) A 、0.9B 、0.7C 、0.1D 、0.233、盒中有8个木质球,6个玻璃球,玻璃球中有2个红色4个蓝色,木质球中有4个红色4个蓝色,现从盒中任取一球,用A 表示“取到蓝色球”,用B 表示“取到玻璃球”,则=)|(A B P ( D )A 、53B 、83 C 、74 D 、31 34、设321,,A A A 为任意的三事件,以下结论中正确的是( A ) A 、若321,,A A A 相互独立,则321,,A A A 两两独立 B 、若321,,A A A 两两独立,则321,,A A A 相互独立C 、若)()()()(321321A P A P A P A A A P =,则321,,A A A 相互独立D 、若1A 与2A 独立,2A 与3A 独立,则31,A A 独立35、若)](1)][(1[)(B P A P B A P --=⋃,则A 与B 应满足的条件是( D ) A 、A 与B 互不相容 B 、B A ⊃C 、A 与B 互不相容D 、A 与B 相互独立36、设B A ,为随机事件,且B A ⊂,则AB 等于( C )A 、B A B 、BC 、AD 、A37、设C B A ,,为随机事件,则事件“C B A ,,都不发生”可表示为( A ) A 、C B AB 、BC AC 、C B AD 、C AB38、甲、乙、丙三人独立地破译一密码,他们每人译出的概率都是41,则密码被译出的概率为( C ) A 、41 B 、641 C 、6437 D 、6463掷一颗骰子,观察出现的点数,则“出现偶数”的事件是( D ) A 、基本事件 B 、必然事件 C 、不可能事件 D 、随机事件 若A,B 之积为不可能事件,则称A 与B( B )A 、相互独立B 、互不相容C 、对立D 、A=Ø或B=Ø41、下列函数中可以作为某个二维随机变量的分布函数的是( D ) A 、⎩⎨⎧<+≥+=0,10,0),(1y x y x y x FB 、⎩⎨⎧<+≥+=0,20,1),(2y x y x y x FC 、⎩⎨⎧>>=其他,5.00,0,1),(3y x y x FD 、⎩⎨⎧>>--=--其他,00,0),1)(1(),(4y x e e y x F y x42、设(X,Y)的联合分布列为则下面错误的是( C ) A 、152,101==q p B 、51,301==q p C 、51,151==q p D 、61,151==q p 43、下列函数中,可以作为某个二维连续型随机变量的密度函数的是( B ) A 、21),(,sin ),(R y x x y x f ∈=B 、⎩⎨⎧>>=+-其他,00,0,),()(2y x e y x f y xC 、⎩⎨⎧->>=+-其他,10,0,),()(3y x e y x f y xD 、⎪⎩⎪⎨⎧≤≤≤≤=其他,010,10,21),(4y x y x f44、设(X,Y)的联合分布列为则关于X 的边缘分布列为( A )A 、B 、C 、45、若随机变量X 服从[0,2]上的均匀分布,则=2)]([)(X E X D ( B )A、21 B 、31 C 、121 D 、41 46、某人打靶的命中率为0.8,现独立地射击5次,那么5次中有2次命中的概率为( D ) A 、2.0)8.0(2⨯B 、2)8.0(C 、3225)8.0()2.0(CD 、3225)2.0()8.0(C47、设c b a ,,为常数,b X E a X E ==)(,)(2,则=)(cX D ( C ) A 、)(2b ac -B 、)(2a b c -C 、)(22a b c-D 、)(22b a c -48、设),(~2σu N X i 且i X 相互独立,n i ,,2,1 =,对任意∑==>ni i X n X 11,0ε所满足的切比雪夫不等式为( B )A 、22}|{|εσεn nu X P ≥<-B 、221}|{|εσεn u X P -≥<-C 、221}|{|εσεn u X P -≤≥-D 、22}|{|εσεn u X P ≥<-49、若随机变量X 的方差存在,由切比雪夫不等式可得≤≥-}1|)({|X E X P ( A ) A 、)(X DB 、)(1X DC 、)(XD εD 、)(1X D ε若随机变量X 服从二项分布B(n,p),且E(X)=6,D(X)=3.6,则有( A )A 、p=0.4,n=15B 、p=0.6,n=15C 、p=0.4,n=10D 、p=0.6,n=10 51、设总体X 服从泊松分布, 2,1,0,!}{===-k e k k XP kλλ,其中0>λ为未知参数,n x x x ,,,21 为X 的一个样本,∑==ni i x n x 11,下面说法中错误的是( D )A 、x 是)(x E 的无偏估计B 、x 是)(x D 的无偏估计C 、x 是λ的矩估计D 、x 是2λ的无偏估计52、总体X 服从正态分布)1,(u N ,其中u 为未知参数,321,,x x x 为样本,下面四个关于u 的无偏估计中,有效性最好的是( D ) A 、213132x x + B 、321412141x x x ++ C 、316561x x + D 、321313131x x x ++ 53、样本n x x x ,,,21 取自总体X ,且2)(,)(σ==X D u X E ,则总体方差2σ的无偏估计是( B )A 、21)(1x x n n i i -∑=B 、21)(11x x n ni i --∑= C 、211)(11x x n n i i --∑-= D 、211)(1x x n n i i -∑-=54、对总体),(~2σu N X的均值u 作区间估计,得到置信度为0.95的置信区间,意义是指这个区间( C )A 、平均含总体95%的值B 、平均含样本95%的值C 、有95%的机会含u 的值D 、有95%的机会含样本的值设3621,,,x x x 为来自总体X 的一个样本,)36,(~u N X ,则u 的置信度为0.9的置信区间长度为( A )(645.105.0=u )A 、3.29B 、1.645C 、u 2D 、4.93556、设总体22),,(~σσu N X未知,通过样本n x x x ,,,21 检验00:u u H =时,需要用统计量( C )A 、nu x u /0σ-=B 、1/0--=n u x uσC 、ns u x t /0-=D 、su x t 0-=57、对假设检验问题0100:,:u u H u u H ≠=,若给定显著水平0.10,则该检验犯第一类错误的概率为( B ) A 、0.05B 、0.10C 、0.90D 、0.09558、从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若想知这批零件的直径是否符合标准直径5cm ,因此采用了t 检验法,那么,在显著性水平α下,接受域为( A ) A 、)99(||2αt t ≤B 、)100(||2αt t <C 、)99(||2αt t ≥D 、)100(||2αt t ≥59、总体服从正态分布),(2σu ,其中2σ已知,随机抽取20个样本得到的样本方差为100,若要对其均值u 进行检验,则用( A )A 、u 检验法B 、2χ检验法 C 、t 检验法 D 、F 检验法 60、下列说法中正确的是( D )A 、如果备择假设是正确的,但作出拒绝备择假设结论,则犯了拒真错误B 、如果备择假设是错误的,但作出接受备择假设结论,则犯了取伪错误C 、如果原假设是错误的,但作出接受备择假设结论,则犯了取伪错误D 、如果原假设是正确的,但作出接受备择假设结论,则犯了拒真错误二、判断题(本大题共60小题,每小题2分,共120分)1、若事件B A 、互不相容,则A B A P =⋃)(。
应用统计学期末考试试题及答案第二套
《应用统计学》期末考试试题(第二套)参考答案及评分细则一、单项选择题(在备选答案中只有一个是正确的,将其选出并把它的英文标号写在题后括号内。
不答题或者答错题既不得分,也不倒扣分。
每题1分,共10分)1、指标是说明总体特征的,标志是说明总体单位特征的,所以( B)A、标志和指标之间的关系是固定不变的B、标志和指标之间的关系是可以变化的C、标志和指标都是可以用数值表示的D、只有指标才可以用数值表示2、属于质量指标的是( B )。
A、货物周转量B、单位面积产量C、年末人口数D、工业增加值3、所选择单位的标志总量占全部总体标志总量的绝大比例,这些单位就是( C )。
A、调查单位B、代表性单位C、重点单位D、典型单位4、划分连续变量的组限时,相邻的组限必须( A )A、重叠B、相近C、不等D、间断5、宏发公司2004年计划规定利润应比2003年增长10%,实际执行的结果比2003年增长了12%,则其计划完成程度为( D )。
A、 83%B、 120%C、 98.2%D、 101.8%6、甲班学生平均成绩80分,标准差8.8分,乙班学生平均成绩70分,标准差8.4分,因此( A )A、甲班学生平均成绩代表性好一些B、乙班学生平均成绩代表性好一些C、无法比较哪个班学生平均成绩代表性好D、两个班学生平均成绩代表性一样7、若各年环比增长速度保持不变,则各年增长量( A )A、逐年增加B、逐年减少C、保持不变D、无法做结论8、在物价上涨后,同样多的人民币少购买商品2%,则物价指数为( B )A 、90.00%B 、102.04%C 、90.91%D 、109.18%9、在其它条件不变的情况下,提高估计的概率保证程度,其估计的精确程度(B ) A 、随之扩大 B 、随之缩小 C 、保持不变 D 、无法确定 10、下列回归方程中,肯定错误的是( C )A 、88.0,32ˆ=+=r x yB 、88.0,32ˆ=+-=r x yC 、88.0,32ˆ-=+-=r x yD 、88.0,32ˆ-=-=r x y 二、多项选择题(在备选答案中有二个以上是正确的,将它们全选出并把它们的标号写在题后括号内,每题所有答案选择正确的得分;不答、错答、漏答均不得分。
《应用数理统计》考试试题与参考答案
《应用数理统计》试卷 第 1 页 共 4 页《应用数理统计》期末考试试卷一、单项选择题:(每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )A.P(A)=1-P (B )B.P(AB)=P(A)P(B)C.P(A ∪B)=1D.P(AB )=1 2、设A ,B 为随机事件,P(A)>0,P (A|B )=1,则必有( ) A.P(A ∪B)=P(A) B.A ⊂B C.P(A)=P(B) D.P(AB)=P(A)3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( )A.2422B .C C 2142 C .242!A D.24!!4、某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( ) A.()343B.41)43(2C. 43)41(2D.C 4221434()5、已知随机变量X 的概率密度为f X (x ),令Y=-2X ,则Y 的概率密度f Y (y)为( )A.2f X (-2y)B.f X ()-y2C.--122f y X () D.122f y X ()- 6、如果函数f(x)=x a x b x a x b,;,≤≤或0<>⎧⎨⎩是某连续随机变量X 的概率密度,则区间[a,b]可以是( )A.〔0,1〕B.〔0,2〕C.〔0,2〕D.〔1,2〕7、下列各函数中是随机变量分布函数的为( )A.F x xx 1211(),=+-∞<<+∞B..0,1;0,0)(2x x x x x F ≤C.F x e x x 3(),=-∞<<+∞-D.F x arctgx x 43412(),=+-∞<<+∞π8 则P{X=0}=A.112B.212 C. 412 D. 5129、已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=( ) A. 3 B. 6 C. 10 D. 12 10、设Ф(x)为标准正态分布函数,X i =10,,事件发生;事件不发生,A A ⎧⎨⎩ i=1,2,…,100,且P(A)=0.8,X 1,X 2,…,X 100相互独立。
应用数理统计习题答案
2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a NnnE t t dtnP t Pnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6. 13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰1212(2){}{,,,}{1,1,,1}n n nn P K k P k k k P k k k ξξξξξξ==≥≥≥-≥+≥+≥+7.8.均值的和(差)等于和的均值,方差的和差都等于方差的和9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t tn it it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴22121212222(),()(),()0,()()()2,()()()2,i i E E a D D E D D D E E D ξξξξσξξξξξξσξξξξξξσ====∴-=-=+=∴-=-+-=13.14.15.16.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11223''''110(2)(,)111()()()()5231()(121)23023021BE E E EB E E B BVar Bξηηηξξξηηηηξξξξξ⎛⎫⎛⎫ ⎪===⎪ ⎪⎝⎭ ⎪⎝⎭∑=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰17.18.21.22.()11223'122'111110(,),211151,1101221111111100130111100310110N A A AAA Aξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭‘=,由引理1.2.3,则-的联合分布为--11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭23.24.又 则令 则与 独立,则 与独立,且26.则2212221~(,),~(0,),~(1),(0,1)/(1)n n N a N n n ns n N T t n σξξξσξξχσξξ++----=-'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i nnB N a N I ηξθσσ===∑,i i i aξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f y F y F x n n y x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰27.33.2222122222212222(0,),1()||2 ()()()()22(1)iyniniiY a NE d Y dynaD dE d E d Ennn nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξχχξξξξ+-+-+<=-224132244(4)~(1),~(0,0.12),10.73 {10.73}{}0.95NP Pξχξξξξ-<=<=34.《应用数理统计》参考答案2211222212222211(1)(0,),(0,)(1),()(1)11,()()(2)nn miii i n nniii nn mi i i i n N n N m n m m a b n m a b n m ξσξσξξχχσσσξξχ+==+=+==+--==++-∑∑∑∑∑∑222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n mF n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑1. 由矩估计法2. (1) 由矩估计法(2)(3)(4)(5)818226212266174.00281610(74.002)88610 6.85710181ii i i a X x S x n S S n σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯--∑∑11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n i i e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni N NA x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰2∞3.4.2()2{0},(){0}{}()0.7,110.7,0.525x aA X AP A P dxa aP a pp aξξξ--=<=<=--=<=Φ-=≈∴≈=-⎰设表示出现的次数,(1)11111(1)()ln()[ln ln(1)ln]ln()1[ln ln]ln ln0 ln lnniiniin ni ii iniiL c xL c xLc x n c xnnx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln()[ln1)ln]ln()]0(ln)niniiniiniiLL xLxnxθθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(11max(1)~(,0)11(1)(),,,0(),()()nnniULL Lξθθθξξθθθξθθ==-=<<-=≤∏6.7.所以不唯一。
应用统计学期末考试题库含答案
应用统计学期末考试题库含答案一、填空题(10分)1.统计学的三种含义:统计工作;统计数据或统计信息;统计学2.统计学的研究对象是群体现象3.根据统计方法的构成不同,可将统计学分为描述统计学和推断统计学,根据统计方法研究和应用的侧重不同,可将统计学分为理论统计学和应用统计学。
4.统计研究的基本方法:大量观察法,实验设计法,统计描述法和统计推断法5.标志是说明总体单位特征的,而指标是说明总体特征的,6.标志按其性质不同分为数量标志和品质标志两种。
按其变异情况可以分为不变标志和可变标志,可变标志称为变量。
7.统计总体具有三个基本特征,即同质性、大量性和变异性。
8.统计指标按其作用可分为总量指标、相对指标、平均指标,按所反映总体的内容不同,可以分为数量指标和质量指标。
9.总量指标指在一定时间、地点条件下说明现象总体的规模和水平的指标,其表现形式为绝对数。
10.总量指标按其反映时间状况不同,可以分为时点指标和时期指标,按指标数值采用的计量单位不同可以分为实物指标,价值指标,劳动量指标。
总量指标按其说明总体内容不同,可分为总体标志总量和总体单位总量11.平均指标说明分配数列中各变量值分布的集中趋势,变异指标说明各变量值分布的离中趋势12.计量尺度的类型有定类尺度,定序尺度,定距尺度,定比尺度,根据四种计量尺度计量结果,可将统计数据分为三种类型:名义级数据,顺序级数据,刻度级数据。
13.对名义级数据通常是计算众数,对顺序级数据,通常可以计算众数、中位数;对刻度级数据,同样可以计算众数和中位数,还可以计算平均数。
14.全面调查方式有统计报表制度,普查;非全面调查有重点调查、典型调查、抽样调查。
15.常用的抽样调查组织形式有简单随机抽样,类型随机抽样,机械随机抽样,整群随机抽样,阶段随机抽样。
16.统计分组的关键在于正确选择分组标志和合理划分各组界限17.按分组标志的多少,统计分组可以分为简单分组和复合分组;按分组标志性质不同,统计分组可以分为品质分组和数量分组;按分组作用和任务不同,有类型分组、结构分组和分析分组。
应用数理统计Review(2012部分)
认为两家银行储户的年存款余额的方差无显著性差异.
(2)再检验第二家银行储户的平均年存款余额是否
显著高于第一家银行储户的平均年存款余额。
x 650, y 800,
原假设 H 0 : μ1 μ2 , 检验统计量: T
x y,
备择假设 H 1 : μ1 μ2 ,
X Y
1 1 ( n1 1) S 12 ( n2 1) S 22 n1 n2 n1 n2 2
1.5 2 3 4.5 7.5 产量x 生产费用 y 5.6 6.6 7.2 7.8 10.1
9.1 10.5 12 10.8 13.5 16.5
试求y 倚x 的回归方程。并在α=0.01下用F检验 法检验y 与 x 之间是否存在显著的线性相关关系.
x i 50.1, x i2 428.81, 6.2625 x 解:
n
x
i 1
n
i
y i 592.08
n
n 1 n 1 Lxy x i y i ( x i )( y i ) 592.08 50.1 78.1 n i 1 8 i 1 i 1 102 .9788
ˆ b
L xy L xx
102.9788 0.8950 115.0588
1.4 2.0301
t K,
所以接受H0,
在显著性水平0.05下,可以认为在这次考试 中全体考生的平均成绩为70分。
例2. 在生产线上随机地取10只电阻测得电阻值
(单位:欧姆)如下:114.2,91.9,107.5,89.1,
87.2,87.6,95.8 ,98.4,94.6,85.4
K { F F1 (n1 1,n2 1) ,F F (n1 1,n2 1)}
数理统计学期末考试卷子
数理统计学期末考试卷子一、选择题1. 下列哪个不是统计学的基本概念?A. 总体B. 样本C. 中位数D. 方差2. 相对频率是指:A. 某个数出现的次数B. 某个数出现的频率C. 某个数在总数中的比例D. 某个数的个数3. 样本容量越大,样本均值的估计:A. 变得更加准确B. 变得更加不准确C. 与总体均值无关D. 无法估计4. 统计学中经常使用的分布是:A. 泊松分布B. 正态分布C. 二项分布D. 均匀分布5. 样本方差的计算公式为:A. (Σxi - μ)^2B. Σ(xi^2)C. Σ(xi - μ)^2 / nD. Σ(xi - μ)^2 / (n-1)二、计算题1. 有一个班级30名学生,他们期末考试成绩如下:(单位:分)85, 90, 78, 92, 88, 75, 80, 85, 86, 79, 84, 93, 87, 88, 82, 81, 77, 83, 94, 89, 87, 84, 85, 79, 91, 76, 80, 83, 86, 90请计算这30名学生的平均分、中位数和方差。
2. 一家公司的员工月薪数据如下:(单位:元)5000, 6000, 5500, 5800, 6200, 6500, 5800, 5700, 5300, 5900请计算这些员工的平均工资、工资中位数和工资标准差。
三、简答题1. 什么是正态分布?正态分布有什么特点?2. 请解释什么是中心极限定理?它对数理统计学有什么重要意义?3. 为什么要使用抽样调查?抽样调查有什么优点和局限性?四、推断题1. 一项调查显示,某电商平台的用户年龄分布呈正态分布,平均年龄为35岁,标准差为5岁。
现在随机抽取10名用户,请根据这10名用户的年龄推断这家电商平台的用户年龄情况。
2. 一份问卷调查显示,80%的受访者认为某品牌的产品质量很好。
现在随机抽取100名受访者,请根据这100名受访者的回答推断整体受访者对产品质量的看法。
《应用数理统计》期末考试-2012
中国农业大学《应用数理统计》期末考试试题(2012.12.06)(说明:把答案写在答题册上,可以使用简易计算器,考试时间120分钟)一、(20分)(1)设)2(,,,21≥n X X X n 是来自正态分布总体),(2σμN 的简单随机样本,其中2,σμ均未知,X 和2S 分别为样本均值和样本方差,(1)设μ的水平为α-1的置信区间长度为L ,试求EL 2 及DL 2; (2)设1+n X 是又一独立的观测值,试确定统计量SX X n n n -++111-的分布并说明理由。
二、(25分)设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,,,,0001);(x x e x f xθθθ,θ为未知参数,n X X X ,,,21 为取自总体X 的简单随机样本,(1) 求θ的最大似然估计θˆ,并判断θˆ是否为θ的无偏估计; (2) 求},,,min{21)1(n X X X X =的概率密度; (3) 判断)1(nX 是否为θ的无偏估计。
三、(20分)正常人的脉博平均为72次/分,某医生测得10例慢性四乙基铅中毒患者的脉搏(次/分)均值为67.4,方差为36,已知脉搏服从正态分布,(1) 求总体方差σ 2的置信区间 (α=0.1) ;(2) 在显著性水平α = 0.05下, 四乙基铅中毒患者和正常人的脉搏有无显著差异? 参考数据:t 0.95(10)=1.8125, t 0.95(9)=1.8331, t 0.975(9)=2.2622, t 0.975(10)=2.2281, χ20.95(10)=18.307, χ20.95(9)=16.919, χ20.9(9)=14.684, χ20.05(9)=3.325, χ20.1(9)=4.168, χ20.05(10)=3.94.四、(20分)粮食加工厂用四种不同的方法储藏粮食,储藏一段时间后分别抽样化验,得到粮食含水率(%)如下:在显著性水平05α下,检验这四种不同的方法对粮食的含水率有无显著影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国农业大学《应用数理统计》期末考试试题(2012.12.06)
(说明:把答案写在答题册上,可以使用简易计算器,考试时间120分钟)
一、(20分)(1)设)2(,,,21≥n X X X n 是来自正态分布总体),(2σμN 的简单随机样本,其中2,σμ均未知,X 和2S 分别为样本均值和样本方差,
(1)设μ的水平为α-1的置信区间长度为L ,试求EL 2 及DL 2; (2)设1+n X 是又一独立的观测值,试确定统计量
S
X X n n n -++111-的分布并说明理由。
二、(25分)设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,
,,,0001);(x x e x f x
θ
θθ,θ为未知参数,n X X X ,,,21 为取自总体X 的简单随机样本,
(1) 求θ的最大似然估计θ
ˆ,并判断θˆ是否为θ的无偏估计; (2) 求},,,min{21)1(n X X X X =的概率密度; (3) 判断)1(nX 是否为θ的无偏估计。
三、(20分)正常人的脉博平均为72次/分,某医生测得10例慢性四乙基铅中毒患者的脉搏(次/分)均值为67.4,方差为36,已知脉搏服从正态分布,
(1) 求总体方差σ 2
的置信区间 (α=0.1) ;
(2) 在显著性水平α = 0.05下, 四乙基铅中毒患者和正常人的脉搏有无显著差异? 参考数据:t 0.95(10)=1.8125, t 0.95(9)=1.8331, t 0.975(9)=2.2622, t 0.975(10)=2.2281, χ20.95(10)=18.307, χ20.95(9)=16.919, χ20.9(9)=14.684, χ20.05(9)=3.325, χ20.1(9)=4.168, χ20.05(10)=3.94.
四、(20分)粮食加工厂用四种不同的方法储藏粮食,储藏一段时间后分别抽样化验,得到粮食含水率(%)如下:
在显著性水平05
α下,检验这四种不同的方法对粮食的含水率有无显著影响。
=
.0
(计算过程保留小数点后两位)
参考临界值:F0.95(4, 9)=3.633, F0.975(4, 9)=4.718, F0.95(3, 9)=3.8625, F0.975(3, 9)=5.0781. 五、(15分)某研究所推出一种感冒特效新药,为证明其疗效,选择了200名感冒患病志愿者,将他们分为两组,一组不服药,一组服药,观察数天后,治愈情况如下表所示,问新药是否有明显的疗效,其中给定显著性水平为0.05。
(参考数据:χ20.95(1)=3.84,计算过程中保留小数点后两位)。